
Active Queue Management, But Only At Network Edges!

ABSTRACT
Congestion control in the internet is usually decomposed
into an end-system controller (eg: TCP) and a bottleneck
controller (AQM or Drop-Tail queueing) which generates
feedback. This paper asks an architectural question: can
the active queue management (AQM) function be moved
to the edges of the network so that the core routers focus
simply on packet forwarding? The question is interesting in
the light of recent trends to consolidate traffic management
functions at network edges. We develop a theoretical frame-
work to answer this question in the affirmative. The idea is
to use a notion of path capacity and path demand to build
an edge-based virtual queue AQM (called EVQ) at the net-
work edges. We show that such a scheme can achieve the
usual steady state objectives: high utilization, low persis-
tent queue length, negligible packet drop rate and max-min
fairness. We also establish the global asymptotic stability
for arbitrary number of flows and time delays, characterize
its equilibrium fairness to be max-min and not proportional.
For real networks, the realization of the framework and the
transient performance depend upon robust and short-time-
scale estimation of edge-to-edge parameters: path capacity
and available bandwidth. This work uses recent advances in
active measurements (e.g.,CapProbe, pathChirp) and can
leverage future advances in this area. We demonstrate the
measurement tradeoffs and parameter sensitivities through
simulations of multi-bottleneck scenarios.

1. INTRODUCTION

Internet congestion control involves the combination of end-
system control (eg: TCP) and a bottleneck feedback gener-
ator (active queue management (AQM) or Drop-Tail queue-
ing). Though there has been a tremendous amount of re-
search in AQM design [1, 2, 3, 4, 5, 6], and RED [7] is
widely implemented, ISPs tend not to enable such AQM
schemes. Reasons include uncertainty in parameter config-
uration guidelines and unwillingness to drop packets until

buffers really overflow. Minor concerns include the computa-
tional load in the critical forwarding path. Recent industry
trends (eg: differentiated services, deep packet inspection)
have involved consolidation of traffic management functions
at network edges. Given this state of affairs, this paper
asks an architectural question (see Figure 1): can the active
queue management (AQM) function be moved and consol-
idated at the edges of the network so that the core routers
focus simply on packet forwarding?

We develop a theoretical framework to answer this ques-
tion. The framework involves active measurement of no-
tional quantities called “path capacity” and “path demand”
and the design of a new edge based AQM using these quanti-
ties as the input. We show that the resulting scheme (Edge-
Based Virtual Queue or EVQ), in combination with TCP
achieves good utilization, low persistent queues, max-min
fairness and negligible packet drop rate. We also develop
parameter guidelines and proofs for global asymptotic sta-
bility for arbitrary network topologies and time delays.

Figure 1: Relocating the AQM function From Net-
work Cores to Network Edges.

EVQ operates at the network edges and abstracts an edge-
to-edge path as a virtual link. A path is the series of bot-
tlenecks between the ingress and egress router. The flows
in the same edge-to-edge path are managed together: they
contribute a virtual demand to this virtual link which builds
up a virtual queue, leading to congestion signals. The path
capacity is defined as the minimum of link capacities on the

path. The path demand is defined as the difference be-
tween the path capacity and available bandwidth on the
path. Note that path demand may not correspond to the
demand (sum of flow rates) at any bottleneck: it is just a
worst case estimate of congestion at the smallest capacity
link. Our theoretical framework shows that this estimate is
sufficient to build a stable AQM scheme from the edge of
the network. We build our EVQ by modifying the Adaptive
Virtual Queue (AVQ) algorithm by Kunniyur et. al. [2]
which also uses the concepts of virtual capacity and virtual
queue per link (determined by demand). In EVQ, a vir-
tual queue is maintained for every path instead of every link
based upon the notions of path capacity and path demand.

Since EVQ operates a flow control scheme edge-to-edge, the
fairness amongst different end-to-end TCP flows in equilib-
rium is determined not only by TCP but also by EVQ. Like
TCP, EVQ uses a path utility function to influence the dy-
namics and steady state of virtual capacity. We show that
this results in max-min fairness (unlike the regular propor-
tional fairness achieved in end-to-end schemes), a fact also
verified by subsequent ns-2 simulations.

Our initial implementation in ns-2 uses the “CapProbe mode”
technique from UCLA [8] to estimate path capacity, and
“pathChirp” [9] technique from Rice University to estimate
the available bandwidth on the path. These techniques use
correlated and carefully timed packet probes to perturb the
path and make inferences from the time-series of the re-
ceived probes. The time-scale of robust active measure-
ment matters: our ns-2 simulations currently assume that
demand/capacity conditions do not change during the time-
scale of active measurements – an assumption that must be
revisited in real-world design. Our primary focus in this
paper is on the theoretical feasibility, design and stability
analysis of this new architectural concept.

Section II presents the key ideas of this framework and EVQ
algorithm outline. Section III analyzes the stability, equi-
librium fairness and parameter guidelines for the EVQ algo-
rithm. Section IV, provides preliminary MATLAB and ns-2
simulations to support our theoretical results, and compar-
isons of “EVQ at edges only” vs AVQ or Drop-Tail queue
management at all routers. Section V presents conclusions
and future work.

2. DESIGN GUIDELINES

This section develops the basis of the assertion that the
AQM function can be moved to network edges.

2.1 Key Design Ideas

#1. Decouple active queue management (AQM) from
its placement in network

Consider a scenario where a network edge router (along with
an egress edge router) estimates the notional path capacity
CI and corresponding path demand DI of path I. Here, path
capacity is defined as CI = min

l∈TI

{cl}, where TI is the set of

links over which path I traverses and cl is the link capacity
at link l. The path demand is artificially defined as the

difference between path capacity and available bandwidth
on the path:

DI = min
l∈TI

{cl} −min
l∈TI

{cl − yl} , (1)

where min
l∈TI

{cl − yl} denotes the available bandwidth for path

I and yl is the aggregate rate at link l.

If the demand DI equals the virtual path capacity defined
as γCI , where 0 < γ < 1 is the desired target utilization for
the network (see Figure 2), then the steady state queue for
the path i will be zero. This is because

DI − γCI = 0⇔ min
l∈TI

{cl − yl} = (1 − γ) min
l∈TI

{cl} , (2)

which implies that at the equilibrium the real demand at any
node in the path is less than its capacity, i.e., yl ≤ cl, ∀l ∈
L, implying that the steady state of queue length will be
zero. If this can be realized at the edge of the network,
we can essentially decouple the task of managing bottleneck
queues and the placement of this management function. In
other words, we do not require an active queue management
component to be present at every bottleneck and could move
this function to the network edges.

Figure 2: Virtual queue for each path with capacity
CI and arriving rates DI .

#2.Virtual queue and path utility function

In order to dynamically match path demand DI with virtual
path capacity γCI , we follow the AVQ algorithm [2]. The
edge router maintains a virtual queue for each path I whose
capacity is ςI and whose buffer size is equal to the buffer size
of the real edge queuing buffer (see Figure 2). Upon each
packet arrival, a fictitious packet is enqueued in the virtual
queue if there is sufficient space in the real buffer. If the
new packet overflows the virtual buffer, then the packet is
discarded in the virtual buffer and the real packet is marked
by setting its ECN bit or the real packet is dropped, de-
pending upon the congestion notification mechanism used
by the edge router. Since EVQ is performed at the edge of
network, fairness amongst end-to-end flows will not only be
determined by TCP flow control but also by EVQ. To guar-
antee fairness between different flows, EVQ incorporates a
path utility function WI (ςI) in the dynamic equation to de-
termine ςI (see Line 15 of the pseudo-code of EVQ in Table
2).

#3. Active measurement of path Capacity available
bandwidth

Path capacity is estimated periodically using the “CapProbe”
technique, which combines delay as well as dispersion mea-
surements of packet pairs to filter out samples distorted by
cross-traffic and give a quick and accurate capacity estima-
tion [8]. To estimate the path demand DI , we first estimate
the path available bandwidth and then subtract it out of
the path capacity. We use the pathChirp [9] technique that
sends exponentially spaced chirp probing train to infer the
available bandwidth. PathChirp has several advantages over
packet pairs or packet trains [8]. We understand that the
time-scales and robustness of these estimates determine the
nature of the transient performance and the realized stabil-
ity of the scheme. We use our simulations only to make
preliminary statements about steady state behavior (ignor-
ing transients).

2.2 The EVQ Protocol: Outline and Key Fea-
tures

The terminology used in the paper is summarized in Table
1:

xi Sending rate of user i

yl Aggregate rate at link l

cl Actual capacity of link l

pl Price at link l

qi Aggregate price received by user i

Ui (·) Utility functions of user i

πl Virtual price at link l

CI Capacity of Path I
DI Demand of Path I
ςI (“Varsigma”): Virtual capacity for virtual

link at the edge of path I
B Buffer Size of virtual queue in packets
V Q Size of Virtual Queue in packets
WI (·) Utility functions of Path I
β Fairness ratio of EVQ
λ Damping factor of EVQ
α (·) Barrier or forcing function to match path

demand to capacity
γ Desired utilization of Path I

Table 1: Terms used in the paper.

At each packet arrival epoch, EVQ updates the virtual queue
capacity according to the following equation:

ςI (t) = ςI (s) + βW
′
I (ςI (t)) + α (γCI −DI) , (3)

where t is current time and s is the arrival time of last packet.
WI (·) is the path utility function corresponding to the vir-
tual capacity ςI and α (γCI −DI) is the hypothetical price
charged. α (·) can also be thought of as a barrier function
[10] forcing DI to approach γCI . For example, we use the
following α (·)

α (γCI −DI) = −λ (DI − γCI) (4)

If λ > 0 becomes large enough, when t → ∞, DI will
stay close to γCI , that is, min

l∈TI

{cl − yl (t)} will be forced

to (1− γ) min
l∈TI

{cl}. This in turn implies yl (t) < cl for all

links when t → ∞, i.e. no links inside the network will
be congested except the virtual link at the edge. In EVQ,

we call λ the damping factor, which is set to determine how
aggressive the marking or dropping should be when path de-
mand is more than the desired utilization γ of path capacity
CI .

The following pseudo-code describes an implementation of
EVQ scheme:

The EVQ Algorithm
1. t: Current time
2. s: Arrival time of the last packet enqueued
3. T: Time when the last path demand estimate is taken
4. D(T): Path demand estimate at time T in packets
5. C(T): Path capacity estimate at time T in packets
6. ξ: Time after which D(T) is updated
7. for each packet arrival in (t; t + ξ) do
8. VQ ← max {V Q− ς · (t− s) , 0} /* Update virtual
queue size */
9. if V Q + 1 > B then
10. Mark (or drop) the packet in real queue
11. else
12. VQ ← VQ + 1
13. Enque the packet in the real queue.
14. end if
15. ς (t) = ς (s) + (βW ′ (ς (s)) + λ (γC (T)−D (T))) ·
(t− s) /* Update virtual path capacity */
16. ς (t) = max {ς (t) , 0}
17. s← t /* Update last packet arrival time */
18. end for

Table 2: Pseudo-code of EVQ

We note the following features of the EVQ scheme:

1. Parameters (β, λ, γ) and Utility Function WI (·):
EVQ uses three parameters that completely determine the
performance of EVQ along with the path utility function
WI (·). The desired utilization γ determines the robustness
to the presence of uncontrollable short flows. It allows an
operator to tradeoff utilization against queue length. The
damping factor λ determines the aggressiveness of packet
marking. The fairness ratio β can be set differently for each
path and is then the relative weight assigned to a path that
determines the weighted fairness in equilibrium. The path
utility function WI (·) is any increasing, strictly concave,
and continuously differentiable function which determines
the global stability of EVQ.

2. Link utilization vs Path Capacity Utilization: For
every link l, if we define a virtual price πl as

πl = max
˘

0, yl − γ
′
cl

¯

, (5)

where

γ
′ = 1−

(1− γ) min
l∈Ii

{cl}

cl

(6)

we can rewrite EVQ algorithm as

ςI (t) = ςI (s) + βW
′
I (ςI (t)) + λ max

l∈TI

{πl} (7)

Thus, virtual capacity ςI is adjusted by a max virtual price
along the path, instead of the sum of the prices at every link.

Noting that unlike the sum feedback, which in general gives
proportional fairness [10], we will argue in the next section
that this feature of EVQ results in max-min fairness. That
means in a single link case, each flow gets an equal share of
the link capacity. [11]. Observe that:

1 > γ
′ ≥ γ (8)

Therefore the achieved link utilization at any link in the
path (including the dominant bottleneck) is no less than
path utilization parameter γ.

3. The steady queue length is zero except at the
edge-based virtual queue: When t → ∞, path demand
will approach path capacity due to barrier function α (·),
that is

DI − γCI → 0⇔ min
l∈T (I)

{cl − yl} → (1 − γ) min
l∈T (I)

{cl} . (9)

It implies that for every link l, yl < cl and flows gets con-
gested only at the edge-based virtual link with virtual ca-
pacity ςI .

3. THEORETICAL DEVELOPMENT OF EVQ

The starting point for the analysis of such a scheme is the
fluid model of the network flow control [12, 13, 14, 15, 16,
17]. A theoretical justification of how a stochastic discrete-
time equation can be approximated by a fluid model is shown
in [18]. We then incorporate the virtual capacity update
equation with this model and study the global stability of
the entire system and the fairness of the equilibrium.

3.1 Model

Consider a network model [10] shown in Figure 3. Packets
from each user (with sending rate xi) are routed through
the links with the aggregate link rate y = Rx, where R is
the routing matrix. Each link j has a fixed capacity cj , and
based on its congestion and queue size, a link price pj is
computed:

pl = hl (yl, cl) , l = 1, · · · , L. (10)

If pj is the loss probability at linkj, for analytical tractabil-
ity, we assume that

h (yl, cl) =
max {0, (yl − cl)}

yl

. (11)

In general, hl (yl) is the function of the link arrival rate. We
also consider a more general form of the pricing function
(used in our analysis):

h (yl, cl) =

„

yl

cl

«µ

. (12)

The price each source i receives has two parts. The first
one is the aggregate source price from network, q = RT p,
which models the interior network prices implied by Drop-
Tail queueing (eg: the delay penalties due to TCP self-
clocking). Recall that we do not have an explicit AQM
scheme implemented inside the network. EVQ also marks

packets when the virtual buffer overflows. In the paper, we
denote this part of price by υ, modeled as:

υI = h (xI , ςI) , (13)

where the subscript I denotes the path and xI =
P

i∈I(i)

xi

is the sum of the rates for the flows sharing the path. To
make the stability and fairness analysis applicable to diverse
types of network protocols, we consider a general source flow
control algorithm

ẋi = κi (xi)
`

U
′
i (xi)− qi

´

, i = 1, · · · , N (14)

or in vector form,

ẋ = κ (x)
`

U
′ (x)− q

´

, (15)

where x =
ˆ

x1 x2 · · · xN

˜T
and the price due to drop-

ping and marking is modeled as

q = R
T
p + υ (16)

3.2 Stability: Sketch of Proof

We use the following utility functions for the source flow
control and edge queue management:

Ui (xi) =
x1−n

i

1− n
, n > 0 (17)

WI (ςI) =
ς1−m
I

1 −m
, m > 0, (18)

which corresponds to TCP-like congestion control algorithm
[19]. The conditions for global asymptotic stability for other
utility functions can be derived in a similar way. To demon-
strate stability, we substitute pricing functions (11) or (12)
into the dynamics of send rates and virtual capacity, and
rewrite the network fluid model with EVQ as:

ẋ = κ (x)
“

U
′ (x)−R

T
h (c, Rx)− h (ς, x)

”

(19)

ς̇ = βW (ς)− λ max {π (c, Rx)} , (20)

where for brevity, we represent every variable in the vector
form. Noting the fact that the rate subsystem is perturbed
by ς, whose dynamics is in turn perturbed by the EVQ al-
gorithm with x as inputs, we can represent the fluid model
as the feedback interconnection to two subsystems and will
show its global asymptotic stability with the input-to-state
(ISS) small gain theorem [20, 21].

Figure 4: Feedback interconnection of rates dynam-
ics and virtual queue dynamics.

Figure 3: Fluid network model For EVQ

First we demonstrate that there exists a ISS gain γ1 from

x̃ =
ˆ

x̃1 x̃2 · · · x̃N

˜T
to ς̃ =

ˆ

ς̃1 ς̃2 · · · ς̃N

˜T
,

where x̃ and ς̃ are new, transformed state variables: x̃i =
ln xi

x∗

i
, ς̃I = ln ςI

ς∗
I

and where x∗
I > 0, ς∗I > 0 are the equilib-

rium of source sending rates xi and virtual path capacities
ςI . Then, we show another gain γ2 from ς̃ to x̃ for the rate
subsystem. Finally, we show global asymptotic stability from
the ISS small gain condition:

γ1γ2 < 1. (21)

Because γ1 and γ2 is independent of the number of flows and
time delays, we conclude that when the small gain condition
(21) is satisfied, global asymptotic stability is preserved:

Theorem 1. Consider the EVQ model where Ui (xi) and
WI (ςI) are as in (17) and (18). If the pricing function
h (·)is as in (11), then the network is globally asymptotically
stable if

n > 1, m >
1

n− 1
(22)

If the pricing function h (·) is as in (12), then the network
is globally asymptotically stable if

n > µ, m >
µ

n− µ
(23)

Due to space limits, we only prove the single case where
the pricing function takes the exponential form as in (12)
and each path only has only one flow. This proof can be
generalized.

Proof : We use the small gain theorem to show the global
asymptotic stability of the system:

Step 1: For the EVQ algorithm

ς̇ = βW
′ (ς)− λmax {π (c, Rx)} , (24)

We rewrite it in the following form:

ς̇ = β
`

W
′ (ς)− η

´

(25)

η =
λ

β
max {π (c, y)} (26)

y = Rx. (27)

From Lemma 1, 2 and 3, we have the ISS gain of 1 from x̃

to ỹ; ISS gain of 1 from ỹ to η̃ and ISS gain of 1
m

from η̃ to
ς̃:

|ỹ (t)|∞ ≤ |x̃ (t)|∞ ⇒ ‖ỹ (t)‖
L∞

≤ ‖x̃ (t)‖
L∞

(28)

|η̃|∞ ≤ |ỹ|∞ ⇒ ‖η̃‖L∞

≤ ‖ỹ‖
L∞

(29)

‖ς̃ (t)‖L∞

≤ max



‖ς̃ (0)‖ ,
1

m
‖η̃‖L∞

ff

(30)

‖ς̃ (t)‖
a
≤

1

m
‖η̃‖

a
. (31)

Thus, the ISS gain from x̃ to ς̃ is

γ1 =
1

m
, (32)

which implies that:

‖ς̃ (t)‖
L∞

≤ ‖ς̃ (0)‖+ γ1 ‖x̃‖L∞

(33)

‖ς̃ (t)‖
a
≤ γ1 ‖x̃‖a . (34)

Step 2: As in Step 1, in order to use the lemmas in the
Appendix to show that there exists a gain γ2 from ς̃ to x̃ for
the rate subsystem (19), we represent it as

ẋ = κ (x)
`

U
′ (x)− q

´

(35)

q = R
T
p + υ =

ˆ

RT IN×1

˜

»

p

υ

–

(36)

»

p

υ

–

=

»

h (c, y)
h (ς, x)

–

(37)

»

y

x

–

=

»

R

IN×1

–

x. (38)

Following the same steps as in Step 1, we have

‖x̃‖L∞

≤ ‖x̃ (0)‖ +
µ

n
‖x̃‖L∞

+
µ

n
‖ς̃‖∞ (39)

‖x̃ (t)‖
a
≤

µ

n
‖x̃‖

a
+

µ

n
‖ς̃‖

a
, (40)

which implies that the gain from ς̃ to x̃ is

γ2 =
µ

n− µ
, (41)

that is

‖x̃‖
L∞

≤ (1 + γ2) ‖x̃ (0)‖+ γ2 ‖ς̃‖∞ (42)

‖x̃‖
a
≤ γ2 ‖ς̃‖a . (43)

Step 3 : Global asymptotic stability follows from the ISS
small gain theorem because (23) implies

γ1γ2 =
µ

nm−mµ
< 1. (44)

2

Note that Theorem 1 does not take transmission and queu-
ing delays into account. These time delays will mean that
rates and virtual capacities get updated based upon delayed
feedback, i.e., xτ = x (t− τ1) and ςτ = ς (t− τ2) instead of
x (t) and ς (t). Thus, the fluid model with time delays will
be

ẋ = κ (xτ)
“

U
′ (x)−R

T
h (c, Rxτ)− h (ςτ , xτ)

”

(45)

ς̇ = βW (ς)− λ max {π (c, Rxτ)} . (46)

However, Theorem 1 still holds true in the time-delayed model
because delays do not introduce any extra gain to the sys-
tem (time-delays have amplitude of 1). That is, the ISS gain
from xτ to x is equal to 1, and so is the gain from ςτ to ς.
Thus, global asymptotic stability holds for arbitrary number
of flows and any amount of time delays.

3.3 Fairness Characteristics in Equilibrium

In this section, we characterize the equilibrium and show
that EVQ displays max-min fairness when λ is arbitrarily
large.

Theorem 2. In a multiple-bottleneck topology, if there
exists a unique equilibrium, then the EVQ algorithms allo-
cates a set of max-min fair path rates xI when ‘λ is arbi-
trarily large.

Sketch of Proof: In the steady state, we already argue that
when λ large enough, yl < cl for all link l and the virtual
link at the edge of network is the only congested link along
the path I, which implies

x
∗
I = ς

∗
I . (47)

Thus, at the equilibrium,

W
′
I (x∗

I) = W
′
I (ς∗i) =

λ

β
max

l∈T (I)
{π∗

l } , (48)

which implies that a corresponding max price along the path
is fed back, instead of their sum. Thus, using the same
argument as in [22, 23], we claim that path rate xI has
max-min fairness.

4. SIMULATION RESULTS

This section presents MATLAB and ns-2 simulations.

4.1 MATLAB simulations

The objectives of the MATLAB fluid flow simulation are to:

1) Illustrate the stability and fairness of EVQ.

2) Investigate the sensitivity of EVQ to the damping factor
parameter λ.

3) Study the robustness to random noise in path capacity
and path demand estimates.

The link capacity Cl = 1 for all l. The desired utilization
γ = 0.9, and routing matrix R is

R =

»

1 1 0
1 0 1

–

(49)

This routing matrix R corresponds to a multi-bottlenecked
topology shown in Figure 5, where a long flow [S2-D2] (going
through two bottlenecks) competes with two short flows [S0-
D0] and [S1-D1] (each going through one bottleneck).

Figure 5: Topology used in the simulations.

Initial conditions (sending rates xi and virtual capacity ςi)
are chosen randomly. The utility function Wi (ςi) in EVQ

is −1/ςi
; Ui (xi) is −1/xi

. Figure 5 shows the dynamics of
sending rates of users when λ = 20. Although the fluid
model is stable for arbitrary λ, a too large or too small
value of λ will affect the transient performance. We choose
λ in the range of 10 to 100 in all our simulations. The rate
allocations shown in Figure 6 also confirms the max-min
fairness [24], which implies every flow gets equal share of
the bandwidth from the definition of max-min.

Figure 6: User rates are max-min fair. The damping
parameter λ is 10.

To illustrate EVQ’s robustness, we introduce random noise
to measurements, uniformly distributed between 0% to 10%
of total capacity for both path capacity and path demand.
Figure 6 suggests EVQ is robust to such short-time-scale
measurement errors, which might be characterized under
the framework of Noise-to-State stability known in control
theory [25].

Figure 7: Sending rates of users with capacity and
demand measurement errors being up to 10% of to-
tal capacity.

4.2 NS-2 simulations

The broad objectives of the ns-2 [26] simulations are as fol-
lows:

1) Performance evaluation: In the steady state, EVQ achieves
low persistent queue length, low packet loss and acceptable
utilization.

2) Fairness of EVQ: EVQ achieves max-min fairness instead
of proportional fairness.

3) Comparison of EVQ with Drop-Tail and AVQ.

4) Measurement tradeoffs and sensitivity of EVQ to param-
eter configurations.

For all the results presented in this section we have used
the CapProbe [8] and pathChirp [9] to estimate path capac-
ity and available bandwidth. Throughout this section, we
present simulation results for the multi-bottleneck topology,
depicted in Figure 5, and assume that all the flows are per-
sistent flows, i.e. they have infinite data to transfer. We
assume that the link marks packets and thus, any packet
loss is due to buffer overflow. All the access links are config-
ured to have a capacity equal to 10 times that of bottleneck
links. The bottleneck links capacity and delay is fixed at
100Mbps and 5ms respectively. Each router has a buffer
equal to one bandwidth delay product. In setups, the bot-
tleneck routers have Drop-Tail queue management deployed
only.

4.2.1 Performance Evaluation of EVQ under NS-2

Figures 8 and 9 show the evolution of the queue length and
the utilization at each router, respectively. We observe that
in the steady state, EVQ has low persistent queue length and
acceptable utilization. These results confirm the theoretical
development of EVQ in Section 2, which mainly concentrate
on the properties of the steady state response. However, we
also note that our scheme is not optimized for the transient
response of utilization. The oscillation around steady state
and the long transience caused by some measurement arti-
facts need further investigations.

4.2.2 Fairness Characteristics of EVQ

To evaluate the fairness characteristics of the EVQ, we can
simply check the share of the bandwidth of all three flows.
Figure 10 shows the sending rates for the three flows under
consideration. Since all the three flows share the bandwidth
equitably, thus demonstrating the max-min fairness of the
algorithm [24].

Figure 10: Sending rates (Mbps) vs time (seconds)
for the EVQ (Simulation start at 5 second).

(a) Link 1 (b) Link 2

Figure 8: Queue length (packets) vs time (seconds) for the EVQ (Simulation start at 5 second).

(a) Link 1 (b) Link 2

Figure 9: Link Utilization vs time (seconds) for the EVQ (Simulation start at 5 second).

4.2.3 Comparison of EVQ with Drop-Tail and AVQ.

We compare EVQ with simple Drop-Tail and AVQ schemes.
The desired utilization of the link is set to be 0.95 for both
AVQ and EVQ schemes. Figures 11 and 12 show the evolu-
tion of the queue size for each of AQM scheme. Comparing
them with Figure 8, we can see that as far as the queue
length is concerned, EVQ performance is comparable with
AVQ. Its transient performance, however, needs to study
further.

4.2.4 Measurement Tradeoff and Parameter Sensitiv-
ity of EVQ

Although the implementation of EVQ does not depend upon
the specific path measurement tools, however, poor estima-
tion does affect the performance of EVQ. Figure 13 shows
the steady queue length when the parameters of pathChirp
are not well tuned as suggested in [9]. Thus, for real net-
works, the realization of the framework depends upon robust

and short-time-scale estimation of edge-to-edge parameters:
path capacity and available bandwidth.

The ns-2 simulations also demonstrate again that the damp-
ing parameter λ is very crucial to the performance of EVQ
(see Figure 14. For real networks, too large λ will result in
aggressive dropping or marking so that utilization will be
sacrificed. This dropping or marking saturation feature is
not captured by the fluid model in Section 2. On the other
hand, too small λ will lessen the functionality of EVQ and
the performance of the network will be back to the one with
TCP and simple Drop-tail. Through our simulations, the
desire λ lies in [10, 100] .

5. CONCLUSION

This paper focussed on a theoretical answer to an architec-
tural question: can the active queue management (AQM)
function be moved to the edges of the network so that the
core routers focus on packet forwarding? The novel ideas

(a) Link 1 (b) Link 2

Figure 11: Evolution of the Queue Length (packets) for Drop-Tail at all links (Simulation start at 5 second).

(a) Link 1 (b) Link 2

Figure 12: Evolution of the Queue Length (packets) for AVQ at all links (Simulation start at 5 second).

and observations in this work include:

1. The idea that even an artificial measure of ”worst”
path capacity and ”path demand” can be used as a
proxy at network edges to construct an AQM scheme
(called EVQ),

2. Such a scheme is global asymptotically stable, and
achieves max-min fairness (instead of the usual pro-
portional fairness),

3. we need to use a path utility function and a barrier
function in the design in addition to the regular AVQ
scheme (i.e. it is a hybrid of source-like controller and
a link controller)

4. the time-scale and robustness of path capacity and
available bandwidth estimation affects transient per-
formance and steady state behavior.

5. Movement of functions in the network architecture can
be facilitated by measurement advances. Though we

use current active measurement techniques (eg: PathChirp,
CapProbe), the availability of more robust, shorter-
time-scale estimators in the future will aid the imple-
mentation of EVQ.

This paper has focused on theoretical development of the
edge-based AQM concepts. The ns-2 simulations presented
are preliminary and illustrate the steady state behavior of
our protocol realization, subject to measurement constraints.
The design of better transient performance and superior ro-
bustness in the protocol realizations will be the focus of
future work.

6. APPENDIX

In this section, we review the nonlinear control concepts
used in the stability proof of EVQ fluid model and prove
three important Lemmas of Theorem 1 in Section 3.

Notation and definitions used in the proof:

Figure 13: Evolution of the Queue Length (packets) when pathChirp is not well tuned (Simulation start at
5 second).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

ut
ili

za
tio

n

time (seconds)

Bottleneck Utilization vs Time

sample interval=0.1s

(a) λ = 5 (b) λ = 500

Figure 14: Evolution of the Queue Length (packets) for different λ (Simulation start at 5 second).

1) We denote by ‖·‖
p

the p-norm of vectors and induced p-
norm of matrices. Whenever the choice of p is unimportant,
we drop the subscript. We let ‖x‖Lp

denote the Lp-norm

of x (t) on the interval [0,∞), p ∈ (0,∞]. For x ∈ L∞, we
define ‖x‖

a
= lim

t→∞
sup ‖x (t)‖.

2) A function γ (·) : R≥0 → R≥0 is defined to be class-K if
it is continuous, zero at zero, and strictly increasing. It is
said to be class-K∞ if it is class-K, and grows unbounded.

3) A system ẋ = f (x, u) is said to be input-to state stable
(ISS) if there exist class-K∞ functions γ0 (·) and γ (·) such
that, for any input u (·) ∈ Lm

∞ and x0 ∈ Rn, the response
x (t) from the initial state x (0) = x0 satisfies

‖x‖L∞

≤ max γ0 (‖x0‖) + γ
“

‖u‖L∞

”

, ‖x‖a ≤ γ
`

‖u‖a
´

.

The function γ (·) is referred to as the ISS gain.

Lemma 1. For the rate subsystem system

ẋi = κi (xi) (Ui (xi)− qi)
+
xi

, (50)

where i = 1, · · · , N , Ui (xi) =
x
1−n
i

1−n
and (·)+

xi
is the project

function to bound xi in [xi min, xi max] , the ISS-gain from
q̃i = ln qi

q∗
i

to x̃i = ln xi

x∗

i
is 1

n
, specifically

‖x̃i (t)‖
L∞

≤ max



‖x̃i (0)‖ ,
1

n
‖q̃i (t)‖

L∞

ff

(51)

‖x̃i (t)‖
a
≤

1

n
‖q̃i‖a . (52)

When L∞ norm is define as ‖x̃ (t)‖
L∞

= sup
t≥0
‖x̃ (t)‖∞ =

sup
t≥0

max |x̃i (t)|, we also have

‖x̃ (t)‖
L∞

≤ max



‖x̃ (0)‖ ,
1

n
‖q̃‖

L∞

ff

(53)

‖x̃ (t)‖
a
≤

1

n
‖q̃‖

a
, (54)

where x̃ =
ˆ

x̃1 x̃2 · · · x̃N

˜T
and q̃ =

ˆ

q̃1 q̃2 · · · q̃N

˜T
.

Proof: With the nonlinear state transformation q̃i = ln qi

q∗
i

to x̃i = ln xi

x∗

i
, we obtain the transformed system as

˙̃xi =

„

1

xn+1
i

“

1− e
q̃+nx̃i

”

«+

xi

(55)

The derivative of the ISS Lyapunov function [27] Vi (x̃i) =
1
2
x̃2

i along its trajectory is

V̇i = x̃i
˙̃xi =

1

xn+1
i

x̃i

“

1− e
q̃+nx̃i

”

. (56)

When |q̃i| ≤ (1− β) n |x̃i|, where 0 < β < 1

V̇i = x̃i
˙̃xi =

1

xn+1
i

x̃i

“

1− e
q̃+nx̃i

”

≤
1

xn+1
i max

|x̃i|

eβ|x̃i|

“

1 − e
βn|x̃i|

”

.

(57)

Thus, we obtain:

|x̃i (t)| ≤ β (|x̃i (0)| , t) +
1

n
|q̃i|L∞

, (58)

which implies (51) and (52). (53) and (54) follows from the
definition of L∞ norm.

Lemma 2. For the linear mapping functions yl =
P

i∈L(l)

xi+

δl and y∗
l =

P

i∈L(l)

x∗
i + δl, where xi ≥ 0, δ ≥ 0 and x∗

i > 0,

the infinity gain from x̃i = ln xi

x∗

i
to ỹi = ln yi

y∗

i
is 1.

Proof: Noting that

ỹi = ln
yi

y∗
i

= ln

P

i∈L(l)

xi + δl

P

i∈L(l)

x∗
i + δl

(59)

and

ln

P

i∈L(l)

xi + δl

P

i∈L(l)

x∗
i + δl

≤ ln max



max
i∈L(l)



xi

x∗
i

ff

, 1

ff

= max



max
i∈L(l)

ln



xi

x∗
i

ff

, 0

ff

(60)

ln

P

i∈L(l)

xi + δl

P

i∈L(l)

x∗
i + δl

≥ ln min



min
i∈L(l)



xi

x∗
i

ff

, 1

ff

≥ min



min
i∈L(l)

ln



xi

x∗
i

ff

, 0

ff

,

(61)

we obtain,
˛

˛

˛

˛

˛

˛

˛

ln

P

i∈L(l)

xi

P

i∈L(l)

x∗
i

˛

˛

˛

˛

˛

˛

˛

≤ max


˛

˛

˛

˛

max
i∈L(l)

ln



xi

x∗
i

ff
˛

˛

˛

˛

,

˛

˛

˛

˛

min
i∈L(l)

ln



xi

x∗
i

ff
˛

˛

˛

˛

ff

= max
i∈L(l)

˛

˛

˛

˛

ln



xi

x∗
i

ff˛

˛

˛

˛

.

(62)

That is, |ỹl (t)| ≤ |x̃|∞. Thus,

|ỹ|∞ ≤ |x̃|∞ . (63)

Lemma 3. For the nonlinear mapping functions qi = max
l∈I(i)

“

yl

cl

”µ

and q∗i = max
l∈I(i)

“

y∗

l

c∗
l

”µ

, where qi ≥ 0, q∗i > 0, c∗l > 0, cl ≥ 0,

and µ > 0,

|q̃|∞ ≤ µ |ỹ|∞ + µ |c̃l|∞ . (64)

Proof is omitted due to simplicity.

7. REFERENCES

[1] C.V. Hollot, V. Misra, D. Towlsey, and W. Gong, On
designing improved controllers for AQM routers
supporting TCP flows, in Proceedings of INFOCOM,
Alaska, Anchorage, April 2001.

[2] S. Kunniyur and R. Srikant. Analysis and design of an
adaptive virtual queue algorithm for active queue
management, IEEE ACM Transactions on Networking,
April 2004, pp. 286-299. An earlier version appeared in
Proc. ACM Sigcomm 2001.

[3] T. J. Ott, T. V. Lakshman, and L. H. Wong, SRED:
Stabilized RED, in Proceedings of INFOCOM, New
York, NY, March 1999.

[4] W. Feng, D. Kandlur, D. Saha, and K. Shin, Blue: A
new class of active queue management schemes, April
1999, Technical Report, CSE-TR-387-99, U. Michigan.

[5] R.J. Gibbens and F.P. Kelly, Distributed connection
acceptance control for a connectionless network, in
Proc. of the 16th Intl. Teletraffic Congress, Edinburgh,
Scotland, June 1999.

[6] S. Athuraliya, D. E. Lapsley, and S. H. Low, Random
early marking for Internet congestion control, in
Proceedings of Globecom, 1999.

[7] S. Floyd and V. Jacobson, Random early detection
gateways for congestion avoidance, IEEE/ACM
Transactions on Networking, August 1993.

[8] Rohit Kapoor, Ling-Jyh Chen, Li Lao, Mario Gerla,
and M. Y. Sanadidi. CapProbe: A Simple and Accurate
Capacity Estimation Technique. ACM SIGCOMM
2004, Portland, USA, 2004.

[9] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L.
Cottrell. pathChirp: efficient available bandwidth
estimation for network paths, Passive and Active
Measurement Workshop, 2003.

[10] F. Kelly, A. Maulloo, and D. Tan. Rate control in
communication networks: shadow prices, proportional
fairness and stability, Journal of the Operational
Research Society, vol. 49, pp. 237–252, 1998.

[11] D. Bertsekas and R. Gallager. Data Networks. 2nd
Ed., Simon & Schuster, December 1991.

[12] F. Kelly, A. Maulloo, and D. Tan. Rate control in
communication networks: shadow prices, proportional
fairness and stability, Journal of the Operational
Research Society, vol. 49, pp. 237–252, 1998.

[13] D.J. Hill and P.J. Moylan. Stability results for
nonlinear feedback systems. Automatica, 13:377–382,
1977.

[14] F. Paganini, J. Doyle, and S. Low, Scalable laws for
stable network congestion control, Proceedings of 2001
Conference on Decision and Control, Orlando, FL, Dec.
2001, pp. 185-190.

[15] C.I. Byrnes, A. Isidori, and J.C. Willems. Passivity,
feedback equivalence, and global stabilization of
minimum phase systems. IEEE Transactions on
Automatic Control, 36:1228–1240, 1991.

[16] F. Paganini, A global stability result in network flow
control, Systems and Control Letters, vol. 46, pp.
165-172, 2002.

[17] J. Wen and M. Arcak, A unifying passivity framework
for network flow control, IEEE Transactions on
Automatic Control, vol. 49, no. 2, pp. 162–174, 2004.

[18] F. Kelly, A. Maulloo, and D. Tan. Rate control in
communication networks: shadow prices, proportional
fairness and stability, Journal of the Operational
Research Society, vol. 49, pp. 237–252, 1998.

[19] G. Vinnicombe. On the stability of networks operating
TCP-like congestion control. In Proceedings of the
IFAC World Congress, Barcelona, Spain, 2002.
University of Cambridge Technical Report
CUED/F-INFENG/TR.398. Available at
http://www.eng.cam.ac.uk/gv.

[20] A. Teel, A nonlinear small gain theorem for the
analysis of control systems with saturation, IEEE
Transactions on Automatic Control, vol. 41, no. 9, pp.
1256–1271, 1996.

[21] Z.-P. Jiang, and A. Teel, and L. Praly, Small-gain
theorem for ISS systems and spplications, Mathematics
of Control, Signals, and Systems, Vol.7, 1994, 95-120

[22] Bartek Wydrowski and Moshe Zukerman, MaxNet: A
congestion control architecture for maxmin fairness,
IEEE Communications Letters, vol. 6, no. 11 , Nov.
2002, pp.512-514.

[23] Yong Xia, Lakshminarayanan Subramanian, Ion
Stoica and Shivkumar Kalyanaraman, One more bit is
enough, ACM SIGCOMM, Philadelphia, PA, Aug. 22,
2005

[24] J. Mo and J. Walrand. Fair end-to-end window-based
congestion control. Proceedings of the SPIE,
vol.3530:55-63, Nov. 1998.

[25] Hua Deng and, Miroslav Krstic. ”Output-feedback
stabilization of stochastic nonlinear systems driven by
noise of unknown covariance”. Systems & Control
Letters 39 (2000) 173-182.

[26] ns2 (online), http://www.isi.edu/nsnam/ns.

[27] H. Khalil, Nonlinear Systems, 2nd ed. Englewood Clis,
NJ: Prentice Hall, 1996.

