
 Editorial Manager(tm) for Computer Networks
 Manuscript Draft

Manuscript Number:

Title: An Edge Based Architecture for Managing Uncooperative Flows in the
Internet

Article Type: Regular Paper

Section/Category:

Keywords:

Corresponding Author: Dr. Kartikeya Chandrayana, PhD

Corresponding Author's Institution: Cisco Systems Inc.

First Author: Kartikeya Chandrayana, PhD

Order of Authors: Kartikeya Chandrayana, PhD; Shivkumar Kalyanaraman, Phd

Manuscript Region of Origin:

Abstract:

An Edge Based Architecture for Managing
Uncooperative Flows in the Internet
Kartikeya Chandrayana, Cisco Systems, San Jose, CA, karchand@cisco.com

Shivkumar Kalyanaraman, R.P.I., Troy, NY, shivkuma@ecse.rpi.edu

Abstract— Traditionally uncooperative rate control
schemes have implied open loop protocols such as UDP,
CBR. In this paper we show that closed loop uncooperative
rate control schemes also exist and that the current AQM
proposals cannot efficiently control their mis-behavior.
Moreover, these proposals require that AQM be installed
at all routers in the Internet which is not only expensive
but requires significant network upgrade.

In this paper we show that management of uncooperative
flows need not be coupled with AQM design but can be
viewed as edge based policing question. In this paper we
propose an analytical model for managing uncooperative
flows in the Internet by re-mapping their utility function
to a target range of utlity functions. This mapping can be
achieved by transparently manipulating congestion penal-
ties conveyed to the uncooperative users.

The most interesting aspect of this research is that
this task can be performed at the edge of the network
with little state information about uncooperative flows. The
proposed solution is independent of the buffer management
algorithm deployed on the network. Thus the framework
presented in this paper not only works on a network of
Drop-Tail queues but also with any AQM scheme. We
have analyzed the framework and evaluated it on various
single and multi-bottleneck topologies with both Drop-Tail
and RED. Our results show that the framework is robust
and works well even in presence of background traffic and
reverse path congestion.

I. INTRODUCTION

Over the years as the Internet has evolved TCP has
formed the backbone of its stability. TCP placed the
trust of responsive behavior, i.e. decrease rate if there
is congestion, at the end-user and as a result the core
network could be kept simple. However as the appli-
cation needs changed newer rate control schemes were
proposed. Moreover, new software advancements have
also placed users in a position where they can change
their congestion control schemes. As such we now have
an Internet which operates with a spectrum of transport
protocols, some of which don’t even react to congestion
indications. Thus, over the years, the trust placed in the
end-system to react to congestion indications has been
sufficiently weakened.

It has been widely reported that this breach of trust
or presence of uncooperative users can lead to TCP
unfriendliness and also cause congestion collapse [1],
[9], [6], [7]. Moreover, as reported recently and further
validated by our results, these uncooperative flows can
also force a traffic volume based denial-of-service to
their cooperative counterparts [12], [13]. Also as the

U2

Us

Conformant

[U1,U2] defines the conformance space

U

x (Rate)

Remap U

Non Conformant

U1

Fig. 1. Mapping a uncooperative user to a conformant space.

network grows and the access pipes get bigger, unco-
operative flows will pose a significant challenge before
the network providers. This is because of uncooperative
flows have the ability to monopolize bottleneck space
and their disregard to appropriate congestion responses
may cause congestion collapse thus effecting the stability
of the Internet. Some architectural responses such as
use of AQM schemes, schedulers and pricing mecha-
nisms have been suggested to manage the uncooperative
flows [9]. However, use of AQM and schedulers require
deployment at all (bottleneck) routers in the network,
which is not only expensive but also requires signifi-
cant network upgrade. These deployment considerations
coupled with presence of simple Drop-Tail queueing
schemes at all routers in the Internet present us with an
interesting question - What are the appropriate alternate
architectural responses for managing a network of un-
cooperative users, such that it requires minimal network
support ?

In this paper we explore architectural responses for
managing the entire spectrum of uncooperative sources
at the edge of the network. The biggest advantages of
the framework presented in this paper are that it is
independent of buffer management scheme deployed on
the network and works equally well in a dropping or a
marking based network. The framework presented in this
paper can also be used to distribute rates amongst users
according to some a-priori fair rate allocation, while still
allowing users to choose their rate control schemes. This
proposal can be also used to enforce congestion response
conformance, i.e. different rate control schemes have
similar response to congestion indications, e.g. TCP-
Friendliness.

Article

The framework presented in this paper follows from
the flow optimization model [14], [15], [17], specifically
the duality framework of Low etal. [17]. The flow
optimization framework is a network-based approach for
modeling rate control schemes and computing average
sending rates and end-to-end loss probabilities for users.
In this paper we describe a user with his rate, x and a
utility function, U(x), while a network is identified with
link capacities. Thereupon, the users try to maximize
their utility functions subject to link capacity constraints
and in the process we derive rate control schemes for the
users and link price update mechanisms for the network.

In this paper we call users cooperative if their utility
functions fall within some a-priori specified target range
of utility functions. For example in Fig 1 [U1, U2]
defines the cooperation boundaries or the target range.
We show that through a transparent penalty function
transformation the network provider can re-map the
utility functions of the uncooperative users to a target
range of utility functions, see Fig 1. Further, this re-
mapping can be easily implemented at the edge of the
network. Moreover, our framework allows users freedom
to choose arbitrary concave utility functions or in other
words they can pick any rate control scheme [14], [15],
[17]. The solution presented in this paper is attractive
because it does not require any upgrades in the routers of
the network, they function as usual, i.e. they may mark,
or drop packets using any buffer management scheme
(including Drop-Tail policy). Fig 2 shows the model for
policing uncooperative users.

The problem of managing uncooperative users has
been actively researched [1], [9], [8], [16], [20]. Router
based mechanisms, such as Active Queue Management
(AQM) schemes, schedulers and pricing mechanisms,
have been suggested for managing uncooperative users in
the network. However, use of AQM schemes, schedulers
require deployment at all (bottleneck) routers in the
network, which is not only expensive but also requires
significant network upgrade. Moreover AQM schemes
face configuration problems and also lack of deployment
of ECN. As a result, they are not deployed and Internet
works on simple Drop Tail queueing and the problems
due to uncooperative flows persist.

This paper suggests that management of uncooperative
flows need not be coupled with AQM design and can
be simply viewed as an edge network based policing
question. Our mechanisms may also be thought of as a
new class of “traffic conditioning” techniques [4], where
the “conditioning” can be achieved by manipulating
either the feedback or packet stream. Moreover, since
the users cannot always be trusted with their rate control
schemes, the network has to enforce this trust and the
network edge is the first place this trust is enforced.
Additionally, this function can combined with the other
edge based functions like preventing spams, denial-of-
service attacks etc.

We have implemented this framework in NS-2 and

⇒ Drop Tail/RED etc.

Core Network

(No Changes)

Any queue mgmt algorithm

Core Routers

Edge Routers

Edge Based Re-Marking Agent

Users

Free to choose
their congestion
control algorithm

Either marking or dropping

Fig. 2. Model for managing Uncooperative users at Network Edge

evaluated it for various single and multi-bottleneck
topologies, for both marking and dropping congestion
notification policies and also with and without AQM
schemes. Our results show that the framework can “re-
map” any uncooperative user to co-operative user for
a broad range of network scenario. Further, the frame-
work is robust and works well even in the presence
of background web-traffic and reverse-path congestion.
However, for our our scheme to perform well we need to
estimate user’s utility function. Towards this end we also
outline and evaluate Linear Least Squares Errors (LLSE)
and Non-Linear LSE (Least Squared Error) methods
for these purposes. Our initial results show that these
methods are easy to implement and work well, even with
a small sample set or in other words they can quickly
characterize sources. The paper also presents results for
simple differentiated services which can be derived from
the model. Finally, we also compared the performance of
CHOKe and BLUE in managing un-cooperative flows.

To summarize, the main contributions of this paper
are:

• Proposes an edge-based model for managing unco-
operative users.

• The framework is independent of AQM schemes,
i.e., it works with both RED or other AQM scheme
and Drop Tail queues.

• The proposed framework works well with both
marking and dropping as congestion notification
policies.

• The framework can also be thought of as a new
class of traffic conditioning where conditioning can
be achieved by manipulating either the ack or
packet stream.

• It suggests that management of uncooperative flows
need not be coupled with AQM design.

• The model presented in this paper can prevent
traffic based denial of service attacks.

The rest of the paper is organized as follows. In
Section II we first define cooperative behavior and
then accordingly classify uncooperative flows as open
and closed loop protocols. Section III further motivates
the need for our work by evaluating the impact of

uncooperative flows on AQM and Drop Tail queues.
Thereafter, we present our utility function re-mapping
model in Section IV. In Section VI we describe our
implementation and the simulation setups. Section VII
presents the results. In Sections VIII we describe the
utility function estimation while in Section IX we present
the effect of estimation errors on the model. We discuss
the merits and drawbacks of the scheme in Section XII
while Appendix XI shows how simple differentiated
services can be obtained with out model. Finally we
present the conclusions and future work in Section XIII.

II. CLASSES OF UNCOOPERATIVE FLOWS

In this section we will define what we imply by co-
operative and uncooperative flows. Using this definition
we will classify uncooperative flows and finally we will
introduce responsive uncooperative flows.

Shenker, Kelly etal have shown rate control schemes
can be defined in terms of utility function [14], [15], [17],
[26]. The biggest advantage of this method is that a broad
class of rate control schemes can be defined by a single
utility function, for e.g. all TCP-Friendly schemes can
described by the utility function U(x) = −1/x, where
U(x) represents the utility function and x the rate.

Definition 1: Flows whose utility function lie within
some a-priori specified target range are called cooper-
ative.
For example in Fig 1 any rate control scheme whose
utility function lies between [U1, U2] is considered co-
operative. TCP-Friendliness can be an example of co-
operative regime where the target utility function range
is U1 = U2 = −1/x. For reasons of simplicity, in this
paper, we choose TCP as our definition of cooperation.
TCP being the most widely used transport protocol in
the Internet further rationalizes our choice. Thus unco-
operative flows corresponds to any TCP unfriendly rate
control schemes. However, we would like to point out
that TCP-Friendliness is just one notion of cooperative
flow under our model. We could easily define any other
notion of cooperation by suitably choosing a single or
range of objective utility functions.

Uncooperative flows can be classified into two cate-
gories:

• Unresponsive or Open-Loop flows
– Do not react to congestion indication.

• Responsive or Closed-Loop flows
– React to congestion indication by cutting down

their rates.
Traditionally by uncooperative flows we have referred

to UDP and CBR. These protocols always send data at
a constant rate and since they do not use any feedback
from the network are generally referred to as open loop
protocols. Open loop schemes are used by most of the
multimedia and gaming applications e.g. Real Audio,
Internet telephony, Quake,Half life etc [11]. These un-
responsive flows can be modeled by a constant utility
function, i.e. U(x) = constant [26].

Responsive uncooperative flows encompass a larger
range of mis-behaving scenarios. Their misbehavior can
be defined on basis of their increase policy, (i.e. how
they probe the network for available bandwidth) and
their decrease policy (or how they respond to congestion
indication). Further, these flows are commonly identified
with concave utility functions, for e.g. TCP’s utility
function is U(x) = −1/x. Responsive uncooperative
flows can also be divided into two sub-categories: one
whose utility function does not change with time e.g.
U(x) = −1/xa where a is a constant, while the other
class has a time-varying utility function e.g. U(x) =
−1/xa(t). In this section we will first present uncooper-
ative closed loop schemes derived from time-invariant
utility functions and then present mis-behaving flows
derived from time-varying utility functions.

A. Time In-Variant Utility functions

Let x represent the rate and R the RTT. Then we could
identify the utility function of any increase/decrease
based rate (or window) control scheme with the follow-
ing relationship

U ′(x) =
1

Rxf(x)g(x)
: f(x) ≥ 0, 0 ≤ g(x) ≤ 1 (1)

where the increase policy, I, and decrease policy are

I :
1

f(x)
D : g(x) (2)

Utility function of TCP-Friendly scheme is described
by U(x) = −1

x
. Thus under the formulation presented

above, any scheme which has f(x)g(x) ∝ x will
also be TCP-Friendly. Similar conclusions about TCP-
Friendliness of these generalized schemes were shown
by [19]. Binomial Congestion Control Scheme (BCCS)
proposed in [2] is one special case of the above model
with

f(x) =
α

xk
, g(x) = βxl (3)

where α, β, k, l are some constant. The utility function of
binomial schemes is given as U(x) ∝ −1

xn where k + l =
n. TCP-Friendly schemes in BCCS can be defined by
k + l = 1.

In this paper we have chosen TCP-Friendly schemes
to be cooperative, and define the uncooperative using
BCCS. Specifically, uncooperative schemes are defined
by k + l < 1. Further, it can be shown that a more
general definition of uncooperative flows (with respect
to TCP-Friendly schemes) would be sub-linearity or
f(x)g(x) < x. Uncooperative flows can also be obtained
by choosing a large value of α (α > 1) or a small value
of β (β < 0.5). However results with these modifications
have been already reported in [1] and therefore for the
simulations reported in this paper we use the k and l
values to generate uncooperative flows. Another reason
behind this choice is that these rate control schemes can
be obtained a simple tweaking of the TCP and thus are
quite likely to to be found on the Internet.

Open and closed loop rate control schemes can have
very different impact on bottleneck sharing. While open
loop schemes may not always shut-out cooperative flows
their closed loop counterpart’s affects may be more
pronounced. Open loop protocols always send data at
a fixed rate which may not always exceed the bottle-
neck capacity. Thus open loop protocols will always
hog bandwidth equal to their sending rate leaving the
rest for cooperative flows. On the contrary, closed loop
protocols are always looking to absorb whatever capacity
is available and as such if a cooperative flow cuts down
it’s rate these closed loop uncooperative flows will step
in to claim that bandwidth.

B. Time Varying Utility functions

Section II outlined some rate control schemes which
can be obtained from time-invariant utility functions.
There we only considered strictly concave utility func-
tion. This assumption implied that all the schemes de-
rived from utility function which are strictly concave will
result in stable schemes. In this section we will present
some guidelines for deriving rate control schemes from
time varying utility functions. Further, we will also put
forward some conditions which make these rate control
schemes Lyapunov stable. For more details and proofs
of stated results we refer the reader to [5].

Consider BCCS schemes where it’s parameters
α, β, k, l are allowed to vary with time. Then our analysis
shows that for a scheme where only β varies with time,
either of the following limitations on β result in a stable
scheme (where stability is defined a Lyapunov stability).

|β̇(t)| < ρ
β(t)2R

α
(4)

β̇s > 0 (5)

where ρ is some constant which depends on number of
links traversed by the flow. The utility function of such
a scheme would then be given by

U(x) =
−α

R2xnβ(t)
(6)

and uncooperative (with respect to TCP) flows are given
by |β(t)|¡0. Similarly, it can be shown that if only the
exponents, i.e. k, l, are allowed to vary with time then
the rate control schemes are guaranteed to be Lyapunov
stable if

k̇(t) + l̇(t) = 0 (7)

and the utility function of such a scheme would be

U(x) =
−α

R2xn(t)β
(8)

where n(t) = k(t)+l(t) and again uncooperative sources
can be generated by choosing n(t) < 1.

III. MOTIVATION: IMPACT OF UNCOOPERATIVE
FLOWS ON EXISTING BUFFER MANAGEMENT

ALGORITHMS

Though many AQM schemes have been proposed to
manage uncooperative flows their deployment on the
Internet has been lacking because of variety of reasons:
configuration problem, lack of deployment of ECN and
requirement of significant network upgrade. As a result
of these deployment constraints, the present Internet
works on simple Drop-Tail queueing. In this section
we evaluate the effect on uncooperative flows on the
buffer management schemes and motivate the need for
our work.

A. Uncooperative Flows and AQM Schemes

Many AQM schemes have been proposed to limit the
effect of uncooperative flows. These proposals can be
broadly classified into two categories: state-full schemes
like FRED [16] etc and stateless schemes like CHOKe
[25], BLUE [8]. State-full schemes also include some
partial state schemes like RED-PD [20] where states for
only the mis-behaving sources are stored. Each of these
proposals has it’s own merits; stateless schemes are easy
to manage while state-full schemes patrol uncooperative
flows more efficiently but do not scale. However, given
the number of AQM proposals it is beyond the scope of
this paper to do an exhaustive performance evaluation
across all schemes, hence we will only evaluate CHOKe
and BLUE as they represent the stateless alternatives to
this work.

We evaluated CHOKe and BLUE on NS-2 on various
single and multi bottleneck topologies with different
degrees of flow multiplexing. However, we will only
present the results for multi-bottleneck scenario. The
multi-bottleneck topology is shown in Fig 3 b). For this
setup, we define long flow as a flow which traverses both
the bottleneck, whereas the short flows are defined as
flows traversing only one bottleneck. Since limitations
of CHOKe with unresponsive flows has already been
outlined in [20], for our simulations we will evalu-
ate CHOKe (and BLUE) with responsive uncooperative
flows. For our simulations these uncooperative flows
were generated using BCCS with k + l < 1. There was
one long and one short flow on each bottleneck. The
short flows were mis-behaving, k = 0, l = 0.5 while the
long flow was TCP-Friendly. For the AQM settings we
refer the reader to Section VI.

Fig 4 (a)-(c) plots the throughput of each flow as well
as the ideal share from each simulation while Fig 4 (e)-
(g) shows the link utilization for the same simulation.
Since we have chosen TCP-Friendliness as our definition
of cooperation the ideal shares correspond the simulation
where both the long and short flows were TCP flows. It
can been seen from Fig 4 b) that CHOKe marginally
improves the throughput of long flow as compared to
that with RED, Fig 4 a). But more importantly this
marginal improvement in performance of CHOKe comes

Router Router

x Mbps 20 ms

10 x Mbps 10 x Mbps

5ms 5ms

S1

S2

Sn

D1

D2

Dn

RouterRouter

�������
�

���
�

���
� ����

20ms
Router

D1

5ms

S1

Dn

S3

D3

D4

Sn

S4

5ms

5ms

5ms

5ms 5ms

5ms

0.8 Mbps

20ms

0.8 Mbps

5ms

8 Mbps

8 Mbps

8 Mbps

8 Mbps

(a) Single Bottleneck Topology (b) Multi-Bottleneck Topology

Fig. 3. Topologies used in the Simulations.

T
h
ro

u
g
h
p
u
t

(i
n
 p

a
c
k
e
ts

/s
e
c
)

Number of Round Trip Times

0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500

Short Flow (Ideal Share)
Long Flow (Ideal Share)

Mis−Behaving Long Flow
Mis−Behaving Short Flow

3000

T
h

ro
u

g
h

p
u

t
(i

n
 p

a
c
k

e
ts

/s
e
c
)

Number of Round Trip Times

0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500

Short Flow (Ideal Share)
Long Flow (Ideal Share)

3000

Mis−Behaving Long Flow
Mis−Behaving Short Flow

Number of Round Trip Times

T
h

ro
u

g
h

p
u

t
(i

n
 p

a
c
k

e
ts

/s
e
c
)

0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500 3000

Long Flow (Ideal Share)

Mis−Behaving Long Flow
Mis−Behaving Short Flow

Short Flow (Ideal Share)

T
h
ro

u
g
h
p
u
t

(i
n
 p

a
c
k
e
ts

/s
e
c
)

Number of Round Trip Times

0

50

100

150

200

0 500 1000 1500 2000 2500 3000

Short Flow (Ideal Share)
Long Flow (Ideal Share)

Mis−Behaving Short Flow
Mis−Behaving Long Flow

(a) RED (b) CHOKe (c) BLUE (d) Our Proposal
Throughput with Different AQMs

%
 L

in
k
 U

ti
li

z
a
ti

o
n

Time in Seconds

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

%
 L

in
k

 U
ti

li
z
a
ti

o
n

Time in seconds

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

Number of Seconds

%
 L

in
k
 U

ti
li

z
a
ti

o
n

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500

Time in Seconds

%
 L

in
k

 U
ti

li
z
a
ti

o
n

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

(e) RED (f) CHOKe (g) BLUE (h) Our Proposal
Link Utilization with Different AQMs

Fig. 4. Multi Bottleneck: Throughput of long TCP-Friendly flows and short uncooperative flows (k=0,l=0.5) flows with different buffer
management schemes.

at the expense of link utilization, i.e. the link utilization
is almost 30% less with CHOKe (Fig 4 e, the thick
curve in this plot is the average utilization). On the
other hand, BLUE does even worse than RED and the
long flow is further penalized as it’s throughput goes
down. Moreover BLUE also does not utilize the link
efficiently, Fig 4 f), though it’s better than CHOKe.
Figure 4 d) plots the results with our framework and
shows that our framework can improve fair sharing of the
bottleneck without compromising link utilization. Table
I shows a similar results when the number of flows
on each bottleneck was increased to 10 (5 long and 5
short flows), the bottleneck capacity increased to 10Mbps
and a buffer of 150 packets. Again it can be seen that
marginal improvement in performance of CHOKe comes
at the expense of significantly low link utilization (of
70%).

One of the reasons why CHOKe’s performance suffers
is because it has poor estimate for the aggressiveness
of the uncooperative flow. For every incoming packet
to the queue, CHOKe picks a random packet from the
queue and matches it’s header. If the headers match
then CHOKe drops both the packets otherwise it prob-
abilistically enques the incoming packet. Thus if the
selfish behavior of the uncooperative flows can be clas-
sified properly then depending upon the aggressiveness
CHOKe can pick n packets from the queue to match
the header. Such a method will then greatly improve
the fair sharing of the bottleneck. Our proposal does
better precisely because of this reason. At the edge of
the network we measure the loss probability and rate of
the uncooperative users and use it to decide the penalty
transformation for the uncooperative flow. In Section IV
we will present these arguments in detail.

Type Ideal RED CHOKe BLUE
Long Flow (S1-D1) 132 82 95 63
Short Flow (S3-D3) 340 390 300 430

TABLE I

PERFORMANCE OF AQM SCHEMES: COMPARISON OF

THROUGHPUT (PACKETS/SEC) OF DIFFERENT AQM SCHEMES ON A

MULTI-BOTTLENECK TOPOLOGY WITH 10 FLOWS ON EACH

BOTTLENECK.

We also ran simulation with partial network upgrade,
i.e. setups where CHOKe was turned on only one
bottleneck router while the other bottleneck had Drop
Tail queueing. We found performance of CHOKe in
partial upgrade to be similar to that of CHOKe on both
bottlenecks. However, on a single bottleneck topology
CHOKe does remarkably well and the all flows share
bandwidth fairly though link utilization remains poor.
In yet another set of simulations we enabled ECN on
the network and also modified CHOKe to mark packets
instead of dropping them. Since our sources were closed
loop schemes we expected CHOKe to limit the rates of
uncooperative sources. However, the results were most
surprising as CHOKe performed even worse than RED.
Because of space constraints we are not presenting those
results here.

In summary, CHOKe performs remarkably well in
patrolling uncooperative users over single bottleneck
scenarios. However, it’s performance is only marginally
better than RED on multi-bottleneck scenarios and it also
results in poor link utilization. These wide fluctuations
in link utilization suggests oscillations in the bottle-
neck queue size which in turn cause window (or rate)
oscillations. These oscillations are considered harmful
as they increase jitter and make any kind of buffer or
resource provisioning harder. Thus CHOKe and BLUE
cannot always patrol uncooperative flows, especially
under multi-bottleneck scenarios and also result in poor
link utilization.

B. Uncooperative Flows and Drop-Tail Queues

Since AQM schemes require significant network up-
grade, network providers have not turned on these pro-
posals on the routers. As a result, the present Internet
still works with simple FIFO queuing. In this section
we will present the impact of uncooperative flows on a
network of Drop-Tail queues.

Fig 5 shows the shares of a long and short flow on
a multi-bottleneck topology. The simulation set-up is
similar to the one described above with one long and
one short flow. It can be seen from Fig 5 a) TCP-
Friendly is almost shut out by the mis-behaving flows,
who now get all the bandwidth. Not only is the TCP-
Friendly flow is forced into multiple timeouts (23 for
this case) but these timeouts occur with very small
windows and are often back to back. This result is
also indicative of traffic volume based denial-of-service

attack on cooperative users. Similar results were obtained
with a higher multiplexing (of flows) and with single
bottleneck scenarios but due to space constraints are not
reported here.

To summarize, with DropTail queues uncooperative
flows may get significant share of the bandwidth, almost
to the extent of shutting out cooperative flows. This
might also be construed as denial-of-service to the TCP
flows [12], [13]. Thus, given that AQM proposals are yet
to be deployed on the network and presence of simple
FIFO queueing uncooperative flows not only get more
than their fair share but may also lead to denial-of-
service to conformant flows. As such we are presented
with the following question: What are the appropriate al-
ternate architectural responses for managing a network
of un-cooperative users, such that it requires minimal
network support ? Moreover, as ECN and AQMs are
eventually deployed on the network, do these solutions
still work ? In the following section we present our
framework which addresses these questions.

IV. RE-MARKING FRAMEWORK FOR MANAGING
NON-CONFORMANT USERS

Consider a user s, who is described with the help of his
rate, xs, a utility function Us and the Set of links which
he uses, L(s). Let the network be identified with links
l of capacity Cl and the set of users using a link, l, be
given by S(l). Further, assume that the rates are bounded
and that the utility functions are increasing with rates and
strictly concave. Then the flow optimization problem can
be defined as users trying to maximize their individual
utility functions and the network trying to maximize the
resource allocation subject to link capacity constraints.
The problem is formally defined as [17]:

maximize
∑

s∈S

Us(xs) (9)

subject to
∑

s∈S(l)

xs ≤ Cl, ∀l (10)

for all xs ≥ 0. The solution to this problem is given by
the following update rules

xs(t) = U
′−1
s (

∑

l

pl) (11)

pl(t + 1) = [pl(t) + γ(
∑

s∈S(l)

xs − Cl)]
+ (12)

where pl are the dual variables of the problem and can
be identified as penalties, price or link loss probability
[17], [15], [14].

From the above update rules it follows that both
the rate control algorithm and the equilibrium rate can
be associated with the utility function user chooses to
maximize (equation (11, 12)). However, given that the
same price is being communicated by the network, the
equilibrium rates can be different, but are still fair from

Set 1

Set 2

Bottleneck Link

Fig. 6. Example1: Two competing set of flows through one bottleneck.

the utility function perspective. Thus a bias in equilib-
rium rates can be created by choosing two different
utility functions. We will now briefly illustrate these
points through two simple examples.

Example 1: Consider a bottleneck link where two set
of rate control schemes compete for the bandwidth as
shown in figure 6. The utility function for Set 1 is given
by Us(xs) = wslog(xs) and that for Set 2 is given
by Us(xs) = −wsx

−1
s , where ws represents the weight

assigned to the flow. Let there be 50 sources each in Set
1 and Set 2. Assume that the link capacity to be 300,
weights to be 1, the round-trip time (RTT) for all sources
to be same. Then the throughput seen by each source
can be obtained by solving the following optimization
problem:

max

50∑

i=1

logxi −
100∑

j=51

1

xj

(13)

subject to

50∑

i=1

xi +

100∑

j=51

xj ≤ 300 (14)

and xi, xj ≥ 0 ∀i, j. Solving this problem yields xi =
4.0, i ∈ {1, ..., 50} and xj = 2.0, j ∈ {51, ..., 100}.
Thus even though the network is fair, the equilibrium
rate depends on the rate control algorithm chosen by
the sources. This differentiation in the rates is present
because the network conveys the same congestion price
to each competing user. (Henceforth we will call such
a network as an oblivious network) and users respond
differently to the congestion penalties. Another reason
for rate differentiation can be attributed to how the
users probe the network (or the increase policy). Thus
with oblivious network, different final allocations can
primarily be associated with users rate control schemes.

Example 2: Figure 7 shows a scenario where there
are 50 flows in Set 1 traversing both the bottlenecks. Let
all of them have the same utility function of Us(xs) =
−x−1

s . Then there are two other sets of flows, Set 2 and 3
which go through bottleneck 1 and 2 respectively. Sets
2 and 3 have 50 flows each and their utility function
is given as Us(xs) = log(xs). We will assume that all
the flows have same RTT. Let the capacity of both the
bottleneck links be 300 units. Then the final rates are

Set 2

Set 3

Bottleneck Link 2 Set 1

Bottleneck Link 1

Fig. 7. Example: Three competing set of flows through two bottle-
necks.

the solution to the following optimization problem

max

50∑

i=1

−1

xi

+

100∑

i=51

logxi +

150∑

i=101

logxi (15)

subject to

50∑

i=1

xi +

100∑

i=51

xi ≤ 300 (16)

50∑

i=1

xi +
150∑

i=101

xi ≤ 300 (17)

Solving the above optimization problem we get the
equilibrium rate allocation, x = {1.5, 4.5, 4.5 } for the
flows in Set 1, 2 and 3 respectively. However, if all the
flows in Set 1 use a utility function, Us(xs) = log(xs)
then on solving the corresponding optimization problem
we would get the final rate allocations for Set 1, 2 and
3 as x = {2, 4, 4}, respectively.

The above examples illustrate that if a subset of flows
on the network change their utility function then the rate
allocations at the bottleneck change. Thus with oblivious
(i.e. which do not differentiate between flows) queue
management schemes at the bottleneck e.g. RED the
fairness (or the final rate allocation) in the network seems
to be solely governed by its users rate control scheme.
Also, it can be seen from the example 2 that by using
a slightly aggressive utility function, log(xs) instead of
−1
xs

, the users of Set 1 can significantly alter their rates.
In this case the users in Set 1 increased their equilibrium
allocations by 33%.

These examples thus illustrate that in an oblivious
network, the fairness criteria is dependent upon the
utility function chosen by the user. In other words
the network does not control the rate distribution of
the users and does not enforce any particular fairness
criteria. For example, TCP Reno is associated with
minimum potential delay fairness while TCP Vegas with
proportional fairness [15], however when both TCP Reno
and Vegas flows are competing for bandwidth, the final
rate allocation is neither minimum potential delay fair
nor proportionally fair. This is also illustrated in the
above examples when the flows in Set 1 use the utility
function Us(xs) = −x−1

s (TCP Reno) while the rest
use Us(xs) = log(xs) (TCP Vegas), which can be
verified to be neither minimum potential delay fair nor
proportionally fair. But, if all the competing users deploy
the same rate control scheme, e.g. use Us(xs) = log(xs),
the final rate allocation as the bottleneck is indeed
proportionally fair, as desired.

Number of Round Trip Times

T
hr

ou
gh

pu
t

in
 p

ac
ke

ts
/s

ec

0

50

100

150

200

250

0 200 400 600 800 1000 1200

Short Flow

Long Flow

Number of Round Trip Times

T
hr

ou
gh

pu
t

in
 P

ac
ke

ts
/S

ec

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200

Short Flow

Long Flow

Number of Round Trip Times

T
h
ro

u
g
p
u
t

in
 p

ac
k
et

s/
se

c

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200

Short Flow

Long Flow

(a) Ideal Share (b) Impact of Uncooperative Flow (c) With our Proposal

Fig. 5. Performance of Drop-Tail Queueing: Throughputs (in pkts/sec) for two competing flows on a multi-bottleneck setup, long flow is
TCP Friendly while the short flows are uncooperative.

To summarize the arguments of this section, in pres-
ence of queue management schemes which do not differ-
entiate between flows the fairness or the equilibrium rate
allocations depend almost entirely on user’s rate control
schemes. Thus there are clear incentives for selfish be-
havior. Also the above arguments suggests that fairness
might not entirely be network’s prerogative, especially
if the network does not differentiate between flows.
Now we outline the re-marking framework, wherein the
network by transforming the congestion penalties can
make it appear as if all the users are maximizing the
same utility function. Thus, the network by choosing a
utility function can provide the fairness associated with
that utility function throughout the network.

V. PROPOSED FRAMEWORK FOR MANAGING

UN-COOPERATIVE FLOWS

Lets assume that the users are maximizing the utility
function Us and that the network decides to map every
user to Uobj . Then if this mapping were successful, the
rate updation algorithm (and thus equilibrium rates) of
the users would be

xs(t) = U
′−1
obj (ps)

where ps =
∑

l∈L(s) pl or the end-to-end price. How-
ever, the actual rate control algorithm for users is still
given by equation 11. Now suppose that instead of giving
an end-to-end price of ps the network gives the user s
the price ps

new, where

ps
new = U

′

s(U
′−1
obj (

∑

l∈L(s)

pl)) (18)

If the user s uses this transformed end-to-end price then
his rate updation algorithm algorithm becomes

xs = U
′−1
s (ps

new) (19)

= U
′−1
s [U

′

s(U
′−1
obj (ps))] (20)

= U
′−1
obj (ps) (21)

Thus it follows from the above equation that by com-
municating a different price we have transformed the
user’s utility function from Us(x) to Uobj(x). This

transformation can be implemented using the following
update rules

pl(t + 1) = [pl(t) + γ(
∑

s∈S(l)

xs − Cl)]
+ (22)

xs(t + 1) = U
′−1
s (ps

new) (23)

Further, this transformation can be explained by the
following modified dual:

D(p) = min
︸︷︷︸

p≥0

∑

s∈S

Us(xs) −
∑

l

f(pl)(
∑

s∈S(l)

xs − Cl)

(24)
where f(pl) is defined by equation 18. Next we will
show that this modified dual has a unique solution.

Theorem 1: The modified dual represents a non-linear
optimization problem where the objective function is
as if every user is maximizing a utility function of
Uobj subject to the capacity constraints. Moreover, if the
objective utility function is strictly concave then a unique
maximizer exists.

Proof: : See Appendix.

Since all the utility functions are strictly increasing
and concave this update rule does not change the
network objective, still minimizes the dual function and
converges asymptotically. Moreover, the above update
rule also does not change the core network, as we retain
the price update rule as proposed in [17]. Further, the
price being communicated to the user can be updated
at the edge. We now state the algorithm for the edge
re-marker as

Edge Marker’s Algorithm:
• For each source, receive from the network the

total price for the source’s traffic as ps(t) =
∑

l∈S(l) pl(t).
• Recalculate (or Re-mark) the new price for the

source as

ps
new = U

′

s(U
′−1
obj (

∑

l∈L(s)

pl)).

• Communicate this re-marked price to the source.

The update algorithm for the network and the source are
given by equation (22) and (23) respectively. Finally, we
will conclude this section by the following two theorems
on the convergence of the the algorithm.

Theorem 2: Assume that utility functions, Us, are
increasing, strictly concave and continuously differen-
tiable, and their curvature is bounded away from 0. Then
starting from any initial rates in the interior of X and
prices p(0) ≥ 0, every accumulation point (x∗, p∗) of
the sequence (x(t), p(t)) generated by the above algorithm
and equations (22,23) is primal dual optimal.

Proof: See Appendix.

Theorem 3: The rate of convergence of the edge re-
marker’s algorithm is given by the smallest eigen vector
of ABAt where A is the routing matrix and B is
diag(U

′−1
obj (p∗))′ and p∗ is equilibrium price.

Proof: See Appendix.

VI. IMPLEMENTATION AND SIMULATION SETUP

We implemented the edge based re-marker in the NS
(Network Simulator). For a marking based network, the
edge based re-marker was placed on the reverse path (i.e.
on the reverse access link of the user) and re-marked
the ACKs. However, for a dropping based network, we
configured the edge-based re-marker on the exit router
in the forward path.

The edge re-marker also estimated the loss rate for
each flow and subsequently used it to re-mark the ACKs.
For the purposes of estimating losses, we used Expo-
nential Weighted Moving Average (EWMA) and the
Weighted Average Loss Indication (WALI) methods of
Equation-based rate control algorithm [10]. We updated
these loss indications every RTT and we have assumed
that the network knows the RTT of the flows. We also
assumed that we know the utility functions of all the
flows. In this paper we present the results for EWMA
based loss-estimator. Similar results were obtained with
WALI based estimator. For EWMA based system we
gave 60% weight to the history, while with the WALI
based estimator we measured samples over 8 windows to
estimate losses. A more detailed discussion on the merits
and demerits of these schemes can be found in [10]. For
our simulation we used the congestion control and loss
recovery mechanisms of TCP New Reno. Also in this
paper, we disabled the delayed acknowledgments option.
The maximum advertised window is set sufficiently high
so that it does not constrain the actual window. We
plot the throughput of competing flows in packets/sec,
averaged over 20 round-trip times.

Figure 3(a) shows the single bottleneck topology used
in the simulations. The access links were configured at
a rate 10 times greater than that of the bottleneck link.
All the links use Random Early Drop (RED) queues with
min thresh and max thresh set as buffer/3 and 0.8*buffer

respectively, where buffer is the total bottleneck buffer
length. Further, the weight was set as 0.002 and the
marking probability for RED was set to 0.1. The RTT
was 60ms and the packet size 500B. For simulations with
BLUE, the probability increment and decrement were set
to 0.0025 and 0.00025 respectively. Further the hold time
was set to 100ms.

Figure 3(b) shows a multi-bottleneck topology used
in the simulation. The bottleneck buffer was set to 25
packets. We also evaluated our framework for another
multi-bottleneck setup of bottleneck link of 10 Mbps,
access link of 100 Mbps and a buffer of 150 packets.
The link delays were kept the same. RED minimum
and maximum threshold settings were similar to those
of single bottleneck. Also for all the simulation setups
(single or multi-bottleneck) the access link rate are
always 10 times greater than that of the bottleneck link.

VII. RESULTS

In the following sections we present our simulation
results. Our simulation objectives can be stated as

• Validate the model with single and multi-bottleneck
topologies with varying degrees of (flow) multiplex-
ing.

• Examine the robustness of the model in presence of
background (web) traffic and reverse path conges-
tion.

• Verify if the model works with dropping as a
congestion notification mechanism.

• Validate if it can work with and without AQMs.
Specifically, evaluate its performance on a network
of Drop Tail queues.

• Substantiate and test how to estimate utility func-
tions.

• Test the sensitivity of the model with respect to
inaccurate RTT and utility function estimates.

We evaluated our framework our various single and
multi bottleneck setups with background web traffic and
reverse path congestion. For all the results reported in
this section we have assumed TCP-Friendliness as our
definition of conformance, i.e. all uncooperative users
utility functions will be mapped to U(x) = −1

x
.

In the results presented in this section the bias due
to large RTT persists. This bias towards large RTT
flows is due to the self clocking nature of the transport
protocols. Removing this bias was not a design goal
of this paper. However, this is not a limitation of our
work either. Removing bias against long RTT flows
will imply a Max-Min sharing of the bottleneck. This
can be achieved in our framework by simply choosing
an objective function as Uobj(x) = limN→∞

−1
xN . This

essentially follows from the argument that a particular
form of fairness is associated with every utility function
and in this case max-min fairness is associated with
Uobj(x) = limN→∞

−1
xN . We refer the reader to [21] for

more details about relationship between utility functions
and various fairness definitions.

50

60

70

80

90

100

110

120

130

140

0 200 400 600 800 1000 1200 1400

TCP Friendly (Remarked)

TCP Friendly (No Remarking)
Mis-Behaving Flow (No Remarking)

Mis-Behaving Flow (Remarked)

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts

/s
ec

40

60

80

100

120

0 200 400 600 800 1000 1200 1400

TCP Friendly Flow (No Remarking)
Mis-Behaving Flow (No Remarking)

TCP Friendly Flow (Remarked)
Mis-Behaving Flow (Remarked)

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts

/s
ec

(a) k=0, l=0.5 (b) k=0, l=0.8

Fig. 8. Single Bottleneck: Throughputs (in pkts/sec) for two competing flows, one is TCP Friendly while the other is non-conformant with
and without Re-Marking.

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400

TCP Friendly Flows (7 in all)

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts

/s
ec

Number of Round Trip Times

Mis-Behaving Flows (3 in all)

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000 1200 1400

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts

/s
ec

Mis-Behaving Flows (3 in all)

TCP Friendly Flows (7 in all)

(a) No Re-Marking (b) Re-Marking the non-conformant Flow

Fig. 9. Single Bottleneck: Throughputs (in pkts/sec) for ten competing flows, where seven flows are TCP Friendly while three are non-
conformant (k=0, l=0.5) with and without Re-Marking.

0

20

40

60

80

100

0 200 400 600 800 1000 1200

Mis-Behaving Flow (k=0,l=0.5)

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

Number of Round Trip Times

TCP Friendly Flow

Mis-Behaving Flow (k=0,l=0.2)

0

20

40

60

80

100

0 200 400 600 800 1000 1200

Mis-Behaving Flow (k=0,l=0.5)
TCP Friendly Flow

Mis-Behaving Flow (k=0,l=0.2)

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts

/s
ec

Number of Round Trip Times

(a) No Re-Marking (b) Re-Marking the non-conformant Flows

Fig. 10. Single Bottleneck: Throughputs (in pkts/sec) for three competing flows, where one flow is TCP Friendly while the other two are
non-conformant with (k=0, l=0.5) and (k=0, l=0.2) resp., with and without Re-Marking.

A. ECN Enabled Network

In this section we will evaluate the performance of
the framework when marking can be used a congestion
indication. For the results presented in this section RED
was configured on all routers and it marked packets.
We extensively tested our framework with various single
and multi-bottleneck topologies and with different kind
of selfish schemes. We will first present the results
for the single-bottleneck case and then follow up with
multi-bottleneck setup results. However, we will present
only some results for single-bottleneck topology but will
evaluate our framework in depth for multi-bottleneck

topologies.

1) Single Bottleneck Topology: In figure 8 a) we
present the throughputs of two competing flows on a
single bottleneck of 0.8 Mbps with a buffer of 25
packets. Here, one of the flows is TCP, while the other
is non-conformant and is defined by k = 0 and l = 0.5.
As the figure 8 a) shows, when we do not re-mark
the non-conformant flow, it garners more bandwidth
than the TCP friendly flow. However, re-marking the
non-conformant flow makes the two flows to share the
bandwidth equitably. Figure 8 b) show similar results
where the non-conformant user is defined by k = 0,

l = 0.8.
Figure 9 shows the results for a set of 10 competing

flows on a 10Mbps bottleneck and 150 packet buffer. The
flow set comprises of 7 TCP Friendly flows while the
remaining 3 flows are non-conformant and are defined
by k = 0 and l = 0.5. The bandwidth is shared equitably
in presence of re-marking, however in absence of it mis-
behaving flows easily beat the TCP Friendly flows.

We also evaluated our scheme when every flow has a
different utility function. Figure 10 shows the result for
one such setup for a bottleneck bandwidth of 0.8 Mbps.
In this simulation setup we have three flows, one TCP-
Friendly flow and the others are defined as (k=0, l=0.5)
and (k=0, l=0.2). We can see from the figure 10 that in
the absence of re-marking, non-conformant flows beat
the TCP friendly flow; however when we re-mark the
non-conformant flows the bandwidth is shared fairly.

2) Multi Bottleneck Topology: Figure 3 b) shows the
multi-bottleneck topology used for simulations reported
in this section. We define long flow as a flow which
traverses both the bottleneck, whereas the short flows
are defined as flows traversing only one bottleneck. In
this simulation setup (0.8Mbps, 25 packet buffer), we
first measured the optimal rate allocations when all the
flows (long and short) are TCP friendly and plot them in
11 a). As expected, the short flows grab more share of
the bottleneck because they have smaller RTTs and go
through a single bottleneck as compared to the long flow.
We then changed the short flows to be uncooperative
(k=0, l=0.5) and plot the result in 11 b). The effect
of mis-behavior is more pronounced in this case as
the uncooperative flows are trying to shut out the TCP
friendly flow. However, when we used our model to re-
mark the uncooperative flows we see that (figure 11
c)) the flows now share the bandwidth fairly. More
importantly, we see that the result in figure 11 c) is very
similar to 11 a), i.e., we have successfully mapped the
utility function of the non-cooperative flows.

In figures 11 d), e) and f) we plot the results for a
multi-bottleneck topology (10Mbps, 250 packets buffer)
where on each bottleneck there are 5 TCP Friendly flows
and 5 uncooperative flows (k=0, l=0.5). Figure 11 (d)
plots the throughput of long and short flows, if they all
were TCP Friendly. As expected the longer flows get a
smaller share of the bottleneck than the shorter flows.
In Figure 11 (e), we changed the shorter flows to act as
uncooperative flows and plot the throughput, and it can
be seen that the uncooperative shorter flows conveniently
beat down the TCP friendly flows. However, in presence
of re-marking, (Figure 11 (f)) the uncooperative flows
are conveyed higher price by the edge-re-marker and
thereby share the bottleneck more favorably with the
longer flows. Once again, we see that re-marking tends
to achieve the same performance as those as if all the
flows were TCP Friendly.

3) Background Traffic: In this section we evaluate the
framework in presence of noise-like mice traffic. HTTP

sources were added to the persistent uncooperative and
conformant sources. Each http page sends a single packet
request to the destination, which then replies with a file
of size which was exponentially distributed with 12 1Kb
packets. After a source completes this transfer it waits
for a random time, which was exponentially distributed
with a mean of 1 second and then repeats the process.

We tested our framework for both single and multi-
bottleneck simulation setups with different levels of
noise where represents the bottleneck bandwidth occu-
pied by the background (or http source in this case)
flows. For both the setups we varied the noise level case
from 15% to 65%.

Figure 12 shows the results of a multi-bottleneck
simulation with 10 competing persistent flows and of
these, 7 flows were TCP Friendly while the remaining 3
where uncooperative (k=0,l=0.5). The bottleneck band-
width for this simulation was 10Mbps and a buffer of
size 150 packets. 80 http sources were added to generate
65% noise (ie the http sources occupied 65% of the
bottleneck bandwidth). shows where the noise traffic is
65%. From the results it can be concluded that re-marker
still manages to efficiently patrol uncooperative users.
This thus shows the robustness of the scheme, even when
sufficiently high (65%) noise is present in the network.

4) Cross Traffic: In this section we present the results
for our penalty function transformer when two way traf-
fic is present. We evaluate this scenario with the multi-
bottleneck topology, where we have 5 TCP Friendly long
flows and 5 uncooperative (k=0, l=0.5) short flows on
each bottleneck. Additionally, on the reverse path, there
are 5 TCP Reno flows on each bottleneck. The bottleneck
bandwidth for this simulation was 10Mbps and a buffer
of size 250 packets. Re-marking, once again achieves
equitable sharing of the bottleneck (as shown in Figures
13 (a) and (b)).

B. Performance Evaluation on a Network of Drop-Tail
Queues

Up till now we have discussed the uncooperative
framework with re-marking, i.e., we have assumed that
ECN support is available in the network. In this section,
we look at the alternative scenario, when drops are used
to convey congestion penalties. Further, we assume that
the network operates with Drop-Tail queues only. Again,
we evaluated the performance of the model with varying
degrees of multiplexing but only present some results for
both single and multi bottleneck topologies.

1) Single Bottleneck Topologies: We present the re-
sult with a single bottleneck of 0.8Mbps and access links
of 8Mbps for 2 competing flows. One of the flows is
TCP-Friendly while the other is misbehaving flow (with
k=0, l=0.5). Both the flows have same RTT of 60ms.
Figure 14 shows the results of with and without the re-
marking framework. It can be seen from the figure 14
that in absence of re-marking the uncooperative flow gets
most of the bottleneck share. However, when we start

0

50

100

150

200

250

0 2000 4000 6000 8000 10000 12000 14000

Number of Round Trup Times

TCP Friendly Long Flow

T
h

ro
u

g
h

p
u

t
in

 P
ac

k
et

s/
se

c

TCP Friendly Short Flow 2
TCP Friendly Short Flow 1

0

50

100

150

200

250

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

TCP Friendly Long Flow

Number of Round Trip Times

T
hr

ou
gh

pu
t

in
 p

ac
ke

ts
/s

ec

Mis-Behaving Short Flow 2
Mis-Behaving Short Flow 1

0

50

100

150

200

250

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

TCP Friendly Long Flow

T
hr

ou
gh

pu
t

in
 p

ac
ke

ts
/s

ec

Number of Round Trip Times

Mis-Behaving Short Flow 2

Mis-Behaving Short Flow 1

(a) Ideal Share (b) No-Remarking (c) With Remarking
2 Long, 2 Short Flows on Each Bottleneck

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000 1200

T
h
ro

u
g

h
p

u
t

in
 p

ac
k

et
s/

se
c

TCP Friendly Short Flows (10 in all)

TCP Friendly Long Flows (5 in all)

Number of Round Trip Times

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000 1200

Number of Round Trip Times

T
h

ro
u

g
h

p
u

t
in

 p
ac

k
et

s/
se

c

TCP Friendly Long Flows (5 in all)

Mis-Behaving Short Flows (10 in all)

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000 1200

TCP Friendly Long Flow (5 in all)
Mis-Behaving Short Flows (10 in all)

Number of Round Trip Times

T
h
ro

u
g

h
p

u
t

in
 p

ac
k

et
s/

se
c

(d) Ideal Share (e) No-Remarking (f) With Remarking
5 Long, 5 Short Flows on Each Bottleneck

Fig. 11. Multi Bottleneck: Throughputs (in pkts/sec) for competing flows (2 and 10), where the long flows are TCP Friendly while the short
flows are Uncooperative with (k=0, l=0.5). Ideal bottleneck shares for the long and short flows for 2,10 competing flows are plotted in figures
(a) and (d) respectively.

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts

/s
ec

Number of Round Trip Times

TCP Friendly Flows (7 in all)

Mis-Behaving Flows (3 in all)

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts

/s
ec

TCP Friendly Flows (7 in all)

Mis-Behaving Flows (3 in all)

(a) No Re-Marking (b) Re-Marking

Fig. 12. Background Traffic:Throughputs (in pkts/sec) for 10 competing flows in a single bottleneck topology, where 7 flows are TCP Friendly
while the other 3 are Uncooperative with (k=0, l=0.5) with 65% noise.

re-marking the misbehaving flows this bias against the
TCP-Friendly is reversed. Interestingly, as seen from the
figure 14, TCP-Friendly flow gets a better share of the
bottleneck. This is because unlike marking, dropping is a
stricter means to convey congestion notification as it can
lead to uncooperative flow timing out and consequently
the misbehaving flow suffers.

2) Multi Bottleneck Topology: Fig 5 presents the
results with a multi-bottleneck topology with two flows
on each bottleneck. In this simulation the long flows
were cooperative (or TCP-Friendly) while the short flows
were uncooperative. Fig 5 (a) plots the ideal share, which

corresponds to the scenario where both long and short
flows are TCP-Friendly. When these short flows are
replaced by uncooperative flows, k−0, l = 0, 5 it can be
seen that these short flows shut out long flows, see Fig 5
(b). In other words uncooperative sources are creating
a traffic based denial of service to the TCP flows.
However, when we re-map the uncooperative flows, it
can bee seen, Fig 5 (c) that the bottleneck is shared
fairly now. Moreover, the long flows get more than their
fair share, which is because dropping sometimes forces
uncooperative flows into timeouts.

0

100

200

300

400

500

600

0 200 400 600 800 1000

TCP Friendly Long Flows (5 in all)

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts

/s
ec

Mis-Behaving Short Flows (10 in all)

0

100

200

300

400

500

600

0 200 400 600 800 1000

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts

/s
ec Mis-Behaving Short Flows (10 in all)

TCP Friendly Long Flows (5 in all)

(a) No Re-Marking (b) With Re-Marking

Fig. 13. Cross Traffic: Throughputs (in pkts/sec) for 10 competing flows in a multi-bottleneck topology, where on each bottleneck there are
5 TCP Friendly flows and 5 Uncooperative with (k=0, l=0.5), with two-way traffic.

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 pa
ck

ets
/se

c

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800

TCP Friendly Flow

Mis−Behaving Flow

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 pa
ck

ets
/se

c

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800

Mis−Behaving Flow

TCP−Friendly Flow

(a) No Re-Marking (b) With Re-Marking

Fig. 15. Background Traffic:Throughputs (in pkts/sec) for 10 competing flows in a single bottleneck topology, where 7 flows are TCP Friendly
while the other 3 are Non-Conformant with (k=0, l=0.5) with 65% noise.

0

50

100

150

200

0 150 300 450 600 750 900 1050 1200

TCP-Friendly Flow (No Remarking)
Misbehaving Flow (No Remarking)

TCP-Friendly Flow (With Remarking)
Misbehaving Flow (With Remarking)

Number of Roundtrip Times

T
hr

ou
gh

pu
t i

n
pa

ck
et

s/
se

c

Fig. 14. DropTail Queues: Throughputs (in pkts/sec) for two
competing flows in a single bottleneck scenario with DropTail queues
throughout the network, with and without Re-Marking. One of the
competing flows is TCP Friendly while the other is uncooperative.

C. Background Traffic

In this section we evaluate the robustness of our
framework in presence of noise-like mice traffic. The
reader is referred to VII-A.3 for details about mice traffic
generation. We used a single bottleneck topology and
used different level of flow multiplexing to evaluate the
effect of background traffic on the performance of a
DropTail queue network with and without re-marking.
However we only report the results for the case where
there were 10 persistent and of these, 7 flows were TCP

Friendly while the remaining 3 where uncooperative
(k = 0,l = 0.5). The bottleneck bandwidth for this
simulation was 10Mbps and a buffer of size 150 packets.
Also in this setup we increased the noise sufficiently
high to validate the robustness of the scheme in presence
of many flows and noise. Figures 15 a) and 15 b) plot
the results for the cases where the noise traffic is 65%
(or 80 http sources), i.e. mice traffic occupied 65% of
the bandwidth. Figure 15 b) shows the robustness of the
scheme when sufficiently high (65%) noise is present in
the network and the re-marker still manages to efficiently
patrol uncooperative users.

VIII. ESTIMATING THE UTILITY FUNCTION

The framework presented in this paper works well if
the network has some information about the rate control
scheme being used by the uncooperative user. Essentially
what we need is a relationship between the rate and the
loss probability. This is then used to compute the re-
mapping or re-marking function, as specified in equation
(11). Moreover, this relationship between rate and loss
probability also quantifies the utility function of the user.
With this introduction we will now briefly explain how
we can estimate the utility function of a flow.

In this paper we have chosen BCCS schemes as
uncooperative users. These schemes can be described by

their exponent, n, by the following relationship

U(x) ∝ −1

xn
(25)

Thus for describing these class of uncooperative flows
we just need to estimate the parameter, n. Consider
the following relationship between rate and the loss
probability

U
′

s(xs) ∝ p (26)

p ∝ n

xn+1
(27)

log(p) = log(nK) − (n + 1)log(x) (28)

where K is some constant. From equation (28), it fol-
lows that estimating the parameter n is nothing but a
regression analysis. Thus to estimate the utility function
all we need is measure of the throughput x and the
loss probability p. These can be calculated by either
sampling the packet stream (at the egress) or the ack-
stream. Then, given the loss and throughput samples,
Linear Least Squared Errors (LLSE) method could be
applied to estimate n, which is nothing but the slope of
the least-square fit. Moreover, the intercept of the least-
squared fit gives us the ratio of the increase and decrease
parameters. This is because the relationship between loss
probability and rate represents the throughput formula.
Since we already know the exponent, n, and supposing
we know the RTT, R then it can be shown that for
BCCS schemes nK = α

βR
. Thus this simple estimation

technique can also be used to re-map uncooperative
flows which are derived from changing the increase and
decrease parameters.

Now we elaborate on our efforts to estimate the utility
function of the misbehaving user. We have assumed that
the identity of misbehaving user is revealed to us. At
the edge router, we can collect samples of throughput
(packets sent over time) and loss rate and a time-series
can be constructed. For estimating the utility function
we constructed three time series with bin sizes of 0.5,
1.0 and 2 seconds, where in each bin we measured
the number of packets sent and the loss rate for that
bin. Figure 16 shows the results of a simulation of 2
flows, one TCP and the other a uncooperative flow with
k = 0, l = 0.5 competing on a single bottleneck (see
3 a), with the bin size of 2 seconds. The bottleneck
capacity was 0.8Mb, the access links of 8Mb and the
bottleneck employs RED with a buffer size of 25 packets.
Figure 16 a) and b) show the estimation results for the
uncooperative and the TCP flow respectively. The slope
of the graph in each case measures -(n+1), where n is the
exponent. For the uncooperative flow we estimated the
exponent to be approximately 0.6 (the slope of the graph
is 1.5) while the actual value of n was 0.5. Similarly
for the TCP flow we estimated the exponent to be
approximately 0.8 instead of 1.0. In the following section
we will try to quantify the effects of inaccurate estimates.
Specifically, we will use these estimated exponents to
remark the uncooperative flows.

Ex
po

ne
nt

(k
+l

+1
) V

alu
e f

ro
m

LL
SE

Number of Samples

1

1.2

1.4

1.6

1.8

2

0 50 100 150 200

Fig. 17. Exponent Value Vs Sample Size: As the Sample Size
increases estimation gets better. Even Smaller samples give good
estimates. Motivates use of RLS.

Although LLSE is simple and has faster convergence it
suffers from implementational complexities. Specifically
its time complexity is O(M2), where M is the order
of the filter [24]. Moreover, it needs the entire data
set a-posteriori to estimate the parameters. However,
there exist LLSE schemes which compromise the imple-
mentation complexity with convergence. Recursive Least
Squares (RLS) [24] is one such scheme. It has a time
complexity of O(M) and it can recursively use new data
with some incremental work. We will now motivate the
need for using RLS and show that good estimates can
be gathered with small sample set and then the estimates
can be improved by further measurements. Moreover,
with RLS the new measurements can be incrementally
consumed.

A point of concern in estimation is - how many
samples are needed to characterize a source ?. We will
address this concern using the example presented above.
We took the time-series used in previous examples and
broke it into smaller series. This thus gives us the
results for estimation with smaller sample space; the
new sample sets corresponded to 5, 7, 10, 12, .., 250
samples. In Fig 17 we have plotted the exponent value
versus number of samples for the uncooperative user. As
the figure shows even with 5 samples the exponent, n,
is detected to be 0.7 and as the sample size increases
the exponent value fast approached the true value. This
suggests that using estimation schemes like RLS will
make the estimation task easier.

IX. SENSITIVITY ANALYSIS OF FRAMEWORK

In this section we investigate the effect of inaccu-
rate estimation. Specifically we test the validity of the
model in presence of inaccurate utility function and
RTT estimates. RTT-estimation is needed for updating
our congestion indication estimations (which is similar
to the one presented in [10]) while utility function
estimation is needed for re-mapping. Our simulation
results suggests that the inaccurate RTT estimates don’t
have a pronounced effect on the re-mapping, at most
they might slow the convergence (to the objective utility
function). However, large errors in estimation of utility
function may over-penalize the non-conformant sources.

4.8 5.0 5.2 5.4 5.6 5.8

log(x)

-6

-5

-4

-3

-2

log
 (p

)

3.85 4.10 4.35 4.60 4.85 5.10 5.35 5.60

log(x)

-6

-5

-4

-3

-2

log
 (p

)

(a) Estimation of Utility Function: Uncooperative Flow (b) Estimation of Utility Function: TCP Flow

Fig. 16. Estimation of Utility Function for 2 competing flows in a single bottleneck topology, where one flow is TCP Friendly flow while
other is Uncooperative with (k=0, l=0.5).

A. Effect of Inaccurate RTT Estimate

In all our previous simulations we assumed that the
network knows the RTT of the flows. We used these RTT
estimates to update our congestion indication estima-
tions. For the results presented in this section we looked
at two cases, one when we under-estimated the RTT
and the other when we over-estimated it. We present the
results with a single-bottleneck of 0.8Mbps, 25 packet
buffer and 2 competing flows.

Figure 18 a) shows the results when the RTT was
under-estimated as 0.05 (instead of 0.06). Figure 18 b)
shows similar results when we over-estimated the RTT
as 0.07. The figures suggest that inaccuracy in RTT esti-
mates alters the convergence speed to the optimal point;
a larger value of RTT will slow down the convergence
while a smaller value will increase the convergence.
However, from both the results its easy to see that the
effect of inaccurate RTT estimation is not pronounced
and the model works well. We ran simulations with
higher degree of multiplexing and came to a similar
conclusion. However, we do not present those results
here.

B. Effect of Inaccurate Utility Function Estimate

In this section we evaluate the model’s sensitivity to
utility functions; when the utility functions are under-
estimated and when they are over-estimated. Under-
estimation here refers to the case when we estimate the
utility function to be less aggressive than it really is,
i.e. when k + l values are reported to be larger than the
actual values. Over-estimation refers to the case where
we report the flow to be more aggressive than it really is,
i.e. k+l values are reported to be smaller than the actual
values. We present the results with a single-bottleneck
topology (figure 3 a)) for 2 flows.

Figure 19 a) shows the results when the utility function
was under-estimated as 0.6 (instead of 0.5). Figure 19
b) shows similar results when we over-estimated it as
0.4. It can be seen from the results that the model is
sensitive to inaccurate estimate of utility functions. When
we under-estimated the utility function (k + l = 0.6) the
model didn’t penalize the uncooperative flow much, and

as such it still garners more bandwidth than the TCP
flow. In the case of over-estimation (k + l = 0.4) we see
that the network penalizes the uncooperative flow more
and consequently brings it share down below the TCP
Friendly flow.

However, the estimation errors pointed out in the sim-
ulation are large (the error is 20% since we estimate the
k+l values as 0.5±0.1). We evaluated the model for two
other error estimates, 10% and 5%. As expected, as the
estimation error decreases the model starts to get better.
Further we found that for estimation errors of more than
10% the model does not penalize (or over penalizes)
the uncooperative flow much and it consequently has a
larger (or smaller) share at the bottleneck. We evaluated
the model for different simulation setup, with 10 flows
(5 uncooperative, 5 TCP-Friendly) and came to a similar
conclusion.

X. UNRESPONSIVE FLOWS

Unresponsive flows can be identified with constant
utility function, i.e. U(x) = constant [26]. However, to
re-map a utility function we require of strictly concave
utility function. This is because then these functions can
be uniquely inverted and equation (18) can be applied
to them. However unresponsive flows break this strict
concavity requirement and as such our re-mapping does
not apply to them.

In order to police these sources we suggest an ap-
proach similar to one described in [20]. Let us denote
by R the target RTT and by p the loss rate seen at a router
by the responsive flows. Then using an approximation for
the TCP throughput formula the equivalent TCP steady
state rate for a flow with round-trip R seconds and a loss
rate of p is given by

x∗ =
1.5

R
√

p
(29)

The network provider can use this target rate, x∗, as
the fair rate allowed for the unresponsive flows and then
can appropriately decide where to enforce this rate. Since
unresponsive flows do not react to congestion indications
we will need a traffic shaper to enforce the fair rate. We

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

50

60

70

80

90

100

110

120

130

140

0 200 400 600 800 1000 1200

Mis−Behaving Flow (No Remarking)

TCP Friendly Flow (No Remarking)

Mis−Behaving Flow (Remarking)

TCP Friendly Flow (Remarking)

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

Number of Round Trip Times

50

60

70

80

90

100

110

120

130

140

0 200 400 600 800 1000 1200

Mis−Behaving Flow (Remarking)

Mis−Behaving Flow (No Remarking)

TCP Friendly Flow (No Remarking)

TCP Friendly Flow (Remarking)

(a) Under-estimation of RTT (rtt=0.05s) (b) Over-Estimation of RTT (rtt=0.07s)

Fig. 18. Inaccurate RTT Estimates: Throughputs (in pkts/sec) for 2 competing flows in a single-bottleneck topology, where one flow is TCP
Friendly flow while other is Non-Conformant with (k=0, l=0.5), when network has inaccurate RTT estimates.

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

50

60

70

80

90

100

110

120

130

140

0 200 400 600 800 1000 1200

TCP Friendly Flow (No Remarking)

Mis−Behaving Flow (Remarking)

TCP Friendly Flow (Remarking)

Mis−Behaving Flow (No Remarking)

Number of Round Trip Times

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

50

60

70

80

90

100

110

120

130

140

0 200 400 600 800 1000 1200

TCP Friendly Flow (No Remarking)
Mis−Behaving Flow (No Remarking)

Mis−Behaving Flow (Remarking)
TCP Friendly Flow (Remarking)

(a) Under-estimation of Utility Function: In-sufficient (b) Over-Estimation of Utility Function: Excessive
Re-marking, Misbehaving Flow Still Wins Re-marking, Misbehaving Over Penalized (Loses to TCP)

Fig. 19. Inaccurate Utility Function Estimates, 20% Estimation Errors: Throughputs for 2 competing flows in a single-bottleneck topology,
where one flow is TCP Friendly flow while other is Non-Conformant with (k=0, l=0.5), when network has inaccurate estimates of source’s
utility function.

evaluated this proposal on a single bottleneck topology
and our initial results suggest that for small number of
flows in the system this method can lead to fair sharing
of the bottleneck.

XI. DIFFERENTIATED SERVICES

In this section we will briefly present how simple dif-
ferentiated services can be obtained from our framework.
As shown in Fig 1 any uncooperative user can be mapped
to a conformant utility space. By exploiting this mapping
simple differentiated services can be obtained by re-
mapping the utility function to a higher utility function
curve, for example map U2 to U1 (Fig 1).

Though theoretically it is possible to map a utility
function to a higher utility function, e.g. map U2 to
U1, but in practice it implies reducing the end-to-end
price for U2. This clearly cannot work in a dropping
based network. Moreover this line of direction is also
flawed when applied to a marking based network. This
is because a mark always represents a congestion state
and by removing a mark would just result in delaying
the congestion indication, which is in turn more harmful
for the source. Hence we need to take a slightly different
approach. Suppose that there are two flows, F1, F2, in
the network, and the utility function of both the flows

is U1. Further assume we need to provide differentiated
services to F1 such that it always receives 10% more
bandwidth than F2. This can be implemented in our
framework by simply re-mapping the utility function of
F2 to U2, such that U1

−−→
f(p)U2 ⇒ x1

−−→
f(p)x2 where f(p)

represents the re-marking function and x1, x2 represents
the steady state rates of F1, F2 respectively.

In Fig 20 a) we plot one such result for a single
bottleneck topology, where both the flows use TCP and
go over a bottleneck link of 0.8Mbps, the buffer size
is 25 packets and the RTT is 60 ms. The aim of the
simulation was to given one flow 10% more bandwidth
than the other flow. As shown in the figure, by re-
mapping one of the flows to a lower utility function
we can achieve simple differentiated service. A similar
result is plotted for a multi-bottleneck scenario in Fig 20
b) where the aim was to increase the share of the long
flow by 10%. In this simulation the bottleneck capacity
was again 0.8Mbps, buffer size of 25 packets, there was
one long and one short flow on each bottleneck and all
the flows used TCP.

XII. LIMITATIONS OF THE MODEL

In this paper we have proposed an abstract model for
modeling and managing uncooperative flows. This paper

Number of Round Trip Times

Th
ro

ug
hp

ut
 (i

n p
ac

ke
ts/

se
c)

0

20

40

60

80

100

120

140

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Remarking Flow 1 (10% More Bandwidth)
Remarking Flow 2

Flow 1 (No Remarking)
Flow 2 (No Remarking)

Th
ro

ug
hp

ut
 (i

n p
ac

ke
ts/

se
c)

Number of Round Trip Times

0

20

40

60

80

100

0 500 1000 1500 2000 2500

Short Flow (No DiffServ)
Long Flow (No DiffServ)

Short Flow (With DiffServ)
Long Flow (With DiffServ)

3000

(a) Single Bottleneck (b) Multi-Bottleneck

Fig. 20. Differentiated Services

suggests that management of mis-behaving flows need
not be coupled with AQM design and can be simply
viewed as an edge network based policing question. We
believe that this design arguments has clear incentives
and needs to be pursued further. In this section we will
debate the merits and the limitations of the model.

The scheme proposed in this paper is sensitive to loss
and utility function estimation. Techniques for loss esti-
mation have been discussed in detail in [10]. However,
these techniques are still empirical at best and need to
to be evaluated further. Estimation of utility function
also has a significant impact on the performance of
the uncooperative congestion control framework. Though
we have outlined and evaluate LLSE and Non-Linear
LLSE methods for estimating the utility function we
need to expand our work in this direction to include more
efficient lattice based and recursive estimation techniques
like RLS. For a more general utility function as defined
in equation (1) we could use the Non-Linear Least
Squared to detect a power-series in x and n. We are
currently working on this estimation problem.

In this paper we do not present any methods for de-
tecting uncooperative users, rather we assume that their
identity is given to us. We believe this is a separate but
very important issue. Recently various hashing, filtering
and other similar proposals have been put forward for
identifying misbehaving flows [22], [8], [3]. Also the
increasing use of Smart Sampling in Netflow benefits us
as its puts a first level filter on high bandwidth flows.
This then considerably reduces the number of flows to
be monitored and thereafter we can apply any of the
methods presented above to detect uncooperative flows.
However, we would also like to point that the objective
of this paper was not to identify uncooperative flows but
how to manage them.

Path asymmetry is another issue which we need to
look in detail. If a single exit router is used by the flow
then the model is immune to path-asymmetry problems
in the network. Both unique entry or exit routers is gen-
erally true in the present Internet. However, if different
exit and entry routers are used for any flow then we need
to study the effect of path-asymmetry.

Despite these limitations, we believe our work is
a first step in modeling and managing uncooperative
flows at the edge of the network by keeping state for

only the mis-behaving flows. The incentives for such
an approach are clearly high: the model proposed in
this paper can be implemented at the network edges,
works well with both dropping based or an ECN enabled
network and more importantly is independent of the
buffer management scheme deployed on the network.
Further, this framework presented in this paper can be
considered as a general traffic conditioner. Packeteer
boxes, deployed widely on the Internet, already do a
similar, though limited, traffic conditioning of reducing
congestion by pacing the acks [23] and work well with
large number of flows.

XIII. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed an abstract model
for modeling and managing uncooperative flows. We
show that we can describe the uncooperative (as well as
cooperative) flow by utility function. This utility function
space can thus be partitioned to identify uncooperative
flows. Within the flow optimization framework, we pro-
pose an edge based model to map a uncooperative user’s
utility function, Us, to any target range of objective
utility function, Uobj . This re-mapping can be carried by
a transparent manipulation of the congestion penalties.

The model presented in the paper can be implemented
at the network edge and as thus is incrementally de-
ployable. Moreover, this model does not require any
changes in the core routers. However, we do need to
store some information about uncooperative sources at
the network edge. The model presented in this paper is
also independent of the buffer management algorithm,
i.e. it works not only with any AQM scheme but also
with Drop Tail queues. Also, the proposed solution can
work in a dropping based network as well as in an ECN
enabled network.

We have analyzed the framework and evaluated it
for various single and multi-bottleneck scenarios with
marking and dropping policies being used for congestion
notification. Further we showed model is robust and
works well even in presence of high background (web)
traffic and reverse path congestion. In this paper we also
presented a scheme to estimate the utility function of the
uncooperative user. We have also evaluate the impact of
uncooperative flows on existing AQM proposals and our
results suggest that these schemes cannot always manage

uncooperative behavior. We are currently working on
ways to improve the utility function estimation schemes
presented in this paper.

REFERENCES

[1] A. Akella etal. Selfish Behavior and stability of the Internet: A
Game Theoretic Analysis of TCP. In Proc. of ACM Sigcomm, Aug
2002.

[2] D. Bansal and H. Balakrishnan. Binomial Congestion Control
Scheme. Proc. of IEEE INFOCOM, Tel-Aviv, Israel, March 2000.

[3] F. Baboescu, G. Varghese. Scalable Packet Classification. In Proc.
of ACM Sigcomm, San Diego, Aug 2001.

[4] S. Blake et. al. An Architecture for Differentiated Services. IETF
RFC-2475.

[5] K. Chandrayana. Novel Placement of Congestion Control Func-
tions in the Internet. Phd Dissertation, ECSE Dept. R.P.I., 2004.
Available from http://networks.ecse.rpi.edu/∼kartikc.

[6] K. Chandrayana and S. Kalyanaraman. Uncooperative Congestion
Control. In Proceedings of ACM Sigmetrics, 2004.

[7] K. Chandrayana and S. Kalyanarama. On Impact of Non-
Conformant Flows on a Network of DropTail Gateways. In Pro-
ceedings of IEEE Globecom, 2003.

[8] W. Feng et. al. Stochastic Fair Blue: A Queue Management
Algorithm for Enforcing Fairness. In Proc. of INFOCOM, April
2001.

[9] S. Floyd and K. Fall. Promoting the Use of End-to-end Congestion
Control in the Internet. IEEE/ACM Transactions on Networking,
7(4):458-472, 1999.

[10] S. Floyd, etal. Equation-Based Congestion Control for Unicast
Applications. In Proc. of ACM SIGCOMM, Aug 2000.

[11] S. Floyd and M. Handley and E. Kohler. Problem Statement of
DCP. http://www.icir.org/floyd/papers.html

[12] A. Kuzmanovic and E. Knightly. Low-Rate TCP-Targeted Denial
of Service Attacks (The Shrew vs. the Mice and Elephants). In
Proc. of ACM SIGCOMM, Aug 2003.

[13] S. Gorinsky, S. Jain, H. Vin and Y. Zhang. Robustness to Inflated
Subscription in Multicast Congestion Control. In Proc. of ACM
SIGCOMM, Aug 2003.

[14] Frank Kelly, Aman Maulloo and David Tan. Rate control in
communication networks: shadow prices, proportional fairness and
stability. Journal of the O.R. Society, 49 (1998) 237-252.

[15] S. Kunniyur and R. Srikant. End-To-End Congestion Control:
Utility Functions, Random Losses and ECN Marks., Proc. of IEEE
INFOCOM , Tel-Aviv, Israel, March 2000.

[16] D. Lin and R. Morris, “Dynamics of Random Early Detection, ”
Proceedings of ACM SIGCOMM, 1197.

[17] S. H. Low, D. E. Lapsley. Optimization Flow Control, I: Basic
Algorithm and Convergence. IEEE/ACM Transactions on Net-
working, 7(6):861-75, 1999

[18] S. H. Low. A Duality Model of TCP and Queue Management
Algorithms. Proc. of ITC Specialist Seminar on IP Traffic Mea-
surement, Modeling and Management, Sept, 2000.

[19] ”Nishanth R. Sastry and Simon S. Lam. CYRF: A Framework
for Window-based Unicast Congestion Control. In Proc. of ICNP,
2002.

[20] R. Mahajan and S. Floyd. Controlling High-Bandwidth Flows at
the Congested Routers. In ICNP 2001.

[21] J. Mo and J. Walrand. Fair end-to-end window-based congestion
control. IEEE/ACM Trans. on Networking, 8(5):556–567, 2000.

[22] T.J. Ott, T.V. Lakshman, L.H. Wong, SRED: Stabilized RED. In
Proc. of IEEE INFOCOM, 1999.

[23] Packeteer. http://www.packeteer.com
[24] J. G. Proakis et. al, ”Algorithms for Statistical Signal Processing”,

Prentice Hall, 1st edition, Jan 2002.
[25] R. Pan, B. Prabhakar and K. Psounis. CHOKe, A Stateless Active

Queue Management Scheme for Approximating Fair Bandwidth
Allocation. Proc of INFOCOM, Mar 2000.

[26] S. Shenker. Fundamental Design Issues for the Future Internet.
In IEEE Journal in Selected Areas of Communication, vol 13(7),
1995.

APPENDIX

The assumptions used in the paper are as follows

• A1: The Utility functions are continuous, strictly
concave and increasing in their arguments. Further
the rates are bounded by I: [ms, Ms].

• A2: The curvature of Us are bounded away from 0
on I, i.e. −U

′′

s (xs) ≥ 1/αs > 0.

Lemma 1: Given the non-negativity constraint on xs

and pl and strictly concave utility functions Us and Uobj ,
the function ps

new, f(pl) as defined in (41) are non-
negative and strictly increasing in their argument.

Proof: Define ps =
∑

l∈S(l) pl. Note g(ps) =

U
′

s(U
′−1
obj (ps)). Recognizing that U

′−1
obj (ps) is just xs

from equation (4), we can rewrite g(ps) as g(ps) =
U

′

s(xs(p
s)). Since Us(xs) is increasing and strictly con-

cave in its arguments hence U
′

s(xs) ≥ 0. Hence, g(p
s)

is greater than 0.
Let’s define F (ps) = U

′

obj(p
s) and it’s inverse as

H(ps) = F−1(ps). Therefore, H(F (ps)) = ps.
Now differentiating both sides with respect to ps we get,

H
′

(F (ps)) · F ′

(ps) = 1 (30)

or (U
′−1
obj ())

′

=
1

U
′′

obj(p
s)

. (31)

Now, differentiating g(ps) with respect to ps we get

g
′

(ps) = U
′′

s (U
′−1
obj (ps)).(U

′−1
obj (ps))

′

= U
′′

s (·)(U ′−1
obj (·))′

. (32)

Since Us and Uobj are strictly concave therefore
U

′′

s (), U
′′

obj() < 0 and from equation (31) we conclude
that g

′

(ps) is greater than 0. Combining g
′

(ps) > 0
and the definition of f(pl) (equation 18) we conclude
f

′

(pl) > 0.

Theorem 1: The modified dual represents a non-linear
optimization problem where the objective function is
as if every user is maximizing a utility function of
Uobj subject to the capacity constraints. Moreover, if the
objective utility function is strictly concave then a unique
maximizer exists.

Proof: The transformation or the re-mapping func-
tion, U ′

s(U
′−1
obj (p)), can also be explained as the solution

to the following set of equations:
∑

s∈S(l)

xs ≤ Cl, ∀l (33)

pl(
∑

s∈S(l)

xs − Cl) = 0 (34)

U
′

s(xs) = g(
∑

l∈L(s)

pl) (35)

p, x ≥ 0 (36)

Then using equation 18 we can rewrite equation 35 as

U
′

obj(xs) =
∑

l∈L(s)

pl (37)

Then equations (33-37) are the KKT conditions for the
following strictly concave maximization problem

max
︸︷︷︸

x

∑

s∈S Uobj(xs) (38)

∑

s∈S(l)

xs ≤ Cl, ∀l (39)

x ≥ 0 (40)

Then using assumption A1 we conclude that the objec-
tive function (equation 38) is strictly concave and hence
an unique solution exists.

We will now outline the proof for Theorem 2. However
this proof requires some Lemmas. Before we state and
prove these lemma, we will define the following:

Let a function, f(pl) : f(pl) ≥ 0, ∀pl, f(0) = 0 exists
for all links and the following condition holds true

∑

l∈L(s)

f(pl) = U
′

s(U
′−1
obj (

∑

l∈L(s)

pl)) = ps
new (41)

Lemma 2: Under Assumptions (A1, A2) ∇D(p) is
Lipschitz.

Proof: Define by A the incidence matrix where Als

is 1 if source s uses link l and 0 otherwise. Further let
the total number of links used by any source be bounded
by L and the total number of sources by S. Then after
some simplification we have

∂x(p)

∂p
= diag

(

1

U
′′

obj(xs(p))

)

AT (42)

Also from equation (24) we get ∇D = f
′

(p)(C −Ax).
Differentiating it again with respect to pl we get

∇2D = f
′′

(p)(C − Ax) + f
′

(p)(−A
∂x(p)

∂p
) (43)

After some simplification f
′′

(p) can be calculated as

f
′′

(p) =
U3′

s (x(p))

α2
s

+
αs

U3′

obj(x(p))
(44)

Since the utility functions are strictly increasing in their
arguments hence they will be rightly skewed, i.e. U 3′

s

is bounded away from 0. Further since the rate are
bounded by I (Assumption A1) the second derivative
of f(p) will be bounded, let us say that this bound is F.
After some simplification the bound on f

′

(p)(−A∂x(p)
∂p

)
can be calculated as βLS (for some β > 0 and β function
of αs(> 0)). Then using the capacity constraint we

conclude that ∇D will be Lipschitz with the following
bound

‖∇D(q) −∇D(p)‖ ≤ (FC + βLS) ‖q − p‖

Lemma 3: Under assumption (A1, A2) D(p) is lower
bounded, continuously differentiable and convex.

Proof: By Assumption (A1), Us is bounded and
continuously differentiable thus U

′−1
s (and f(p)) exist

and is also bounded and continuously differentiable.
Therefore, D(p), as defined in equation (24) is also lower
bounded and continuously differentiable.

Further from the assumption A1 (strictly increasing
and strictly concave utility function) and equation (5)
f

′′

(p) (as defined in equation (44)) will be greater than
0. Using this knowledge and the capacity constraint the
first term in equation (43) is always greater than or equal
to 0. The second term of equation (43) is

f
′

(p)(−A diag

(

1

U
′′

obj(xs(p))

)

AT)

also strictly positive because from Proposition 1, f
′

(p)
is always greater than 0, the incidence matrix is a 0-
1 matrix and the utility functions are strictly concave.
Thus we can say that equation (43) is greater than 0. Or
∇2D(p) ≥ 0 and D(p) is strictly convex.

Theorem 2: Assume that utility functions, Us, are
increasing, strictly concave and continuously differen-
tiable, and their curvature is bounded away from 0. Then
starting from any initial rates in the interior of X and
prices p(0) ≥ 0, every accumulation point (x∗, p∗) of
the sequence (x(t), p(t)) generated by the above algorithm
and equations (22,23) is primal dual optimal.

Proof: By Lemma 2 and 3 the dual objective
function D(p) is convex, lower bounded and ∇D(p)
is Lipschitz, then any accumulation point p∗ of the
sequence {p(t)} generated by the gradient projection
algorithm is dual optimal [17]. Moreover, the constraints
are linear and the primal problem is strictly concave
hence there is no duality gap. Therefore dual optimal
is also primal optimal.

Theorem 3: The rate of convergence of the edge re-
marker’s algorithm is given by the smallest eigen vector
of ABAt where A is the routing matrix and B is
diag(U

′−1
obj (p∗))′ and p∗ is equilibrium price.

Proof: In Theorem 1 we showed that by our penalty
transformation the original optimization problem was
translated into as if all the users were maximizing a
utility function of Uobj and the update algorithm can
be written as

∂p(t)

∂t
= −γ(Ax −C) (45)

x = Uobj
′−1(ptA) (46)

where p is the vector of dual variables or price in
our framework. Since the objective function is strictly
concave a unique maximizer exists, let this maximizer
be called p∗. Let p(t) = p∗ + ξ(t). Then linearizing
the system of equations (45,46) about p∗ and after some
simplification we get

∂(p∗ + ξ(t))

∂t
= −γ

(
AUobj

′−1((p∗ + ξ(t))tA) − C
)

(47)

∂ξ(t)

∂t
= −γABAt (48)

B = diag(Uobj
′−1(p∗))′ (49)

Thus the rate of convergence of the algorithm is given
by the smallest eigen vector of ABAt.

Kartikeya Chandrayana received the B. Tech degree in Electronics and
Communication Engineering from Indian Institute of Technology, Roorkee,
M.S. and Ph.D. in Computer and Systems Engineering from
Rensselaer Polytechnic Institute, Troy, NY, USA in 1998, 2001
and 2004 respectively. He is currently a Senior Software Engineer at
Cisco Systems, San Jose, USA. His research interests include design
and control of communication networks including congestion control,
Traffic Engineering, Quality of Service, managing selfish behavior in
the Internet, modeling and performance analysis of network protocols
and storage networks.
Dr. Chandrayana is a member of IEEE, ACM and Sigma Xi. His email address
is: karchand@cisco.com

Shivkumar Kalyanaraman (S’95–A’97) received the B.Tech. degree from the
Indian Institute of Technology, Madras, in 1993 and the M.S. and Ph.D. degrees
in computer and information sciences from The Ohio State University,
Columbus, in 1994 and 1997, respectively.
He is an Associate Professor in the Department of Electrical, Computer and
Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY. His research
interests include congestion control architectures, connectionless traffic
engineering, quality of service (QoS), last-mile community wireless networks,
low-cost free-space-optical networks, network management, multicast, multimedia
networking (including peer-to-peer multimedia systems), and performance analysis.
He is a coauthor of several papers, IETF drafts, and ATM forum contributions.
Prof. Kalyanaraman is a member of the IEEE Computer Society and ACM. His email
address is: shivkuma@ecse.rpi.edu

* Author Biography

Shivkumar Kalyanaramn Photo
Click here to download high resolution image

http://www.editorialmanager.com/comnet/download.aspx?id=24818&guid=8101f7e0-deac-431b-aef2-df10d1302792&scheme=1

Kartik Photo
Click here to download high resolution image

http://www.editorialmanager.com/comnet/download.aspx?id=24819&guid=163fdfd8-21fa-47d2-b067-9a75e32aa790&scheme=1

