Explicit Rate Multicast Congestion Control *

Jiang Li, ® Murat Yuksel, »* Shivkumar Kalyanaraman ?

aRensselaer Polytechnic Institute, ECSE Department, 110 8th Street, Troy, NY
12180, USA.

> Howard University, Systems and Computer Science Department, 2300 6th
Avenue, N.W. Washington, DC 20059, USA.

Abstract

In this article, we propose a new single-rate multicast congestion control scheme
called Ezplicit Rate Multicast Congestion Control (ERMCC) based on a new met-
ric, TRAC (Throughput Rate At Congestion). ERMCC achieves an O(1) memory
complexity to maintain state information at source and receivers; requires only
simple computations; and does not necessitate measurement of RTTs from all re-
ceivers to the source. Furthermore, ERMCC is TCP-friendly, does not suffer from
the drop-to-zero problem, and is very effective with feedback suppression. Theoret-
ical analysis of the scheme performance is provided, and simulations have shown
that ERMCC outperforms PGMCC and TFMCC under most situations. We have
also implemented ERMCC over UDP and successfully run it on real testbed sys-
tems in Emulab with very good results. In addition to this implementation, we also
obtained very good results in large-scale simulation tests of ERMCC.

Key words: Multicast, congestion control, single-rate, drop-to-zero, TCP
friendliness, feedback suppression, throughput rate at congestion (TRAC)

* This work was supported in part by NSF Contract AN19819112, ARO Contract
DAAD19-00-1-0559 and grants from Intel and Reuters.
* Corresponding author. Email: yuksem@ecse.rpi.edu, Address: RPI, ECSE De-
partment, JEC 6049, 110 8th Street, Troy, NY 12180, USA. Phone: +1 (518) 276
6823, Fax: +1 (925) 888 2167

Email addresses: 1ij@scs.howard.edu (Jiang Li,), yuksem@ecse.rpi.edu
(Murat Yuksel,), shivkuma@ecse.rpi.edu (Shivkumar Kalyanaraman).

Preprint submitted to Elsevier Science 7 April 2005

1 Introduction

IP multicast is efficient for transmitting bulk data to multiple receivers. There
are two categories of multicast congestion control. One of them is single-rate,
in which the source controls the data transmission rate and all receivers receive
data at the same rate. The previous work includes, for example, DeLucia et.
al’s work in [1], PGMCC|2], TFMCC]J3], MDP-CC[4] and our prior work LE-
SBCC [5]. The other is multi-rate (a.k.a layered multicast congestion control),
in which receivers join just enough layers in the form of multicast groups to
retrieve data as fast as they can. The most noticeable among them are recently
developed Fine-Grained Layered Multicast [6] and STAIR [7].

The single-rate category is easy to implement and deploy, because it does not
require support from intermediate nodes beyond standard multicast capabil-
ities, also does not introduce high processing load to them. Although such
schemes do not scale as well as multi-rate ones because they track the slowest
receiver, they are suitable for such situations as the multicast in a not-so-
heterogeneous environment, or bulk data transfer without concerns over delay.
With some network support [8], we can also emulate multi-rate schemes by
deploying single-rate schemes on selected intermediate nodes.

In this paper, we introduce a new single-rate multicast congestion control
scheme Explicit Rate Multicast Congestion Control (ERMCC), and show its
superior performance under most of the realistic conditions. We will first very
briefly describe ERMCC below, and then in Section 2, we will briefly discuss
some related work followed by the ERMCC details in Section 3. In Section
4 we will provide theoretical analysis of ERMCC where some proofs will be
left to Appendices. Then, we will present simulation and experiment results
in Section 5. Finally, we will conclude the paper in Section 6.

1.1 Brief Description of ERMCC

The key idea of ERMCC is to base the scheme on a new metric, TRAC
(Throughput Rate At Congestion), which is the throughput rate measured by
receivers when congestion is detected. ERMCC is practical because, (i) at the
source and receivers, O(1) state is maintained, and only simple computations
are required; (ii) there is no need to measure RTTs from all receivers to the
source, which can be a tedious problem especially without external instrumen-
tation (e.g. GPS, NTP server), and (iii) we do not make any assumption on
network topology and intermediate nodes beyond standard multicast capabil-
ities. It is also effective because (1) it successfully addresses the well-known
problems of slowest receiver tracking, TCP-friendliness, and drop-to-zero; and

(2) the feedback suppression mechanism works very effectively by suppressing
over 95% feedback under normal situations. In fact, it outperforms PGMCC|2]
and TFMCCJ3] under most situations.

The general concept of our scheme is as follows: The source dynamically se-
lects one of the slowest receivers as Congestion Representative (CR), and only
considers its feedback for rate adaptation. The slowest receivers are those with
the lowest average TRACs. Each receiver keeps measuring its TRAC when it
detects congestion and updates its average TRAC by means of a smoothing
technique such as Exponentially Weighted Moving Average (EWMA). Re-
ceivers detect congestion, when they observe a loss in the data packets '. The
source considers these average TRACs of the slowest receivers in its decision
to select the CR. When there is no CR, all receivers may send feedbacks to
the source. However, this no-CR situation will last at most one RT'T, because
the new CR will be chosen in one RTT. This limitation of one RTT time
period on no-CR case also prevents any possible ack implosion. Once a CR
is selected, only the CR and those receivers with average TRAC lower than
that of the CR can send feedbacks so that feedbacks are efficiently suppressed.
Also notice that our scheme is not concerned with reliability issue and only
considers congestion control. Therefore, it is applicable to both reliable and
unreliable multicast.

An example operation can illustrate how our scheme works more clearly. In
Figure 1 (a), let’s assume that at time ¢, the source has chosen a receiver be-
hind the most congested path as CR by comparing average TRACs of receivers.
Only the CR will send feedback while other receivers suppress their feedback.
These feedbacks are indeed congestion indications (Cls), because they are sent
only when congestion is detected due to packet loss. As shown in Figure 1,
the feedback from the current CR is the average TRAC fi(ty) = ®(Qty),),
where Q(ty) is the TRAC of the current CR at time ¢, and ®() is an EWMA
averaging function with o being the exponential averaging factor, which will
later be defined in detail. In addition, the TRAC, Q(to), for the current CR
is calculated by averaging instantaneous output rate w(ty) of the current CR
over a small period of time. 2

Assume that, after some time another path becomes the new most congested
path. After a while at time ¢;, those receivers 1..k behind that path will see
average TRACs lower than that of the current CR (i.e. Vi = 1.k, u;(t1) <

1 Note that it is also possible to use additional techniques to detect congestion. We
do not focus on this to assure needed emphasis on the multicast congestion control
rather than congestion detection.

2 These definitions of the different kinds of TRACs correspond to averaging at two
different time-scales with two different methods, and they are calculated in the same
manner for all receivers. We will give more detailed explanation of these definitions
later.

Q : Throughput Rate At Congestion (TRAC) time: t,
H : Average TRAC

Source

Most w%

O O oy \1
Feedback Receiver Receiver
10>

Receiver Receiver Receiver Receiver
(CR)

(a)

Source Most congested path

O
Receiver
Feedback
Feedback
e / \<ui Qp

Receiver Receiver Receiver Receiver
(CR)

time: t;

(b)
Source
Most congested path

//\K
O O . e O

Receiver Receiver Feedback
\\<li8>

Receiver Receiver Receiver Receiver
(CR)

(c)
Fig. 1. Example operation of ERMCC.

f(ty) — 6(ty)) , and will send feedbacks as shown in Figure 1 (b). As the
result, one of them will be chosen as the new CR. After that, again, other
receivers will suppress their feedback as shown in Figure 1 (c).

1.2 Key Contributions

ERMCC introduces a novel method of using explicit rate feedback at the time
of congestion (i.e. TRAC) in such a way that several major multicast con-
gestion control problems are remedied. By using smoothing techniques like
EWMA, receivers in ERMCC successfully achieve an efficient feedback sup-
pression. Similarly, each receiver maintains two statistical measures (i.e. av-
erage TRAC and deviation of TRAC) which provides venue for robust and

effective tracking of the slowest receiver. By using an AIMD-like rate adapta-
tion technique, ERMCC also warrants T'CP-friendliness and immunity to the
drop-to-zero problem. In addition, only state of the slowest receiver (i.e. O(1)
memory complexity) is needed and only estimation of the RTT to the CR is
needed.

The contributions of this paper are as follows:

e It proposes ERMCC, a practical and effective single-rate multicast conges-
tion control scheme based on a new metric throughput rate at congestion
(TRAC), with features such as O(1) state complexity, and non-timer-based
feedback suppression.

e It analyzes the scheme performance theoretically.

e By comparison in simulation with PGMCC [2] and TFMCC [3], it shows
that ERMCC achieves better performance under most situations.

e It presents the test results of ERMCC implementation on a real testbed
system in Emulab [9].

e [t also presents large-scale simulation test results of ERMCC.

N

Related Work

2.1 Single-Rate Schemes

DeLucia et. al’s work in [1] is an early single-rate multicast congestion control
scheme using representatives. It requires two types of feedback from receivers,
Congestion Clear (CC) and Congestion Indication (CI). Note that their Cls
are single bit and thus different from ours carrying the explicit output rate
p. A fixed number of receiver representatives are maintained at the source.
Whenever a CI is received by the source, if the sender of this CI is in the rep-
resentative set, the representative is refreshed; if not, the sender will replace
the representative that has not been refreshed for the longest time. Feedback
from representatives is echoed by the source to suppress feedback scheduled
at non-representative receivers. The source uses only the feedback from repre-
sentatives to do MIMD (multiplicative increase and multiplicative decrease)
rate adaptation.

The representative selection mechanism in that scheme is “simplistic” [1], but
there is certain complexity involved in generating CC. The representative set is
not guaranteed to include the slowest receiver, which means that the slowest re-
ceiver can be overloaded. Furthermore, it assumes that only a few bottlenecks
cause most of the congestion. Based on this assumption, receiver suppression
is the only mechanism for filtering feedback from receivers. In a heterogeneous

Table 1
MATHEMATICAL NOTATIONS

Symbol Meaning
wi(t) Average TRAC for receiver ¢ at time ¢
Q;(t) TRAC for receiver 4 at time ¢
wi(t) Instantaneous output rate at receiver ¢ at time ¢
oi(t) Deviation of TRAC at receiver ¢ at time ¢
a(t) Average TRAC for the current CR at time ¢
Q(t) TRAC for the current CR at time ¢
w(t) Instantaneous output rate at the current CR at time ¢
a(t) Deviation of TRAC at the current CR at time ¢
() EWMA averaging function
a Exponential averaging factor
T Response time of the CR, i.e. elapsed time until the first feedback
is received from the current CR when the path to CR is fully loaded
Tinaz Estimate of the maximum possible T’
A(t) Source’s sending rate at time ¢
S Data packet size
At Time period over which TRAC is measured
RIT 0z Maximum RT'T observed by the source among all receivers

network, where there may be many different bottlenecks and asynchronous
congestion, the assumption may not be true. Consequently, the transmission
rate may be reduced more than necessarily and stay very low or close to zero.
This is known as the drop-to-zero problem.

PGMCC [2], TFMCC [3] and MDP-CC [4] are recent work also using repre-
sentatives. Although they use different policies for rate adaptation, they all
leverage the TCP throughput formula [10] [11] for allocating the slowest re-
ceiver, i.e the receiver with the lowest estimate TCP throughput according to
the formula. Therefore, it is necessary for them to measure packet loss rate
and RTT for all receivers.

PGMCC [2] keeps one representative as acker. The acker sends ACKs to the
source which mimics the behavior of TCP. At the same time, NAKs with
loss rate are sent from all other receivers. This is different from our scheme
because we do not require separate ACK streams. The PGMCC source mea-
sures RTT between itself and all receivers in terms of packet numbers, and

compare the estimated throughput for updating acker. Due to the necessity of
RTT measurement for all receivers, feedback suppression may have serious ef-

fect on PGMCC’s performance. In fact, PGMCC does not provide a feedback
suppression mechanism.

TFMCC [3] adjusts the rate according to the estimated rate calculated by
the representative. RTTs are measured by receivers with a somewhat complex
procedure. The sender needs to echo receiver’s feedback according to some
priority order, and there is one-way delay RTT adjustment plus sender-sider
RTT measurement. TFMCC comes with feedback suppression which is an
enhanced version of [12] and is probabilistic timer-based. Therefore, the total
number of feedbacks is the function of the estimated total number of receivers,
and additional delay is introduced into feedback.

MDP-CC [4] increases/decreases the transmission rate exponentially toward
the target rate. Similar to TFMCC, the target rate is also calculated by the
representative. In contrast to PGMCC and TFMCC, MDP-CC maintains a
pool of representative candidates for representative update. As shown in that
paper, maintaining multiple representative candidates requires much effort.
MDP-CC can use probabilistic timer-based feedback suppression which has
the same properties as that of TFMCC.

LE-SBCC [5] is our prior work. It only requires single bit NAKSs from receivers,
and the source has three cascaded filters to filter receiver feedback before using
it for rate adaptation. The computation complexity at the source is O(1).
However, for n receivers, it needs O(n) states at the source, and network
aggregation can also lead to performance degradation. ERMCC does not have
these drawbacks.

2.2 Multi-Rate Schemes

Ideally, the multi-rate multicast congestion control can satisfy heterogeneous
receivers because each of them receives data at its own rate. The most notice-
able among them are recently developed Fine-Grained Layered Multicast [6]
and STAIR [7]. However, the multi-rate schemes are closely coupled with rout-
ing and IGMP, which implies some potential problems. For example, different
groups for layers could follow different routes [13]. Aggregated multicast trees
[14] do not necessarily prune trees dynamically and hence break the assump-
tions of the multi-rate schemes. The slackness of response to congestion due
to long leave latency continues to be an issue. Besides, frequent group joins
and leaves can introduce significant load at routers.

3 ERMCC

As we have mentioned in the introduction, in ERMCC, receivers send their
average TRACs back to the sender whenever necessary, and the sender dynam-
ically chooses a representative (CR) out of them and use only its TRACs to
adjust the sending rate. In this section, we will present the details of how the
whole scheme works. We will first present operations at an ERMCC receiver
and at the source, followed by a list of the key features of ERMCC.

3.1 ERMCC Receiver

Receivers in ERMCC performs two major functions: (i) calculation and main-
tenance of TRAC and average TRAC, and (ii) proper generation and suppres-
sion of feedbacks to the source. The former function is crucial since TRAC is
used to help the source in rate adaptation as well as in deciding which receiver
will be the CR. The latter function is also important in that it determines scal-
ability of ERMCC in terms of two well-known single-rate multicast problems:
feedback-implosion, and slowest receiver tracking.

3.1.1 Throughput Rate At Congestion (TRAC) - u(t), Q(t), w(t)

Upon detection of a packet loss at a receiver in ERMCC, that receiver measures
explicit output rate TRAC Q(¢) and updates the average TRAC pu(t). We
represent TRAC measured at time ¢ at receiver i as €;(¢). Measurement of
TRAC is done over a small time period At which we take as 1 second for all
cases in this paper.

Thus, measurement of average TRAC pu(t) includes two levels of averaging.
The first averaging is done to measure the TRAC, which can be expressed as
averaging of instantaneous output rate w(t). So, TRAC at receiver i at time ¢
is calculated as:

0u(t) = Blwi(t)] = 5 [wilt)t)

The second level of averaging is done by a moving average function ®() (i.e.
EWMA) with an exponential weighting factor of c. The value of o determines
importance of the previous TRAC values in the resulting average. So, given
that the previous packet loss happened at time ty, average TRAC at receiver
1 at time ¢y is calculated by a recursive relationship:

pi(t1) = @ (ui(to), Qu(t1),)
pi(t) = (1 — a)pi(to) + () (2)

Data packet at ¢
arrives with< f,Q >

Update localA
copy of < z1,Q >

Loss
detected?

Measure Q2;
and update 4;

Feedback
i Handler

Send feedback
< i, 8 >
to the source
A

(a) a non-CR receiver i

Data packet at ¢
arrives with< 2,Q >

Loss
detected?

Measure QA
! and update 4/

A 4
Send feedback
: < f,Q>

to the source

i Feedback Handler :

(b) the current CR receiver

Fig. 2. Operations at ERMCC receiver.

To distinguish these measures for CR we will use a hat on the notation for the
rest of the paper. So, fi(t), £2(t), and @&(t) represents the average TRAC, the
TRAC and the instantaneous output rate for the current CR of the multicast

session.

Similar to average TRAC, another important metric to keep track of is the
deviation of TRAC, because it plays a crucial role in feedback suppression
as well as selection of CR which will be detailed in Sections 3.2.1 and 3.1.3
respectively. We represent the deviation of TRAC as o;(t), and calculate it

again by means of the EWMA function ®():

oi(t1) = @(0i(to), pi(t1), Qu(t1),)
oi(t1) = (1 — a)oi(to) + ofpui(t1) —

|

Qi(t1)] (3)

3.1.2 Feedback Handler

In ERMCC, as shown in Figure 2-a, feedbacks are generated only when a
packet loss is detected. Consider a data packet A at the arrival of which,
receiver ¢ detects that some data packets have been lost. The feedback gener-
ated by this receiver will contain: (i) the sequence number of the lastly received
data packet A, (ii) the TRAC, €;(t), measured at the arrival of A, and (iii) the
average TRAC, p;(t). So, the feedback will be a tuple of three items. When
the feedback arrives at the source, the first item will be used for making RTT
estimation for CR, the second item will be used for adjusting the transmis-
sion rate, and the last item will be used in the decision-making process of CR
selection.

Regarding the meaning of feedbacks in ERMCC, there are two different situ-
ations for two different purposes:

e Required Feedback from the CR: As shown in Figure 2-b, when the CR
detects a packet loss, it needs to send congestion indication as a feedback
to the source; so that the source can adjust the transmission rate. Since the
feedback includes TRAC Q(t), it also serves as a congestion indication since
it is measured up on detection of congestion.

e Optional Feedback: As shown in Figure 2-a, a non-CR receiver detects a
packet loss and generates a feedback only when it thinks that it is slower
than the current CR. For receiver ¢, the necessary condition for sending a
feedback is u;(t) < f1(t) —&(t). Each non-CR receiver performs this compar-
ison to make effective suppression of unnecessary feedbacks, which we will
discuss next.

3.1.8 Feedback Suppression

Effective feedback suppression can reduce the risk of feedback implosion, and
allow a multicast congestion control scheme to be used for large groups. In
ERMCC, the source conveys the average TRAC fi(t) and the deviation &(t)
of the CR’s TRAC to receivers whenever the CR is updated or ji(t) and & (%)
are changed. The source conveys these statistics about the current CR by
attaching them to the data packets. A receiver will send feedbacks, only if
its own average TRAC is less than the current average TRAC of the CR by
an amount at least the standard deviation of the CR’s TRAC. That is, for

10

receiver i the necessary condition for sending a feedback is yu;(t) < fu(t) — & (¢).
Note that we do not use a weaker condition of y;(t) < fi(t) to be conservative
and keep CR stable.

If needed, the source can use this behavior of the receivers to obtain feedbacks
from all receivers. fi(t) and 6(t) conveyed by the source can be changed to
large or smaller values so that receivers can send feedbacks. This is needed
when the current CR is inactive and the source needs to trigger feedbacks
from all receivers for new CR selection (Figure 6). To remedy the possiblity
of feedback implosion, the source can change these fi(t) and (¢) thresholds
to obtain feedback from a portion of receivers at a time.

Clearly, no timer is involved in our feedback suppression, no knowledge of the
whole group is needed. Unlike other probabilistic timer-based feedback sup-
pression schemes, feedbacks are not scheduled at all before being suppressed.
Yet, it is effective since the amount of feedbacks sent to the source is inde-
pendent of the total number of receivers. More insight will be given in the
theoretical analysis at Appendix B.5.

There is one situation which might be of concern. When the current CR is
absent and the source needs to choose a new CR, all receivers seeing congestion
of similar degree may send feedback at the same time. However, this situation
will last at most one RTT, because the new CR will be chosen in one RTT.
Besides, in reality, due to the heterogeneity of the network, many (if not
most) receivers will get the information of the new CR before they can send
out feedbacks for CR re-selection. Therefore, the total number of feedbacks
sent under this situation is limited, and we do not deem it as a problem.

3.2 ERMCC Source

In a single-rate multicast congestion control protocol, the source is responsible
for several major functions. These include: (i) proper and scalable selection
of the CR that represents the slowest receiver(s) in the multicast session,
(i) proper adaptation of the transmission rate so that available bandwidth
utilized as much as possible while assuring that the slowest receiver(s) is not
overloaded, and (iii) estimation and maintenance of necessary statistics such
as RTT. In order to perform the first function, ERMCC employs a set of CR
Selection criteria as well as a CR Mode Control module that operates at every
RTT. Similarly, to perform the second function, ERMCC has a Rate Increase
module that operates at every RT'T and a Rate Decrease module that operates
at every congestion indication from the receivers.

As it is shown in Figure 3, an ERMCC source has six major functions and
modules, each of which has a specific purpose. In the following subsections,

11

we will describe each of these functions and modules in detail.

3.2.1 CR Selection: Tracking of the Slowest Receiver

ERMCC compares average TRAC of all receivers to locate the slowest ones,
and chooses one of them as the Congestion Representative (CR). By using a
metric like TRAC (which is based on explicit output rate), it avoids computing
TCP throughput formula [11] [10] which requires per receiver RTT and packet
loss rate.

ERMCC receivers help the source to select a receiver with the lowest average
TRAC by sending in feedbacks only if their average TRACs are low enough to
qualify them as CR. It is imperative that the receivers do not send more than
necessary or less than enough feedbacks, which necessitates proper and effec-
tive suppression of feedbacks. Details of how receivers suppress the feedbacks
was covered in Section 3.1.3.

Thus, to make selection of the slowest receiver as the CR, two types of com-
parisons take place in the system:

e Comparison at receivers: Each receiver checks whether it thinks itself as a
potential CR. If so, it sends feedback to compete for being the CR.

e Comparison at the source: The source compares the feedbacks from those
receivers who think they are qualified, and makes the final decision of which
should be the CR.

These comparisons are shown in detail in Feedback Handler part of Figure 2-a
and CR Selection part of Figure 5.

Network conditions always keep changing, and we need to continuously keep
our choice of CR up-to-date. There are mainly two situations under which CR
needs to be updated:

e Case 1: A non-CR receiver worsens. The situations of some non-CR re-
ceivers change so that one of them sees more severe congestion than the
current CR does.

e Case 2: CR improves or leaves. While the situations of all non-CR receivers
remain unchanged, the previously most congested path is improved so that
the current CR sees less congestion than other receivers, or it leaves the
multicast session.

Tracking the slowest receiver by examining average TRACs can deal with Case
1, but to cope with Case 2 needs more effort. Under this situation, there can
be no feedbacks from the current CR. Recall that the source only considers
the feedbacks from the CR for rate adaptation and ignores all other feedbacks.

12

ERMCC Source
CR Mode —— Rate
Control —1 Increase
Feedback
from CR CR
Selection Data Packet
Handler Data packet
u to receivers
Feedback
from non-CR Update Rate
Statistics Decrease

Fig. 3. Source operations as a block diagram.

CR Mode " Rate Increase
Control |"®® cr_active € 0

cr_response € 0

A
Wait one RTT

No
t-t, > E[T]+8T,

decreased=1

A2 ji+46

A
RTT
& cr_response=0 B

decreased € 0

&t
cr_response € 1
A

Fig. 4. At every RT'T, the source attempts to increase the
transmission rate and updates the operating mode of the
source as either CR Active or CR Inactive.

Feedback packet at t
arrives With < 14,0, >| e

Update
Statistics

Update E[T] & T,
with (t-t,)

CR<«i 3
Start longer-RTT period |

CR Inactive

A<—minf, /)

decreased < 1 3 ‘()
cr_active < 1 : — STOP

Update £ and 6 with gand Q,

Update RTT with RTT,

RTT,,, < max(RTT,,,,RTT) cr_response < 0

Fig. 5. Operations that take place when a feedback packet from receiver ¢ arrives at
the source.

13

If the source does not change CR in time, the transmission rate will be out
of control. To detect this situation, we estimate an upper bound (denoted
as Tpnaz) of the idle time (denoted as T') before the source receives the first
feedback from the CR when the bottleneck is fully loaded. Notice that 7" is
indeed response time of CR during a congestion epoch, so we named it CR
Response Time. We will give a detailed description of measurement of 7" later
in Section 3.2.4.

As shown in CR Selection part of Figure 5, the source in ERMCC defines two
modes for the CR, Active or Inactive, which reflect validity of the CR. At
every RTT, the source updates the mode of CR. We will detail the update of
CR’s operation mode in the next Section 3.2.2.

There is one small trick we use to bias the choice of CR towards those receivers
with higher RTTs. As shown in CR Inactive Mode part of the CR Selection
in Figure 5, right after a new CR is chosen, we start a longer-RTT period of
2RTT 0z, where RT'T,,,,. is the maximum RT'T the source has ever seen. Later
within this period, as shown in CR Active Mode part of the CR Selection in
Figure 5, if the source receives a feedback from another receiver with similar
average TRAC as that of the CR, it will update CR to this receiver, since this
one tends to have longer RT'T. Notice that the longer-RTT period is not reset
after CR switches within the longer-RTT period.

3.2.2 CR Mode Control

To determine whether or not the selected CR is active, the source uses two
measures: (i) an estimate of the time when the bottleneck becomes fully loaed,
and (ii) Tpnez, an estimate of the time it would maximally take the current
CR to respond during congestion. Basically, the source starts to count when
it detects the time corresponding to the first estimate above. And then, it
identifies the CR as Inactive when the count reaches the second time estimate
above. In other words, suppose we somehow detect that the bottleneck is fully
loaded at time t. If there has been no feedback from the current CR until
t + Thnaz, We can say that the current CR is now inactive and needs to be
changed. Indeed, this is sort of a timeout on TRAC of the current CR. This
process of mode determination can be seen in the flowchart shown in CR Mode
Control part of Figure 4.

To see this mode control process on a timeline, let’s look at Figure 6. When
the CR is still active, we measure samples of 7" at the source, using feedback
packets only from CR. When the transmission rate reaches fi(t) + 46(t) 2,
we assume that bottleneck becomes fully loaded and start to count. Let the

3 According to Chebychev’s Inequality, about 94% of the random samples are less
than this value.

14

The bottleneck is

assumed to become fully loaded.
Iﬂ The bottleneck is The source sends
Tinax ‘ ‘ New CR is selected

-~ 7 [Tox —— |

|
|
|
:
} . O 0
assumed to become fully loaded. jpvalid p & o
|
|
|
|
|

Source ;
t b4 |
Packets transmitted
Receivers

f

: Time
The CR sends feedback l Non-CR receivers send feedbacks

I

I

I

I

I

CRisactive CR isinactive and needsto be changed

Fig. 6. Sketch of updating Congestion Representative (CR)

New data packet to
send

; Data Packet Handler

E Send data packet Send data packet i

with . with]
< U,0 > <p=0,6=0> ||

Fig. 7. Handling of data packets at the source: Source keeps at-
taching i and & to every data packet.

current time be #y. At a later time %;, suppose the first feedback from the CR
arrives at the source. Then, t; —t, is a sample of 7" and we update the average
and deviation of 7" again with EWMA just like we did for the TRAC in (2)
and (3). T;,q, is the average value of T plus eight times its deviation *, i.e.
Tinae = E[T] + 8T,.

When the CR is not active, for the duration of T,,,, since we start to count,
no feedback will be received by the source. The source then requests feedback
from other receivers for new CR selection, as described in Section 3.1.3.

3.2.8 Rate Adaptation

Since TRACs are measured at receivers upon packet losses, they indicate how
much bandwidth a flow can get out of the fully loaded bottleneck, assuming
congestion is the only reason for packet losses. The less it can get, the more
congested the bottleneck is. Therefore, we choose one receiver with the lowest
average TRAC as the CR, and let the source only consider the feedbacks from
that receiver for rate adaptation.

4 We choose the value of 8 to be conservative.

15

ERMCC is a rate-based scheme, using the policy of additive increase and
multiplicative decrease (AIMD). As shown in Rate Increase part of Figure 4,
if there are no feedbacks from the CR, the transmission rate is increased by
s/RTT per RTT, where s is the packet size, RTT is that between the source
and the CR. If a feedback is received from the CR at time ¢;, let the TRAC
in this feedback be i(t), we adjust the transmission rate to the minimum of
Biu(t) and the current rate. Feedbacks from other non-CR receivers will be
ignored, and at most one rate cut is allowed per RTT. This is shown in Rate
Decrease part of Figure 5.

Thus, adaptation of the source rate A(¢) is done according to the following
AIMD-like method:

Ato) + s/RTT, no feedback
min(X(to), Biu(to)) feedback with fi(t)

() =

where the feedback fi(t) arrives at source between ty and ¢y, i.e. ty < t < t;.

The rate reduction factor § is an important parameter of ERMCC. The larger
the 3, the more aggressive is ERMCC. To keep ERMCC TCP-friendly, from
a later discussion in Appendix B.3, we will see that § must be at least 0.5.
Moreover, the exact value of 5 depends on how ERMCC is implemented.
According to the simulation and experiment results, we suggest 5 = 0.65 for
implementation on user level, and 5 = 0.75 for implementation in system
kernel. The reason is that, if ERMCC is implemented on user level, due to the
coarseness of timers, its traffic is more bursty than that of TCP running in
kernel. To cancel that effect, 5 should be set lower.

3.2.4 Update of Statistics

ERMCC source needs to maintain sets of statistics for the purposes of (i)
estimating the RTT between the source and the CR, (ii) estimating response
time of the CR during congestion epochs, and (iii) keeping track of the TRAC
of the CR. Flowchart of how these statistics are updated is shown in Update
Statistics part of Figure 5. We now briefly describe how each of these sets of
statistics are updated:

RTT Estimation: Unlike a NAK, which includes the sequence number of a
lost packet, a feedback in ERMCC includes the sequence number of a packet
upon the arrival of which packet losses are detected. The source calculates the
difference between the sending time of this packet and the arriving time of this
feedback to get a sample of RT'T. By doing this, we avoid the unnecessary delay
between the supposed arriving time of a lost packet and the time of its loss
being detected. Nevertheless, since feedbacks are sent only when packet losses

16

occur, RTT estimated by these feedbacks includes the maximum bottleneck
queueing delay and thus is still the upper bound. On the other hand, ACKs as
those in TCP may or may not include bottleneck queueing delay. Therefore,
on average, RTT estimated by ERMCC’s feedbacks is larger than that by
ACKs under the same situation. In fact, this is the reason why we set S to
some value higher than 0.5.

ERMCC source maintains the following two values regarding RTT: (i) RTT,
estimate of the RTT between the source and the CR, and (ii) RTT, 4z, the
maximum RTT estimate RTT that was ever seen by the source. As shown in
Figure 5, upon receipt of a feedback from receiver 7, the source updates RTT
and RT'T,,., when either (i) the receiver i is the CR or (ii) the feedback caused
the CR to be changed. Notice that this method calculates the RT'T only from
the samples when congestion exists.

CR Response Time: Another statistic that ERMCC source needs is the
time, Ti4z, it would mazimally take the current CR to respond during a con-
gestion epoch. This is a crucial measure since it is used to determine whether
or not the current CR is still active or not, as it can so happen that the CR
may leave the system. The value of T},,, is composed of E[T] and T, which
are average value of 7" and its deviation respectively. The composition we use
is Tz = E[T]+ 8T,, which means the source needs to measure and maintain
the values of E[T] and T,. As it can be seen from Update Statistics part of
Figure 5, the source updates E[T] and T, only upon receipt of a feedback from
the current CR within the time period that started when the bottleneck is
estimated to be fully loaded after a rate increase.

CR’s TRAC: As described in (2), average TRAC is calculated by means of
an EWMA function, which we represent as ®(). In addition to average TRAC,
the source also maintains the deviation of TRAC, &, for the current CR. CR’s
average TRAC, /i, and deviation of CR’s TRAC, &, are crucial statistics since
they represents the maximum possible transmission rate for the current session
and are directly used for the process of CR selection. As shown in Figure 5,
upon receipt of a feedback from receiver 7, the source updates /i and 6 when
either (i) the receiver ¢ is the CR or (ii) the feedback caused the CR to be
changed.

3.2.5 Data Packet Handler

Receivers in ERMCC must be informed about the current value of CR’s
TRAC, [, and its deviation, . In order to convey fi and 6 to the receivers,
ERMCC source attachs them to the data packets. As shown in Figure 7, the
source specifically sets i = 0 and 6 = co when the CR is Inactive mode. The
purpose of this is to make the receivers send their current TRAC values, so

17

that a new CR can be elected.

Even though we have not implemented in the simulations of this paper, it is
also possible to set i and &, so that only those receivers with TRAC very close
to the latest CR’s TRAC will send feedback. Such a strategy is particularly
needed when the total number of receivers is too large.

3.8 Key Features of ERMCC

As we can see from the details above, ERMCC has the following features:

e O(1) Memory Complexity: The amount of memory needed to maintain
the state information at source and receivers is O(1). That is, the number of
states is constant and independent of the number of receivers in a multicast
session.

e Practical Operations: Operations of source and receivers are all simple,
without requiring intense computation. In particular, there is no need to do
per-receiver RTT estimation.

e Effective Feedback Suppression: With our non-probabilistic-timer-based
feedback suppression mechanism in place, the amount of feedbacks is inde-
pendent of the total number of receivers.

The pseudo code of ERMCC’s algorithm is provided in Appendix A for refer-
ence. The code for ns-2 and Unix can also be found at [15].

4 Properties about ERMCC Performance

It is desirable to check the performance of a multicast congestion control
scheme by theoretical analysis. We have done that for ERMCC to show the
following properties:

Property 1 ERMCC s capable of tracking the slowest receiver and select it
as CR (Congestion Representative) to direct rate adaptation.

PROOF. See Appendix B.2.

Property 2 FRMCC is TCP-friendly on the representative path, i.e. the path
between the source and the CR.

PROOF. See Appendix B.3.

18

Property 3 ERMCC is immune to drop-to-zero problem, i.e. the sending rate
will not be reduced more than enough and converge toward zero upon asyn-
chronous congestion.

PROOF. See Appendix B.4.

Property 4 Feedback suppression in ERMCC is very effective.

PROOF. See Appendix B.5.

5 Simulations and Experiments

We have run simulations on ns-2 [16] and experiments in Emulab [9] to vali-
date the performance of ERMCC. The ns-2 simulations checked the following
aspects:

1
2

) TCP-Friendliness

) Drop-to-zero avoidance

3) Multiple bottleneck fairness
4)

5)

(
(
(
(4) Slowest receiver tracking

(5) Feedback suppression

We also ran the same set of ns-2 simulations for PGMCC|2] and TEFMCC[3]
and compared the performance of our scheme with theirs. For ERMCC and
TFMCC, we use ns2.1b7a, for PGMCC, we use ns2.1b5, due to the restriction
of its source code. In all simulations, the data packet size is 1000 bytes, the
bottleneck buffer size is 50K bytes, the initial RTT is 100 milliseconds.

For experiments on real systems in Emulab[9], we implemented ERMCC on
top of UDP as a user level program. TCP-friendliness and drop-to-zero be-
havior are tested. The result is presented at the end of this section.

5.1 TCP-Friendliness and Drop-To-Zero Avoidance

We used a star topology (Figure 8) to generate asynchronous and indepen-
dent congestion on different paths. There are 129 ends nodes in the topology.
Between each pair of source i and receiver i (i = 1...64), there are one TCP
Reno flow and one single-receiver ERMCC flow. Furthermore, there is a multi-
receiver ERMCC flow from source 65 to all 64 receivers. Therefore, on a path

19

Source 1 Receiver 1 5Mb,30ms ||
|

source2 O Receiver 2

* 5Mbps,20ms 1Mbps, 20ms * 5Mb, 20ms 1Mb, 20ms

Source63 O O Receiver 63

|
5Mb,30ms |
|

Source64 O O Receiver 64 e
Source 65 Src3 Revr group 3

Fig. 8. 64-receiver star topology with TCP Fig. 9. Linear network with multiple bot-

background traffic. tlenecks including a total of 48 receivers.
Source

Source

8 layer—1 routers

Router

AN

Receiver 1 O O L @) O Receiver 32
Receiver 2 Receiver 31

16 layer-2 routers

32 receivers

Fig. 10. One-level tree with 32 receiver Fig. 11. Heterogeneous dynamic network.
nodes.

between the router and any receiver, the multi-receiver ERMCC flow competes
with a TCP flow and a single-receiver ERMCC flow.

We randomly chose a receiver node and plot in Figure 12(a) the over-time
average rates 5 of all three flows going to it. The fact that the average rates of
the TCP flow, the single-receiver ERMCC flow and the multi-receiver ERMCC
flow are close to each other indicates that (1) ERMCC is TCP-friendly, and
(2) ERMCC does not suffer from drop-to-zero problem.

We also conducted experiments on the same configuration for PGMCC and
TFMCC. For PGMCC simulations, since ns2.1b5 can only accommodate up
to 128 end nodes, we can only have 63 pairs of unicast source and receiver
instead of 64 pairs. Moreover, we only measure the sending rate of original
data packets, because repair packets for PGMCC are routed by net elements
to individual receivers whoever need them instead of all receivers. Nevertheless,
the proportion of repair packets is less than 1/10 and is thus negligible. This
has the same effect as measuring sequence number increment in [2]. Results
in Figure 12 (b) and (c) show that the average rates of PGMCC and TFMCC
multicast flows deviate more from the corresponding unicast flows than what
ERMCC does.

5 Over-time average rate at time t is defined as the traffic volume between [0,]
divided by ¢.

20

Over-time Average Rate (Mbps)

Over-time Average Rate (Mbps)

Over-time Average Rates of TCP-Friendliness and Drop-To-Zero Simulation (ORMCC) Over-time Average Rates of TCP-Friendliness and Drop-To-Zero Simulation (PGMCC)

Over-time Average Rate (Mbps)

.
0 200 400 600 800 1000 0 200 400 600 800 1000
Time (sec) Time (sec)

(a) ERMCC (b) PGMCC

Over-time Average Rates of TCP-Friendliness and Drop-To-Zero Simulation (TFMCC)

. . . .
o 200 400 600 800 1000
Time (sec)

(c) TFMCC

Fig. 12. TCP-friendliness and immunity to drop-to-zero: ERMCC is more
TCP-friendly and avoids drop-to-zero better than PGMCC and TFMCC.

5.2 Multiple Bottleneck Fairness

In real world, there are usually more than one bottleneck on a path. It is
desirable to check how long ERMCC flows compete with short ones and what
kind of fairness ERMCC can achieve. We ran a simulation on the topology
shown in Figure 9. There is a long multi-receiver multicast flow, going through
two bottlenecks, from Src 1 to receivers in Group 1. There are also two short
multicast flows going through only one bottleneck from Src 2 to Group 2 and
from Src 3 to Group 3 respectively. Each group has 16 receivers. RED queues
are used on the routers to reduce the effect of RTT estimation.

According to proportional fairness, the long ERMCC flow should get one-third
of the bottleneck bandwidth, 0.33Mbps. The result in Figure 13 (a) shows
that ERMCC achieves approximately proportional fairness. Similar fairness
achieved by PGMCC and TFMCC in the same configuration is also shown in
the figure.

21

Over-time Average Rate (Mbps)

Over-time Average Rate (Mbps)

Over-time Average Rates of Multiple Bottleneck Faimess Simulation (ORMCC)

ORMCC long flow
ORMCC cross traffic 1 -

Optimal share of long flow

ORMCC cross traffic 2 --------

Optimal share of cross flows ——-—

0 L L L L
0 200 400 600 800

Time (sec)

(a) ERMCC

Over-time Average Rates of Multiple Bottleneck Fairness Simulation (TFMCC)

1000

TFMCC long flow

Optimal share of long flow

TFMCC cross traffic 1 -------
TFMCC cross traffic 2 --------

Optimal share of cross flows ——-—

0 L L L L

o 200 400 600 800
Time (sec)

(c) TFMCC

Fig. 13. Fairness of sharing bottleneck bandwidth: All three schemes achieve ap-

proximately proportional fairness.

5.8 Slowest Receiver Tracking

This simulation is used to test ERMCC’s capability to quickly track the slowest
receiver and select it as CR. In the tree topology shwon in Figure 10, there is
an ERMCC flow between the source and all the 32 receivers. There are three
dynamically generated bottlenecks using TCP Reno flows. Denote link i as
the link between the router and receiver ¢ (i = 1...32), each link has 2Mb
bandwidth and 20 ms delay. The simulation time is 1000 seconds. During the
whole simulation, one TCP flow runs on link 1; between 200th and 800th
seconds, three TCP flows run on link 2; between 400th and 600th seconds,

seven TCP flows run on link 3.

The dynamics include both conditions causing CR switches, i.e. (1) A slower
receiver appears, (2) The current slowest receiver is absent. RED and drop-tail
queue management policies are used separately in our simulations. Simulation
results are shown in Figure 14 (a) and (d). Vertical dashed lines show when

1000

22

Over-time Average Rate (Mbps)

Over-time Average Rates of Multiple Bottleneck Faimess Simulation (PGMCC)

T
PGMCC long flow

PGMCC cross traffic 1
PGMCC cross traffic 2 -
Optimal share of long flow
Optimal share of cross flows -

200 400 600 800
Time (sec)

(b) PGMCC

1000

the ERMCC source switched CR. We can see that ERMCC updates CR and
adapts its transmission rate in a timely manner. Note that when using RED
queues, the ERMCC source sometimes switched CR a little slower than drop-
tail situation. The reason is because RED queue drops packets in a random
manner, it takes longer for the slowest receiver to have a lower average TRAC
measurement.

Under the same situation, as shown in Figure 14 (b),(c), (e) and (f), PGMCC
and TFMCC also track the slowest receiver, though sometimes with more
representative switches. We also noticed that there is much oscillation of
PGMCC’s rates due to its design of mimicking TCP, while the rates of ERMCC
and TFMCC have similar smoothness.

5.4 Feedback Suppression

To check the effectiveness of the feedback suppression mechanism in ERMCC,
we refer back to the simulation of TCP-friendliness and drop-to-zero avoid-
ance. In totally ten simulations, the average total number of feedacks sent by
all receivers is 816 (standard deviation is 14.8), the average total number of
suppressed feedbacks is 34601 (standard deviation is 422.0). The average num-
ber of feedbacks would have been sent by a receiver if without suppression,
is (34601 + 816)/64 ~ 553. As we discussed in the analysis (Appendix B.5),
realistic measurement error can lead to a little bit more feedbacks. Since 816 <
2 x 553, we can still say that the overall feedback volume with suppression is
approximately equal to that from a single receiver if without suppression. The
high ratio of feedbacks suppressed, 34601/(34601 + 816) x 100% ~ 97.7%,
shows that our feedback suppression is very effective.

For comparison, in a typical PGMCC simulation with the same configuration,
the total number of feedback packets received by the source is 74830 (NAK
55222, ACK 19608); for TFMCC, it is 5344. Their feedback volume is much
larger.

5.5 Comparison with PGMCC and TFMCC in Heterogeneous Dynamic Net-
work

As the last simulation, we constructed a dynamic network to test the stability
and adaptability of ERMCC, again compared with PGMCC and TFMCC. In
Figure 11, each link has 2Mbps bandwidth. 2 links at the first level, 4 links
at the second level, and 8 links at the third level has 200ms delay. All other
links have 20ms delay, while on any path between the source and a receiver,
there is at most one link of 200ms delay. On each link, two TCP Reno flows

23

Rate (Mbps)

Rate (Mbps)

Rate (Mbps)

Rate of Slowest Receiver Tracking Simulation (Drop-tail, ORMCC)

25 T T T T T T T
ORMICC flow

GR switch -
2k 4
15+ i
1 4
05 4
0 . . i
0 100 200 300 400 500 600 700 800 900 1000
Time (sec)
Rate of Slowest Receiver Tracking Simulation (Drop-tail, TFMCC)
25 T T T T T T T T T
] TFMICC flow
GR switch -
2 4
15
1 4
05 4
0 . . : .
0 100 200 300 400 500 600 700 800 900 1000
Time (sec)
Rate of Slowest Receiver Tracking Simulation (RED, PGMCC)
25 T T T T v T
H] PGMCC flow
€R switch ------
2L 4
15 B
) I
05
° . i . h A . H .
0 100 200 300 400 500 600 700 800 900 1000

Time (sec)

(e) RED Queue (PGMCC)

Rate (Mbps)

Rate (Mbps)

Rate (Mbps)

Rate of Slowest Receiver Tracking Simulation (Drop-tail, PGMCC)
25 T T T T T T

PGMCC flow’

CR switch -------
2
15 H
1 f
05
0 . i . ! . H .
0 100 200 300 400 600 700 800 900 1000
Time (sec)
Rate of Slowest Receiver Tracking Simulation (RED, ORMCC)
25 T ™ T T T T T T T
; ORMCC flow

R switch -------

0 . L . . . i . i .
0 100 200 300 400 500 600 700 800 900 1000
Time (sec)
Rate of Slowest Receiver Tracking Simulation (RED, TFMCC)
25 T T T T i T
TFMCC flow

R switch -------

0 L L I 4
0 100 200 300 400 500 600 700 800 900

Time (sec)

1000

(f) RED Queue (TFMCC)

Fig. 14. Capability of tracking the slowest receiver: ERMCC tracks the slowest
receiver in time with fewer representative switches. The most congested bottleneck
is changed at every 200s. For the five 200s periods of the 1000s simulation, the most
congested bottlenecks are link 1, link 2, link 3, link 2, and link 1 in the topology

shown in Figure 10.

are randomly turned on and off according to Pareto distribution with average
value of 60 seconds, and two UDP flows of 200Kbps on and off with average

Table 2

COMPARISON OF AVERAGE THROUGHPUT AND FEEDBACK VOLUME
IN HETEROGENEOUS DYNAMIC NETWORK (ERMCC has higher throughput
and less feedback.)

ERMCC PGMCC TFMCC
Average Throughput 415.4 Kbps 126.6Kbps 226.7Kbps
Average Number of Feedbacks 866.9 5009.6 (NAK only) 3312.9

value of 1 second. These flows dynamically generate bottlenecks and make
the network heterogeneous. At last, there is a multicast flow from the source
to all the receivers. The multicast flow can use either ERMCC, PGMCC or
TFMCC. Therefore, at any moment, there are at most five flows on any link:
one multicast flow, two TCP flows and two UDP flows, and the multicast flow
is expected to get an average throughput rate of 500Kbps or so.

We ran 10 simulations for each of the three schemes. In Table 2 we can see that
with smaller amount of feedbacks, ERMCC can achieve higher throughput.
That means, ERMCC has better stability and adaptability in heterogeneous
and dynamically changing networks.

5.6 ERMCC Implementation in Emulab

To do a preliminary check of ERMCC’s performance in real world and under-
stand the issues of implementation, we implemented ERMCC in C++ on top
of UDP as a user level program and ran it in Emulab [9] . The operating
system we used is RedHat 7.1, and mrouted[17] is used for multicast routing.
On the topology shown in Figure 15, the links between the peripheral nodes
and their parent nodes have 50 ms propagation delay and 1.0Mbps bandwidth.
All other links have 100Mbps bandwidth and 0 ms propagation delay.” From
the center node to any peripheral node, there is a single-receiver ERMCC flow
and a TCP flow. Also, there is a multi-receiver ERMCC flow from the center
node to all 36 peripheral nodes. The experiment time is 1000 seconds.

Since we implemented ERMCC on user level, its traffic is more bursty than
that of TCP running in kernel. As described in Section 3.2.3, the rate cut factor
(8) should be adjusted accordingly. We tried three different values: 0.5, 0.65
and 0.75. According to Figure 16 8, when 3 = 0.5, the TCP flows got more

6 Emulab is accessible at http://www.emulab.net.

" The propagation delay here means the delay artificially introduced by some par-
ticular software.

8 The mean and confidence interval are calculated out of all the flows of the same
category.

25

bandwidth; when 8 = 0.75, the ERMCC flows are more aggressive. 5 = 0.65
works the best, where the multi-receiver ERMCC flow got almost the same
bandwidth as TCP flows did, and thus TCP-friendly. Moreover, among all
the values tested for 3, the average rates of the multi-receivers ERMCC flow
and single-receiver ones are always close, showing that ERMCC is immune to
drop-to-zero problem.

hode-0-3-
node-0- 3G e —0-3-2-2

Fig. 15. Topology used in Emulab for TCP-friendliness and drop-to-zero tests with
36 receiver nodes.

6 Conclusion

In this paper, we have proposed a single-rate multicast congestion control
scheme, which uses a conventional concept of representative named Conges-
tion Representative (CR). However, by leveraging a new metric TRAC, the
ERMCC scheme is capable of effectively addressing the problems of TCP-
friendliness, drop-to-zero, slowest receiver tracking and feedback suppression.
The states maintained by source and receivers are O(1); operations of source
and receivers are all simple without requiring intense computation. In partic-
ular there is no need to measure RTTs between all receivers and the source.
ERMCC also shows that non-probabilistic-timer-based feedback suppression
is highly effective. To confirm the performance of ERMCC, we have not only
provided theoretical analysis, but also performed simulations to compare it
with PGMCC|2] and TFMCCJ3]. Furthermore, we have implemented ERMCC
over UDP and ran it on real systems in Emulab[9]. Both simulation and im-
plementation results show ERMCC’s excellent performance. As an emphasis,
we summarize the comparison with PGMCC and TFMCC in simulations in
Table 3. We can see that ERMCC achieves better performance than PGMCC

26

Over-time Average Rates of TCP-Friendliness and Drop-To-Zero Test in Emulab

05 T T T 0.5
Multi-revr ORMCC flow
Mean of Smgle err ORMCC flow rates w/ 95% conf. itvl. —+—
0.45 of TCP Flow rates w/ 95% conf. itvl. ---x--+ 0.45
0.4 < 0.4
o @
g 0.35 B g 0.35
2 =
3 P
g 03 .. 4 £ o3
g oy B R T R N T S T T T g 025
g X g
2 o2 z
P o
E A = erressead 2
% ¥ 5
0.15 F 1~
8 ¥ 8
01l i
0.05 — 0.05
o

400 600

(a) 8=10.5
ERMCC is less aggressive than TCP

800 1000

Over-time Average Rates of TCP-Friendliness and Drop-To-Zero Test in Emulab

05
' ! " Multirovr ORMCC flow
Mean of Smgle VC\/Y ORMCC flow rates w/ 95% conf. itvl. —+—
0.45 of TCP Flow rates w/ 95% conf. itvl. —x-— -
04 |

%{{{{—f{*}{v}}‘I-I'i-i%f%Z-f%%§§~1—$—1—1‘¢—%$$§§§§‘$$1—§§§%%%*é—tej

Over-time Average Rate (Mbps)

FTEHFgx,
h(x-xxxxxxxxxxxxxxXXXXxxxxxxxxxxxx

0
200 400 600 800
Time (sec)

(c) B=0.75
ERMCC is more aggressive than TCP

1000

Fig. 16. TCP-friendliness and drop-to-zero
TCP-friendly and avoids drop-to-zero on real

and TFMCC under most situations. Code
[15] for public test.

Over-time Average Rates of TCP-Friendliness and Drop-To-Zero Test in Emulab

Multi-rovr ORMCC flow
Mean of Slngle lcvr ORMCC flow rates w/ 95% conf. itvl. >—0—4
of TCP Flow rates w/ 95% conf. itvl.

i,%%HmHHm wﬁHHH HHHHHHHHHHH%

400 600

Time (sec)

(b) B =0.65
ERMCC is TCP-friendly

800 1000

test result in Emulab: ERMCC is
systems with proper § setting.

for ns-2 and Unix is available at

We believe that further studies of ERMCC-like schemes will benefit the area
of multicast congestion control. A point that deserve further investigation

is the EWMA smoothing technique used

at various places of the scheme.

Particularly, it is worthwhile to study averaging techniques that can use the
timestamp differences of arriving data packets at the receiver. Also, adaptive

tuning of various parameters (e.g. less than

40 in determining slowest receiver

with its average TRAC) can provide incremental improvements to ERMCC.

27

Table 3
SUMMARY OF COMPARATIVE SIMULATIONS

Property Comparison w/ Figure/Table
PGMCC &6 TFMCC
TCP Friendliness + Fig. 12
Immunity to Drop-to-Zero + Fig. 12
Multiple Bottleneck Fairness +/- Fig. 13
Slowest Receiver Tracking + Fig. 14
Feedback Suppression + Table 2
Heterogeneous Dynamic Network + Table 2
7 Acknowledgment

We would like to thank Joerg Widmer, Gianluca Iannaccone, Chin-ying Wang,
Sonia Fahmy for providing the NS code for PGMCC and TFMCC and/or
helping the setup. We also appreciate the help from operators in Emulab
testbed, as well as the comment by our lab-mates Kartikeya Chandrayana,
Satish Raghunath, Biplab Sikdar, Yong Xia and Tao Ye.

References

[1] D. DeLucia, K. Obraczka, A multicast congestion control mechanism using
representatives, in: Proceedings of IEEE ISCC, 1998.

[2] L. Rizzo, Pgmcc: A tcp-friendly single-rate multicast congestion control scheme,
in: Proceedings of ACM SIGCOMM, 2000.

[3] J. Widmer, M. Handley, Extending equation-based congestion control to
multicast applications, in: Proceedings of ACM SIGCOMM, 2001.

[4] J. Macker, R. Adamson, A tcp friendly, rate-based mechanism for nack-oriented
reliable multicast congestion control, in: Proceedings of IEEE GLOBECOM,
2001.

[6] P. Thapliyal, Sidhartha, J. Li, S. Kalyanaraman, Le-sbcc: Loss-event oriented
source-based multicast congestion control, Multimedia Tools and Applications
17 (2-3) (2002) 257-294.

[6] J. Byers, M. Luby, M. Mitzenmacher, Fine-grained layered multicast, in:
Proceedings of IEEE INFOCOM, 2001.

[7] J. Byers, G. Kwon, Stair: Practical aimd multirate multicast congestion control,

in: Proceedings of NGC, 2001.

28

[8] J.C.Lin, S. Paul, Rmtp: A reliable multicast transport protocol, in: Proceedings
of IEEE INFOCOM, 1996.

[9] B. W. et al, An integrated experimental environment for distributed systems
and networks, in: Proceedings of USENIX OSDI, 2002.

[10] J. Padhye, V. Firoiu, D. Towsley, J. Kurose, Modeling tcp throughput: A simple
model and its empirical validation, in: Proceedings of ACM SIGCOMM, 1998.

[11] M. Mathis, J. Semke, J. Mahdavi, T. Ott, The macroscopic behavior of the
tcp congestion avoidance algorithm, ACM Computer Communications Review
27 (3).

[12] T. T. Fuhrmann, J. Widmer, On the scaling of feedback algorithms for very
large multicast groups, Computer Communications 24 (5) (2001) 539-547.

[13] T. Nguyen, K. Nakauchi, M. Kawada, H. Morikawa, T. Aoyama, Rendezvous
points based layered multicast, IEICE Transactions on Communication E84-
B (12).

[14] A. Fei, J. Cui, M. Gerla, M. Faloutsos, Aggregated multicast: an approach to
reduce multicast state, in: Proceedings of [IEEE GLOBECOM, 2001.

[15] Ormcce source code, http://networks.ecse.rpi.edu/source_code.html.

[16] S. B. et al, Improving simulation for network research, Tech. Rep. 99-702b,
University of Southern California (September 1999).

[17] mrouted 3.9 beta3-1 and
mrouted linux patch, ftp://ftp.rge.com//pub/communications/ipmulti/beta-
test/mrouted-3.9-beta3.tar.gz, ftp://ftp.debian.org/debian/dists/potato/non-
free/source/net/ mrouted_3.9-beta3-1.diff.gz.

[18] S. Floyd, V. Jacobson, C.-G. Liu, L. Z. S. McCanne, A reliable multicast
framework for light-wight sessions and application level framing, IEEE/ACM
Transactions on Networking 5 (6) (1997) 784-803.

[19] P. Sharma, D. Estrin, S. Floyd, V. Jacobson, Scalable timers for soft state
protocols, in: Proceedings of IEEE INFOCOM, 1997.

[20] J. Nonnenmacher, E. W. Biersack, Scalable feedback for large groups,
IEEE/ACM Transactions on Networking 7 (3) (1999) 375-386.

A Algorithm

A.1 Operations at Source

Some of the following operations take place when either a feedback packet
from a receiver r is received, or an RT"T time period has been completed:

29

Variables :

r : The receiver sending the received feedback

A : Current transmission rate at the source
Q. : Throughput rate at congestion (TRAC) in
the received feedback from r
i : Average TRAC of the CR
¢ : Deviation of TRAC of the CR
s : Packet size
RTT 6z : Maximum RTT
RTT : RTT between the source and the CR
T : CR response time when the bottleneck is
fully loaded
E[T] : Average of T
T, : Deviation of T'
cr_valid : Indicates whether the CR is valid

cr_response_timer :

to :

Indicates whether the bottleneck is estimated
to be full

The estimated time bottleneck started to fill

up

t : Current time

Initialization:
cr_valid = false
RITmaz =0
to=0

cr_response_timer = false

Event every I?T\T:
if There is no rate reduction within the recent ﬁ then
A< A+s/RTT
if A > i+ 46 and cr_response_timer is false then
to <t
cr_response_timer < true
endif
endif
if t —to > E[T] + 8T, then
cr_valid + false

cr_response_timer < false
endif

Send packet:
if cr_valid is true then
Send a packet with real i and &
else
Send a packet with invalid values for i and &
endif

Subroutine : CutRate ()

if A\ has not been cut within the most recent ﬁ then
A < min(}, 0.75Q;)
cr_valid < true
cr_response_timer < false

endif

Subroutine : UpdateStats ()
Update i and 6 with Q,
Update RTT with RTT,
if RTTrnqe < RTT then

30

RTTmes — RIT
endif

Event upon receipt of feedback from r:
if r is CR then
if cr_response_timer is true then
Update E[T] and T, with (¢ — to)
endif
do UpdateStats ()
do CutRate ()
return
endif

/* The feedback is NOT from CR */
if cr_valid is false then

Choose r as the CR

Start CR grace period as 2RTTimax
else if In CR grace period then

if RTT, > RTT then

Choose r as the CR

endif
/* NOT in longer RTT period */
else if O, < i — & then

Choose r as the CR
endif

if CR has been changed at the receipt of this feedback then
do UpdateStats ()
do CutRate ()

endif

A.2 Operations at Receiver i

The following operations take place when a data packet is received at receiver i:

Variables :
Q; : A throughput rate at congestion (TRAC) sample
;i @ Average TRAC of this receiver
[: Average TRAC of the CR
¢ : Deviation of TRAC at the CR

Event upon receipt of a packet:

if i and & has been changed then
Update the local copy of fi and &

endif

if This packet indicates packet losses then
Measure €2; and update u;
if ii and & are invalid or pu; < fi — & then

Send a feedback to the source

endif

endif

31

Table B.1

ADDITIONAL MATHEMATICAL NOTATIONS

Symbol Meaning
R; The receiver behind path ¢
W; Bandwidth of the bottleneck on path 4
Q; Buffer size of the bottleneck on path %
RTT RTT on the representative path
RTT; RTT on path %
Ai(t) ERMCC flow’s sending rate at the bottleneck on path 4 at time ¢
A ERMCC flow’s sending rate increment per RTT
X2(t) Sum of the sending rates of all flows except the ERMCC
flow sharing the bottleneck on path i at time ¢
A? The sum of the sending rate increments/decrements per unit

time of all but the ERMCC flows sharing the bottleneck on path 4

Vi vi =AY /A
M Total number of receivers behind MCB
RTTZ-f Forward latency towards the receiver R;
p) ERMCC flow’s average sending rate
P Packet loss rate experienced by the receivers behind MCB

B Theoretical Analysis

B.1 FEzpected TRAC

To build up for later analysis, in this part, we analyze the expected sending

rate of an ERMCC flow.

Suppose there are N > 1 different paths from the source on the multicast tree,
and also assume that there is a single receiver per path. Let R; be the receiver
behind path 7. For convenience, we are going to refer the path between the
source and the CR as Representative Path. Without loss of generality, assume
Ry is the current CR, and hence path 1 is the Representative Path. The source
will choose another receiver R; (j # 1) as the new CR only if R; sees a lower

average TRAC than that seen by R;.

Consider the major bottleneck link of path ¢, which has a bandwidth of W; with

32

a buffer size of Q;.° Let)\;(t) be the ERMCC flow’s sending rate observed at
the bottleneck on path i at time ¢.'® Similarly, let A?(¢) be sum of the sending
rates of all flows except the ERMCC flow sharing the bottleneck on path 7 at
time t. Also, let A be ERMCC flow’s positive sending rate increment per unit
time, i.e. A = s/ﬁ > 0. Similarly, let A? be the sum of the sending rate
increments/decrements per unit time of all but the ERMCC flows sharing the
bottleneck on path i. Depending on the other flows’ behavior, A? will change
randomly.

To simplify the analysis, we assume that data are sent bit-by-bit evenly, send-
ing rates are increased continuously, as well as that all packet losses are due to
congestion. Also, drop-tail buffer management is assumed for bottlenecks.

Rate Buttleneck buffer is filled.

L ;
Bottleneck buffer
begins to be filled.

Nt = Wy = At~ o
Aggregate of /-
allgogthegr flows,
NA =y, A
D b :
D j
ERMCC flow i

t0 t1 Time

Fig. B.1. Evolution of the ERMCC flow’s sending rate on the representative path.

Let’s consider path 1 first (Figure B.1). Suppose at time ¢;, there is a burst of
packet losses, which means the bottleneck queue must be full at this moment.
This also implies that the sum of sending rates of all the flows going through
the bottleneck, must be larger than the bottleneck bandwidth, i.e. A1 (1) +
A(t1) > Wi. It follows that at an earlier moment ¢y, the sending rate sum
must have been equal to the bottleneck capacity Wy, i.e.,

Ai(to) + A (to) = Wi (B.1)

9 We assume that all bottlenecks in the multicast session have the same buffer
size. If a queue is constantly non-zero, we will treat the part which is emptied and
(partly) filled as the whole queue.

10 Note that this is different than the source’s sending rate due to the possible
bottleneck location and propagation delays from the source.

11 Although our analysis is based on drop-tail routers, ERMCC also works well with
RED routers. It has been confirmed by simulations, though for space reasons, the
results are not included.

33

Since the sending rate of the ERMCC flow grows by A per unit time,

)\1(t1) = Al(to) + (tl — to)A = Al(to) = /\1(t1) — (tl — to)A (B.2)

On average, \{(t) grows by A = v, A per unit time. Therefore,

Al(t1) = Af(to) + (t1 — o) AT = A{(to) + (11 — to) A (B.3)
From (B.1), (B.2) and (B.3), we have,

)\g(tl) = W1 — (Al (tl) — (tl — to)A) + (tl — to)’)’lA
=Wy — M(t1) + (1 —to)(1 +711)A (B.4)

Since t; is the time when the aggregate sending rates is equal to the bottleneck
capacity, it is reasonable to say that the bottleneck queue size is zero at time
to- Since at t1, the queue is full, the queue is filled by sending rate increments
during [to, t1]. Recall that the total sending rate grows by an aveage rate of
A+ A9 = (14)A per unit time. Even though it is possible that A¢ can be
negative at times, expected growth rate of the flows will be positive paticularly
before time t; due to available buffer space which prevents loss. So, we assume
that the aggregate flow growth rate (1++;)A is positive during [to, ¢1]. Hence,
the following equality can be written as the relationship between the buffer
size and the flows growth rate:

1 9 2Q1
—(t1 — ¢ 1 A= t1—ty=4| ———
5t —1) (L +mM)A=C1 =t —t A A
Together with (B.4), we can write:
Al(t) = Wi = Ai(th) + vV2AQ1 (1 +m) (B.5)

Assuming all flows going through the bottleneck have the same priority and
the delay from the bottleneck to the CR is ignorable, since at time ¢; the
bottleneck is working at its full load, we know that the following equality
holds:

A1 (t1)
Ai(t1) + X(th)
(B.5) Ai(t1)

14 5-1/2AQ1(1 + 1)

wi(ty) = 1

(B.6)

On any other path j (j =2...N), since the ERMCC source ignores the con-
gestion indications on this path (Figure B.2), the sending rate of the ERMCC

34

A: Moment when there are packet losses on representative path

B: Moment when there are packet losses on non-representative path
ERMCC

Rate

‘

I
|
T , I
| | | !
I
L ! 0 : !
| | | | | | | !
— . B |]
| ! | | | | | !
1 | ! 1 | ! | !
| | | | l | !
| I ! | I I | !
! ! . | | | | | :
| | b l | 1 l ! ‘
B B AB A B B BA B B B A B B A A Time

Fig. B.2. The ERMCC source only considers the congestions on the representative
path for rate adaptation.

Rate

£0 t‘l £2 £3 Time
Fig. B.3. Evolution of the sending rates for TCP and ERMCC flows.

flow still grows by A per unit time. With ¢; of the same meaning as before,
according to a derivation similar to that above, we have:

Aj(t)

1+ 5-/28Q;(1 +)

w;i(t1) = (B.7)

Consider A;(t;) (i = 1...N). Assume that the sending rate of the ERMCC
flow varies between A, and A4, (Figure B.2), then \;(¢1) is a sample value
of a random variable A; with sample space as [Amin, Amaz]- Since the source’s
sending rate A is the same for all paths, the average value of)\; the observed

sending rate at the bottleneck on path ¢ will be the same for all paths : = 1..}V,
i.e. E[A;] = E[A)], i # .

35

Again assuming that the delay between the bottleneck and the receiver on
paths is ignorable, we can write Q;(¢;) = E[w;(t1)], which means the TRAC
measured at receiver ¢ can be written in terms of the output rate obtained in

(B.7). Assuming that W;, Q;, s are constant, and that v; and RTT in steady
state and have small deviations and thus can be treated as constant, we have

A;

YT 2AQi(1 T) (B8)
Q; = E[Az] (B.9)

1+ 3200 (1 +)
B.2 Capability of Tracking The Slowest Receiver

In the previous subsection, we derived a steady-state formulation for the
TRAC. Like we did in the previous subsection, let path 1 be the Represen-
tative Path which has the CR as its receiver. As designed in ERMCC, for
J =2...N, only upon detection of p; < p; will receiver j send a congestion
indication in terms of feedback packets back to the source, which will then up-
date the CR to receiver j. We can write an expression for the average TRAC
based on the expression of €; in (B.9) as follows:

pi = (i, Qi @)

_ CI)(E[A]']’ a) (B.lO)

1+ 3-v/28Q:(1 +)

This means that the average TRAC will be dependent on moving average of
the source’s sending rate. The condition of CR change is:

i < ph
o OBl @(EA]o)
1+ 5-v/28Q;(T+7) 1+ rv/2AQu(T + 1)
Wj < Wl
Qi(1+) Q1(1+m)
since E[A;] = E[A{] (B.11)

We can see that W;/1/Q;(1+ ;) (i = 1...N) indicates the degree of conges-
tion on the bottleneck of path 7. In fact, if the bottleneck has less bandwidth

(i.e. W; is smaller) or larger buffer (i.e. Q; is larger), then W;/1/Q;(1 + ;) has
a lower value. Also, if more flows are sharing a bottleneck, the sum of their

36

‘Rale

Bottleneck buffer is full and a '\‘3
loss happens. i

Other flows start
reducing with a rate
A% <-A

Wity LN (/o

6 tan0=A/RTT,
Bu; -

AN

t Longest possible time another slower receiver can t
0 stay undetected. 1

R, improves (e.g. bottl
capacity increases) and is no
longer the slowest receiver

Fig. B.4. Longest possible time the ERMCC flow cannot detect a slower receiver.

per-unit-time rate increments A; is higher, v; = A;/A is then larger, which

in turn also makes W;/1/Q;(1 + ;) lower. Therefore, (B.11) actually shows
that as long as a non-representative path (path j) experiences a more serious
congestion than the representative path (path 1) does, the receiver behind
path j will see lower average TRAC p;, and will send congestion indications
back to the source, making the source change CR. This steady-state analysis
shows that an ERMCC flow tracks the slowest receiver.

However, one issue is to analyze the transient behavior, i.e. an analysis of how
long it takes the ERMCC flow to detect and update the CR to a receiver which
has just become the slowest. We analyze the transient behavior by condisering
the two possible cases as we identfied earlier in Section 3.2.1:

e Case I: R, improves. The current CR R; might become faster just so that
another flow R;, j = 2..N is slower than R;. This means R; is supposed to
be the new CR.

e Case II: R; worsens. The curent CR stays the same, but another flow R;,
Jj = 2..N becomes slower than R;. This means R; is supposed to be the new
CR.

Lemma 1 For Case I, ERMCC’s time to detect the new slowest receiver is

bounded by +/2Q1/s + Wi/A round trip times.

PROOF. Figure B.4 depicts the scenario for the longest possible time a
slower flow can stay undetected by ERMCC when the current CR R; be-
comes faster than it was before. The figure plots the rate of R, in comparison
to the aggregate rate of the other flows on the bottleneck on path 1. Assume
that at time ¢y, the current CR R; improves because of a local reason such as

37

an increase in the available bottleneck capacity or more availability of compu-
tation power at R;. Let there be another flow R; which is slower than what
the current I; has become at time ¢;. This means, starting at time ty, R; is
the new slowest receiver.

The longest possible time period of R; staying undetected happens when two
things happen at the same instant #,: (i) R; has just generated a congestion
indication at time ¢y, and (ii) all other flows using the same bottleneck start
reducing their sending rate by Ay < —A.

After the instant ¢y, R; will reach the total bottleneck capacity W; and fill
up the available buffer ();. Then, a loss will occur and the undetected slowest
receiver I2; will be uncovered because of the communication between the source
and the receivers.

In Figure B.4, let the height of the shaded triangle be h. Since that triangle
has an area equal to the buffer size ();, the following holds:

. _ 25
RTT

Similarly, from the large triangle, we can write the following:

RTT 2A
t1 —to= A []?Tgl W1—5/$1]
—RIT \/26{’31 + _Aﬁ’“ (B.12)

By eliminating Sp; from (B.12),we can conclude that

tl —t() < @[\/2Q1/8+W1/A]

O

Lemma 2 For Case II, ERMCC’s time to detect the new slowest receiver is
bounded by 2max(RTT;), i = 1..N.

PROOF. When another receiver R; becomes slower than the current CR R;,
it will send a congestion indication to the source, which will take one round
trip time, i.e. RTT;. Then, the source will inform all the receivers about the
new slowest receiver. In the worst case, R; can be the receiver with the longest
RTT, and it may take another RTT due to packetization effects. So, the longest
time to detect the new slowest receiver will be 2max(RTT;). O

38

Theorem 1 ERMCC can detect any slowest receiver which stays to be the
slowest longer than max(2,1/2Q1/s + W1/A)RT T az-

PROOF. Proof follows from Lemma 1 and Lemma 2. O

B.3 TCP-Friendliness on Representative Path

Assuming that their RTT estimations and packet sizes are the same, we now
show that an ERMCC flow is friendly to a TCP flow on the representative
path, i.e. they get approximately equal share of the bottleneck bandwidth.
More specifically, we want to show that, with proper choice of rate reduc-
tion factor B for ERMCC, A(t)/A\TCF(t) oscillates around 1, where A(t) and
Arcp(t) denote the sending rates of the ERMCC flow and the TCP flow at
time t respectively. Those two flows are assumed to be the only flows on the
representative path. A sample of the rate evolution is given in Figure B.3.

Like other TCP throughput analysis papers [10] [11] have done, our analy-
sis focuses only on TCP’s congestion avoidance behavior. During congestion
avoidance period, when without packet losses, a TCP source increases its con-
gestion window by 1/cwnd packet upon the receipt of per ACK, where cwnd
is the current congestion window size. A TCP source transmits all the pack-
ets in its congestion window in one RTT, therefore, the window grows by 1
packet per RTT, '2 which corresponds to the fact that its sending rate is
increased by s/RTT per RTT, where s is the packet size. An ERMCC source
increases its sending rate at the same pace, as covered in scheme description.
At packet loss, a TCP source will reduce its congestion window by half, which
is equivalent to cutting its sending rate by half.

Assume that congestion is the only reason for packet losses. It is obvious that
packet losses can occur only if Arcp(t) + A(t) > W. Suppose some packets
are lost and both flows reduce their transmission rates at ¢; (Figure B.3).
Before the losses, since both Arcp(t) and A(t) keep increasing, there must
be a moment ¢y when Arcp(to) + A(tg) = W. In short, let A\(¢y) = X, then
Arcp(ty) = W — X. For the first step of analysis, we will show that with

appropriate [,

X<W-X= X/(W —X) <)\(tl)/)\Tcp(tl)
(B.13)

X>W-X=X/(W-X)>Xt)/Arcp(t)

12 We assume that a TCP receiver sends an ACK for every received packet.

39

Let the moment just before the rate reduction at ¢; be t}. Since both of the
flows share the same path, we can assume that they detect packet losses and
reduce transmission rates approximately at the same time. For the TCP flow,
suppose that at t|, its transmission rate has been increased by d since o, i.e.

Arep(t)) =W — X +d

After a reduction by half,

Arcp(t)) W -X+d
2 2

Arep(t) =

Since the ERMCC flow increases its rate at the same pace, we have,

AMt) =X +d

Assume that both flows have the same priority, i.e. their packets are for-
warded by the bottleneck with the same probability. In consequence, at ¢/,
the ERMCC CR sees an approximate receiving rate of

A(t)) o X+d
M) + Mrep(t)) W+2d

According to the rate adaptation policy of ERMCC,

X+d
A =By aa
Therefore,
At) _y X+d /W X +d
)\TCP(tl) W +2d

Now let’s compare X/(W — X) and A(t1)/Arcp(t1).

X)\(tl)
W —-X Arcp(ti)
_ 2
W -—X+d

’ [(% - Wﬂ—T—VQd) X+ (2(WX— X) Wﬁ—T—VQd) d]

(B.14)

Since W > X and d > 0, 2/(W — X + d) > 0, and the positivity of (B.14) is
decided by its second factor between the square brackets. If we choose a value
for B carefully so that,

1W +2d

b=3w

40

then the second factor of (B.14) becomes:
d X d X

It is easily seen that, if X > W — X, (B.15) > 0 so that (B.14) > 0; while if
X < W — X, (B.15) < 0 so that (B.14) < 0. That is exactly what we want
for (B.13) to hold.

With (B.13) established, we can extend (B.13) to all time instants ¢;, i =
1...00 when both the TCP flow and the ERMCC flow reduce their rates
(Figure B.3). Let sending rates after reduction be Arcp(t;) and A(t;) respec-
tively for the TCP and ERMCC flows. Also assume that ¢;_; is the last mo-
ment before ¢; so that Arcp(t; 1) + A(t;_1) = W. We can write the following
relationship:

Mti1) < Mrop(ti 1) = 52niy < et

(B.16)

Mtim1) > Mrep(tio) = oamts > 20

As the result, if the ERMCC flow rate is less than that of the TCP flow, it will
grow until it exceeds the latter; likewise, if the ERMCC flow rate is more, it
will get less and less until it is below the TCP flow rate. Hence, A(¢)/Arcp (%)
oscillates around 1, which means ERMCC is TCP-friendly as long as the rate
reduction factor [is properly chosen as:

1w+

ﬁ2W

Since d > 0, § needs to have a value greater than 0.5. Considering the fact
that TCP uses ACKs to measure RTTs, it can have lower RTT estimation
than that of ERMCC which uses NAKs for this purpose, as we discussed in
Section 3.2.4. Thus, TCP can increase sending rate faster than ERMCC. To
compensate this, ERMCC at packet losses can reduce its transmission rate by
less using larger value of 5. In our implementation, we use a value of 0.75 and
it works fine in simulations.

B./ Immunity to Drop-to-zero Problem

The cause of drop-to-zero problem is the asynchronous packet losses on multi-
ple paths. If a multicast source reduces the transmission rate too much on the
losses, the rate will stay very low or even converge to zero. Since the source
in ERMCC adapts the transmission rate according to the congestion on one

41

single path while ignoring that on all others, there will be no drop-to-zero
problem for ERMCC.

More specifically, if a receiver other than the current CR sees a packet loss
rate lower or equal to that by CR, it will not send feedbacks to the source.
The source will not see any feedbacks from it, and thus will not reduce the
transmission rate. Even if the source gets feedbacks from different receivers
because there is a change of the most congested bottleneck, once it chooses a
receiver as the new CR after a very short period of time (several RTTs), it
will ignore feedbacks from all other receivers. Consequently, due to its usage
of single receiver as the CR, ERMCC is immune to drop-to-zero.

B.5 Effectiveness of Feedback Suppression

Without support from internal nodes, which is the situation that we assume
for practical purposes, most multicast feedback suppression schemes (e.g. [18],
[19], [3], [12], [20]) use random timers for delaying receivers’ feedback before
sending them. This suppresses some of the feedback, however, it also causes
some latency — even though small — to the needed feedback which may bring
performance penalty. Since our feedback suppression is not based on timers, it
does not suffer from this problem. Also, there is no need to know or estimate
the total number of receivers like in [12].

Besides the crucial benefit above, we are also going to show below that, in
ERMCC, the total number of feedbacks (i.e. congestion indications) sent to the
source by all receivers is independent of the total number of receivers. Instead,
it depends on (i) the switching frequency of the most congested bottleneck,
(ii) the number of receivers behind the new most congested bottleneck, and
(iii) the minimum RTT between the receivers behind the new bottleneck and
the source. For convenience, we use the acronym MCB for most congested
bottleneck in the following discussion.

We assume that there is only one MCB at any moment ' . Condider the case
when a new MCB is realized. Let M be the total number of receivers behind
the new MCB, and R; be the receiver behind the new MCB, where i =1... M.
Also, let RTT/ be the forward (downstream) latency (part of RTT}) towards
the receiver R;, and RTT,,;, be the minimum RTT among all receivers behind
the new MCB, i.e. RTT,,;, = min;—, s RTT;. Finally, let p be the packet loss
rate experienced by the receivers behind the new MCB 4.

13 There can certainly be multiple bottlenecks which have similar degree of conges-
tion and are all most congested. However, the discussion still holds.

14 Since the receivers involved here are all behind MCB, we can assume that they
see the same degree of congestion and thus the same packet loss rates.

42

First burst of packet losses The source gets feedbacks from the closest receiver,
after bottleneck change occurs. change CR and notify all receivers.

: |

Source |

RTTmm ‘ RTTif E—]
Receiver i
f sends feedbacks
~ RTTmin > I — . . —_—
during this
period
Receiver i P
-——— RTT; —_—
T &, t, Time
First burst of packet losses Receiver i detects the first Receiver i getsthe
after bottleneck changeis burst of packet losses after notification of new CR
detected by the closest receiver bottleneck change and begins and stops sending feedback.
sending feedback.

Fig. B.5. Feedback suppression.

Whenever there is a new MCB, only those receivers behind the new MCB
will send congestion indications back to the source. After one of them is cho-
sen as the new CR, all of them except one will stop sending the feedbacks.
More specifically, the source will first see the feedbacks from the receiver with
RTT,,;,, then change CR and tell all receivers about the change. For any R;
except the new CR, the duration of sending feedbacks is between the mo-
ment t;, when they first detect packet loss after bottleneck change and the
moment t;, when they know about the new CR. According to Figure B.5,
ti, —ti, = RTT! + RTT,;, — RTT/ = RTT,,;,. Therefore, before a new CR is
decided, (i) the number of feedbacks sent from this receiver R; is pART T in,
and (ii) the total number of feedbacks sent by all receivers behind the new
MCB is ApM - RT T, ,in.

Once a new CR is decided, only one the new CR, will send feedbacks. Let’s
call the period between two successive MCB switchings as MCBSP (MCB
Switching Period). During a MCBSP of length ¢ > RTT,,;,, the total number
of feedbacks sent to the source is:

MM « RTTpnin + Ap(t — RTTrnin) = Ap(t + (M — 1) RT Trnin)

Assume that MCB switching times follows a Poisson distribution with an
average inter-arrival time of 1/§. In practice, MCB switching will not occur
too frequently and it is reasonable to assume that MCBSPs will be larger
than RTT time-scale, i.e. 1/6 > RTT,,;,. For a multicast session with average
duration of 7', the total number of feedbacks transmitted will approximately
be 15 :

6T - dAp (% + (M — 1)RTTmm) (B.17)

15 Finally, we would like to note that due to measurement errors in practice, the
total number of feedbacks sent can be a little higher/less than what we have derived
here. However, the difference will not be significant.

43

We can see that, for a certain 7',

Lim 07" - Xp (l + (M - 1)RTTmin>
6—0)

= MpT + lim SApT (M — 1)RTTyin, = MpT (B.18)
_)

That means, if there is no MCB switching, the total number of feedbacks
sent is approximately equal to the number of feedbacks sent from a single
receiver behind the MCB. In other words, if the MCB does not change during
a multicast session, the volume of feedback messages is on the same level of a
unicast session.

Also, from (B.17), we find that the total number of transmitted feedbacks
is independent of the total number of receivers in a multicast session ¢. It
depends on how fast MCB switches (i.e. 1/§), the amount of receivers behind
the new MCB (i.e. M), and the smallest RTT between those receivers and the
source (i.e. RTT,,;,)- Usually, MCB switches only once in many RTT},;,s, and
the amount of receivers behind the new MCB is much less than the overall
number N. Moreover, RTT,,;, is almost a negligible duration. Consequently,
our feedback suppression mechanism is effective.

16 Note that M is (B.17) is not the total number of receivers but the number of
receivers behind the MCB

44

