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QoS for Multi-Provider Private 
Networks

Principle Problems
Coordination: scheduled upgrades, cross-
provider agreements
Scale: thousands-millions connections, 
Gbps.
Heterogeneity: many datalink layers, 48kbps 
to >10Gbps
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Single Vs. Multi-Provider Solutions
ATM and frame relay operate on single datalink layer.

All intermediate providers must agree on a common 
infrastructure. Requires upgrades throughout the network. 
Coordination to eliminate heterogeneity.
Or operate at lowest common denominator.

Overprovision:
Operate at single digit utilization.
More bandwidth than sum of access points.

1700 DSL (at 1.5 Mbps) or 60 T3 (at 45 Mbps) DDoS  swamps an 
OC-48 (2.4 Gbps).

Peering points often last upgraded in each upgrade cycle. 
Performance between MY customers more important.
Hard for multi-provider scenarios.
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Scalability Issues

Traditional solutions:
Use QoS: 

ATM, IntServ: per-flow/per-VC scheduling at 
every hop.
Frame Relay: Drop preference, per-VC routing 
at every hop.
DiffServ: per-class (eg: high, low priority) 
scheduling, drop preference at every hop. Per-
flow QoS done only at network boundaries 
(edges).
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Edge-to-Edge Control (EC)
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Use Edge-to-edge congestion Control to push queuing, packet loss and per-
flow bandwidth sharing issues to edges (e.g. access router) of the network
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QoS via Edge-to-Edge Congestion 
Control

Benefits:
Conquers scale and heterogeneity in same sense as TCP.
Allows QoS without upgrades to either end-systems or intermediate 
networks.
Only incremental upgrade of edges (e.g., customer premise access 
point).
Bottleneck is CoS FIFO.
Edge knows congestion state and can apply stateful QoS 
mechanisms.

Drawbacks:
Congestion control cannot react faster then propagation delay.
Loose control of delay and delay variance.
Only appropriate for data and streaming (non-live) multimedia.
Must configure edges and potential bottlenecks.
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Riviera Congestion Avoidance
Implements EC Traffic Trunks.
EC Constraints:

Cannot assume access to TCP headers.
No new fields in IP headers (no sequence numbers)
Cannot assume existence of end-to-end ACKs (e.g., 
UDP)
Cannot impose edge-to-edge ACKs (doubles 
packets on network)
No window-based control.

Solution: rate-based control.
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Congestion Avoidance Goals
1. Avoid of congestion collapse or persistent loss.

Behave like TCP Reno in response to loss.
2. Avoid starvation and gross unfairness.

Isolate from best effort traffic.
Solve Vegas RTPD estimation errors.

3. High utilization when demand.
4. Bounded queue.

Zero loss with sufficient buffer.
Accumulation.

5. Proportional fairness.
…
Attack goals 2,4, and 5 in reverse order.
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Mechanisms for Fairness and Bounded 
Queue

Estimate this control loop’s backlog in path.
If backlog > max_thresh 

Congestion = true
Else if backlog <= min_thresh

Congestion = false

All control loops try to maintain between min_thresh and 
max_thresh backlog in path. 

bounded queue  (Goal 4)
Each control loop has roughly equal backlog in path 
proportional fairness [Low]  (Goal 5)
Well come back to goal 5.
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Backlog Estimation and Goal 2

Use basertt like Vegas backlog estimation.
As with Vegas, when basertt is wrong 

gross unfairness (violates Goal 2).
Sol’n: ensure good basertt estimate.

control
data

Sender

Receiver
…

…

basertt accumulation = late arrivals
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Vegas & Delay Increase (Goal 2)
Vegas sets basertt to the minimum RTT seen so far.

GROSS UNFAIRNESS!
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Riviera Round-trip Propagation Delay 
(RTPD) Estimation (Goal 2)

Reduce gross unfairness w/ good RTPD estimation.
Minimum of last k=30 control packet RTTs.
Drain queues in path so RTT in last k RTTs likely 
reflects RTPD.

Set max_thresh high enough to avoid excessive 
false positives.
Set min_thresh low enough to ensure queue drain.

Provision drain capacity with each decrease step
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Increase/Decrease Policy to Drain Queue 
(Goal 2)

Increase/decrease Policy

Lower β improves probability queues drain at cost to utilization.
1 > β >> 0

ri =
νi + MTU/RTT
βνi

if no congestion
if congestion

νΣ λi

λ1
.
.
.
λn

ν1
.
.
.
νn

r i = rate limit on leaky bucket (σ,ρ) shaper. λ i <= r i
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Riviera & Propagation Delay Increase (Goal 2)
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Proportional Fairness Topology (Goal 5)

delay
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Riviera Achieves Proportional Fairness? 
(Goal 5)
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Weighted Proportional Fairness

3log(x)

log(x)

i
i

iw λlog max  ∑



David HarrisonRensselaer Polytechnic Institute

19

Weighted Service Building Block
Modify accumulation thresholds:
max_threshi = wi * max_threshi

min_threshi = wi * min_threshi
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Weighted Service Building Block (2)
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Guaranteed Bandwidth Allocation
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Converges on guaranteed bandwidth allocation.
Accumulation Modification:
Apply Little’s Law

Quasi-Leased Line (QLL)

i

i

ig

i

gq
q ν

= 







−≈

i

i
iib

gqq
ν

1ibigi qqq +=,

ttq iii νλ ==

if ( qib > max_threshi ) congestion = true
if ( qib <= min_threshi ) congestion = false

iλ
igλ

ibλ

iig g=ν

ibν
t iν

queuettq igigig νλ ==

All these
variables
known

David HarrisonRensselaer Polytechnic Institute

23

QLL Increase/Decrease Policy
Increase/decrease policy:

No admission control unbounded queue.

1 > β >> 0

ri =
max(gi, νi+ MTU/RTT) if no congestion

if congestionmax(gi, β(νi−gi)+gi)

Go immediately to 
guarantee and refuse
to go below.

Decrease based only 
on the rate that is above
the guarantee

David HarrisonRensselaer Polytechnic Institute

24

Quasi-Leased Line Example
Best-effort VL starts at t=0 and fully utilizes 
100 Mbps bottleneck.

Background QLL starts 
with rate 50Mbps

Best-effort VL 
quickly adapts to 
new rate.

Best-effort rate limit versus time
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Quasi-Leased Line Example (cont.)

Bottleneck queue versus time
Starting QLL 
incurs backlog.

Unlike TCP, VL 
traffic trunks 
backoff without 
requiring loss and 
without bottleneck 
assistance.

Requires more buffers: larger max queue
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Quasi-Leased Line (cont.)
Single bottleneck queue length analysis:

q < 
b

1-b

For b=.5, q=1 bw-rtt

Simulated QLL w/
Riviera.

B/w-RTT 
products
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Assured Bandwidth Allocation
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Accumulation:

if (qib > max_thresh || qi > wi * max_thresh ) 
congestion = true

else if ( qib <= min_thresh && qi <= wi * max_thresh )
congestion = false

Increase/Decrease Policy:

Backoff little (βas) when below assurance (a), 
Backoff (βbe) same as best effort when above assurance (a)

Assured Building Block

1 > βAS > βBE >> 0

ri =
νi + MTU/RTT
min(βAS νi, βΒΕ(νi−ai)+ai)

if no congestion
if congestion
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Assured Building Block Vs. Assured 
Allocation
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Wide Range of Assurances
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Large Assurances
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Summary

Issues:
Simplified overlay QoS architecture

Intangibles: deployment, configuration advantages
Edge-based Building Blocks & Overlay services:

A closed-loop QoS building block
Weighted services, Assured services, Quasi-leased lines
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Private Versus Public Networks

Private Networks:
< Tens or hundreds of communicating parties

limits per-loop state and configuration at edges.
Parties remain in VPN for moderate to long term

Amortize configuration over lifespan of VPN.
Aggregation

Amortize control packet overhead.
Public Internet:

None of these assumptions hold.

Site A

Site C

Site B

Peering point,
International link

Traffic trunk
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Edge-to-Edge Queue Management

Queue distribution to the edges => can manage more effectively

Core bneck Edge devices

w/o Edge-to-Edge Control w Edge-to-Edge Control

q q1

q2

David HarrisonRensselaer Polytechnic Institute

35

Distributed Buffer Management (1)

Implement FRED AQM at edge rather than at bottleneck. 
Bottleneck remains FIFO.
Versus FRED at bottleneck and NO edge-to-edge control.
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Distirbuted Buffer Management (2)

FRED bottleneck

2 FRED edges + FIFO bneck

5
10
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TCP Rate Control (Near Zero Loss)

Use Edge-to-edge Control to push bottleneck back to edge.
Implement TCP rate control at edge rather than at bottleneck. 
Bottleneck remains FIFO.
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TCP Rate 
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P destinations

100 Mbps
500 pkt buff

All links 4ms
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TCP Rate Control (2)

2, 5, 10
TCP Rate
Control
edges

FRED
bneck

FIFO
bneck

Coefficient of Variation in Goodput vs. 10 to 1000 TCP flows
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TCP Rate Control (3)

2,5,10
TCPR
Edges.
ZERO LOSS

FRED
bneck

FIFO
bneck
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Remote Bottleneck Bandwidth Management

Edge redistributes VL’s fair share between end-to-end 
flows.

Workstation
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FIFO

TCP Rate 
Control Ingress
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0

TCP sources

TC
P destinations

100 Mbps
500 pkt buff

All links 4ms

w = 3

w = 1

w = 2

w = 1

0
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Remote Bandwidth Management (2)

TCP 0 with weight 3.
obtains 3/4 of VL 0

TCP 1 with weight 1
obtains 1/4 of VL 0
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UDP Congestion Control,
Isolate Denial of Service 

Workstation

Workstation

Workstation

Workstation

FIFO

Ingress
0

Egress
0

10 Mbps
TCP source

UDP source
floods networks

TCP dest

UDP dest
1 1
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UDP Congestion Control, Isolate 
Denial of Service

Trunk 0 carries TCP 
starting at 0.0s

Trunk 1 carries UDP flood 
starting at 5.0s
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Effects: Bandwidth Assurances

TCP with 4 Mbps assured 
+ 3 Mbps best effort

UDP with 3 Mbps best effort


