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ABSTRACT 

In this paper, we propose a Joint Source-Network error 
control coding (JSNC) scheme which efficiently integrates 
scalable video coding, error control coding and overlay 
infrastructure to stream video to heterogeneous users. The 
distributed overlay data service nodes over the IP network 
form an application layer media service overlay network 
and adapt both the video bitstream and error control 
coding based on both user requirements and available 
bandwidth. A novel Fine Granular Adaptive FEC (FGA -
FEC) scheme, a generalization of MD-FEC, is proposed for 
error recovery during video transmission to heterogen-
eous users. Encoding once, the FGA -FEC can adapt the 
FEC encoded scalable MC-EZBC bitstream to satisfy 
multiple heterogeneous users simultaneously without 
decoding/re-encoding FEC at intermediate nodes, thus 
saving computation 

1. INTRODUCTION 

Simultaneously streaming video to heterogeneous users, 
such as powerful PCs, laptops and handset devices, is a 
challenging problem, since different users may have 
different video frame rate/quality/resolution requirements, 
computation capabilities and network connections. In 
order to serve heterogeneous users, traditional approaches 
(Windows media, Real player) maintain mu ltiple versions 
of any piece of media that suit a variety of capabilities and 
preferences. While streaming, the server sends multiple 
copies of the same bitstream to different users. IP multi-
cast is an efficient way for simultaneous bulk data delivery. 
Due to the deficiency of its deployment in the current 
Internet, application-layer multicast [3] is proposed. End 
systems, instead of routers, are organized into an overlay 
to relay data to each other in a peer-to-peer fashion. 
Padmanabhan et al in [4] discuss the problem of 
distributing streaming media content to a large number of 
hosts in a scalable way. They propose CoopNet, where 
clients cooperate to distribute content, thereby alleviating 
the load on the server. In [5], Cui et al propose a peer-to-
peer streaming solution with cache-and-relay nodes. Most 
recently, service overlay network are gaining attention. 
Amir et al [8] proposed a specific architecture for active 
services that are used for deployment of user-defined 
application-level computation within the network.  

       The above papers consider network and video coding 
separately. We argue that this approach is not optimal. 
Currently, MPEG-21 aims to enable the use of multimedia 
resources across a wide range of network and devices. The 
Digital Item Adaptation (DIA) part raises the possibility of 
in-network video adaptation which fit well to the overlay 
infrastructure. In this paper, we consider networking and 
application as one system by efficiently joining scalable 
video coding algorithms and overlay infrastructure for 
streaming. The proposed JSNC scheme includes the 
following two novel concepts: 
1.  Integrated Source-Network Video Coding  (IVC) 

Video coding function is distributed both at source 
and inside the network to facilitate simple and precise 
adaptation of bitstream for heterogeneous users. 

2. A novel Fine Granular Adaptive FEC (FGA-FEC).  
Encoding once, the proposed FGA -FEC scheme can 
adapt the FEC coded bitstream to satisfy multiple 
heterogeneous users simultaneously without FEC 
decoding/re-encoding at intermediate overlay nodes. 

    Our work is different from proxy based streaming and 
multicast layered streaming. Proxy streaming systems 
cache video content at proxy local disk and trans-codes 
(decode and re-encode) the video bitstream for different 
users. In multicast layered video streaming, receivers adapt 
to network conditions by joining and leaving multicast 
groups, which results in large amount of signaling traffic in 
a dynamic network. Further, the adaptation is limited to 
available layers and also need support of an application 
layer multicast infrastructure. On the other hand, our JSNC 
can arbitrarily adapt video frame rate, quality and 
resolution without transcoding. Moreover, our scheme can 
provide an efficient error control mechanism for 
heterogeneous users.  
      The rest of the paper is organized as follows. In Section 
2 we describe the detail of JSNC scheme. Simulations and 
experimental results are given at Section 3, followed by 
conclusions at Section 4. 

2. Joint Source Network Error Control Coding  

JSNC uses an overlay infrastructure to assist video stream-
ing to multiple users simultaneously by providing light 
weight support at intermediate overlay nodes. For example, 
in Fig. 1, overlay data service nodes (DSN) construct an 



overlay network to serve heterogeneous users. Users “A” 
to “G” have different video requirements (shown as “frame 
rate /resolution/available bandwidth”). Here “C” and “Q” 
represent CIF and QCIF format, respectively.  “Pa” to “Pg” 
are the loss rates of different overlay virtual links.  In this 
paper, we assume an overlay network is ready for use.  

 

 

 

 

 

Fig. 1: Intermediate adaptation of the video bitstream 

While streaming, the server sends out a single FGA -FEC 
coded bitstream based on the highest user requirement 
(30/C/3M) and network conditions. FGA -FEC divides each 
network packet into small blocks and packets the FEC 
coded bitstream in such a way that if any original data 
packets are actively dropped, the corresponding 
information in parity bits is also completely removed. The 
intermediate DSNs can adapt the FEC coded bitstream by 
simply dropping a packet or shortening a packet by 
removing some of its blocks. Since there is no FEC 
decoding/re-encoding, JSNC is very efficient in terms of 
computation. Furthermore, the data manipulation is at 
block level, which is precise in terms of adaptation.  

2.1 Integrated Source Network Video Coding (IVC) 
The main goal of IVC is to facilitate simple and precise 
adaptation of bitstream for heterogeneous users in an 
intermediate overly node.  Based on this, the server first 
encodes the bitstream in such a way that the subsets 
corresponding to low resolution/frame rate/quality version 
of the video are embedded in bitstreams corresponding to 
higher resolution/frame rate/quality version of the video. 
Different sub-bitstreams can be extracted by intermediate 
DSNs in a simple manner without trans-coding, to readily 
accommodate a variety of users for a given user’s 
computing power, connection bandwidth, and so on. In 
this paper, we use a fully scalable MC-EZBC video coder 
[6] to show the efficiency of IVC. 
    MC-EZBC produces embedded bitstreams supporting a 
full range of scalabilities – temporal, spatial and SNR. Here 
we use the same notation as [6]. Each GOP coding unit 
consists of independently decodable bitstreams {QMV, 
QYUV}. Let },...,2,1{ tt Ll ∈  denote the temporal scale, MV 

bitstream, QMV, can be divided into temporal scales and 
consists of Qlt

MV for tt Ll ≤≤2 . Let },...,2,1{ ss Ll ∈  

denote the spatial scale, Subband coefficient bitstream,  
QYUV, is also divided into temporal scales and further 
divided spatial scales as Qlt,ls

YUV, for tt Ll ≤≤2  and 

ss Ll ≤≤1 . The video at (1/4)r spatial resolution and (1/2)f 

frame rate is obtained from the bitstream as: 

}1:{}1:{ , rLlQfLlQQ ss
YUV

lslttt
MV

lt −≤≤−≤≤= ∪
In every sub-bitstream Qlt,ls

YUV, the subbands from Y, U and 
V are progressively encoded from the most significant 
bitplane (MSB) to the least significant bitplane (LSB). 
Scaling in term of quality is obtained by stopping the 
decoding process at any point in bitstream Q. The MC-
EZBC encoded bitstream can be further illustrated as 
Digital Items as in Fig. 2 [7], where shows the video bit 
stream in view of three forms of scalability.  

 
Fig. 2 3-D video scalability 

In Fig. 2, the video bitstream is represented in terms of 
atoms, which are usually bit planes or fractions of bit 
planes. The notation A(F, Q, R) represents an atom of 
{frame rate, quality, resolution}. Choosing a particular 
subset of atoms corresponds to scaling the resulting video 
to the desired resolution, frame rate and quality. These 
small pieces of bitstream are interlaced in the embedded 
bitstream. Intermediate DSNs adapt the digital items 
according to user preferences and network conditions. 
Since the adaptation can be implemented as simple 
dropping of corresponding atoms, DSNs do not need to 
decode and re-encode the bitstream, which is very 
efficient. On the other hand, the adaptation is done based 
on atoms in a bitstream, which is almost as precise as pure 
source coding.  

2.2 Fine Granular Adaptive FEC (FGA-FEC) 
DSNs adapt video bitstream based on user requirements 
and available bandwidth. When parts of the video 
bitstream are actively dropped, FEC codes need to be 
updated accordingly. This update of FEC codes has the 
same basic requirements as the in-network video coding – 
efficiency (low computation cost) and precision (if a part of 
the video data is actively dropped, parity bits protecting 
that piece of data should also be removed). Based on these 
considerations, we propose a precise and efficient Fine 
Granular Adaptive FEC (FGA -FEC) scheme based on Reed-
Solomon (RS) codes. Arbitrary adaptation of RS codeword 
is difficult. For example, RS(n, k) can not be adapted to RS( 
n-y, k-y) by simply dropping data packets. One way to 
adapt the RS(n,k) to RS(n-y, k-y) is to decode RS(n,k) and 
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then re-encode RS(n-y, k-y), which is not efficient in case 
of multiple adaptations along transmission path.  FGA -FEC 
solves the problem by fine granular adapting the FEC to 
suit multiple users simultaneously.  
    Given a piece of video bit stream, shown in Fig.3  (top), 
divided into chunks as A, B, C, …, X, the FGA-FEC further 
divides each chunk of bitstream into equal size blocks. The 
precision of fine granularity of the FGA -FEC scheme is 
determined by the block size. Smaller block size means finer 
granularity and better adaptation precision. In Fig. 3, the 
bitstream is divided into blocks as (A1, A2; B1,…,Bi; 
C1,…,Cj; …; X1,…,Xn).  RS codes computation is applied 
across these blocks to generate parity blocks. Each vertical 
line represents a data chuck divided into blocks, followed 
by the generated parity blocks. More protection is added 
to the important part of the bitstream and less FEC is 
allocated to data with lower priority. The optimal allocation 
of FEC to different chunk of data is described at our 
previous work [1] and [2].  After FEC encoding, each 
horizontal line is packetized as one description. In this 
paper, one description is equivalent to one network packet.  
Similar as MD-FEC [2], FGA-FEC transforms a priority 
bitstream into non-priority descriptions. In addition, FGA -
FEC scheme has the ability of fine granular adaptation at 
block level. Based on our experiment about a 1Mbps 
Foreman CIF bitstream with first GOP 16 frames, MD-FEC 
can generate block size varies from 1bits to 475 bits which 
is difficult to do in network adaptation. 

 
 
 
 
 
 
 
 

 

Fig. 3  FGA-FEC encoding scheme 

The granularity of FGA -FEC adaptation is at block level. 
Assume, for instance, that an intermediate DSN needs to 
adapt the video bitstream by dropping one chunk of 
bitstream, say C in Fig. 3. This can be achieved by 
removing the original data and FEC blocks related to chunk 
C from each packet. The adaptation at intermediate overlay 
node is simple a filtering of a network packet as  
                      updatedppp MFM −=  

where Mp = [b1,b2,…,bn] is a packet represented in the 
block-matrix format, the elements are blocks inside a 
packet. Mp-updated is the updated packet with some blocks 
being dropped by the filter matrix Fp.  Fp is an updated 
matrix from an n x n identity matrix with related columns 
removed. For example, if jth block need to be dropped, Fp is 

a n-1 x  n identity matrix with jth column removed from a n x 
n identity matrix as following   
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Hence, all descriptions (both data and parity) are 
shortened, and this is the only processing that needs to be 
done – no FEC trans-coding is necessary. Further, the 
removed parity bits correspond precisely to the data bits 
that are dropped.  
    To facilitate intermediate overlay node adaptation, an 
information packet is sent ahead of one GOP to tell the 
intermediate nodes about the block size, FEC codes and 
bitstream information in block level. Since the description 
is at block level, we can engineer the information packet to 
occupy less then 1% of the total bandwidth of a GOP.  

3. RESULTS 

We performed several simulations and experiments to 
show the effectiveness of our proposed building blocks. 
We use 300 frames of the foreman CIF sequence at 30 fps. 
Adaptations are done at intermediate overlay nodes using 
the encoded MC-EZBC bitstream. Each simulation is run at 
least ten times to obtain statistically meaningful results 
    The first question that needs to be answered is: does the 
in-network block-based adaptation of bitstream achieve 
the same quality as source coding?   
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Fig. 4 (a) source coding vs JSNC;  (b) effect of block size 

Given a video bitstream at 1Mbps, JSNC packets the bit-
steam into 512-byte network packet with block size at 8 
bytes, thus, results in 128 packets per GOP on average. 
The adaptation at intermediate node is at block level. 
Therefore, the adaptation may not as precise as source 
coding. For example, JSNC can adapt 1Mbps bitstream to 
992kbps and 976kbps by removing 2 or 3 blocks from each 
packet, respectively. Suppose the last mile available 
bandwidth of a user is 991kbps, JSNC can only adapt the 
bitstream to 976kbps. Fig. 4 (a) shows PSNR_Y of the 
source coded video at 991bps versus our proposed JSNC 
adaptation to network condition. The overall PSNR of 
JSNC is 0.08dB lower than source coding. 
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    Obviously, the block size can affect the adaptation 
precision. Fig. 4(b), we show the granularity of adaptation 
in different block size. Here, one block is removed from 
each network packet. Clearly, smaller block size means finer 
granularity. 
    Traditionally, when network congestion occurs, data 
packets are randomly dropped to avoid congestion. On the 
other hand, our JSNC scheme adapts the packets in the 
intermediate network nodes to reduce the bandwidth 
requirement. Given a 1.5Mbps bitstream and the available 
bandwidth at 1455kbps, In Fig. 5 (a) we compare PSNR-Y 
of JSNC vs. random drop scheme with 3% packets being 
dropped. Observe that the proposed scheme significantly 
outperforms random dropping by about 10 dB. 
    A user may have requirements priorities to response the 
dynamic of network conditions. In Fig. 5 (b) we show the 
corresponding video quality when the available bandwidth 
changes. Originally, the user is receiving a 2 Mbps, CIF 
formant, 30 fps bitstream. Starting with frame 100, the user 
has only 512 kbps available bandwidth.  

                    (a)                                             (b)                                    
Fig. 5. (a)JSNC vs. random drop;     (b) 3-D adaptation 

There are three possible choices for the user: (1) SNR 
adaptation to 512kbps; (2) Temporal adaptation to 1/4 of 
the original frame rate; (3) Spatial adaptation to QCIF. Both 
(2) and (3) need additional SNR adaptation to 512 kbps.  
User can choose its preference based on Fig. 5 (b). 
    Next, we compare the performance of JSNC with Hop by 
Hop FEC scheme. The reason we choose to compare with 
Hop by Hop FEC is that both of the schemes can do 
adaptation in intermediate nodes. Suppose server streams 
video to user “E” at Fig.1, the available bandwidth of E is 
1Mbps, the loss rate is at P1=P2=P3=Pe=1.5%, we assume 
that there is enough bandwidth between DSNs. In order to 
fully recover the losses, JSNC adds FEC based on end to 
end loss rate which is approximately 6%. On the other 
hand, Hop by Hop FEC need only to protect 1.5% loss rate 
at each virtual link.  Thus, the received video quality using 
Hop by Hop FEC is 0.22dB better than using our proposed 
JSNC, shown at Fig. 6.  But the Hop by Hop FEC video 
quality gain is acquired by scarifying system computation 
performance, the intermediate nodes need to decode/re-
encode the FEC at each DSN. Our JSNC adaptation is only 
actively removing blocks within one packet instead of 
complex FEC computation, the computation burden is very 

low. We test the FEC encoding/decoding time at a P4 
2.0GHz Linux 8.2 PC, for RS(120,115), it approximately 
needs 2ms for the computation. We also tested JSNC 
adaptation burden at the same PC, the adaptation time to 
process the same among of packets is about 1x10-4ms.  
Thus, our JSNC scheme is efficient in term of computation. 
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                         Fig. 6 JSNC vs Hop by Hop FEC           

4. CONCLUSIONS 

In this paper, we proposed a Joint Source-Network error 
control coding scheme for scalable video streaming. The 
adaptation in the intermediate overlay nodes is fine 
granular at block level. Adaptation quality is almost the 
same as pure source coding. A novel FGA -FEC scheme is 
proposed for error recovery during video transmission to 
heterogeneous users. Encoding once, the proposed FGA -
FEC scheme can adapt FEC codes by only adjusting the 
packet size instead of FEC decoding/re-encoding in the 
intermediate nodes. Simulations show that the proposed 
JSNC can efficiently and precisely stream scalable video to 
heterogeneous users  simultaneously. 
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