
JOINT SOURCE-NETWORK ERROR CONTROL CODING
FOR SCALABLE OVERLAY VIDEO STREAMING

Yufeng Shan,1 Ivan V. Bajic,2 Shivkumar Kalyanaraman,1 and John W. Woods1

1/ ECSE Department, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
2/ ECE Department, University of Miami, Coral Gables, FL 33146, USA

ABSTRACT

In this paper, we propose a Joint Source-Network error
control coding (JSNC) scheme which efficiently integrates
scalable video coding, error control coding and overlay
infrastructure to stream video to heterogeneous users. The
distributed overlay data service nodes over the IP network
form an application layer media service overlay network
and adapt both the video bitstream and error control
coding based on both user requirements and available
bandwidth. A novel Fine Granular Adaptive FEC (FGA -
FEC) scheme, a generalization of MD-FEC, is proposed for
error recovery during video transmission to heterogen-
eous users. Encoding once, the FGA -FEC can adapt the
FEC encoded scalable MC-EZBC bitstream to satisfy
multiple heterogeneous users simultaneously without
decoding/re-encoding FEC at intermediate nodes, thus
saving computation

1. INTRODUCTION

Simultaneously streaming video to heterogeneous users,
such as powerful PCs, laptops and handset devices, is a
challenging problem, since different users may have
different video frame rate/quality/resolution requirements,
computation capabilities and network connections. In
order to serve heterogeneous users, traditional approaches
(Windows media, Real player) maintain mu ltiple versions
of any piece of media that suit a variety of capabilities and
preferences. While streaming, the server sends multiple
copies of the same bitstream to different users. IP multi-
cast is an efficient way for simultaneous bulk data delivery.
Due to the deficiency of its deployment in the current
Internet, application-layer multicast [3] is proposed. End
systems, instead of routers, are organized into an overlay
to relay data to each other in a peer-to-peer fashion.
Padmanabhan et al in [4] discuss the problem of
distributing streaming media content to a large number of
hosts in a scalable way. They propose CoopNet, where
clients cooperate to distribute content, thereby alleviating
the load on the server. In [5], Cui et al propose a peer-to-
peer streaming solution with cache-and-relay nodes. Most
recently, service overlay network are gaining attention.
Amir et al [8] proposed a specific architecture for active
services that are used for deployment of user-defined
application-level computation within the network.

 The above papers consider network and video coding
separately. We argue that this approach is not optimal.
Currently, MPEG-21 aims to enable the use of multimedia
resources across a wide range of network and devices. The
Digital Item Adaptation (DIA) part raises the possibility of
in-network video adaptation which fit well to the overlay
infrastructure. In this paper, we consider networking and
application as one system by efficiently joining scalable
video coding algorithms and overlay infrastructure for
streaming. The proposed JSNC scheme includes the
following two novel concepts:
1. Integrated Source-Network Video Coding (IVC)

Video coding function is distributed both at source
and inside the network to facilitate simple and precise
adaptation of bitstream for heterogeneous users.

2. A novel Fine Granular Adaptive FEC (FGA-FEC).
Encoding once, the proposed FGA -FEC scheme can
adapt the FEC coded bitstream to satisfy multiple
heterogeneous users simultaneously without FEC
decoding/re-encoding at intermediate overlay nodes.

 Our work is different from proxy based streaming and
multicast layered streaming. Proxy streaming systems
cache video content at proxy local disk and trans-codes
(decode and re-encode) the video bitstream for different
users. In multicast layered video streaming, receivers adapt
to network conditions by joining and leaving multicast
groups, which results in large amount of signaling traffic in
a dynamic network. Further, the adaptation is limited to
available layers and also need support of an application
layer multicast infrastructure. On the other hand, our JSNC
can arbitrarily adapt video frame rate, quality and
resolution without transcoding. Moreover, our scheme can
provide an efficient error control mechanism for
heterogeneous users.
 The rest of the paper is organized as follows. In Section
2 we describe the detail of JSNC scheme. Simulations and
experimental results are given at Section 3, followed by
conclusions at Section 4.

2. Joint Source Network Error Control Coding

JSNC uses an overlay infrastructure to assist video stream-
ing to multiple users simultaneously by providing light
weight support at intermediate overlay nodes. For example,
in Fig. 1, overlay data service nodes (DSN) construct an

overlay network to serve heterogeneous users. Users “A”
to “G” have different video requirements (shown as “frame
rate /resolution/available bandwidth”). Here “C” and “Q”
represent CIF and QCIF format, respectively. “Pa” to “Pg”
are the loss rates of different overlay virtual links. In this
paper, we assume an overlay network is ready for use.

Fig. 1: Intermediate adaptation of the video bitstream

While streaming, the server sends out a single FGA -FEC
coded bitstream based on the highest user requirement
(30/C/3M) and network conditions. FGA -FEC divides each
network packet into small blocks and packets the FEC
coded bitstream in such a way that if any original data
packets are actively dropped, the corresponding
information in parity bits is also completely removed. The
intermediate DSNs can adapt the FEC coded bitstream by
simply dropping a packet or shortening a packet by
removing some of its blocks. Since there is no FEC
decoding/re-encoding, JSNC is very efficient in terms of
computation. Furthermore, the data manipulation is at
block level, which is precise in terms of adaptation.

2.1 Integrated Source Network Video Coding (IVC)
The main goal of IVC is to facilitate simple and precise
adaptation of bitstream for heterogeneous users in an
intermediate overly node. Based on this, the server first
encodes the bitstream in such a way that the subsets
corresponding to low resolution/frame rate/quality version
of the video are embedded in bitstreams corresponding to
higher resolution/frame rate/quality version of the video.
Different sub-bitstreams can be extracted by intermediate
DSNs in a simple manner without trans-coding, to readily
accommodate a variety of users for a given user’s
computing power, connection bandwidth, and so on. In
this paper, we use a fully scalable MC-EZBC video coder
[6] to show the efficiency of IVC.
 MC-EZBC produces embedded bitstreams supporting a
full range of scalabilities – temporal, spatial and SNR. Here
we use the same notation as [6]. Each GOP coding unit
consists of independently decodable bitstreams {QMV,
QYUV}. Let },...,2,1{ tt Ll ∈ denote the temporal scale, MV

bitstream, QMV, can be divided into temporal scales and
consists of Qlt

MV for tt Ll ≤≤2 . Let },...,2,1{ ss Ll ∈

denote the spatial scale, Subband coefficient bitstream,
QYUV, is also divided into temporal scales and further
divided spatial scales as Qlt,ls

YUV, for tt Ll ≤≤2 and

ss Ll ≤≤1 . The video at (1/4)r spatial resolution and (1/2)f

frame rate is obtained from the bitstream as:

}1:{}1:{ , rLlQfLlQQ ss
YUV

lslttt
MV

lt −≤≤−≤≤= ∪
In every sub-bitstream Qlt,ls

YUV, the subbands from Y, U and
V are progressively encoded from the most significant
bitplane (MSB) to the least significant bitplane (LSB).
Scaling in term of quality is obtained by stopping the
decoding process at any point in bitstream Q. The MC-
EZBC encoded bitstream can be further illustrated as
Digital Items as in Fig. 2 [7], where shows the video bit
stream in view of three forms of scalability.

Fig. 2 3-D video scalability

In Fig. 2, the video bitstream is represented in terms of
atoms, which are usually bit planes or fractions of bit
planes. The notation A(F, Q, R) represents an atom of
{frame rate, quality, resolution}. Choosing a particular
subset of atoms corresponds to scaling the resulting video
to the desired resolution, frame rate and quality. These
small pieces of bitstream are interlaced in the embedded
bitstream. Intermediate DSNs adapt the digital items
according to user preferences and network conditions.
Since the adaptation can be implemented as simple
dropping of corresponding atoms, DSNs do not need to
decode and re-encode the bitstream, which is very
efficient. On the other hand, the adaptation is done based
on atoms in a bitstream, which is almost as precise as pure
source coding.

2.2 Fine Granular Adaptive FEC (FGA-FEC)
DSNs adapt video bitstream based on user requirements
and available bandwidth. When parts of the video
bitstream are actively dropped, FEC codes need to be
updated accordingly. This update of FEC codes has the
same basic requirements as the in-network video coding –
efficiency (low computation cost) and precision (if a part of
the video data is actively dropped, parity bits protecting
that piece of data should also be removed). Based on these
considerations, we propose a precise and efficient Fine
Granular Adaptive FEC (FGA -FEC) scheme based on Reed-
Solomon (RS) codes. Arbitrary adaptation of RS codeword
is difficult. For example, RS(n, k) can not be adapted to RS(
n-y, k-y) by simply dropping data packets. One way to
adapt the RS(n,k) to RS(n-y, k-y) is to decode RS(n,k) and

A(0,0,0) A(0,0,0) A(0,0,0) A(0,0,0) A(0,0,0)
A(0,0,0) A(0,0,0) A(0,0,0) A(0,0,0) A(0,0,0)

A(0,0,0) A(0,1,0) A(0,2,0) A(0,3,0) A(0,4,0)

A(0,0,0) A(0,0,0) A(0,0,0) A(0,0,0) A(0,0,0)
A(0,0,0) A(0,0,0) A(0,0,0) A(0,0,0) A(0,0,0)

A(1,0,0) A(1,1,0) A(1,2,0) A(1,3,0) A(1,4,0)

A(0,0,0) A(0,0,0) A(0,0,0) A(0,0,0) A(0,0,0)
A(0,0,0) A(0,0,0) A(0,0,0) A(0,0,0) A(0,0,0)

A(2,0,0) A(2,1,0) A(2,2,0) A(2,3,0) A(2,4,0)

A(0,0,0) A(0,0,0) A(0,0,0) A(0,0,0) A(0,0,0)
A(0,0,0) A(0,0,0) A(0,0,0) A(0,0,0) A(0,0,0)

A(3,0,0) A(3,1,0) A(3,2,0) A(3,3,0) A(3,4,0)

A(0,0,0) A(0,0,0) A(0,0,0) A(0,0,0) A(0,0,0)
A(0,0,0) A(0,0,0) A(0,0,0) A(0,0,0) A(0,0,0)

A(4,0,0) A(4,1,0) A(4,2,0) A(4,3,0) A(4,4,0)

A(4,0.1) A(4,1,1) A(4,2,1) A(4,3,1) A(4,4,1)
A(4,0,2) A(4,1,2) A(4,2,2) A(4,3,2) A(4,4,2)

Resolution

Quality

Frame Rate

Server DSN DSN DSN

30/C/3M

 A

 B 30/C/3M

30/C/2M C 30/C/1M

 D 15/Q/1M

 E

 F

30/C/1M

 G

15/Q/384
k

Pa

P1
Pc Pe

Pb Pd P f
Pg

P2 P3

15/C/512

n-1

n

then re-encode RS(n-y, k-y), which is not efficient in case
of multiple adaptations along transmission path. FGA -FEC
solves the problem by fine granular adapting the FEC to
suit multiple users simultaneously.
 Given a piece of video bit stream, shown in Fig.3 (top),
divided into chunks as A, B, C, …, X, the FGA-FEC further
divides each chunk of bitstream into equal size blocks. The
precision of fine granularity of the FGA -FEC scheme is
determined by the block size. Smaller block size means finer
granularity and better adaptation precision. In Fig. 3, the
bitstream is divided into blocks as (A1, A2; B1,…,Bi;
C1,…,Cj; …; X1,…,Xn). RS codes computation is applied
across these blocks to generate parity blocks. Each vertical
line represents a data chuck divided into blocks, followed
by the generated parity blocks. More protection is added
to the important part of the bitstream and less FEC is
allocated to data with lower priority. The optimal allocation
of FEC to different chunk of data is described at our
previous work [1] and [2]. After FEC encoding, each
horizontal line is packetized as one description. In this
paper, one description is equivalent to one network packet.
Similar as MD-FEC [2], FGA-FEC transforms a priority
bitstream into non-priority descriptions. In addition, FGA -
FEC scheme has the ability of fine granular adaptation at
block level. Based on our experiment about a 1Mbps
Foreman CIF bitstream with first GOP 16 frames, MD-FEC
can generate block size varies from 1bits to 475 bits which
is difficult to do in network adaptation.

Fig. 3 FGA-FEC encoding scheme

The granularity of FGA -FEC adaptation is at block level.
Assume, for instance, that an intermediate DSN needs to
adapt the video bitstream by dropping one chunk of
bitstream, say C in Fig. 3. This can be achieved by
removing the original data and FEC blocks related to chunk
C from each packet. The adaptation at intermediate overlay
node is simple a filtering of a network packet as
 updatedppp MFM −=

where Mp = [b1,b2,…,bn] is a packet represented in the
block-matrix format, the elements are blocks inside a
packet. Mp-updated is the updated packet with some blocks
being dropped by the filter matrix Fp. Fp is an updated
matrix from an n x n identity matrix with related columns
removed. For example, if jth block need to be dropped, Fp is

a n-1 x n identity matrix with jth column removed from a n x
n identity matrix as following

=

100

010

001

L
MOMM

L
L

Fp

Hence, all descriptions (both data and parity) are
shortened, and this is the only processing that needs to be
done – no FEC trans-coding is necessary. Further, the
removed parity bits correspond precisely to the data bits
that are dropped.
 To facilitate intermediate overlay node adaptation, an
information packet is sent ahead of one GOP to tell the
intermediate nodes about the block size, FEC codes and
bitstream information in block level. Since the description
is at block level, we can engineer the information packet to
occupy less then 1% of the total bandwidth of a GOP.

3. RESULTS

We performed several simulations and experiments to
show the effectiveness of our proposed building blocks.
We use 300 frames of the foreman CIF sequence at 30 fps.
Adaptations are done at intermediate overlay nodes using
the encoded MC-EZBC bitstream. Each simulation is run at
least ten times to obtain statistically meaningful results
 The first question that needs to be answered is: does the
in-network block-based adaptation of bitstream achieve
the same quality as source coding?

34

35

36

37

38

39

40

41

42

0 50 100 150 200 250 300
Frame Number

P
S

N
R

-Y
 (

dB
)

Source Coding
JSNC

20

25

30

35

40

45

16 32 48 64 80 96 112 128 144 160
Block Size (in Bytes)

P
S

N
R

_Y
 (

dB
)

2Mbps 1Mbps
512kbps 256kbps

(a) (b)

Fig. 4 (a) source coding vs JSNC; (b) effect of block size

Given a video bitstream at 1Mbps, JSNC packets the bit-
steam into 512-byte network packet with block size at 8
bytes, thus, results in 128 packets per GOP on average.
The adaptation at intermediate node is at block level.
Therefore, the adaptation may not as precise as source
coding. For example, JSNC can adapt 1Mbps bitstream to
992kbps and 976kbps by removing 2 or 3 blocks from each
packet, respectively. Suppose the last mile available
bandwidth of a user is 991kbps, JSNC can only adapt the
bitstream to 976kbps. Fig. 4 (a) shows PSNR_Y of the
source coded video at 991bps versus our proposed JSNC
adaptation to network condition. The overall PSNR of
JSNC is 0.08dB lower than source coding.

A B C …

A1

A2

FEC

FEC

…

FEC

B1

B2

B3

…

…

… Bi

…

…

FEC

FEC

FEC FEC

FEC FEC

… … …

C1

C2

C3

…

…

…

…

…

C4

FEC

Cj

FEC FEC

… … …

…

…

X

…

…

…

…

…

FEC

X1

…

…

…

…

Xn

Description 1

Description 2

…

Description n

FEC FEC FEC FEC FEC FEC FEC … …

jth column is removed from
a n x n identity matrix

 Obviously, the block size can affect the adaptation
precision. Fig. 4(b), we show the granularity of adaptation
in different block size. Here, one block is removed from
each network packet. Clearly, smaller block size means finer
granularity.
 Traditionally, when network congestion occurs, data
packets are randomly dropped to avoid congestion. On the
other hand, our JSNC scheme adapts the packets in the
intermediate network nodes to reduce the bandwidth
requirement. Given a 1.5Mbps bitstream and the available
bandwidth at 1455kbps, In Fig. 5 (a) we compare PSNR-Y
of JSNC vs. random drop scheme with 3% packets being
dropped. Observe that the proposed scheme significantly
outperforms random dropping by about 10 dB.
 A user may have requirements priorities to response the
dynamic of network conditions. In Fig. 5 (b) we show the
corresponding video quality when the available bandwidth
changes. Originally, the user is receiving a 2 Mbps, CIF
formant, 30 fps bitstream. Starting with frame 100, the user
has only 512 kbps available bandwidth.

 (a) (b)
Fig. 5. (a)JSNC vs. random drop; (b) 3-D adaptation

There are three possible choices for the user: (1) SNR
adaptation to 512kbps; (2) Temporal adaptation to 1/4 of
the original frame rate; (3) Spatial adaptation to QCIF. Both
(2) and (3) need additional SNR adaptation to 512 kbps.
User can choose its preference based on Fig. 5 (b).
 Next, we compare the performance of JSNC with Hop by
Hop FEC scheme. The reason we choose to compare with
Hop by Hop FEC is that both of the schemes can do
adaptation in intermediate nodes. Suppose server streams
video to user “E” at Fig.1, the available bandwidth of E is
1Mbps, the loss rate is at P1=P2=P3=Pe=1.5%, we assume
that there is enough bandwidth between DSNs. In order to
fully recover the losses, JSNC adds FEC based on end to
end loss rate which is approximately 6%. On the other
hand, Hop by Hop FEC need only to protect 1.5% loss rate
at each virtual link. Thus, the received video quality using
Hop by Hop FEC is 0.22dB better than using our proposed
JSNC, shown at Fig. 6. But the Hop by Hop FEC video
quality gain is acquired by scarifying system computation
performance, the intermediate nodes need to decode/re-
encode the FEC at each DSN. Our JSNC adaptation is only
actively removing blocks within one packet instead of
complex FEC computation, the computation burden is very

low. We test the FEC encoding/decoding time at a P4
2.0GHz Linux 8.2 PC, for RS(120,115), it approximately
needs 2ms for the computation. We also tested JSNC
adaptation burden at the same PC, the adaptation time to
process the same among of packets is about 1x10-4ms.
Thus, our JSNC scheme is efficient in term of computation.

34

35

36

37

38

39

40

41

42

0 50 100 150 200 250 300
Frame Number

P
S
N
R
_Y

 (d
B
)

Hop by Hop FEC
JSNC

 Fig. 6 JSNC vs Hop by Hop FEC

4. CONCLUSIONS

In this paper, we proposed a Joint Source-Network error
control coding scheme for scalable video streaming. The
adaptation in the intermediate overlay nodes is fine
granular at block level. Adaptation quality is almost the
same as pure source coding. A novel FGA -FEC scheme is
proposed for error recovery during video transmission to
heterogeneous users. Encoding once, the proposed FGA -
FEC scheme can adapt FEC codes by only adjusting the
packet size instead of FEC decoding/re-encoding in the
intermediate nodes. Simulations show that the proposed
JSNC can efficiently and precisely stream scalable video to
heterogeneous users simultaneously.

5. REFERENCES

[1] I. V. Bajic and J. W. Woods, "EZBC video streaming with
channel coding and error concealment," in Proc. SPIE VCIP 2003,
Lugano, Switzerland, July 2003
[2] R. Puri and K. Ramchandran, ”Multiple description source
coding using forward error correction codes,” Proc. 33rd ACSSC,
Pacific Groove, CA, October 1999.
[3] Y. Chu, S. Rao, and H. Zhang “A case for end system
multicast,” Proc. ACM SIGMETRICS, pp. 1-12, CA, June 2000
[4] V. Padmanabhan, H. Wang, et al, “Distributing streaming
media content using cooperative networking,” MSR-TR-2002-37
[5] Y. Cui and K. Nahrstedt “Layered Peer-to-Peer Streaming,”
Proc. NOSSDAV, Monterey, CA, June 2003.
[6] S.-T. Hsiang and J. W. Woods, ”Embedded video coding using
invertible motion compensated 3-D subband filter bank,” Signal
Processing: Image Commun., pp. 705-724, May 2001.
[7] http://www.hpl.hp.com/research/ssm
[8] E. Amir, S. McCanne, and R. Katz, "An active service frame-
work and its application to real-time multimedia transcoding",
Proc. ACM SIGCOMM, pp. 178-189, Vancouver 1998.

10

15

20

25

30

35

40

45

0 50 100 150 200 250 300
Frame Number

P
S

N
R

_Y
(d

B
)

JSNC

Random Drop

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300
Frame Number

P
S

N
R

_Y
(d

B
)

Temporal Adaptation
SNR Adaptation
Spatial Adaptation

