
HYBRID VIDEO DOWNLOADING/STREAMING OVER PEER-TO-PEER NETWORKS1

Yufeng Shan and Shivkumar Kalyanaraman

Department of Electrical, Computer and Systems Engineering
Rensselaer Polytechnic Institute, Troy NY 12180

{shany, kalyas}@rpi.edu

1 This paper is sponsored by ARO grant DAAD19-00-1-0559
and supported in part by a grant from Intel Corp.

ABSTRACT

Peer-to-peer based multimedia delivery is becoming
increasingly more important in today's networks. Using a peer-
to-peer network to assist video streaming is a topic of
considerable interest. In this paper, we propose a novel hybrid
video downloading/streaming scheme (HDS) that efficiently
integrates traditional client/server based video streaming and
peer-to-peer based media distribution. Furthermore, we propose
a receiver-driven algorithm to coordinate the downloading and
streaming modes; and control the state transitions between these
modes. We have performed real-world experiments and
simulations to validate our concept. These results show that our
proposed scheme greatly increases the availability of video
content on the receiver side and simultaneously reduces the
server load significantly.

1. INTRODUCTION

High-quality video streaming over the current best-effort
Internet is a challenging proposition due to video requirements
such as high bit rate requirement, delay and loss sensitivity.
Streaming media distribution has been an intensively studied
research topic in the past several years. In the area of source
coding, methods such as layered coding, error-resilience coding
and Multiple Description Coding (MDC) have been proposed. In
the area of channel coding, Forward Error Correction (FEC)
techniques have been proposed to combat the channel losses
while reducing delay due to retransmission. In the area of
network architecture, companies such as Akamai and Digital
Island have deployed Content Delivery Networks (CDNs) by
using a network edge-based architecture (edge servers) to
achieve load balancing, lower latency and higher through-put.
Most recently, peer-to-peer (P2P) architectures are gaining
attention. In this model, a peer stores the streamed data after
receiving it, and then streams the cached content to other
requesting peers. For example, Padmanabhan et al [1] propose a
solution called CoopNet, an approach for content distribution
that combines aspects of infrastructure-based and peer-to-peer
based content distribution, where client cooperate to distribute
content, thereby alleviating the load on the server. CoopNet
builds multiple distribution trees spanning the source and all the
receivers for it MDC coded media content. Xu et al [2] propose
an optimal media data assignment algorithm to assign media

data to multiple peers in one streaming session and a distributed
differentiated admission control protocol to quickly amplify the
system’s total streaming capacity. Yeo et al [3] propose an
application level multicast overlay using peering technology and
a lightweight gossip mechanism to monitor prevailing network
conditions and to improve the tree robustness. In [4] the author
designs a peer-to-peer technique called ZIGZAG for single
source media streaming. ZIGZAG allows the media server to
distribute content to many clients by organizing them into an
appropriate multicast tree rooted at the server.
 Most of the papers talk about massive video data distribution
using application layer multicast based on peer-to-peer overlay.
In [5], the authors measure two typical peer-to-peer networks,
Napster and Gnutella, according to the characteristics of the
participating hosts such as reported Internet connection speed,
latencies, lifetimes, shared data and so on. Their results show the
peer-to-peer network is heterogeneous and dynamic; only less
than 5% hosts can work as server-like peers. Thus, we argue
that there are problems in a peer-to-peer based video streaming
architecture. First, it should have sufficient number of powerful
peers (in terms of computation, bandwidth, memory and disk
capacity) with cached video data at the beginning of the
streaming session. Second, due to the dynamic and
heterogeneous characteristics of peers, the clients may suffer
more network fluctuation and network outage than the
traditional client/server structure. Third, in extreme case, the
streaming session has to be closed when all the peers with
cached content are unreachable. On the other hand, the
traditional video server is always available.
 Based on the above arguments, in this paper, we propose a
novel hybrid video downloading/streaming scheme (HDS) that
efficiently integrates traditional client/server based video
streaming system (streaming mode) and peer-to-peer based
media data distribution system (downloading mode). In our
hybrid architecture, the two modes complement each other.
Furthermore, we propose a receiver-driven coordination control
algorithm (RDCC) to coordinate downloading & streaming
modes; and control the state transition between these modes.
 The major contributions of this paper are: (1) our proposed
HDS scheme efficiently integrates traditional client/server based
streaming with peer-to-peer based media distribution to
significantly reduce the server load. (2) The proposed receiver-
driven algorithm maintains the maximum content availability at
receiver side by leveraging both the streaming and downloading
modes. (3) Given all peers with cached content are unavailable,

the receiver still can maintain video streaming from video
server.
 This paper is organized as following: The proposed hybrid
video downloading/streaming scheme is discussed at Section 2;
in Section 3, a receiver-driven coordination control algorithm is
discussed; A memory disk cooperative buffering scheme is
discuss in Section 4; Experiments and discussions are present in
Section 5; followed by conclusions in Section 6.

2. HDS SCHEME

Our proposed hybrid video downloading/streaming (HDS)
architecture is show as Figure 1. In order to simplify the
description, we outline our scheme with one video server, one
“supplying” peer (i.e. with cached content), one “requesting”
peer and a CBR video sequence.

 Server

 : Supplying peers. : Requesting peers

Figure1: Hybrid video downloading/streaming architecture

 The building blocks of our proposed HDS system include (1)
receiver-driven coordination control scheme (RDCC) and
memory disk cooperative buffering (MDB) scheme at requesting
peer; (2) video server scheduler; (3) supplying peer scheduler.
All these building blocks efficiently cooperate to reduce the
server load and maximize the availability of video content in
receiver side.

Figure 2: HDS Timing Behavior

 Whenever a peer decides to watch a movie, first it sends out a
request to the video server. The video server can be a traditional
video server or a CDN video server. In the meantime, the
requesting peer performs content lookup service in a peer-to-
peer network, such as Chord [6], to find the supplying peers who
have the requested video content. After the receiver gets the
video profile from the server and the addresses of the supplying
peers from the network, it analyzes the video content according
to the video profile, divides the whole video content into N

slices as Figure 2 (upper subfigure). We define a “slice” as a
piece of video data in a video bit stream; one slice may include
several video frames. Suppose the total amount of requested
video content is M bytes, the corresponding bytes for each slice
m = M/N and the display time for each slice is ti. The receiver
runs the proposed RDCC algorithm to coordinate downloading
and streaming modes described in Figure 2 (bottom subfigure).
1. At time 0, the receiver starts to receive streaming traffic (the
beginning of the video content) from the video server and pre-
buffers up to Tpre seconds using an in-memory playout buffer.
Simultaneously, the receiver also starts to download video
content from a supplying peer. But this content starts at the
second slice, i.e. at a staggered position in the overall video
content sequence.
2. At time ti, the streaming session catches up to the position of
the second slice in the video content. The server scheduler now
suspends the streaming mode, thus offering relief to the server.
The working mode is now the downloading mode from
supplying peer, i.e. peer-based download-only.

Downloading

Streaming

Peer-to-peer
network

3. During the download-only stage, the receiver analyzes the
availability of the video content in the receiver side starting from
time ti. At certain time tx, when the amount of data in receiver
buffer is lower than a buffer threshold (indicating an increased
probability of buffer underflow), then the RDCC fashions an
optimum mix of server-based streaming and peer-based
download. The overall objective is to shield the user from
variations in network bandwidth, server/peer overload, peer-
transience etc and maximize availability of the video stream as
perceived by the user. The RDCC algorithm controls and
coordinates these modes according to the available bandwidth
and the availability of video content in receiver buffer. We
discuss the scheme in detail in Section 3 and Section 4.

3. RECEIVER-DRIVEN COORDINATION CONTROL
ALGORITHM

The RDCC algorithm is the key part of the overall HDS scheme.
It computes the availability of the video content in receiver
buffer, estimates the available bandwidth and coordinates the
download-ing and streaming modes.

Downloading from supplying peers
Streaming from video server

M
m m m

3.1 Availability of the video content
 We define the availability of video content r as the ratio of
total successive data in the buffer to the pre-buffer size as
Equation (1). For example: if the receiver is displaying the nth
slice of video data, then the (n+1)th video slice in receiver
buffer is called “successive” data. The (n+3)th video slice is not
called successive data until the (n+2)th video slice is buffered in
the receiver side. In the following equation,

Controlled by RDCC

tx

Downloading
Streaming

Downloading

tti 0

pre

total

T
T

r = (1)

r is the availability of video content in the receiver buffer; Tpre is
the pre-buffer size, Ttotal is the total amount of successive data in
receiver buffer.
 This r is used by RDCC to measure the receiver buffer
conditions, if r >1, the receiver buffer has enough successive
data, if r < 1, the receiver buffer suffers a certain underflow.

3.2 RDCC algorithm

 The goal of the receiver-driven coordination control algorithm
(RDCC) is to minimize the server load and to maximize the
availability of video content in receiver buffer. The receiver
measures the available bandwidth Bs between the video server
and receiver, the available bandwidth Bd between the
“supplying” peer and the receiver using a TCP-friendly
algorithm [7]. We define the bit rate for maintaining a smooth
video display as B. The RDCC algorithm is described as
following.

If (r<1 && Bd <B) {
 Trigger the streaming mode;
 If (Bs >=B) { If (Bs >=B) {
 Downloading (n+1)th video slice given current slice Downloading (n+1)th video slice given current slice
 being streamed is nth; being streamed is nth;
 if (streaming session reaches (n+1)th video slice) if (streaming session reaches (n+1)th video slice)
 Suspend streaming mode; Suspend streaming mode;
 } else } else
 run COOP mode; run COOP mode;
} else } else
 downloading-only mode; downloading-only mode;

 In COOP mode, the server and supplying peer cooperate to
maintain the availability of the video content in the receiver
buffer. This COOP mode only happens when the calculated
availability of video content r is less than 1 and both Bs and Bd
are smaller than B. In COOP mode, the receiver calculates the
ratio Rg between the available bandwidth of video server and the
available bandwidth of the supplying peer, as in Equation (2)
and then sends the ratio result back to both server and supplying
peer.

 In COOP mode, the server and supplying peer cooperate to
maintain the availability of the video content in the receiver
buffer. This COOP mode only happens when the calculated
availability of video content r is less than 1 and both Bs and Bd
are smaller than B. In COOP mode, the receiver calculates the
ratio Rg between the available bandwidth of video server and the
available bandwidth of the supplying peer, as in Equation (2)
and then sends the ratio result back to both server and supplying
peer.

d

s
g B

B
R = (2)

 Based on one GOP, both the video server and supplying peer
schedulers calculate the amount of frames they should send
according to the ratio Rg, and send the video frames as Figure 3.
In HDS system, the default protocol for the schedulers is that the
video server sends the first parts of the GOP and the supplying
peer sends the remaining parts of the GOP, as shown in Figure
(3), the video server transmits the black parts and the supplying
peer transmits the grey parts in one GOP according to Rg.

 I P P P P P …….. I P P P P P ……..

Figure 3: The HDS scheduler

4. MEMORY DISK COOPERATIVE BUFFERING

Traditional video streaming system uses a limited in-memory
playout buffering scheme to absorb the network bandwidth
fluctuations. When the network conditions become bad and the
display buffer underflows, the playout process is stopped and
waits for some data to be buffered. We refer to this action as
“stop-and-re-buffering” and would like to minimize such
instances because the user sees stalled video during this time.
On the other hand, the receiver cannot buffer more data than the
predefined in-memory buffer size, even if the available

bandwidth is much larger than video bit rate. In this paper, we
propose a memory-disk cooperative buffer scheme (MDB) that
can supply virtually unlimited buffer capacity and can
efficiently use the available network bandwidth. The structure of
the buffer scheme is described as Figure 4.

Figure 4: Memory Disk Cooperative Buffering

 The MDB scheme uses two buffers, one memory buffer and
one disk buffer. The size of the memory buffer is the size of
predefined buffer. The disk buffer is almost unlimited size
compared to a movie length. Whenever a packet comes from the
network, the MDB scheme first caches the packet into disk
buffer, and then fills the memory buffer. There are advantages
using MDB scheme. (1) It can absorb more network bandwidth
fluctuation, especially in a dynamic peer-to-peer network. With
a play-out buffer that significantly longer than a round trip time,
our system behaves very similar to an erasure channel with an
unlimited number of retransmissions allowable for each packet.
(2) Significantly reduce the stop-and-re-buffering instances. (3)
It can efficiently use the available bandwidth, especially in
downloading mode; the receiver can use up as much bandwidth
as available to buffer video data.

5 EXPERIMENTS AND DISCUSSIONS

We setup a test bed as shown in Figure 5 to test our schemes.
The receiver is a laptop in the RPI university network, two
computers at RPI network lab act as supplying peers, the video
server is a SUN machine at UC Berkeley. The bandwidth is
controlled by a PC running NISTNet[8]. Test video sequence is
“foreman”, QCIF format, H.263+ CBR encoded, average bit rate
is at B=128kbps. The length of the sequence is 81 seconds.

Figure5: The T

I

UCB/Server

Memory Buffer

Disk Buffer Network

Decoder

5.1 Memory Disk Coopera
The MDB scheme efficient
buffering capacity for vid
bandwidth as available. In
scheme with traditional
(MOB). The pre-buffering
The NISTnet tool is used t
indicated in Figure 6(a). Fig
MOB and MDB scheme. T
more available bandwidth d
On the other hand, our MDB
as available to cache video
data in MDB scheme buffer
nternet
opology of o

tive Bufferin
ly uses disk to
eo streaming
 this section

Memory-O
time for both
o control the
ure 6 (b) sho
raditional M
ue to the limi
 scheme can

 data. Thus,
 is much mor
RPI/Peer

ur test bed

 Receiver

g
 offer nearly unlimited

. It can use as much
we compare our MDB
nly-Buffering scheme
 schemes is 3 seconds.
available bandwidth as
ws the receiving rate of
OB scheme cannot use
ted memory buffer size.
 use as much bandwidth
the amount of buffered
e than the data in MOB

scheme buffer when the available bandwidth is larger than the
video bit rate as show in Figure 6(d). During the network
bandwidth fluctuates, the MDB scheme can absorb more
fluctuation than MOB does, so there are much less stop-and-re-
buffering instances of MDB scheme compared with MOB
scheme as show at Figure 6 (c).

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90
Time (Seconds)

A
va

ila
bl

e
B

an
dw

id
tg

 (k
bp

s)

Available Bandwidth

0

50

100

150

200

250

0 20 40 60 80 100
Time (In second)

R
ec

vR
at

e
(k

bp
s)

Memory Disk Cooperative Buffering
Memory Only Buffering

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 1

Times (In Seconds)

of

 S
to

00

p
an

d
R

eb
uf

fe
rin

g

Memory Disk Cooperative Buffering
Memory Only Buffering

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 1

Time (seconds)

of

 P
ac

ke
ts

 in
 B

uf
fe

r

00

Memory Disk Cooperative Buffering
Memory Only Buffering

Figure 6: (a) top left, available bandwidth; (b) top right,
receiving rate; (c) bottom left, stop-and-re-buffering times; (d)
buffer occupation.

5.2 RDCC algorithm.
RDCC algorithm significantly reduces the server load and in the
meantime maximizes the availability of video content by
leveraging the streaming mode and downloading mode. In this
section, we define the server load as “1” if the server sends
video at 128kbps and as “0.5” at 64kbps.

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 9
Time (In Second)

of

 P
ac

ke
et

s
in

 B
uf

fe
r

0

Hybrid downloading/Streaming
Streaming only

total bufferd

0

0.5

1

1.5

0 10 20 30 40 50 60 70 80 9

Time (In Second)

Se
rv

er
 L

oa
d

B s = 128kbps
B d = 256kbps

0

0

0.5

1

1.5

0 10 20 30 40 50 60 70 80 9
Time (in Second)

Se
rv

er
 L

oa
d

B s = 128kbps
B d = 64kbps

0
0

0.5

1

1.5

0 20 40 60 80
Time (in Second)

Se
rv

er
 L

oa
d

B s = 64kbps
B d = 64kbps

100
Figure 7: (a) top left, buffer occupation; (b) top right, (c) bottom
left, (d) bottom right: server load in different available
bandwidth

 We set Tpre=ti=3 seconds. Figure 7(a) shows the buffered
video data in the situation of Bs=128kbps and Bd=256kbps.
Where Bs is the available bandwidth between video server and
receiver; Bd is the available bandwidth between supplying peer

and receiver. Because the Bd is larger than video bit rate B, after
the first stage of streaming, the RDCC controls the working
mode at downloading-only mode according to the calculated
availability of video content r. The MDB buffering scheme tries
to use as much bandwidth as it can to buffer video data. In
Figure 7 (a), all the video data is buffered in the receiver buffer
at around 41 seconds. The video server only works at the pre-
buffering time as Figure 7(b). On the other hand, the compared
traditional streaming scheme maintains a lower buffer
occupation, the video server need to work during the whole
session, 84 seconds. In Figure 7 (c), Bs=128kbps and Bd=64kbps,
RDCC controls the streaming mode to work periodically and the
downloading mode assists the streaming mode. In Figure 7 (d),
Bs=64kbps and Bd=64kbps, neither of the available bandwidth is
equal or larger than video bit rate B. The RDCC works at
COOP mode. The streaming mode and downloading mode
cooperate to maintain the video displaying. The server-load is
half of the traditional streaming system, but the receiver
maintains a better video quality.

6. CONCLUSSIONS

In this paper, we have proposed a novel hybrid video

downloading/streaming scheme (HDS) that efficiently integrates
traditional client/server based video streaming system and peer-
to-peer based media data distribution system. Furthermore, we
propose a receiver-driven algorithm to coordinate downloading
& streaming mode and control the state transit between
downloading mode and streaming mode. We have demonstrated
the effectiveness of the HDS scheme. It significantly reduces the
server load and increases the availability of the video content.
Future work will focus on cooperative caching scheme and
multimedia transport protocols over peer-to-peer network.

7. REFERENCES

[1] Venkata N. Padmanabhan, Helen J. Wang, Philip A. Chou
Kunwadee Sripanidkulchai “Distributing Streaming Media
Content Using Cooperative Networking” Microsoft technical
report MSR-TR-202-37, April 2002
[2] Dongyan Xu, Mohamed Hefeeda, Susanne Hambrusch,
Bharat Bhargava “On Peer-to-Peer Media Streaming”, Purdue
Computer Science Technical Report, Apr. 2002
[3] C.K. Yeo, B.S.Lee and M.H.Er “A Peering Architecture for
Ubiquitous IP Multicast Streaming” ACM SIGOPS Operating
Systems Review, Volume 36, Issue 3, pp 82-95, July 2002
[4] Duc A. Tran Kien A. Hua Tai T. Do “ZIGZAG: An Efficient
Peer-to-Peer Scheme for Media Streaming” University of
Central Florida Technical Report 2002.
[5] Stefan Saroiu, P. Krishna Gummadi, Steven D. Gribble
“A Measurement Study of Peer-to-Peer File Sharing Systems”
Tech Report # UW-CSE-01-06-02 University of Washington
[6] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.
Balakrishnan. Chord: A scalable peer-to-peer lookup service for
Internet applications. In Proceedings of SIGCOMM '01, pages
149-160, San Diego, California, August 2001.
[7] S. Floyd, M. Handley, J. Padhye, and J. Widmer. “Equation-
Based Congestion Control for Unicast Applications” Proc. ACM
SIGCOMM, pages 43--54, September 2000.
[8] http://snad.ncsl.nist.gov/itg/nistnet.

	HYBRID VIDEO DOWNLOADING/STREAMING OVER PEER-TO-PEER NETWORKS
	ABSTRACT

