
 1

 Overlay Multi-hop FEC Scheme for Video Streaming

over Peer-to-Peer Networks1

Yufeng Shan1, Ivan V. Bajic2, Shivkumar Kalyanaraman1, and John W. Woods1

1/ ECSE Department, Rensselaer Polytechnic Institute, Troy, NY 12180-3590

2/ School of Engineering Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada

Abstract

Overlay networks offer promising capabilities for video streaming, due to their support for

application- layer processing at the overlay forwarding nodes. In this paper, we focus on the

problem of providing lightweight support at selected intermediate overlay forwarding nodes to

achieve increased error resilience on a single overlay path for video streaming. We propose a

novel Overlay Multi-hop FEC (OM-FEC) scheme that provides FEC encoding/decoding

capabilities at intermediate nodes in the overlay path. Based on the network conditions, the end-

to-end overlay path is partitioned into segments, and appropriate FEC codes are applied over

those segments. Architecturally, this flexible design lies between the end-to-end and hop-by-hop

paradigms, and we argue that it is well suited to peer-based overlay networks. We evaluate our

work by both simulations and controlled Planet-Lab network experiments. These evaluations

show that OM-FEC can outperform a pure end-to-end strategy up to 10-15 dB in terms of video

PSNR, and can be much more efficient than a heavyweight hop-by-hop strategy.

Index terms

 peer-to-peer networks, overlay networks, video streaming, and forward error correction

1 This work is partly supported by the ARO grants DAAD19-00-1-0559 and W911NF-04-1-0300

 2

I. INTRODUCTION

Providing high-quality video streaming over the current best-effort Internet is a challenging

problem due to video’s characteristics such as high bit-rate, delay variation sensitivity, and loss

sensitivity. Streaming video and other media has been intensively studied in the past several

years. Most recently, peer-to-peer (P2P) architectures and overlay networks are gaining

attention. Padmanabhan et al. [1] discussed the problem of distributing media content, both live

and on demand, to a large number of receivers in a scalable way. They propose a solution called

CoopNet for content distribution that combines aspects of infrastructure and peer-to-peer based

content distribution, wherein clients cooperate to distribute content, thereby alleviating the load

on the server. CoopNet builds multiple distribution trees spanning the source and all the

receivers, for its multiple description coded media content. Yeo et al. [2] propose an application-

level multicast overlay using peering technology and a lightweight gossip (i.e. active probing)

mechanism to monitor prevailing network conditions and improve tree robustness. Clients can

dynamically switch to other parents if they experience a poor QoS. In [3], Chu et al. explore the

possibility of video conferencing using an overlay multicast architecture. Their constructed

overlay-spanning tree is optimized according to measurements of available bandwidth and

latency among users, and can be modified by the addition of good links and the dropping of the

poor links. The main goal of resilient overlay network (RON) [4] is to enable a group of nodes

to communicate with each other in the face of problems with the underlying Internet paths

connecting them. RON detects such problems by aggressively probing and monitoring the paths

connecting its nodes. If the underlying Internet path is the best one, that path is used and no other

RON node is involved in the forwarding path. If the Internet path is not the best one, RON will

forward the packet by way of other RON nodes.

 3

Performance characteristics of peer-based overlay networks are likely to be very different and

highly variable as regards the traditional Internet or even managed overlay networks. However,

their massive diversity, i.e. multiple overlay paths can be harnessed, can compensate for the

performance variability of any one path [8, 15]. In addition, lightweight support at intermediate

nodes can improve single path performance. In this paper, we focus on the latter problem and

propose a novel Overlay Multi-hop FEC (OM-FEC) scheme for video streaming over peer-based

overlay networks. The OM-FEC scheme dynamically partitions the end-to-end overlay path into

segments according to its error characteristic, and provides appropriate error resilience over each

segment. Here, we do not focus on overlay path construction and routing problems. Rather, we

assume a peer-based overlay path is pre-constructed and we will focus on how to efficiently

utilize it. We will henceforth use the term “overlay path” to mean the constructed path over a

peer-to-peer network.

A. Scope and Assumptions

Most prior work on video over peer-to-peer/overlay networks has focused on massive video data

distribution or video conferencing using application- layer multicast. In contrast, our objective is

to revisit the problem of efficiently utilizing the resources of a single overlay path. Our approach

operates at small time-scales in the data-plane, and can be combined with overlay routing and

topology management approaches that operate in the control-plane and over larger time-scales

[4]. In this sense, OM-FEC is complementary to the prior work where resilience is provided

using overlay routing methods. We assume that we can construct an overlay path with higher

bandwidth [4] than the default Internet route by using P2P techniques such as Chord [7] or Pastry

[12], to obtain a set of intermediate forwarding nodes as shown in Figure 1. In the figure, the

dashed lines represent the virtual links between overlay nodes and the solid lines represent the

 4

default Internet path. In this paper, we refer to one virtual link as one “overlay hop”. The

quantities Bi, Pi, and RTTi represent, respectively, the bandwidth, loss rate, and round-trip time of

the i-th hop.

Figure 1: Streaming video using overlay network

B. Motivation

The advantage of application- layer overlay networks arises from two fundamental properties: (1)

overlay nodes have capabilities of computation and storage power that are far beyond basic store

and forward operations, and (2) the overlay topology can be constructed and manipulated to suit

one’s purposes. Based on these two considerations, we argue that applying error correction

purely end-to-end or hop-by-hop in an overlay network is a sub-optimal strategy. For example, in

Table 1 (a), we list a set of possible bandwidth and loss rates on a 6-hop overlay path, where Bi

and Pi are, respectively, the bandwidth and loss rate on the i-th hop.

Given FEC using Reed-Solomon (RS) erasure-correcting codes, in order to fully recover lost

packets, the end-to-end based FEC scheme would have to be designed based on the end-to-end

FEC Method end-to-end OM-FEC hop-by-hop
 Throughput 258 302 302
Path loss rate 18% 18% 18%

hop 1 2 3 4 5 6
Bi 360 325 315 400 600 800
Pi 3.5% 4% 4% 3.5% 2% 1%

Sender

Router

Receive
r

(Bi, Pi, RTTi)

Overlay node

Router

Router

Overlay node
Overlay node

Table1: (a) An example of possible bandwidth
(Kbps) and loss rate of an overlay path

(b) Path throughput (Kbps) : OM -FEC vs End-to-
End and Hop-by-Hop FEC

 5

available bandwidth 315 Kbps and the end-to-end loss rate, approximately 18% in this case.

Thus, the overall data throughput is reduced to around (1-0.18)×315 = 258 Kbps. On the other

hand, if a heavyweight hop-by-hop based FEC scheme is used, the end-to-end data throughput

will be 302 Kbps with the same path loss rate. However, the hop-by-hop FEC scheme induces

more per-hop delay and uses more computational power of the overlay nodes than is necessary.

Our proposed OM-FEC tries to minimize the overall computational complexity at the

intermediate nodes, i.e. uses as few overlay nodes as possible to do FEC encoding/decoding,

while still maintaining near highest video quality that can be obtained over the overlay path.

OM-FEC partitions the whole overlay path into segments and performs FEC over each segment.

The paper is organized as follows. In Section II we describe our protocol, rate allocation scheme,

and algorithms for the novel OM-FEC strategy. Then, we describe the simulation and real

Internet experiments in Section III. Finally, in Section IV we conclude and suggest possible

extensions.

II. OVERLAY MULTI-HOP FEC (OM-FEC)

Figure 2: A sample overly path with n intermediate nodes

In our video streaming system, the video server sends a fixed rate bit stream to a user through an

overlay path as shown in Figure 2. There are n intermediate overlay nodes (denoted as Ni), and

hop i has available bandwidth Bi, packet loss rate Pi, and round trip time RTTi. In order to protect

packets from channel loss, forward error correction (FEC) codes are deployed. Obviously,

applying FEC over each hop results in the best video quality at the receiver, but also the most

(B1, P1, RTT1)

N1 N2 … Ni

(Bi, Pi, RTTi)

… Nn Receiver Sender

 6

intermediate FEC encoding/decoding computation. On the other hand, an end-to-end based FEC

scheme results in the worst video quality but the least FEC computation. Our objective is to

efficiently utilize the resources of this overlay path and to reduce the overall FEC computational

complexity while still maintaining near highest video quality.

Figure 3: OM-FEC building blocks and the relationship of these blocks

The basic building blocks of the OM-FEC scheme include an algorithm to determine optimal

partitioning of the overlay path, a rate allocation algorithm for allocating appropriate FEC rate

for different hops of the overlay path, and the actual deployment of the FEC on the path as

shown in Figure 3. The video server actively sends out a probe packet every ? t time units. Each

overlay node measures the loss rate and round trip time (RTT) of its related hop using this small

probe packet. The obtained per-hop RTT and loss rate estimates are used to infer the TCP-

friendly [5] available bandwidth of each hop. With this available bandwidth and loss rate, the

FEC rate for each hop can be calculated. However, FEC coding need not be implemented at each

hop. Our server runs a greedy algorithm to partition the overlay path cons istent with the above

FEC rate estimates, so that the overall computational complexity at intermediate hops is

minimized without sacrificing FEC based resilience gains. Partitioning splits the overlay path

into segments, and separate FEC encoding/decoding is employed over the segments. Hence, only

the boundary nodes between segments are involved in FEC encoding/decoding. When this path

partition algorithm produces a single segment (equivalent to the entire end-to-end overlay path),

then FEC is designed based on the end-to-end network characteristics, and the overlay nodes

Probe path parameters
(Bi, Pi, RTTi)

Rate allocation
for each hop

Path partition
into segments

 Deploy FEC over
 each segment

(Bi, Pi, RTTi)

 7

simply receive and forward data and FEC packets on to the destination. The decision made by

the server is conveyed to every node by a small command packet sent out from the server, so

each node knows what it should do after it receives a command packet. The following sections

outline the details of our OM-FEC scheme step-by-step.

A. Probe network parameters

Given the overlay path shown in Figure 2, the server first needs to know the available resources

of the path and then must decide how to efficiently use these resources. In OM-FEC, as

mentioned above, an active probing method is used to estimate the round trip time and loss rate

of each hop. In order to synchronize overlay parameter calculation and reduce overhead

bandwidth, the sender uses a small active probing packet to synchronize the estimation

procedure. The probe packet is sent from the server every time interval ?t. Each overlay node

processes the probe packet, and calculates the loss rate and the round trip time.

Figure 4: Probe packet information and processing; Server sends out a probe packet to downlink, the
collected information of each hop is conveyed back to server along uplink

The structure of the probe packet is shown in Figure 4 where the circles denote overlay nodes,

Sequen_Numb is the sequence number of the probe packet, #pkt_sent (i) denotes the number of

packets the i-th node sent. The parameters {RTTi, Pi} denote round trip time and loss rate of ith

hop, respectively. This probe packet passes through all the nodes of the constructed overlay path.

For downlink (link from server to receiver) path-parameter estimation, node i caches the probe

 Sequen_Numb
 # pkt_sent_(i)

 Sequen_Numb
 #pkt_sent_(i−1)

 Sequen_Numb
… …

RTTi+1, Pi+1
 ,Pi

RTTi, Pi

 Sequen_Numb
… …

RTTi+1, Pi+1

 , Pi−1

i i-1 i+1 Downlink
Uplink

Probe Packet

 8

packet from its up node, replaces item #pkt_sent(i−1) with its own #pkt_sent(i), and then

forwards the probe packet to the next node (i+1). Each node records the time Tsend - the instant

when it sends the probe packet to its down node, and this parameter is later used for round trip

time calculation. With the received item #pkt_sent(i−1) and the measured received data packets

#pkt_recvd_from(i−1), the i-th node can calculate the loss rate of the (i−1)-th link as

)1(_#
))1(__(#))1(_(#

1 −
−−−

=− isentpkt
ifromrecvdpktisentpkt

Pi
. The probe packet is fed-back to the server after

it reaches the receiver. This feedback packet collects all information from these overlay nodes

while going back to the server along the uplink (link from receiver to server). As for round trip

time estimation, as soon as a probe packet arrives at the i-th node from the (i+1)-th node, the i-th

node obtains the arrival time of this packet Tarrive, and then calculates the round trip time for the

i-th hop as follows:

 ∑
=

=

−−=
nj

ij
jsendarrivei RTTTTRTT (1)

The i-th node attaches its calculated loss rate of (i+1)-th hop and the round trip time of the i-th

hop to the probe packet and then forwards it to the (i−1)-th node as shown in Figure 4, until it

arrives the server. Thus, the server has the loss rate Pi and RTTi of each hop along the overlay

path.

B. Rate allocation strategy of OM-FEC

At a certain time t, the server estimates the available bandwidth Bavail(i,t), of each hop by using

the information brought back by the probe packet. Then, OM-FEC uses a very simple method to

allocate the available bandwidth for both FEC and video data on each hop: for the i-th hop, the

algorithm assigns a portion of the available bandwidth Bavail(i, t), to video data Bdata(i,t); and the

remaining bandwidth is assigned to FEC BFEC(i,t), until either the desired FEC rate Breq(i,t), is

 9

met or the available bandwidth budget is exhausted. In an extreme case, if Bavail(i, t) ≤ Bdata (i, t),

all the available bandwidth is assigned to the video data. The main goal of the rate allocation

scheme is to find Bdata(t) for the whole path and BFEC(i,t) for each hop based on its measured loss

rate and round trip time, for further utilization by OM-FEC (to decide what kind of FEC scheme

should be deployed, OM-FEC, end-to-end FEC, or hop-by-hop FEC)

The Bavail(i, t) is the estimated TCP-friendly bandwidth of the i-th hop and can be calculated

using [5]:

)),(321)(,()

8
),(3

3(
3

),(2
),(

2tiptip
tip

T
tip

RTT

S
tiB

irtoi

avail

++

=

−

 (2)

where S is the packet size in bytes, RTTi is the estimated RTT of the i-th hop in seconds, Trto-i is

the TCP timeout of i-th link, and p(i, t) is the estimated loss rate of the i-th link.

After the available bandwidths Bavail(i, t), of all the hops are calculated, the end-to-end bandwidth

Be2e(t), from source to receiver is the minimum of the per-hop TCP-friendly bandwidths of the

overlay paths, i.e.

))},({min)(
12 tiBtB

niee ≤≤
= . (3)

Thus, the server decides the bandwid th allocated to video data for each hop as:

)),(min()(2 fixedeedata BtBtB = (4)

We use systematic RS(ni,k i) erasure codes to protect packets from channel losses on hop i. In

order to fully recover the lost packets from hop i, the number of parity packets generated should

follow

),(tip
n

kn

i

ii ≥
−

. (5)

 10

Therefore, given the allocated video data bandwidth Bdata(t), and the estimated loss rate p(i,t) on

each hop, the required minimum FEC bandwidth Breq(i,t) to fully recover the lost packets of each

hop can be given as:

)(
),(1

),(
)(

),(1
)(

),(tB
tip

tip
tB

tip
tB

tiB datadata
data

req −
=−

−
= . (6)

Based on our statement at the beginning of this section, we can obtain the allocated bandwidth to

FEC on each hop:

))}(),((),,(min{),(tBtiBtiBtiB dataavailreqFEC −= . (7)

If the inequality (8) holds for all the hops, that means none of the allocated FEC bandwidth of

these hops can fully recover the lost packets on its link. Then FEC should be added hop-by-hop,

and in this case, OM-FEC works the same as hop-by-hop FEC, i.e. every intermediate node

performs an FEC encoding/decoding computation,

 nitiBtiB reqFEC ,...,2,1),,(),(=∀≤ . (8)

Given the available loss rate on each hop p(i,t), the end-to-end loss rate pe2e(t) can be estimated

using:

 ∏ =

=
−−=

ni

iee tiptp
02)),(1(1)(. (9)

Similarly to (6), the required end-to-end FEC bandwidth Be2ereq(t) to fully recover the end-to-end

loss rate can be calculated as:

)(
)(1

)(
)(2 tB

tp
tp

tB dataereqe −
= . (10)

If the inequality (11) holds, it means the available end-to-end bandwidth Be2e(t) is large enough

for both video data Bdata(t), and end-to-end required FEC bandwidth Be2ereq(t), then OM-FEC

 11

adds FEC end-to-end, i.e. works the same as an end-to-end FEC scheme. No intermediate

overlay nodes need FEC encoding/decoding.

)()()(22 tBtBtB dataeeereqe −≤ (11)

In intermediate cases between the end-to-end and hop-by-hop extremes, OM-FEC must partition

the overlay path.

C. Overlay Multi-hop FEC (OM-FEC)

We want to minimize the overall FEC computational complexity at the intermediate nodes, while

still maintaining near highest video quality, i.e. the expected video distortion of using OM-FEC,

E[DOM-FEC], should be the same as by using hop-by-hop FEC, E[Dhop-by-hop]. In order to maintain

high video quality, we use the rate allocation algorithm described in Section II.B. To minimize

the computational complexity of the overlay nodes, OM-FEC should use as few nodes as

possible for the FEC encoding/decoding. The OM-FEC partition algorithm should find the

minimum number of segments Nsegment, of the overlay path. Mathematically, the problem can be

stated as follows:

)(segmentNMinimize

 Subject to




=
= −−−

)),(min()(
][][

2 fixedeedata

hopbyhopFECOM

BtBtB
DEDE

. (12)

Given a certain bitstream with bit rate at Bdata(t), OM-FEC attempts to find the best partition of

the overlay path, i.e. the minimal number of partitioned segments Nsegment, that can maintain the

same video quality as hop-by-hop. We use a forward partition to find a good partition of the

path.

 12

In order to reduce computational burden, OM-FEC partitions the overlay path into segments

according to the characteristics of each hop as shown in Figure 5. For example, the OM-FEC

algorithm partitions the overlay path into N segments, which are the first J nodes as segment1,

the next L nodes as segment2 and the last M nodes as segmentN, respectively. FEC is then

deployed over each segment. Parameters J, L, …, M will be dynamically determined by the OM-

FEC algorithm as explained below.

Figure 5: Overlay path is partitioned into segments by OM-FEC to reduce computational complexity at
intermediate nodes, only boundary nodes perform FEC encoding/decoding, circles are overlay nodes;

Since OM-FEC does a forward search to find the best partition of the overlay path, the server

should be the start node to partition the overlay path. The forward partition is defined as

partitioning the overlay path along the direction from server to receiver. In Table 2, we define

terms which will be used in the partition algorithm.

Terms Meaning Calculation equations

BFEC(start+i) allocated FEC bandwidth for the segment
from start node to (start+i)th node

(2) – (7)

Breq(start+i) required FEC bandwidth for the segment
from start node to (start+i)th node

(9) - (10)

Nsegmenf number of segments partitioned

Table 2: terms used in partition algorithm

J L M

 1 n h i j … … … …

Forward partition

 13

The computation unit for this part is based on a segment. For instance, BFEC(start+i) is calculated

based on the method of Section II.B and (2)−(7), but considering the segment from the start node

to (start+i)-th node as one virtual link and using the accumulated loss rate and ava ilable

bandwidth of this virtual link.

The Forward Partition algorithm is described by the following pseudo code given the server as

the starting node.

//forward partition algorithm

Start = 0; Nsegment= 1 //begin calculation from the server

For (i = 1; i <= n; i++){

 // calculate the FEC bandwidth from start node to (start+i)-th node

 Calculate BFEC(start+i));

 // calculate the FEC bandwidth to the segment from start node to (start+i+1)th node

 Calculate BFEC(start+(i+1));

 // find a boundary node to partition the overlay into segments

 If ((BFEC,(start+i) = Breq(start+i)) && BFEC,(start+i+1) < Breq(start+i+1))){

 Start node to (start+i)-th node is partitioned as one segment;

 Nsegment++

 FEC is deployed over this segment, the FEC bandwidth allocated to this segment is BFEC,(start+i);

 Start = Start+i ; // start from the boundary node to partition the rest of the path

 }

}

The server runs this algorithm to partition the overlay path into segments and deploys FEC over

each segment. The decision is then conveyed to all intermediate nodes by a small command

packet. For each boundary node, the command packet contains a 3-byte field specifying the node

ID, and the n and k parameters of the chosen RS (n, k) code. The nodes whose IDs are not listed

in the command packet will simply forward all the packets they receive, without FEC

 14

coding/decoding. Thus, each node knows what it should do after it receives the command packet.

Based on the OM-FEC strategy, the largest segment could include all the nodes of the overlay

path (same as the end-to-end scheme), and the smallest segment could be one hop (i.e. hop-by-

hop). In other words, OM-FEC is an adaptive strategy that tunes the architectural complexity

between the extremes of end-to-end and hop-by-hop operation.

D. Feasibility of Intermediate FEC coding/decoding computation

In OM-FEC, since intermediate nodes perform FEC encoding/decoding, we would like to

evaluate the limitations of applying FEC codes in video streaming and the feasibility of the

decoding/coding computation at the intermediate nodes. The RS(n, k) encoder takes k data

packets and generates n − k parity packets. Given the position of the lost packets, the RS decoder

can reconstruct up to n − k lost packets out of a total of n packets. Hence, a larger ratio n/k leads

to a higher level of protection for the video data. In a video steaming system, k cannot be chosen

arbitrarily, since the video data is time sensitive. Larger values of k imply longer delays at the

receiver side. The maximum value of k is related to the bit rate of the encoded video bit stream,

packet size, and the buffering time at the receiver side. Let the encoded bit rate be β bps, the

packet size be η bytes, and the receiver buffer size be λ seconds. If the receiver buffer is full, the

total amount of bits in the buffer is λβ . The amount of bits in a network packet is 8η, so the total

amount of packets in buffer is λβ/8η. If FEC is deployed over k packets, the receiver needs to

wait for the arrival of at least k packets prior to RS(n, k) decoding. Therefore, we need k ≤ λβ/8η.

Using a systematic code, the encoder picks groups of k source data symbols to generate n – k

parity symbols. Every source data symbol is used n – k times, so we can expect the encoding

time to be a linear or approximately linear function of n – k. Since our system relies on real-time

FEC encoding/decoding, it is necessary to evaluate the performance of the RS codec. We tested

 15

our implementation of the RS codec (based on Phil Karn’s RS codec [10]) on a Dell PC with

Pentium 4 CPU at 2.0 GHz, with 256 MB RAM, running Linux RedHat 8.2, with n = 255, and k

variable. The time needed to produce n − k parity packets, given k data packets, is shown (in ms)

in Table 2, for various values of n – k and packet size.

n – k 5 10 15 20 25 30 35 40
256 Bytes/packet 1.1 1.9 2.2 3.3 3.9 4.3 4.9 5.4
512 Bytes/packet 2.0 3.7 4.3 6.5 7.8 8.6 9.8 10.8
1024 Bytes/packet 4.1 7.3 8.6 13.0 15.6 17.2 19.5 21.6

Table 3: The RS encoding time (in ms) as a function of n – k and packet size.

From Table 3, we observe that very high FEC encoding rates can be achieved even on

commodity PCs (which would most likely be the peers of the overlay network). For example, the

encoding bit rate of the RS (255,245) code can be up to 274 Mbps at packet size 1024 bytes, and

this code can recover lost packets at random loss rates up to 3.92%. Erasure codes tested in [11,

16] gave similar results. Since the decoding process is much faster than encoding, we do not list

decoding test results here.

III. RESULTS

We now demonstrate the effectiveness of OM-FEC by comparing it with end-to-end based FEC

and hop-by-hop based FEC in both simulations and controlled real Planet- lab network [6]

experiments. Based on the OM-FEC algorithm, if the available end-to-end bandwidth is large

enough for both video data and FEC, then OM-FEC works in end-to-end mode. In case of

severe network congestion where none of the hops have enough bandwidth fo r both video data

and FEC, OM-FEC partitions the overlay path into the smallest segments (i.e. hop-by-hop) and

works the same as does hop-by-hop FEC. In this scenario, both hop-by-hop FEC and OM-FEC

 16

outperform end-to-end FEC in terms of video quality. Here, we focus our simulations and

experiments on the cases that lie between the above two extremes. We first test the bandwidth

efficiency of OM-FEC versus the end-to-end scheme. This is followed by video simulations that

compare the performance of OM-FEC against both end-to-end and hop-by-hop FEC. Finally, we

perform a controlled Planet- lab network video experiment. We expect that, as the number of

hops increases and the variation of their loss rates becomes larger, OM-FEC will outperform the

end-to-end FEC scheme. This expectation is confirmed by our simulations and experiments. In

this section, all the curves are the averages of at least ten simulation (experimental) runs.

A. Simulations -- bandwidth efficiency

In this section we compare OM-FEC and end-to-end FEC in terms of their provided video

throughput. We assume the task is to transmit a video encoded at 512 Kbps (which also

represents the highest possible video throughput) through a sequence of overlay nodes. The

simulation configuration is shown in Figure 6. The topology includes one sender, one receiver,

and three intermediate overlay nodes, with L1 through L4 denoting the overlay hops or links.

Similarly to [13] and [14], we use the 2-state Markov (Gilbert) model to simulate packet loss on

each hop. The sender sends out video packets through the three overlay nodes to the receiver,

and the feedback information is fed-back via the same nodes but in the reverse direction. The

probing packet is sent from the server once every 100ms.

Figure 6: Simulation configuration for bandwidth efficiency.; We vary the loss rates on each hop L1 -
L4 and compare the video throughput of OM-FEC vs. the end-to-end scheme.

Sender node1 node2 node3 Receiver

L1 L2 L3 L4

Video data

Feedback packets

 17

We begin our simulation by starting the network in a state of slight congestion. The simulation

parameters are shown in Table 4. The average burst lengths were in the range of 2-3 packets.

Test Basic Test Test A Test B
 Lossrate RTT (ms) Lossrate RTT (ms) Lossrate RTT (ms)

L1 [1% to 2%] 10ms [1% to 2%] 10ms [2% to 3%] 10ms
L2 [1% to 4%] 30ms [3% to 5%] 30ms [3% to 6%] 30ms
L3 [3% to 5%] 10ms [3% to 5%] 10ms [3% to 6%] 10ms
L4 [2% to 4%] 20ms [2% to 4%] 20ms [3% to 4%] 20ms

RS(n, k) k = 80, n is variable
Network conditions change every 300ms

Video Encoded video bitrate = 512 Kbps

Table 4: Simulation parameters for three different tests: Basic Test, Test A, and Test B.

 Loss rates are randomly chosen from their defined range.

We set the round trip time and range of packet loss rates for each hop. The network condition is

changed every 300 ms. At time t = 0, the sender begins to send out video data to the receiver.

Information gathered by the probe packet from each hop is fed back to the sender. For the Basic

Test, the sender calculates the available bandwidth of each link as shown in Figure 7(b),

according to the measured loss rate (Figure 7(a)) and round trip time on each hop. The sender

determines what kind of FEC scheme should be deployed for the current network condition.

OM-FEC uses bandwidth more efficiently in case of network congestion as shown in Figure 8,

where video throughput is defined as bandwidth occupied by the video data. To test our approach

in a heavier congestion condition, we increase the loss rate of the links in the simulation setup

shown in Table 4, for Test A and Test B. In Figure 9, we can see that OM-FEC outperforms the

end-to-end scheme by a large margin at severe congestion. For end-to-end FEC, the increased

end-to-end loss rate results in more FEC overhead over the entire overlay path. On the other

hand, OM-FEC only considers the related segments where loss rate increases. Thus, the OM-

 18

FEC scheme has better performance than the end-to-end FEC at severe congestion in terms of

bandwidth utilization.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 50 100 150 200 250 300 350 400 450 500

Time (second)

Pa
ck

et
 L

os
s

R
at

e

Link1 Link2 Link3 Link4 End-to-End

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300 350 400 450 500

Time (second)

A
va

ila
bl

e
B

an
dw

id
th

 (k
bp

s)

Link1 Link2 Link3 Link4

 Figure 7: (a) packet loss rate on the overlay path (b) available bandwidth of each hop

350

370

390

410

430

450

470

490

510

530

0 50 100 150 200 250 300 350 400 450 500
Time (second)

V
id

eo
 G

oo
du

p
(k

bp
s)

our OM-FEC Scheme End-to-End Scheme

350

370

390

410

430

450

470

490

510

0 50 100 150 200 250 300 350 400 450 500
Time (second)

V
id

eo
 G

oo
dp

ut
 (k

bp
s)

Our OM-FEC Scheme (A) End-to-End Scheme (A)

our OM-FEC Scheme (B) End-to-End Scheme (B)

Figure 8: video throughput OM-FEC Figure 9: video throughput of OM-FEC
 vs. end-to-end scheme vs. end-to-end scheme in Test A and Test B

B. Video simulations

In this part, we use a more complex overlay path to compare the performance of OM-FEC versus

end-to-end and hop-by-hop. The path is shown in Figure 10, where ten hops are denoted as L1-

L10. The packet loss rate for each hop is randomly chosen in the range [0.5%, 1.5%], thus the

overall path loss rate is approximately in the range [5%, 15%]. The video sequence is Foreman,

QCIF resolution, 30 frames per second (fps). The video bitstream is encoded using an H.263+

encoder with error-resilient option at 1530 Kbps, with intra frame refresh at every second. For

 19

simplicity, the available bandwidth of each hop is fixed at 1656 Kbps, therefore, a maximum 126

Kbps bandwidth can be allocated to FEC, which can recover lost data up to a 7.6% packet loss

rate. The network packet size is 512 bytes. Regarding the choice of RS(n,k) FEC codes, we fix

k=85, while n is determined by the loss rate and the available bandwidth. The network conditions

change every 300 ms. The probe interval is set to 100 ms.

Figure 10: video simulation path configuration, with varying loss rate on each hop (L1-L10). We
compare the performance of OM-FEC vs. end-to-end and hop-by-hop

Based on this setup, the server sends out video bit-team using OM-FEC, hop-by-hop based FEC,

and end-to-end based FEC. The results are shown at Figure 11. Since each hop has a packet loss

rate only between 0.5% and 1.5%, the hop-by-hop based FEC scheme has enough bandwidth for

FEC to recover almost all the packet losses except for a very few observed burst losses. On the

other hand, end-to-end FEC deploys FEC based on the end-to-end loss rate which is

approximately ranging in [5%, 15%]. However, due to the limited available bandwidth, the

maximum end-to-end FEC scheme can only recover a loss rate under 7.6%. Therefore, we

observed very bad video quality on the end-to-end based FEC scheme. Our proposed OM-FEC

partitions the overall path into segments based on the available bandwidth and loss rate in order

to acquire the same video quality as hop-by-hop based FEC, with less computational complexity.

OM-FEC partitions the overlay path in such a way that the added FEC codes can almost always

fully recover the packet loss of each segment. We observed similar video results to those of hop-

by-hop based FEC. The drops in the PSNR curve in OM-FEC are due to burst losses.

Sender node1 node2 node9 Receiver

L1 L2 L3 L10

Video data

Feedback packets

node8
…

L9 L8

 20

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300
Frame Number

P
S

N
R

_Y
 (

d
B

)

Hop-by-Hop FEC
OM-FEC scheme
End-to-End FEC

0

1

2

3

4

5

0 2 4 6 8 10
Time (in seconds)

N
u

m
b

er
 o

f
S

eg
m

en
ts

 1%-2% 0.5%-1.5% 0%-1.5%

Figure 11: OM-FEC vs. hop-by-hop FEC Figure 12: several sample partitionings
 and end-to-end FEC of OM-FEC

In Figure 12, we show several partition samples of OM-FEC at different per hop loss rates.

Though OM-FEC uses fewer nodes to do the FEC computations, it can achieve similar video

performance to that of hop-by-hop FEC. In Table 5, we compare the computational complexity

of OM-FEC with hop-by-hop and end-to-end. Obviously, the number of segments in the end-to-

end scheme is always 1 (no intermediate node is involved in FEC computation) and the number

of segments in hop-by-hop is always 10 (each overlay node does FEC decoding/re-encoding). On

the other hand, OM-FEC partitions the overlay path based on the loss rate and the available

bandwidth. It uses fewer nodes than hop-by-hop based, but with nearly the same performance in

terms of video quality in the receiver side.

Per-hop loss
range

Approximate
total

loss rate range

Number of
OM-FEC
segments

Avg. number of
OM-FEC

segments (in 10
runs)

Number of
hop-by-hop
segments

Number of
end-to-end
segments

0.0% -- 1.5% 0.0 -- 15% 1-2 1.94 10 1
0.5% -- 1.5% 5% -- 15% 2-3 2.27 10 1

1% -- 2% 10% -- 20% 3-4 3.20 10 1

Table 5. Computational complexity comparison of the three FEC schemes

 21

C. Controlled Planet-Lab network experiments

We also implemented our protocol over the real Internet using the Planet-Lab infrastructure [6].

The implementation includes an overlay agent and the protocol itself. Our overlay agent can run

at any Linux Planet-Lab node. Each agent forwards a video packet to the next node until it

arrives at the destination. The experimental topology is the same as Figure 5 and the Planet-Lab

nodes involved are listed in Table 6.

Server nima.eecs.berkeley.edu
Node1 planetlab1.flux.utah.edu
Node2 planetlab-1.cmcl.cs.cmu.edu
Node3 planetlab1.cs.cornell.edu

Receiver video.testbed.ecse.rpi.edu

Table 6: Nodes involved in Planet-Lab experiments

In the experiments described in this section we measure the objective video quality at the

receiver in terms of the Peak Signal-to-Noise Ratio (PSNR). We use the same video sequence as

in Section II.B except that the encoded bit rate is now 512 Kbps. Since there is virtually no

congestion from UC Berkeley to RPI (Internet 2), packets are artificially dropped to simulate a

realistic congestion effect. The packet loss rate from Utah to CMU is set to 5%, other links are

set to 1% [13, 17]. The available bandwidth from Utah to CMU is also upper bounded to 550

Kbps. Under these conditions, the end-to-end scheme designs a FEC based on the 550 Kbps

bandwidth and total loss rate 8%. OM-FEC identifies the bottleneck and partitions the overlay

into three segments as follows: segment1 from Server to Node 1, segment2 from Node 1 to Node

2, and segment3 from Node2 to the receiver. Two nodes are involved in FEC encoding/decoding.

The FEC is deployed within each segment. OM-FEC places FEC at the bottleneck for a

bandwidth of 550 Kbps and 5% loss rate. It can recover more packet loss than the end-to-end

 22

scheme and its video quality is much higher than that provided by end-end scheme FEC, as

shown in Figure 9. The PSNR gains are on the order of 13 dB.

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200 250 300 350

Frame Number

PS
N

R
(d

b)

our OM-FEC Scheme End-to-End Scheme

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200 250 300 350

Frame Number

PS
N

R
 (d

b)

our OM-FEC Scheme End-to-End Scheme

 Figure 13: video PSNR of OM-FEC vs. Figure 14: video PSNR of OM -FEC vs.
 end-to-end FEC (4 hops) end-to-end FEC (5 hops)

In the second set of experiments we add one overlay node (Node 4: planet1.ecse.rpi.edu) to the

path at last hop with 1% loss rate. In this case, for the end-to-end scheme, the FEC is designed

based on the bandwidth of 550 Kbps and loss rate 9%. OM-FEC still partitions the overlay path

into segments as before, and the FEC at the bottleneck is still designed for the bandwidth of 550

Kbps and 5% loss rate. Still, two nodes are involved in FEC encoding/decoding. The PSNR

results are shown in Figure 14, which shows that the advantage of OM-FEC over end-to-end

FEC is increased compared to Figure 13. Here, the PSNR gains are on the order of 14 dB. As

the number of nodes involved in the transmission increases, OM-FEC performs dramatically

better than the end-to-end scheme. For visual comparison, we show a few decoded frames in

Figures 15 and 16. These high PSNR improvement figures occurred because we have tried to

send at a high video bit rate, relative to what is available on the links. Of course, if we had tried

to send at a lower rate, there would be less difference between the various results.

 23

Figure 15: video streaming over 4 hops: OM-FEC (left) vs. end-to-end FEC (right).

Figure 16: video streaming over 5 hops: OM-FEC (left) vs end-to-end FEC (right)

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an overlay multi-hop FEC (OM-FEC) approach for streaming

video over peer-to-peer networks, which automatically adapts its architectural complexity

between the extremes of pure end-to-end or pure hop-by-hop operation. The proposed OM-FEC

improves the video throughput of the constructed peer-based overlay transmission path by

dividing the overlay path into segments based on link characteristics, and applying the

appropriate amount of FEC over each segment. We have shown that video streaming using our

approach outperforms that of end-to-end FEC without incurring high per-hop complexity. In

future work, we will look at incorporating ARQ and multi-path routing, as well as techniques for

dealing with node failures [4], in an effort to build up an overall network service abstraction for

video streaming and conferencing over peer-to-peer networks.

 24

REFERENCES

[1] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai, Distributing Streaming
Media Content Using Cooperative Networking, Microsoft Technical Report MSR-TR-202-37,
April 2002

[2] K. Yeo, B. S. Lee, and M. H. Er, “A Peering Architecture for Ubiquitous IP Multicast Streaming,”
ACM SIGOPS Operating Systems Review, vol. 36, pp 82-95, July 2002.

[3] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang, “Enabling Conferencing Applications on the Internet
using an Overlay Multicast Architecture,” Proc. SIGCOMM’01, San Diego, CA, August 2001.

[4] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris, “Resilient overlay networks,”
Proc. ACM SOSP’01, pp. 131-145, Banff, Canada, October 2001.

[5] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based congestion control for unicast
applications ,” ICSI Technical Report , no. TR-00-03, March 2000.

[6] http://www.planet-lab.org/
[7] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A Scalable Peer-to-

peer Lookup Service for Internet Applications,” Proc. SIGCOMM’01, pp 149-160, San Diego,
CA, August 2001.

[8] A.C. Begen, Y. Altunbasak, O. Ergun and M.H. Ammar, “Multi-path selection for multiple
description video streaming over overlay networks,” Signal Processing: Image Communication,
vol. 20/1, pp. 39-60, Jan. 2005.

[9] S. Gringeri, R. Egorov, K. Shuaib, A. Lewis, and B. Basch, “Robust compression and transmission
of MPEG-4 video”, ACM MM 2000 Electronic Proceedings, June 2000.

[10] Phil Karn, General-purpose Reed-Solomon encoder/decoder in C, version 4.0, available at
http://www.ka9q.net/code/fec/

[11] L. Rizzo, “Effective erasure codes for reliable computer communication protocols, ACM Computer
Communication Review, vol. 27, pp.24-36, April 1997.

[12] A.Rowstron and P.Druschel, “Pastry: Scalable, distributed object location and routing for large-
scale peer to peer system,” Proc.IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), Heidelburg, Germany, 2001.

[13] J. Bolot, S. Fosse-Parisis, and D. Towsley, “Adaptive FEC-based error control for internet
telephony,” Proceedings of IEEE INFOCOM, 1999, pages 1453-1460.

[14] K. Stuhlmüller, N. Färber, M. Link, and B. Girod, “Analysis of video transmission over lossy
channels,” IEEE J. Select. Areas Commun., vol. 18, pp. 1012-1032, June 2000.

[15] J. Apostolopoulos, W. Tan, S. Wee, G. Wornell, “Modeling path diversity for multiple description
video communication,” Proc. IEEE International Conference on Acoustics Speech Signal
Processing (ICASSP), 2002

[16] W. Tan and A. Zakhor, “Video Multicast using Layered FEC and Scalable Compression,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 11, pp. 373-386, March 2001

[17] J. Padhye, V. Firoiu, D. Towsley, and J. Krusoe, “Modeling TCP throughput: A simple model and
its empirical validation,” Proc. ACM SIGCOMM, (Vancouver, CA), pp. 303-314, 1998.

