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Abstract— An automated method is presented for selecting optimal parameter settings for vessel/neurite 

segmentation algorithms using the minimum description length principle and a recursive random search algorithm. 

It trades off a probabilistic measure of image-content coverage, against its conciseness. It enables non-expert users 

to select parameter settings objectively, without knowledge of underlying algorithms, broadening the applicability 

of the segmentation algorithm, and delivering higher morphometric accuracy. It enables adaptation of parameters 

across batches of images. It simplifies the user interface to just one optional parameter, and reduces the cost of 

technical support. Finally, the method is modular, extensible, and amenable to parallel computation. 

The method is applied to 223 images of human retinas and cultured neurons, from four different sources, using a 

single segmentation algorithm with 8 parameters. Improvements in segmentation quality compared to default 

settings using 1000 iterations ranged from 4.7 – 21%. Paired t-tests showed that improvements are statistically 

significant (p < 0.0005). Most of the improvement occurred in the first 44 iterations. Improvements in description 

lengths and agreement with the ground truth were strongly correlated ( 0.78ρ = ).  

EDICS—2-SEGM Segmentation; 2-MODL Modeling; 2-ANAL Analysis  
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I. INTRODUCTION 

 One practical barrier to more widespread adoption of automated image analysis systems in 

quantitative biomedicine is the need to adapt/customize them to cope with biological variability. To 

achieve this, algorithm designers are forced to incorporate user-settable parameters. Users are faced with 

the difficulty of selecting these parameters without sufficient knowledge of the internal mechanisms. 

Time-consuming manual trial-and-error, as well as extensive developer support is often necessary to 

properly configure the software for a given application. Even then, these settings are subjective, and there 

is no assurance of optimality. Currently, settings for these algorithms are chosen empirically (e.g., [1-4]) 

or formulated heuristically (e.g.,[5]).  

Accuracy of extracted measurements may also be affected by different algorithm settings. For 

example, Fig. 1a shows a phase contrast image of cultured neurites grown on an imprinted surface with 

known orientations of 45° and 90°. Panel (b) displays the automatically-generated traces using default 

settings. Panel (c) displays the traces obtained with automatically selected parameters using the method 

presented in this paper. The normalized angular histogram of measured segment orientations extracted 

from the automatically-generated traces is displayed in panel (d). Note the correct peak at 45° obtained 

using automatically-selected settings vs. 34° using default settings. 

Of particular interest (but not limited) to this work is automated segmentation of tube-like 

structures (e.g., blood vessels and neurites) in biomedical images [1-28]. The primary goal is to enable a 

non-expert user to select parameters effectively, and objectively, treating the segmentation software as a 

“black box.” The secondary goal is to enable the algorithm developer to modify the internal details while 

maintaining a consistent and simple external interface; and to minimize the cost of technical support. 

The rationale behind the proposed parameter selection method is that automated image analysis 

systems are expected to perform a non-trivial data reduction, extracting as much of the structural content 

in the image as possible, and expressing it concisely - in terms of instances and descriptive parameters of 

object models. In the fitting of these models to the image data, a tradeoff must be made between the 
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fitting error, and conciseness of the representation. This requires a quantitative metric to evaluate the 

segmentation quality along these two terms.  

The proposed metric, based on the minimum description length (MDL) principle [29, 30], can be 

thought of as an adaptation to vessel/neurite segmentation from the generic formulation for image-

partitioning as proposed by Leclerc [31]. The idea is to choose the optimal segmentation, and the 

corresponding optimal parameter settings, from a set of computable segmentations that correspond to 

different parameter settings. Currently, segmentation quality metrics have been devised for low-level 

vision tasks such as edge-detection [32-38] and image-partitioning [31, 39-42], but not for higher-level 

tasks such as vessel/neurite segmentation. Unlike the method published by Chalana and Kim [41, 43], the 

proposed metric for vessel/neurite segmentation does not require manual (or estimated [44]) ground truth 

segmentation. Also, unlike related works by Min et al. [45] for range image segmentation and the closed-

loop reinforcement learning framework by Peng and Bhanu [46], the proposed parameter selection 

method is fully unsupervised. 

Once the metric is defined, the vessel/neurite segmentation algorithm can be enclosed in a closed-

loop optimization framework as shown in Fig. 2b. For the image segmentation problems of interest, it is 

rational to seek approximate solutions within a defined time frame, rather than truly global optima. In this 

work, a recursive random search based algorithm [47] is chosen to efficiently search for the optimal 

parameter settings. The proposed approach is modular by design. This is imperative due to the already 

high and growing complexity of modern segmentation software, making it impractical to interface with 

internal routines. A similar statement could be made concerning global optimization software. Modularity 

also enables substitutions of algorithms written by different groups. 

II. SUMMARY OF RELATED LITERATURE 

This work draws upon four main bodies of literature: (i) automated/quantitative/objective 

segmentation evaluation; (ii) MDL estimation; (iii) global optimization; and, (iv) automated vessel/neurite 

segmentation algorithms.  
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The traditional approach to evaluating segmentation algorithms is by visual inspection [33]. 

Significant progress has been made on automated approaches [48]. Metrics for segmentation evaluation 

[32-36, 39, 44, 49-52] can be either goal-oriented, i.e., evaluation based on the performance of post-

segmentation steps such as pattern classification [50], based on other application-guided criteria such as 

the probability of false detection [35, 36, 49], or based on mismatch with manual ground truth 

segmentations (e.g., [52]). Most of them are specific for low-level vision tasks, such as edge detection 

[32-38] and region growing [31, 39], but are mentioned here nevertheless since they usually form the 

foundations of the more complex and specialized image segmentation algorithms (e.g., [3, 10]).  

The MDL principle [30] offers a systematic way to obtain an objective balance between 

segmentation conciseness and coverage [29, 31, 42]. In this paper, we present a MDL-based variational 

formulation [31, 40, 42], similar to the Mumford-Shah approach for segmentation [39].  

In the field of global optimization, genetic algorithms [53] and simulated annealing methods [54] 

are widely used since they require little a priori domain-specific information. However, these algorithms 

are mainly designed to seek full optimization and were found to lack initial efficiency for our application. 

Controlled random search [55], is also often considered for such cases. These are also known as stochastic 

optimization algorithms, mainly based on random sampling methods [47, 56], as opposed to deterministic 

algorithms (e.g., [57]). To improve efficiency, they are normally combined with local search techniques, 

such as steepest descent [58] and pattern search [59]. Limitations of global optimization algorithms are 

discussed in [60, 61]. 

Automated segmentation of tube-like structures in biological images, especially neurons [4, 6-9] 

and blood vessels [5, 10-24], are of particular interest to this work. These references are just a sparse 

sampling of the literature in this area, and the interested reader is referred to the literature review sections 

of these publications.  

III. GENERAL OBJECTIVE FUNCTION 

Although our immediate interest is the segmentation of tube-like objects, the description that 
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follows is presented more generally to enable the reader to adapt this approach to other applications and 

object types. A segmentation algorithm can be considered a function { }: ,f →ξI M  that maps an 

image I  to a segmentation M , using a parameter vector (“settings”) ∈Ωξ  (see Fig. 2a). Our goal is to 

automate the search for the optimal ξ̂  that yields the optimal M̂  in some practically useful sense. 

The optimal segmentation M̂  must be chosen from the set of all computable segmentations 

{ }iM , obtained by varying segmentation algorithm parameters ξ . The superscript i  denotes the i th 

iteration in the search of the optimal parameters ξ̂ . If a prior probability can somehow be assigned to 

each segmentation, maximum a-posteriori (MAP) can be used [31]. This requires choosing the 

segmentation M̂  that minimizes the posterior probability ( ) ( ) ( ) ( )i i iP P P P=M I I M M I  as  

 ( ) ( )ˆ arg max
i

i iP P=
M

M I M M , (1) 

noting that ( )P I  is a constant term. If optimal descriptive languages for a segmentation ML , and the 

image given the segmentation I ML , are available [31], the MAP criterion reduces to the MDL criterion 

given below:  

 ( ) ( )ˆ arg min
i

i i= + MI M
M

M L I M L M , (2) 

where ⋅  denotes the number of bits required to describe the data using ML  and I ML . Using optimal 

descriptive languages: ( ) ( )2logi iP= −I ML I M I M , and ( ) ( )2logi iP= −ML M M  bits, 

respectively [31]. The number of bits can be computed directly if the probability distribution ( )iP I M  

is known. Moreover, for each pixel, the pixel intensity probability distribution ( )( )iP xI M  can be 

replaced with ( ) ( )( ),iP Nx xI M  to capture the inter-pixel correlations within a neighborhood ( )N x  

around the pixel x  [62]. The first term in (2) then becomes a summation 
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 ( ) ( ) ( )( )
{ }

2
,

log ,
i i

i iP N
∈

= −∑
x

x xI M
F B

L I M I M , (3) 

within the foreground iF  and background iB  regions of which a segmentation iM  partitions the 

image into, i.e. { },i i i=M F B .  

In order to adapt the above approach to the immediate task of vessel/neurite segmentation, we 

need to specialize the term ( ) ( )( ),P Nx xI M  in (3) for the vessel/neurite segmentations of interest 

since it is not provided by the MDL principle [29]. The term ( ) ( )( ),iP Nx xI M
 
is also a place where 

the vessel/neurite model G  around the neighborhood ( )N x  of a pixel x  can be defined. For this, we 

adopt the multi-scale vesselness measure [27], denoted ( ) [ )0,1σ ∈xV , that measures the likelihood that a 

neighborhood of pixels centered at x  belong to a tube of size scale σ . It is based on the intensity-ridge 

modeling of vessels/neurites [5, 7, 8, 63], obtained from the scale-specific Hessian matrix: 

 ( ) ( )
2

2H Gγ
σ σσ

⎡ ⎤∂
= ∗⎢ ⎥∂⎣ ⎦

x x
x

I , (4) 

where Gσ  is the Gaussian function with standard deviation σ , γ  is the Lindeberg constant [64] for a 

family of scale-normalized derivatives, and “*” is the convolution operator. For a D-dimensional image, 

the eigenvalues of ( )Hσ x , denoted dλ , d D≤ , are ordered such that 1d dλ λ +≤ . For two-dimensional 

(2-D) images, ( )σ xV  is given by: 

 ( )
2

2 2

2 2

0,  if 0

exp 1 exp
2 2

BR S
c

σ

λ

β

>⎧
⎪

= ⎡ ⎤⎛ ⎞ ⎛ ⎞⎨ − − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎪
⎝ ⎠⎝ ⎠ ⎣ ⎦⎩

xV , (5) 

where 1 2BR λ λ=  (inverse-likelihood of being on a tube) and 2

2
d

d D
S λ

≤ =

= ∑  (image intensity contrast 

factor). The terms β  and c  in (5) are weighting parameters for BR and S  [27]. Using the vesselness 

measure to capture inter-pixel correlations, the first term in (2) now becomes:  
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 ( ) ( )( )
{ }

2
,

log
i i

i P
∈

= −∑
x

xI M
F B

L I M V . (6) 

It is possible to use other measures that capture vessel/neurite structure (e.g. [15, 25, 26]) although they 

are not explored in this paper.  

Notice that the vesselness value in (5) increases with decreasing magnitude of BR , effectively 

capturing the eigenvalues-shape associations for tube-like objects. This suggests that (5) can be modified 

accordingly for other basic geometrical models. Frangi et al. [27] have described approaches to adapt this 

method to other key geometrical models in biological images. Table I is a simplified summary linking key 

geometrical models and the corresponding eigenvalues.  

For the second term in (2) a descriptive language ML has to be chosen. For the present work, the 

pixel-chain code suggested by Leclerc [31] has been adopted. Using this code, once the starting point of a 

chain of pixels (e.g. a vessel/neurite segment) is defined, the subsequent pixels in the chain are identified 

as one of the possible neighbors using a small number of bits. For example, in 2-D, only 3 bits are needed 

for the chained pixels (8 possible neighbors) instead of 32 bits each for the x and y coordinate locations.  

At this point, the problem of image segmentation is ready to be wrapped into an optimization 

framework (Fig. 2b) using the MDL-criterion in (2) that trades off conciseness and coverage. Before 

proceeding, the users are given the optional ability to override/bias the tradeoff between conciseness and 

segmentation coverage using a universal parameter [ ]0,1α ∈ . When 0.5α = , the conciseness-coverage 

tradeoff is a balanced one. Overall, the segmentation quality metric q  is a function of the image I , 

segmentation algorithm parameter settings ξ , universal parameterα , and the neighborhood-based 

geometrical/intensity model G , and is written as follows: 

 ( ) ( ) ( ) ( )
concisenesscoverage

, , , 1i i i iq α α α= + −ξ MI M�M L M L MI G I , (7) 

using the coverage term as defined in (6) and the conciseness term with the pixel-chain code [31].  
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IV. RECURSIVE RANDOM SEARCH STRATEGY 

Several considerations motivate the selection of Recursive Random Search (RRS), as a preferred 

strategy compared to other available alternatives. First, exhaustive search is time-prohibitive. Second, the 

objective function is not differentiable with respect to the parameter vector, mainly because the mapping 

itself is not differentiable. Third, for the image segmentation problems of interest, it is rational to seek 

approximate solutions within a defined time frame, rather than truly global optima. Fourth, it is common 

for segmentation software to have several irrelevant/ineffective settings for a given application, and 

search algorithms that are able to minimize the computational effort in such dimensions are preferable. 

Finally, we expect the search algorithm to be robust to minor noise-like fluctuations in the objective 

function. Interestingly, Ye et al. [47] developed this algorithm motivated by similar parameter spaces 

encountered in computer networking – specifically, automatic and dynamic configuration of network 

components to maximize network throughput.  

As indicated by the name, the RRS algorithm is based on random sampling. This algorithm 

searches the parameter space in two recursive steps: exploration and exploitation, respectively. The 

exploration step examines the macroscopic features of the objective function (e.g., globally convex or 

“big valleys” structure [15]) and attempts to identify promising areas in the parameter space Ω  that are 

subsequently “exploited” intensively by the second step, called the exploitation step. For the random 

sampling, a uniform distribution over Ω  is used. This has been shown to be the simplest search technique 

for similar non-linear problems, and is widely used [47, 55, 56, 65]. It has been shown to be more 

efficient for exploring high-dimensional parameter spaces compared to deterministic exploration methods 

[47, 66], and can be shown to converge to the global optima [67]. 

We show below that random sampling is in fact very efficient in its initial steps and only starts to 

become inefficient in the later sampling steps. Given a measurable objective function ( )q ξ  over the 

parameter space Ω , we can define the distribution of objective function values for some [ ]0 min max,q q q∈  

as ( ) ( ){ }( ) ( )0 0|q m q q mφΩ = ∈Ω ≤ Ωξ ξ , where ( ).m  is the Lebesgue measure. Hence, the distribution 
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function ( )0qφΩ  represents the portion of the points in the parameter space whose objective function 

values are smaller than a certain level 0q . Furthermore, it has a maximum value of 1 when 0 maxq q= , and 

has minimum value(s) of ( ) ( )ˆm m Ωξ  where ξ̂  is (the set of) global optimum(optima). Without loss of 

generality, assume that ( )q ξ  is a continuous function and ( ){ }( ) [ ]0 0 min max| 0,  ,m q q q q q∈Ω = = ∀ ∈ξ ξ .  

Assuming a [ ]min max,rq q q∈  such that ( )rq rφΩ = , [ ]0,1r ∈ , an r -percentile subspace ( )rΩS  in 

the parameter space can be defined as ( ) { | ( ) }rr q qΩ = ∈Ω ≤ξ ξS . Note that (1)ΩS  is just the whole 

parameter space and 
0

lim ( )
δ

δΩ→
S  converges to the global optima. Suppose the sample sequence generated 

by n  steps of random sampling is { } 1

n

i=
ξ  and ( )iξ  is the one with the minimum objective function value, 

then the probability of ( )iξ  in ( )rΩS  is given by ( ){ }( )( ) 1 (1 )i nP r r pΩ∈ = − − =ξ S . Stated in another 

way, the value of r  for which ( )iξ  will be reached with probability p  is given by 1/1 (1 ) nr p= − − . 

For any 0 1p< < , r  will tend to 0 with increasing n , implying that random sampling will 

converge to the global optima with increasing numbers of samples. Since r  decreases exponentially with 

increasing n , the efficiency of random sampling is high at initial samples but falls sharply at later 

samples. This observation led to the idea of restarting the sampling before its efficiency drops off [47], 

either by moving or resizing the sample space according to sample history.  

Specifically, RRS performs exploitation in two iterative steps: (i) random sampling within the 

current space, and (ii) realign or shrink. As illustrated in Fig. 3a, after drawing certain number of random 

samples (we used 7 in this paper) within the current space 1S , if a superior sample 2ξ  is found, then 1S  

centered at the current sample 1ξ  is realigned (moved) to the sample space 2S . If no better sample is 

found during the random sampling, the parameter space 1S  is shrunk to 3S  instead of realigning to 2S  as 

shown in Fig. 3b.  

The strategy for limiting the exploitation step to promising subspaces is based on identifying an 
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r -percentile subspace for exploitation, as described above. In this way, most trivial subspaces will be 

excluded from exploitation, improving the overall efficiency of the search. In contrast, algorithms such as 

multi-start [65], do not distinguish between subspaces and hence may waste time in trivial areas. 

The RRS is efficient at handling an objective function with a subset of ineffective parameters [47] 

because random samples maintain a uniform distribution within the subspace composed of only the 

effective parameters, minimizing the computational effort invested on negligible parameters. In contrast, 

local search methods are affected by unimportant parameters because of their high dependency on 

dimensionality of the search space. For more details, the interested reader is referred to [47].  

V. EXPERIMENTAL RESULTS AND EXAMPLES  

This section provides a series of 2-D examples of progressively increasing complexity, starting 

with the simplest case of segmentation by global image thresholding. It is followed by a neuron tracing 

algorithm [1, 3] in which just two parameters out of eight are optimized, and concluded with a full eight-

dimensional parameter search. In all examples, 0.5α =  is chosen for pure MDL-balanced optimization. 

Also in all examples: (i) the size scales are obtained from the image content; and, (ii) the parameters for 

the vesselness measure are set to the values published in [27].  

To evaluate the segmentation quality metric q  using the description length in (6) the probability 

distribution function (PDF) of the vesselness values were estimated using 20 ground truth segmentations 

from the Digital Retinal Images for Vessel Extraction (DRIVE) database [25] and used in generating all 

presented results. Fig. 4 displays empirical and best-fit PDF of the vesselness values at the background 

regions B  in Panel (a) and at the foreground regions F  in Panel (b). Ranked by the Kolmogorov-

Smirnov (KS) test statistic, the exponential distribution for B  (KS value 0.27) and the generalized-beta 

distribution for F  (KS value 0.05) were determined to be the best fit out of 15 distributions considered. 

The parameters of the best-fitted distributions were obtained using maximum-likelihood estimation. 

Example #1: This example is intended to illustrate the methodology in a trivial and readily-

understood context – global intensity thresholding [68]. A global intensity threshold τ is applied to 
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images containing tube-like structures, and the goal is to find the optimal value τ̂  that yields the optimal 

segmentationM̂ . For objects brighter than the background, the segmentation function is given by: 

 ( )( ) ( ), .
if

f
otherwise

τ⎧ ∈ ≥
= ⎨

∈⎩

x x
x ξ

x
F I

I
B

 (8) 

For 8-bit grayscale images, ( ) [ ]0,255∈xI , the global intensity threshold [ ]0,255ξ τ= ∈  is a one-

dimensional parameter vector in the parameter space 1Ω∈ . Fig. 5 shows the results of applying the 

proposed methodology to this case. Panel (a) shows an image of neuronal dendrites captured by 

fluorescence microscopy. The vesselness measure ( )xV  is displayed in Panel (b). Panel (c) is a plot of the 

objective function q versus the threshold value τ . The optimal segmentation M̂  (using the optimal 

threshold value ˆ 41τ = ) is shown in Panel (d).  

Example #2: In this example, we show the use of the proposed methodology to choose the 

optimal parameters ξ̂  for an automated neuron tracing algorithm [1, 3]. The parameter settings for this 

algorithm can be combined into a vector as follows (Appendix): 

( )min max maxshift rotate cg L L n n s τ ν=ξ . 

They are summarized in Table II, along with their default values. Note that the traces are not merged for 

these examples since the segments are merged after tracing by the tracing software.  

Fig. 6 shows the result of an exhaustive search for just two parameters, grid spacing g  in the 

range [ ]10,30 , and contrast threshold multiplier cτ  in the range [ ]1,10  with other parameters set at 

default values. Panel (a) shows the input image containing fluorescently-labeled neurites imaged using a 

multi-photon microscope. Panel (b) shows the computed vesselness values. Panel (c) displays the entire 

optimization objective function q  versus g  and cτ . Panel (d) displays the traces obtained using the 

default parameter values ( )15, 3cg τ= = . The worst under-segmentation ( )26, 10cg τ= = , is displayed in 

panel (e). Panel (f) displays the worst over-segmentation ( )10, 1cg τ= = . The optimal segmentation 
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( )21, 8cg τ= =  is displayed in panel (g). Since only two parameters are being searched here, it is feasible 

to search exhaustively. These two parameters are related directly to the initial sampling of the image and 

the stopping criteria of the tracing algorithm. They are chosen to illustrate the effect of these aspects of 

the tracing algorithm on trace conciseness and coverage.  

Example #3: This example shows the search in the full eight-dimensional parameter space of the 

tracing algorithm, using at most 1000 RRS trials. For this example, 40 test images of human retinas (with 

ground truth), and 183 images of neurites were gathered from four sources (Table III). For the retinal 

images, the pixel-wise agreement to the ground truth was also computed. Improvements in description 

lengths and agreement with the ground truth were found to be strongly correlated ( 0.78ρ = ), and 

statistically significant (p < 0.0005 to reject the hypothesis 0ρ = ). From this point onwards, all reported 

improvements in this section are in terms of the segmentation quality metric q  compared to using the 

algorithm’s default parameter settings (Table II).  

Fig. 7 displays the applications of the proposed method to a human retinal fundus image shown in 

panel (a) and to images of cultured neurons in panels (b)-(d). Traces using default settings are shown in 

panels (e)-(h). Traces using automatically-selected settings using 1000 RRS trials are shown in panels (i) 

through (l). The quality improvement is 4% for the retina image in panel (a), 6% for the neuron image in 

panel (b), 7% for the neuron image in panel (c), and 38% for the neuron image on the micro-fabricated 

surface in panel (d).  

Table III summarizes the results for all 223 test images. The first column lists the image source 

followed by the number of images in the second column. The third column shows the improvements in q  

when the optimal parameter settings are obtained for each image. The fourth column shows the 

improvements when optimal settings for the first image from the same source are applied to the rest of the 

images. The reported improvements are all statistically significant (p < 0.0005) as concluded from paired 

t-tests on all test images. 

Fig. 8 graphically displays the segmentation quality improvements on the batch of images from 
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the Synaptic Distribution Study [69] as summarized in Table III. The fourth image from this batch is 

shown in Fig. 7b. The shaded bars show the percentage improvements in the segmentation quality metric 

when optimal parameter settings are computed for each image. Twelve images were found to share the 

same settings after 1000 RRS trials. The blank bars show the percentage improvements when settings are 

optimized for just one randomly selected image, and then applied to the rest of the images in the batch.  

The execution time is dependent on the time for one RRS trial, i.e., one run of the segmentation 

algorithm. For this exploratory algorithm, the execution time scales with image content [3]. As such, 

execution times for 1000 RRS trials to obtain the optimal parameter settings vary from 12 minutes per 

image on average from the DRIVE database [25] to 53 minutes on average for images from the Synaptic 

Distribution Study [69] on a 2GHz AMD Opteron processor.  

The performance of the RRS algorithm is plotted in Fig. 9, displaying the segmentation quality 

improvement in percentage relative to using default segmentation algorithm parameter settings, on 

average, for all 223 test images. The average improvement relative to default settings increases only by 

0.22% beyond 500 RRS trials up to 1000 RRS trials. This plot also illustrates the high efficiency of RRS 

during its exploration of the global parameter space. Furthermore, it shows that the default parameter 

settings are very unsuitable for the majority of the test images, especially from the neurite outgrowth 

directionality study [28] (see Table III). The minimum number of RRS trials is determined by the 

confidence-level of finding the optimal value within the global sample space, i.e., during its exploration 

step. For the 99% confidence-level used for all presented examples, RRS needs 44 trials [47] before it can 

begin identifying the promising subspaces for the exploitation step.  

VI. CONCLUSIONS AND DISCUSSION  

We have demonstrated the practicality of automatically tuning complex segmentation algorithms, 

using automatic segmentation quality assessment and global optimization, guided by the MDL principle. 

The proposed approach can greatly simplify the external interface of segmentation software packages, 

enable adaptation across large image batches from bioassays, and reduce the need for expensive technical 
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support. On batches of similar images, we have demonstrated that significant improvements can still be 

gained when the automated parameter selection method is performed on a single representative image (or 

perhaps, a modest subset) and the obtained parameter settings are applied to the rest of the images. This 

yields a better operating point for the segmentation algorithm compared to application-independent 

default values.  

The proposed methodology is fully automatic and self-contained, and free of user interactions 

such as in reinforcement-learning segmentation systems [46]. The core idea of trading off segmentation 

conciseness and segmentation coverage is extensible to other applications and other geometrical models, 

which remains as future work. The optional universal parameter α  allows a user to bias the tradeoff. The 

modularity of the proposed framework allows insertion of alternative segmentation algorithms and/or 

global optimization algorithms, as long as the interfaces between modules are maintained [70]. 

Algorithms for segmenting other key biological objects types such as blobs [71, 72] would require 

matching quality measures. 

APPENDIX: A BRIEF DESCRIPTION OF THE EXPLORATORY TRACING ALGORITHM 

The tracing algorithm [1, 3] models tube-like biological structures as piecewise-linear generalized 

cylinder segments. In 2-D, this reduces to finding a pair of almost-parallel edges (Fig. 10). To begin 

tracing, seed points are found by searching for local maxima along rectangular grids g  pixels apart and 

are validated using the same generalized cylinder model. 

Then, at each tracing iteration j , two boundary points { },j j
L Rb b  corresponding to the left and 

right tube boundaries are each found using directional correlation kernels called templates. The center 

point jc  is simply defined as the center of these boundary points. Each template consists of linearly 

stacked 1-D edge-detector kernels of the form ( )1, 2,0, 2, 1 T− − + +  anchored at the image point jb  along a 

particular direction ju . The edge-strengths from each 1-D edge detector kernel r  are averaged through 

the entire template length l L∈ , using median statistics [73] for robustness. The set 
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[ ]min max,L L L= contains all template lengths. The correlation between the templates and the image is 

called the “template response”, denoted R , as below:  

( ) ( ){ }{ }1,2,...,
arg max, ,j j j j

t ll L
medianR L r t

=∈
= +b u b u . 

 Each boundary point corresponds to the maximal response template parameters { }, ,j j jlb u : 

{( , , ) | , 1,.., , , }2

arg max( , , ) ( , , )j j j

j Ml m m l L
l R L

⊥= + = ∈ ∈
=

b u b c u u U
b u b u , 

where U is the set of unit vectors along directions in the neighborhood of ju . The user parameter M is 

the radius of the widest expected vasculature. Each template is elongated, shifted from jc , and rotated to 

find the corresponding boundary points. To save computation, the template is only shifted in a 

neighborhood shiftn  of previously calculated width at iteration 1j −  and rotated in a neighborhood rotaten  

around previously calculated tracing direction 1j−u . The estimate of the next center point 1j+c  is 

computed by scaling ju  with the adaptive step-size js . This estimate is finalized to 1j+c  in the next 

iteration after the tube boundaries are found using the templates. The same process is repeated until a 

stopping criterion containing a contrast-based threshold multiplier cτ  is met ν  consecutive times. The 

interested reader is referred to [1, 3] for details of the algorithm. 
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TABLE I 
 

Geometrical Model G  1λ  2λ  3λ  

Tube-like 0≈  0  0  
Blob-like 0  0  0  
Plate-like 0≈  0≈  0  

The eigenvalues of the Hessian matrix indicate common geometrical models in biological cell and tissue-level 
imagery, as shown [27]. For dark objects on bright backgrounds, the signs are reversed. In 2-D, the first two 
eigenvalues 1λ  and 2λ  are used and plate-like structures cannot be resolved. All three eigenvalues are used in 3-D. 
 

TABLE II  
 

Parameter Range Default Value Constraint on Values 

Grid spacing g  10 – 30 15 divisible by 5a 
Minimum template length minL  8 – 20  10 min maxL L≤  
Maximum template length maxL  8 –30 18 min maxL L≤  
Relative shift distance shiftn  2 –10 2 none 
Directional degree of freedom rotaten  3 –7 7 odd-numbered 
Maximum step size maxs  3 –10 8 max mins L≤  
Contrast threshold multiplier cτ  1 –10 3 none 
Maximum allowed stopping violations ν  1 –10 1 none 

The components of the parameter vector 8∈ξ  , their respective ranges, default values, and constraints on their 
values for the tracing algorithm. 
aThis constraint is omitted for generating the results and the optimization landscape in Fig. 6. 
 

TABLE III  
 

Improvement in quality q with 1000 RRS 
iterations, compared to default settings 

Image Source and Reference 
Number 

of 
Images 

Improvement when 
each image is 
optimized (%) 

Improvement 
when just one 

image is optimized 
(%) 

Directionality of Neurite Outgrowth Study 
(Neuron) [28] 154 21.3 18.5 

The STARE Project (Retina) [26] 20  04.7 01.3 
The DRIVE Database (Retina) [25] 20 09.0 04.1 
Synaptic Distribution Study (Neuron) [69] 29 10.9 10.0  

Summary of experimental results with 223 images from four sources. The first two columns list the image sources, 
and number of images. For all experiments, 1000 RRS iterations were used, and an 8-dimensional parameter space 
was searched. The third column shows the improvements in the segmentation quality metric q  when optimal 
parameter settings are computed for each image. The fourth column shows the improvements when settings are 
optimized for just one randomly selected image, and then applied to the rest of the images in the batch. 
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Fig. 1.  Optimal tracing settings lead to more accurate measurements. (a) A phase contrast image of 
cultured neurites grown on an imprinted surface with known orientations of 45° and 90°. (b) 
Automatically-generated traces using default settings. (c) Traces obtained with automatically selected 
parameters using the method presented in this paper. (d) The normalized angular histogram of measured 
segment orientations extracted from the automatically-generated traces. Note the correct peak at 45° 
obtained using automatically-selected settings vs. 34° using default settings. (Data courtesy: Dr. Gary 
Banker, OHSU). 
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Fig. 2.  Illustrates the proposed self-optimizing image segmentation approach. Panel (a) shows a 
traditional segmentation algorithm in which the parameter settings ξ  are set empirically for each input 
image I . Panel (b) illustrates the proposed method in which a global optimization algorithm efficiently 
explores the parameter space Ω  driven by a segmentation quality assessment value based on trading off 
conciseness of the segmentation vs. its coverage. The user optionally specifies a single universal 
parameter to override the tradeoff.  

(a)

(b)

(c)
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(a) Re-align 
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(b) Shrink 

Fig. 3.  Venn diagrams illustrating the re-align and shrink operations in the exploitation step of the 
recursive random search algorithm (RRS). The current sample is denoted 1ξ , and the local exploitation 
subspace is depicted as a un-shaded circle around it. After drawing a certain number of random samples 
within the current space 1S , if a better sample 2ξ  is found, then the search is re-aligned to the sample 
space 2S . If no better sample is found during the random sampling, the parameter space 1S  is shrunk to 

3S  instead of realigning to 2S . 
 

 
(a) (b) 

 
Fig. 4.  Displays empirical and best-fit probability distribution function (PDF) of the vesselness values at 
the background regions B  in Panel (a) and at the foreground regions F  in Panel (b). Ranked by the 
Kolmogorov-Smirnov (KS) test statistic, the exponential distribution for B  (KS value 0.27) and the 
generalized-beta distribution for F  (KS value 0.05) were determined to be the best fit out of 15 
distributions considered. The parameters of the best-fitted distributions were obtained using maximum-
likelihood estimation. 
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(a) (b) (c) (d) 
Fig. 5.  Trivial automatic thresholding example illustrating the behavior of the segmentation quality 
metric q . (a) Image of a fluorescently labeled neurite captured by a widefield microscope. (b) The multi-
scale vesselness measure. (c) Plot of the metric q  against the threshold τ  value. (c) The optimal 
segmentation M̂  using ˆ 41τ = .  
 
 
 

 
(a) 

 
 

(b) 
 

  (c) 

(d) (e) (f) (g) 
Fig. 6.  An example varying just two parameters, [ ]10,30g ∈  and [ ]1,10cτ ∈ , with others fixed at default 
values (Table II). Panel (a) shows a multi-photon microscope image of fluorescently-labeled neurites. 
Panel (b) displays the vesselness measure. Panel (c) shows the non-trivial optimization landscape. (d) 
Using the default parameter values ( )15, 3cg τ= = . (e) The worst under-segmentation ( )26, 10cg τ= = . 
(f) The worst over-segmentation ( )10, 1cg τ= = . (g) The optimal segmentation ( )21, 8cg τ= = .  
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Fig. 7.  Illustrating applications of the proposed method to: (a) a human retinal fundus image; (b)-(d) 
images of cultured neurons. Default traces are shown in panels (e) through (h). Traces using 
automatically-selected settings using 1000 RRS trials are shown in panels (i) through (l). The quality 
improvement is 4% for the retina image in panel (a), 6% for the neuron image in panel (b), 7% for the 
neuron image in panel (c), and 38% for the neuron image on the micro-fabricated surface in panel (d).  
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Fig. 8.  Displays the segmentation quality improvements on the batch of images from the Synaptic 
Distribution Study [69] as summarized in Table III. The fourth image from this batch is shown in Fig. 7b. 
The shaded bars show the percentage improvements in the segmentation quality metric when optimal 
parameter settings are computed for each image. The blank bars show the percentage improvements when 
settings are optimized for just one randomly selected image, and then applied to the rest of the images in 
the batch. 
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Fig. 9.  Average percentage improvement in segmentation quality for all 223 test images (Table III). This 
plot illustrates the high efficiency of RRS during its early exploration of the global parameter space. The 
improvement between 500 and 1000 RRS trials is only 0.22%. 
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Fig. 10.  Illustrates the iterative vessel/neurite tracing algorithm. Starting with initial seeds, the algorithm 
estimates the next location based on a robust estimate of the local boundary [2].  
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LIST OF TABLES 

Table I.  The eigenvalues of the Hessian matrix indicate common geometrical models in biological cell 

and tissue-level imagery, as shown [27]. For dark objects on bright backgrounds, the signs are reversed. 

In 2-D, the first two eigenvalues 1λ  and 2λ  are used and plate-like structures cannot be resolved. All 

three eigenvalues are used in 3-D. 

Table II.  The components of the parameter vector 8∈ξ  , their respective ranges, default values, and 

constraints on their values for the tracing algorithm. 

Table III.  Summary of experimental results with 223 images from four sources. The first two columns list 

the image sources, and number of images. For all experiments, 1000 RRS iterations were used, and an 8-

dimensional parameter space was searched. The third column shows the improvements in the 

segmentation quality metric q  when optimal parameter settings are computed for each image. The fourth 

column shows the improvements when settings are optimized for just one randomly selected image, and 

then applied to the rest of the images in the batch. 

LIST OF FIGURES 

Fig. 1.  Optimal tracing settings lead to more accurate measurements. (a) A phase contrast image of 

cultured neurites grown on an imprinted surface with known orientations of 45° and 90°. (b) 

Automatically-generated traces using default settings. (c) Traces obtained with automatically selected 

parameters using the method presented in this paper. (d) The normalized angular histogram of measured 

segment orientations extracted from the automatically-generated traces. Note the correct peak at 45° 

obtained using automatically-selected settings vs. 34° using default settings. (Data courtesy: Dr. Gary 

Banker, OHSU). 

Fig. 2.  Illustrates the proposed self-optimizing image segmentation approach. Panel (a) shows a 

traditional segmentation algorithm in which the parameter settings ξ  are set empirically for each input 

image I . Panel (b) illustrates the proposed method in which a global optimization algorithm efficiently 
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explores the parameter space Ω  driven by a segmentation quality assessment value based on trading off 

conciseness of the segmentation vs. its coverage. The user optionally specifies a single universal 

parameter to override the tradeoff.  

Fig. 3.  Venn diagrams illustrating the re-align and shrink operations in the exploitation step of the 

recursive random search algorithm (RRS). The current sample is denoted 1ξ , and the local exploitation 

subspace is depicted as a un-shaded circle around it. After drawing a certain number of random samples 

within the current space 1S , if a better sample 2ξ  is found, then the search is re-aligned to the sample 

space 2S . If no better sample is found during the random sampling, the parameter space 1S  is shrunk to 

3S  instead of realigning to 2S . 

Fig. 4.  Displays empirical and best-fit probability distribution function (PDF) of the vesselness values at 

the background regions B  in Panel (a) and at the foreground regions F  in Panel (b). Ranked by the 

Kolmogorov-Smirnov (KS) test statistic, the exponential distribution for B  (KS value 0.27) and the 

generalized-beta distribution for F  (KS value 0.05) were determined to be the best fit out of 15 

distributions considered. The parameters of the best-fitted distributions were obtained using maximum-

likelihood estimation. 

Fig. 5.  Trivial automatic thresholding example illustrating the behavior of the segmentation quality 

metric q . (a) Image of a fluorescently labeled neurite captured by a widefield microscope. (b) The multi-

scale vesselness measure. (c) Plot of the metric q  against the threshold τ  value. (c) The optimal 

segmentation M̂  using ˆ 41τ = .  

Fig. 6.  An example varying just two parameters, [ ]10,30g∈  and [ ]1,10cτ ∈ , with others fixed at default 

values (Table II). Panel (a) shows a multi-photon microscope image of fluorescently-labeled neurites. 

Panel (b) displays the vesselness measure. Panel (c) shows the non-trivial optimization landscape. (d) 

Using the default parameter values ( )15, 3cg τ= = . (e) The worst under-segmentation ( )26, 10cg τ= = . 

(f) The worst over-segmentation ( )10, 1cg τ= = . (g) The optimal segmentation ( )21, 8cg τ= = .  
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Fig. 7.  Illustrating applications of the proposed method to: (a) a human retinal fundus image; (b)-(d) 

images of cultured neurons. Default traces are shown in panels (e) through (h). Traces using 

automatically-selected settings using 1000 RRS trials are shown in panels (i) through (l). The quality 

improvement is 4% for the retina image in panel (a), 6% for the neuron image in panel (b), 7% for the 

neuron image in panel (c), and 38% for the neuron image on the micro-fabricated surface in panel (d). 

Fig. 8.  Displays the segmentation quality improvements on the batch of images from the Synaptic 

Distribution Study [69] as summarized in Table III. The fourth image from this batch is shown in Fig. 7b. 

The shaded bars show the percentage improvements in the segmentation quality metric when optimal 

parameter settings are computed for each image. The blank bars show the percentage improvements when 

settings are optimized for just one randomly selected image, and then applied to the rest of the images in 

the batch. 

Fig. 9.  Average percentage improvement in segmentation quality for all 223 test images (Table III). This 

plot illustrates the high efficiency of RRS during its early exploration of the global parameter space. The 

improvement between 500 and 1000 RRS trials is only 0.22%. 

Fig. 10.  Illustrates the iterative vessel/neurite tracing algorithm. Starting with initial seeds, the algorithm 

estimates the next location based on a robust estimate of the local boundary [2].  

 


