
Overlay Multi-hop FEC scheme for Point-to-Point Video
Streaming over Peer-to-Peer Networks

Yufeng Shan and Shivkumar Kalyanaraman

Department of Electrical, Computer and Systems Engineering
Rensselaer Polytechnic Institute, 110 8th street, Troy, NY 12180

ABASTACT
Peer-to-peer networks have become extremely popular to provide data-storage (eg: Napster, Kazaa) or
distributed computation facilities (eg: SETI@Home). We are interested in extending the notion of peer-to-
peer networks to provide a variety of overlay networking services, i.e. by having peers also provide packet-
forwarding capabilities. The performance characteristics (eg: loss, bandwidth, delay) of such a peer-based
overlay network is likely to be very different and highly variable compared to the traditional internet end-
to-end paths or even traditional managed overlay networks (eg: Akamai) because packets may cross the
Internet several times (for each overlay hop!). However, the massive diversity, i.e. multiple peer-based
overlay paths (eg: 100s of peer-to-peer overlay paths) harnessed could compensate for the performance
variability of any one path. In addition, lightweight support at intermediate nodes can improve the single
path performance. In this paper, we focus on the latter problem, i.e. providing lightweight support at
selected intermediate peer forwarding nodes to achieve dramatically increased error resilience on a single
peer-based path for point-to-point (not multicast!) video-streaming applications. Unlike traditional error
correction that relies on end-to-end ARQ or FEC based upon the end-to-end error characteristics of the
network path, our proposed scheme is a flexible scheme that also considers the error characteristics of each
overlay hop. However, our scheme is not a heavyweight hop-by-hop error resilience scheme (like X.25);
we segment the end-to-end overlay path into maximal sized "segments" and provide error resilience
between the overlay nodes (i.e. peers or hosts) of those segments. Therefore we call our scheme an "overlay
multi-hop FEC" (OM-FEC) scheme. Architecturally, this flexible design lies in between the end-to-end and
hop-by-hop paradigms, and we argue that it is well suited to peer-based overlay networks. No support is
expected from traditional Internet routers. We evaluate our work in two ways: simulations and real-world
implementation on the worldwide Planetlab infrastructure using a real video streaming application. Both
these evaluations confirm intuition, i.e., providing lightweight, and flexible multi-hop segment-based FEC
can dramatically outperform a naive pure end-to-end strategy, and can be much more efficient than a
heavyweight naive hop-by-hop resilience strategy.

Keywords: Video streaming, Peer-to-Peer, Overlay, Forward Error Correction, Multi-hop

1. INTRODUCTION
In this paper we envision a future where end-systems operate their own video streaming services using the
assistance from other peers (i.e. end-systems). Why is this interesting? Consider this scenario: a grandchild
in the U.S. plans to spontaneously stream his/her home video (captured on his camcorder) to his/her
grandmother in another country (eg: China or India) as part of a 2-way chat session. All the ingredients
necessary for this exciting application are coming into place: camcorders that provide MPEG data, large
disk space on computers, broadband connections on both ends, initial IPv6 deployments by ISPs to help
peer-to-peer applications. However, there is one hitch! Having a broadband access connection does not
assure an end-to-end performance satisfactory for video streaming. End-to-end performance is still tied to
the performance characteristics of the single default best-effort Internet path. The grandchild is also an avid
user of peer-to-peer systems (eg: Kazaa) and wonders if a magical network of peers can form to help in
his/her video streaming objective. In particular, could a large set of peer-based overlay paths complement
the default Internet path, even though each peer-based overlay path would have low performance and high
variability in performance.

We believe that this poses a fundamental design challenge: how to harness low performance and potentially
transient or highly variable peer-based forwarding resources (i.e.) peer-based overlay paths to provide an

abstraction of a large end-to-end point-to-point virtual pipe. Fundamental design challenges can be tackled
by revisiting fundamental architectural principles (eg: the end-to-end principle). In this paper, we focus on
the problem of providing lightweight support at selected intermediate peer forwarding nodes to achieve
dramatically increased error resilience on a single peer-based path for point-to-point (not multicast!) video-
streaming applications. Unlike traditional error correction that relies on end-to-end ARQ or FEC based
upon the end-to-end error characteristics of the network path, our proposed scheme is a flexible scheme that
also considers the error characteristics of each peer-based overlay hop. However, our scheme is not a
heavyweight hop-by-hop error resilience scheme (like X.25); we segment the end-to-end overlay path into
maximal sized "segments" and provide error resilience between the overlay nodes (i.e. peers or hosts) of
those segments. Therefore we call our scheme an "overlay multi-hop FEC" (OM-FEC) scheme.
Architecturally, this flexible design lies in between the end-to-end and hop-by-hop paradigms, and we
argue that it is well suited to peer-based overlay networks. No support is expected from traditional Internet
routers. In this paper, we do not focus on overlay path construction and routing problems. We focus on a
fixed constructed peer-based overlay path and how to efficiently utilize this path. We will henceforth use
the term “overlay path” to mean the constructed path over a peer-to-peer network.

High-quality video streaming over the current best-effort Internet is a challenging proposition due to the
characteristics of video data such as high bit rate requirement, delay and loss sensitivity. Streaming media
distribution has been an intensively studied research topic in the past several years. A large amount of
research has been done from all kind of aspects. From the network point of view, companies such as
Akamai and Digital Island have deployed Content Delivery Networks (CDNs) by using a network edge-
based architecture (edge servers) to achieve load balancing, lower latency and higher throughput. The
content is duplicated to the edge servers in order to reduce the round trip time and avoid congestion in the
Internet. Simultaneous use of multiple servers [1-2] and multi-paths [3-5] has been proposed in the context
of video transmission over Internet. In [1] and [2], the authors propose the use of multiple servers to stream
different components of the same content to a single client. Improvement in performance of the video
transmission system due to reduction of burst losses is observed in both cases. Video transmission over
multiple paths is discussed in [3-5][11]. The authors try to match the characteristic of video data with the
path parameters, such as loss rate, delay and capacity, so that the video quality at receiver is maximized.
From channel coding perspective, Forward Error Correction (FEC) and Automatic Retransmission reQuest
(ARQ) schemes are intensively studied for video transmission. In case of network congestion (loss happens
in the video receiver), error recovery scheme and congestion control scheme, such as FEC/ARQ and
scheduling, may be deployed to recover the lost packets over the default network path. FEC/ARQ scheme
calculates the end-to-end parameters of the default network transmission path and decides what kind of
FEC/ARQ scheme should be deployed to combat this network condition.

Most recently, peer-to-peer (P2P) architectures and overlay networks are gaining attention. Padmanabhan
et al [6] discuss the problem of distributing streaming media content, both live and on demand, to a large
number of receivers in a scalable way. They propose a solution called CoopNet, an approach for content
distribution that combines aspects of infrastructure-based and peer-to-peer based content distribution,
where clients cooperate to distribute content, thereby alleviating the load on the server. CoopNet builds
multiple distribution trees spanning the source and all the receivers for its MDC coded media content. Yeo
et al in their multicasting streaming paper [7] propose an application level multicast overlay using peering
technology and a lightweight gossip mechanism to monitor prevailing network conditions and to improve
the tree robustness. Client can dynamically switch to other parents if they experience a poor QoS. In paper
[8], Chu etc explore the possibility of video conferencing applications using an overlay multicast
architecture. A redesigned Narada [9] protocol is used in [8] to organize the participating nodes into
overlay spanning tree for data delivery. The constructed overlay is optimized according to the measurement
of available bandwidth and latency among users, and can be modified by the addition of good links and the
dropping of poor links. Their results indicate that End System Multicast can meet the stringent bandwidth
and latency demands of conferencing applications in heterogeneous and dynamic Internet environments.
The main goal of RON [10] is to enable a group of nodes to communicate with each other in the face of
problems with the underlying Internet paths connecting them. RON detects problems by aggressively
probing and monitoring the paths connecting its nodes. If the underlying Internet path is the best one, that
path is used and no other RON node is involved in the forwarding path. If the Internet path is not the best
one, the RON will forward the packet by way of other RON nodes.

1.1 Scope and Assumptions
Most of the above papers talk about massive video data distribution or video conferencing using application
layer multicast based on overlay or peer-to-peer network. When network is congested, the network chooses
another better route for packet transmission according to its measurement. In contrast, our objective is to
revisit the fundamental problem of efficiently utilize the resources a single overlay path, constructed over
peers, i.e. having a number of "hops" between peers. Our approach operates at small time-scales in the
data-plane, and can be combined with overlay routing and topology management approaches that operate in
the control-plane and in larger time-scales [9][10]. In this sense, error resilience using FEC is
complementary (i.e. does not compete) with resilience provided using overlay routing methods.

Router Router

Overlay node

(Bi, Pi, RTTi)

Receiver

Router Sender

Figure 1: Streaming video using overlay network

We would also like to re-iterate that our Overlay Multi-hop FEC scheme is designed for Point-to-Point
video streaming over peer-to-peer networks, while a lot of prior work on video streaming and overlay or
peer-to-peer networks assume multicast (i.e. point-to-multipoint) and are subsequently more complex. The
main goal of our proposed scheme is to efficiently utilize the characteristics {bandwidth, delay and loss
behavior} of the constructed peer-based overlay transmission path, in order to maximize the video good-
put at time of network congestion. We assume that we can always construct an overlay path by using Peer-
to-Peer techniques, such as Chord [18] and Pastry [19] to obtain a set of intermediate forwarding peers (eg:
Figure 1). The system consists of a set of participating nodes. The rectangles represent participating
overlay nodes, circles denote routers and the dashed lines represent the virtual path between the nodes. The
solid line is the default Internet path. The (Bi,Pi,RTTi) represents the parameters of ith virtual link as
{bandwidth, loss rata, round trip time}.

1.2 Motivations
The intermediate nodes of the overlay path receive and forward packets to its neighbor peer on the overlay.
Unlike the Internet routers shared by thousands of data flows simultaneously, these overlay nodes may only
be used by this application or shared by few other sessions. So the intermediate nodes may undertake some
data-plane functions to help improve overall resilience. Forward Error Correction (FEC) is a widely used
building block to recover packet loss for time-sensitive applications that cannot afford the delay for ARQ-
style re-transmissions. Traditionally, FEC is designed according to the measured end-to-end parameters
{loss rate, bandwidth} of the transmission path. We argue that doing FEC purely end-to-end in our peer-
based overlay context is a dramatically sub-optimal strategy. For example, in Table 1 (a), we list the
possible bandwidth and loss rate in a 6-hop overlay path, where {Bi,Pi}is the available bandwidth and the
possible packet loss rate of ith virtual link, respectively.

Hop 1 2 3 4 5 6
Bi 300K 400K 550K 400K 600K 800K
Pi 0% 1% 10% 1% 0% 2%

 (a) (b)

FEC Method End-to-End OM-FEC
 Good-put 258K 300K

Path loss rate 14% 14%

Table 1: (a) The example bandwidth and loss rate of an overlay path; (b) Good-put: OM-FEC vs End-to-End

In the above case, the end-to-end based FEC scheme would have to design its FEC overhead based on the
end-to-end available bandwidth which is the bottleneck bandwidth “300Kbps” and the total end-to-end loss
rate which is the sum of the individual loss rates, i.e. “14%” in this case. If Reed-Solomon codes are used

as FEC scheme, in order to fully recover the lost packets, 42kbps should be allocated to FEC, the good-put
is reduced to 258Kbps. On the other hand, if a heavyweight hop-by-hop based FEC scheme is used, the
FEC overhead is high only at links with high loss rates (eg: in link 3 which has a bandwidth of 550K and
loss rate of 10%). Thus, the end-to-end good-put can be engineered to be 300Kbps in this case. Obviously,
the hop-by-hop FEC scheme may induce more per-hop delay and use more computation power of the
overlay nodes than necessary. To balance the performance considerations of delay and bandwidth
efficiency with architectural complexity considerations (eg: end-to-end vs hop-by-hop), we propose a
flexible and adaptive error resilience protocol called Overlay Multi-hop FEC (OM-FEC) for video
streaming over peer-to-peer based overlay networks. Our proposed scheme aims to maximize the video
good-put over the overlay path and to minimize the overall computation complexity in the intermediate
nodes. Specifically, our OM-FEC scheme does not require FEC coding/decoding at each hop. Instead, OM-
FEC scheme optimally partitions the end-to-end overlay path into sub-paths and performs FEC over these
sub-paths, i.e. between the overlay nodes of these sub-paths. For example, in the case discussed in Table
(a), OM-FEC partitions the overlay path into two sub-paths. The first sub-path consists only of Hop 1, but
no FEC is added on this sub-path (i.e. the good-put is 300 kbps)! The second sub-path has 5 hops, from
Hop 2 to Hop 6. Recall that we use the term "hop" to mean an overlay hop between peer nodes, not a
router-to-router hop on the underlying Internet, and a segment is a sequence of such overlay hops. To finish
our discussion in this toy example, we note that the second path segment has a minimum available
bandwidth of 400k, and the same aggregate loss rate 14%, and therefore can accommodate an FEC addition
of 42kbps to maintain an overall good-put of 300 kbps (limited by the first segment). Compare this to the
258 kbps achievable with end-to-end FEC. This example suggests that if different segments have
substantial variability in available bandwidth and loss rates (as we can expect in peer-based overlay
segments), our segment-based FEC scheme would dramatically outperform the naive end-to-end FEC
strategy, while being considerably less complex than a heavyweight (overlay-) hop-by-hop FEC strategy.

The rest of our paper is organized as follows. In Section 2, we describe our protocol, rate allocation
scheme, and algorithms for our proposed novel FEC strategy. Next, we describe the simulation, real
Internet experiments and discuss results in Section 3. Finally, we conclude our work and provide the
possible extensions in Section 4.

2. PROTOCOL OVERVIEW

Our proposed building blocks for the protocol include (1) a rate allocation algorithm for allocating different
FEC rate for different virtual links (i.e. overlay hops) of an overlay path. (2) an Overlay Multi-hop FEC
(OM-FEC) algorithm to determine optimal partitioning for the actual deployment of the FEC
coding/decoding on the overlay path. In particular, the OM-FEC algorithm partitions the whole overlay
path into sub-paths and adds FEC over these sub-paths. Figure 2 shows a typical peer-based overlay path,
where Ni is the ith overlay node, the {Bi,Pi,RTTi} represents the parameters of ith virtual link between Ni
and Ni+1 as {bandwidth, loss rate, round trip time}. In this paper, we assume that the uplink and downlink
use the same overlay nodes.

…

(Bi, Pi, RTTi)
… Ni NnN1 N2

(B1,, P1, RTT1)
Receiver Sender

Figure 2: An overlay path for video streaming

The FEC scheme over our protocol operates in two modes as shown at Figure 3: (1) pure end-to-end mode;
(2) OM-FEC mode. The default mode is end-to-end mode that is the same as the naive end-to-end FEC
strategy, i.e., the end-to-end mode monitors the available end-to-end bandwidth and loss rate, and then
decides how much FEC overhead should be added. In end-to-end mode, the overlay nodes receive and
forward packets to the destination, without any extra computation functions. In the network experiences
congestion such that the end-to-end FEC scheme cannot recover the lost packets, we trigger a transition to
the OM-FEC mode. In this mode, the video server sends out an active probe packet every ∆t time units to
measure the performance characteristics of each hop of the overlay path. Each overlay hop assists in this
measurement process and puts its measure in the probe packet and forwards it along. Each overlay node
measures the loss rate, and puts a timestamp used to calculate the round trip time the suffix path from that
node to the destination (this suffix path RTT computation is completed when the probe packet comes in the

reverse direction). The source can then use the sequence of suffix path RTTs to infer the per-overlay-hop
RTTs. This series of per-hop RTT and loss rate estimates is used to infer the TCP-friendly available
bandwidth (using the TCP formula) at each hop. Now, with this available bandwidth estimate and loss rate
estimate, the optimal FEC strategy for each hop can be calculated. However, this does not imply that the
optimal FEC must be implemented at each hop. The OM-FEC algorithm then calculates the optimal path
partitioning consistent (or approximately consistent) with the above FEC estimates, so that the overall
computation complexity at intermediate hops is minimized without sacrificing the FEC-based resilience
gains. Overall, the final deployment of FEC in each time interval ∆t would maximize the end-to-end
realized good-put and minimize the computation complexity at intermediate peers (or overlay nodes). If the
output of the OM-FEC algorithm suggests that the end-to-end strategy is optimal, the system transitions to
the End-to-end mode (see figure below). The following sections will outline the details of the rate-
allocation and path segmentation strategies in the OM-FEC scheme.

Satisfy OM-FEC Mode

Satisfy End to
 End Mode

Satisfy OM-FEC
 Mode End-to-End

Mode
OM-FEC

Mode

 Satisfy End-to-End Mode

Figure 3: Two working mode transit status of our protocol

2.1 Rate Allocation Strategy in OM-FEC
The available bandwidth of the overlay path is allocated to both video data and FEC parity data. An
adaptive end-to-end rate allocation scheme is described in our prior work [20]. In the OM-FEC mode, the
problem of allocating optimal bit rate for FEC and video data to each virtual link can be stated as follows:

Find the FEC scheme that minimizes the total distortion: min((1) ∑
=

N

i
tiD

0
)),(

Subject to




−≤
≤≤

),(),(),(
),(),(0

tiRtiBtiB
tiRtiR

FECdata

reqFEC

where N is the total number of virtual links, RFEC(i,t) is the actual FEC bandwidth at ith virtual link over an
time interval (t, t+∆t). Bdata(i,t) denotes the required video data rate. B(i,t) is the estimated TCP-friendly
bandwidth of ith virtual link. Rreq(i,t) is the required FEC bandwidth for ith virtual link. The required FEC
bandwidth is the bandwidth with which the lost packets at receiver can be fully recovered. The available
bandwidth of each virtual link is different with different loss rate and round trip time. Different virtual link
may have different FEC bandwidth requirements. The goal of the rate allocation scheme is to find the
suitable rate allocation RFEC(i,t) for the constructed overlay path to maximize the good-put of the video data
in case of network congestion. Since we do not assume any scalable video coding scheme or any special
scheduling scheme in this paper, the distortion of video quality is minimized when the amount of video
data delivered is maximized. In other words, the problem of minimizing the distortion of video quality can
be transformed to a problem of maximizing the video good-put in the overlay path. Our strategy proceeds
as follows: for each virtual link, the algorithm assigns a portion of the available bandwidth for original
video data, and then the rest is assigned to the FEC bandwidth until either the desired FEC rate is met or the
rest of the available bandwidth budget is exhausted. In an extreme case, if the available bandwidth is less
or equal to the required video data bandwidth, all the available bandwidth is assigned to the video data.

A key point to be noted is that even though our algorithm is open-loop (i.e. it has no closed loop control
like TCP), it is TCP friendly! This is because the available bandwidth Bi of each virtual link is calculated
based on a formula that gives an equivalent TCP-friendly rate (eg: see [12]) using the per-virtual-hop {loss
rate, round trip time} estimates. In particular, we use the following TCP-friendly bandwidth equation:

)321()
8

3
3(

3
2 2

ii
i

irto
i

irtt

i

pp
p

T
p

T

SB
++

=

−−

 (2)

where Bi denotes the estimated available TCP-friendly bandwidth of the ith virtual link that is consistent
with the loss rate estimate (pi) and link round-trip time and timeout estimates (Trtt-i and Trto-i). S is the packet
size in bytes. Trtt-i is the estimated round trip time of the ith hop in seconds. Trto-i is the TCP timeout of ith
link, according to the analysis in reference [12], we choose Trto-i = 4Trtt-i in our implementation. pi is the
estimated loss rate of the ith link. The end-to-end estimated bandwidth B from source to receiver is limited
by the minimal per-hop TCP-friendly available bandwidth of the overlay path, i.e.,

 },......,2,1{);min(NiBB i ∈= (3)
The estimated TCP-friendly available bandwidth of each hop and the end-to-end TCP-friendly available
bandwidth is the input of rate allocation procedure.

2.2 Overlay-Multi-hop FEC (OM-FEC)

2.2.1 Forward Error Correction

Forward error correction codes are usually used for channel coding to protect the data from channel errors
(e.g. losses, bit errors). The basic principle behind the use of FEC codes is that the original source data,
along with the additional encoded parity packets, are transmitted by the sender, and the parity packets can
be used to recover the lost original source packets at the receiver. A receiver can fully re-construct the
original source data once it receives a sufficient number of packets. In this paper, we use systematic Reed-
Solomon erasure codes as FEC. The RS(n,k) erasure code take k original packets and generate n-k packets
parity packets. Given the position of the lost packets, the RS decoder can reconstruct packets loss up to n-k
packets out of n packets. Without the position of the lost packets, the decoder can still reconstruct from lost

packet up to (n-k)/2. Hence, larger ratio of k
n leads to higher level of protection for original data. Given a

target loss rate Ptarget and the measured loss rate of P, The RS(n,k) can be determined by the following
equation:

 (4) ini
n

kni
ett PP

i
n

P −

+−=

−







= ∑)1(

1
arg

If n is a given fixed number, k can be easily found using equation (4), vice versa, we can find n with a fixed
k. In a video steaming system, k can not be chosen randomly, since video data is time sensitive. Bigger k
means longer delay in the receiver side. k is related to the bit rate of the encoded video bit stream, packet
size and buffering time in the receiver side. For a video bit stream, if the encoded bit rate is β bps, the
packet size is η bytes and the buffer time at receiver side is λ seconds, then

η
λβ
8

≤k . According to the

results presented at [14], the viewing quality of MPEG-4 encoded video is acceptable at loss rate 1x10-5 ,
good at loss rate 1x10-6 . In this paper, we choose the residual end-to-end loss rate target . 6

arg 10−≤ettP

Using a systematic code, the encoder picks groups of k source data blocks to generate n - k parity blocks.
Thus, every source data block is used n - k times, and we can expect the encoding time to be a linear or
approx linear function of n – k. In this paper, we use online adaptive FEC for the video streaming system.
The data encoding and decoding is online processed. Due to the large amount of calculation, it is necessary
to evaluate the performance of the RS encoder/decoder to see if it can work real-time. We test our RS
encoder/decoder (based on Phil Karn’s FEC code [16], our code implementation is not optimized) in a
DELL PC with P4 CPU 2.0GHZ, 256M memory, RedHat 8.2. The test result is shown at Table 2.

N-K 5 10 15 20 25 30 35 40
256B/pkt 1.1ms 1.9ms 2.2ms 3.3ms 3.9ms 4.3ms 4.9ms 5.4ms
512B/pkt 2.0ms 3.7ms 4.3ms 6.5ms 7.8ms 8.6ms 9.8ms 10.8ms
1024B/pkt 4.1ms 7.3ms 8.6ms 13.0ms 15.6ms 17.2ms 19.5ms 21.6ms

Table 2: The encoding time of RS encoder

From Table 2, we observe that we can achieve very high FEC encoding rates even on commodity PCs
(which are going to be the peers of a peer-to-peer overlay network). For example, the encoding bit rate of
RS(255,245) code can be up to 274Mbps at packet size 1024bytes, and this code can recover the lost
packets at random loss rate up to 3.92%. Erasure codes tested at [15] reported similar results as our tests
above. The performance differences from [15] can be attributed to the implementation of the erasure
CODEC. Since the decoder is much faster than the encoder, we do not list our decoding test results here.

2.2.2 Overlay-Multi-hop FEC (OM-FEC)
Based on the estimated parameters of the constructed overlay path, the server runs OM-FEC algorithm to
decide what kind of FEC should be added to protect the video data, and also which overlay node should
perform the FEC encoding/decoding and how much FEC should be added at the chosen nodes. The criteria
of choosing FEC scheme for the overlay network are (1) Maximize the good-put of the constructed overlay
path. (2) Minimize the overlay nodes computation complexity. In order to maximize the good-put of the
constructed overlay network, we use the rate allocation algorithm described at Section 2.1. To minimize
the computation burden of the overlay nodes, the OM-FEC scheme should use as few nodes as possible for
the FEC encoding and decoding. Fewer nodes involved in the FEC encoding and decoding results in
smaller jitter and transmission delay at receiver side. Our proposed OM-FEC algorithm is described as
following.

 (a) The server calculates the end-to-end based FEC (Reed-Solomon code RS(n,k)) based on equation (4).

The end-to-end loss rate is approximately estimated as ∑=
≈

N

i iPP
1

. Given a fixed k, n can be calculated.

Since we know the position of the lost packets, the error recovery ability is doubled. The total bandwidth
Btotal needed for transmitting both the original data and parity packets is determined as.

 datadatadataFECdatatotal B
k
nB

k
knBBBB =

−
+=+=

)(
 (5)

 (b) If , this means the bandwidth needed for original data and FEC is smaller than the available
end-to-end bandwidth B of the overlay path, then FEC is added end-to-end. No intermediate overlay node
is involved into the FEC encoding/decoding. The operating mode is therefore the End-to-End mode.

BBtotal ≤

 (c) If , the available end-to-end bandwidth B is not large enough for both the original video
data and end-to-end FEC overhead. If the current mode is End-to-End mode, then the protocol transitions to
the OM-FEC mode. The easiest way to add OM-FEC is to conceptually add FEC at each overlay hop. Each
node decodes the received packets and encodes them again according to its channel behavior to the next
hop. Obviously, this scheme induces delay at every node and the computation burden of each node is large.
In order to reduce the computation burden, the OM-FEC scheme tries to partition the overlay path into sub-
paths as shown in Figure 4. For example, the OM-FEC algorithm partitions the overlay path into three sub-
paths, which are the first J nodes as sun-path1, the next L nodes as sub-path2 and the last M nodes as sub-
path3, respectively. FEC scheme is deployed over the 3 sub-paths. Thus, the overall computation burden is
reduced compared to the one-by-one node FEC computation. J,L,M are the parameters dynamically
determined by the OM-FEC algorithm.

BBtotal >

… … …Nj Ni N2 Nn N1

MLJ

 Figure 4 Overlay-Multi-hop FEC grouping

The algorithm of partitioning the overlay path into sub-paths is described as follows.

Start = 0; //begin calculation from the server
For (i = 1; i <= N; i++){
 // calculate the FEC bandwidth should be allocated to the path from start node to ith node
 Calculate ;)(istartFECB −−

 // calculate the FEC bandwidth should be allocated to the path from start node to (i+1)th node
 Calculate ;))1((+−− istartFECB
 // find the boundary node to partition the overlay into sub-paths
 If (()&&()(}...min{ istartFECdataistart BBBB −−+≥))1(()1(}...min{ +−−+ +< istartFECdataistart BBBB)){
 From start node to ith node is partitioned as one sub-path;
 FEC is deployed over this sub-path, the FEC bandwidth allocated to this path is ;)(istartFECB −−

 Start = i ; // start from the ith node to partition the rest of the path, the ith node is boundary node
 }
}
In the above pseudo code, Bi is the estimated available bandwidth of ith virtual link; Bdata is the required
bandwidth for video data. N is the total number of links. The server runs the above algorithm to partition
the overlay path into sub-paths and calculate how much FEC should be deployed on the different sub-paths.
The boundary nodes of these sub-paths are the only ones involved in the encoding and decoding
computation process. Based on the OM-FEC strategy, the biggest sub-path could include all the nodes over
the overlay path that is the same as end-to-end scheme, and the smallest sub-path could be one hop (i.e.
hop-by-hop). In other words, this is an automatically adaptive strategy that tunes the architectural
complexity between the extremes of naive end-to-end and hop-by-hop operation.

2.3 Loss rate and Round Trip Time Estimation
The loss rate is the ratio of number of lost packets over the total number of packets sent during time
interval ∆t. The round trip time is computed using the moving average of round trip times. Since the video
data packets need to pass multiple overlay nodes, it is difficult to calculate the loss rate and round trip time
of each hop using the passive method (using sequence number and timestamp included in the video packet).
In this paper, an active probing method is used to calculate the round trip time and loss rate of each virtual
link. In order to synchronize overlay parameters calculation and reduce the bandwidth overhead, the
proposed protocol uses a small active probing packet to synchronize the estimation procedure. The probe
packet is sent from server every time interval ∆t, each overlay node processes the probe packet and
calculates the loss rate and the round trip time as shown in Figure 5.

 Sequen Numb

Ni

 Sequen Numb
nodes ++

……
Rtt(i+1), P(i+1)

 Rtt(i), P(i)
 , P(i-1)

 Sequen Numb
nodes

……
Rtt(i+1), P(i+1)
 ,P(i)

 #pkt sent (i-1)

Figure 5: the prob

In the figure, Sequen Numb is the sequence num
node the probe packets passed, #pkt sent(i) denot
round trip time and loss rate, respectively. The
overlay path. For downlink path parameter estim
replaces item “#pkt sent (i-1)” with its own “#p
node. The node recodes the time Tsend for further
With the received item “#pkt sent (i-1)” and the

 Sequen Numb
 # pkt sent (i)

e information for each node

ber of the probe packet, # nodes denotes the number of
es the number of packets the ith node sent. {Rtt, P} denote
probe packet goes through all nodes along the constructed
ation, each node caches the probe packet from its up node,
kt sent (i)” and then, forwards the probe packet to the next
 round trip time calculation while the probe packet is sent.
 measured received data packets “#pkt recvd from (i-1)”,

the ith node can easily calculate the loss rate of the (i-1)th link as
)1(__#

)1(_#
1 −

−
=− ifromrecvdpkt

isentpktPi
. Since

the Ni node may add FEC to the received packets or drop some packets according to the channel condition,
the “#pkt sent(i)” may not equal to “#pkt recvd from (i-1)”. The probe packet is fed back to the server after
it reaches the receiver. The feedback packet collects all information from these overlay nodes while going
back to server. As for round trip time estimation, as soon as a probe packet arrives from the (i+1)th node,
the ith node gets the arrive time of this packet Tarrive, then calculates the round trip time of ith link as
follows:

 (6) ∑
=

=

−−=
nj

ij
jsendarrivei RTTTTRTT

The ith node attaches the calculated loss rate of (i-1)th link and the round trip time of the ith link to the
probe packet and then forwards the packet to (i-1)th node, until it arrives the server. The server analyzes the
information brought back by the probe packet and calculates the available bandwidth for each virtual link.

2.4 Network Model
The issue of modeling packet loss over the Internet is discussed in [13], where it was shown that the
sequence of data block success and failure can be approximated by means of a simple two-state Markov
chain. In this paper, we assume that each link behaviors in the constructed overlay network can be
described using the Gilbert model as shown in Figure 6. There are two states in this model; in this paper,
state “1” represents a packet loss, state “0” represents a packet reaching the destination. Let p denote the
probability of going from state ‘0” to state “1”, let q denote the probability of going from state “1” to state
“0”. p

q

10

 1-q 1-p

Figure 6 Gilbert model for every link of the overlay

 The channel evolution of each link is completely specified by the channel state transition matrix:

. The steady state probability that a packet error occurs, P, is:








−

−
=

qq
pp

M
1

1
qp

pP
+

=
 ,The average

length of a burst of packet errors is L:
qL 1= . Based on this channel model, in the rest of this paper, we

simulate the performance of our streaming protocol over peer based overlay network.

3 SIMULATIONS AND EXPERIMENTS
We now demonstrate the effectiveness of our approach by comparing with traditional end-to-end based
FEC scheme, both simulations and experiments are performed. Based on our algorithm, we expect that as
the number of virtual links increases and the variation of the loss rate becomes larger, our approach would
outperform the naive end-to-end FEC scheme over the peer-to-peer network. This is confirmed by our
simulations and real-world experiments. Since we use a receiver buffer to absorb the delay and jitter, we do
not consider the delay and jitter induced by overlay node encoding and decoding in this paper. In this
section, all the curves are the average of at least ten runs of simulations or experiments, i.e. we average out
any randomness in the experimentation process.

3.1 Matlab simulations
The simulation configuration is shown at Figure 7. The topology setup includes one sender, one receiver
and three intermediate overlay nodes, L1-L4 are four overlay virtual links. The sender sends out video
packets through overlay nodes L1->L2->L3->L4 to the receiver, the feedback information is sent back
using the same nodes but revise direction.

Control packets

Video data

L4L3L2L1

Receiver node3node2node1Sender

Figure 7: Simulation configuration

The FEC scheme is deployed based on end-to-end scheme or OM-FEC scheme according to the network
conditions. We begin our simulation from starting the network in a marginal congestion condition. The
simulation parameters are set as Table 3.

Test Basic Test Test A Test B
L1 lossrate = [1% to 2%] lossrate = [1% to 2%] lossrate = [2% to 3%]
L2 lossrate = [1% to 4%] lossrate = [3% to 5%] lossrate = [3% to 6%]
L3 lossrate = [3% to 5%] lossrate = [3% to 5%] lossrate = [3% to 6%]
L4 lossrate = [2% to 4%] lossrate = [2% to 4%] lossrate = [3% to 4%]
RS(n,k) K = 80, N is variable
Network condition changes very 5 seconds
video Encoded bitrate = 512kbps

Table 3: Simulation Parameters

The round trip time parameters are chosen based on real Internet observations shown at Table 4. The source
host is a computer at test-bed lab, RPI Campus. The approximate round trip time from west coast to east
cost of US is about 60-80 ms, so our simulation parameter is set as close as real network, the total round
trip time from sender to receiver is set to 70ms. We fix the round trip time of the four links as rtt1 = 10ms;
rtt2 = 30ms; rtt3= 10ms; rtt4 = 20ms, respectively to simulate these realistic conditions.

Destination host Average RTT (ms) Destination host Average RTT (ms)
www.berkeley.edu 64 www.gatech.edu 31

www.mit.edu 16 www.rice.edu 47
www.cornell.edu <10 www.ucla.edu 79

Table 4: the measured average RTT within US from RPI

Given the parameters of the overlay network, such as round trip time and packet loss rate of each overlay
virtual link, the bandwidth of each virtual link can be determined by Equation 2. In our simulation, we set
the range of packet loss rate of each virtual link, the actual loss rate of each hop is random chosen within its
range. The network condition is changed every 5 seconds. At time t = 0s, the sender begins to send out
video data to receiver. The gathered network information from each hop is fed back to the sender. For the
basic test, the sender calculates the available bandwidth of each link as shown in Figure 9, according to the
measured loss rate (Figure 8) of each virtual link and round trip time. The sender determines what kind of
FEC scheme should be deployed under this network condition. The traditional end-to-end scheme deploys
FEC according to the measured round trip time and end-to-end loss rate. Our scheme fine grains the
overlay path into sub-paths and deploys the FEC according to the characteristics of the overlay path and
network conditions. Our OM-FEC scheme can use bandwidth more efficiently in case of network
congestion as shown in Figure 10. In Figure 10, the video good-put is defined as bandwidth occupied by
useful video data. The highest video good-put is 512 kbps that is the encoded video bit-rate in this
simulation. To test our approach in a heavier congestion condition, we increase the loss rate of several links
in the simulation setup Table 3, Test A and Test B. In Figure 11, we can see that our scheme out-performs
the end-to-end scheme more at severe congestion.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 50 100 150 200 250 300 350 400 450 500
Time (second)

Pa
ck

et
 L

os
s R

at
e

Link1 Link2 Link3 Link4 End-to-End

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300 350 400 450 500
Time (second)

A
va

ila
bl

e
B

an
dw

id
th

 (k
bp

s)

Link1 Link2 Link3 Link4

 Figure 8: The packet loss rate of the overlay path Figure 9: The available bandwidth of each virtual link

350

370

390

410

430

450

470

490

510

530

0 50 100 150 200 250 300 350 400 450 500
Time (second)

V
id

eo
 G

oo
du

p
(k

bp
s)

our OM-FEC Scheme End-to-End Scheme

350

370

390

410

430

450

470

490

510

0 50 100 150 200 250 300 350 400 450 500
Time (second)

V
id

eo
 G

oo
dp

ut
 (k

bp
s)

Our OM-FEC Scheme (A) End-to-End Scheme (A)

our OM-FEC Scheme (B) End-to-End Scheme (B)

Figure 10: the video good put of our scheme Figure 11: the video good put of our scheme
 vs end to end scheme vs end to end scheme in test condition A and B

3.2 Real-world Internet Overlay Experiments
We also implement our protocol over the real Internet (using the worldwide Planet-Lab [17] infrastructure).
The implementation includes an overlay agent and the protocol itself. Our overlay agent can run at any
Linux Planet-Lab node. The agent forwards video packet to next node until it arrives the destination. Every
agent has a small buffer for FEC encoding and decoding according to the decisions from the protocol. The
experimental topology is the same as Figure 7 and the Planet-Lab nodes involved are listed in Table 5.

Server nima.eecs.berkeley.edu
Node1 planetlab1.flux.utah.edu
Node2 planetlab-1.cmcl.cs.cmu.edu
Node3 planetlab1.cs.cornell.edu

Receiver video.testbed.ecse.rpi.edu

Table 5: Nodes involved in our experiments

The video sequence used in the experiments is “foremanQCIF”, 30f/s. The video bit-stream is encoded
using H.263+ encoder with error-resilient option at 512kbps, Intra frame refresh at every second. At the
receiver, we use a simple error-resilient technique to combat packet losses. Basically, the error-resilience
technique replaces the lost group of block (GOB) of the current frame with GOB of the previous frame and
copies the motion vectors of the lost GOB from the GOB above it. Since there is virtually no congestion
from UC Berkeley to RPI, packets are artificially dropped to simulate the congestion effect. The packet loss
rate from Utah to CMU is set to 5%, other links are set to 1%. The upper bound of available bandwidth
from Utah to CMU is also bounded, which is 550kbps. Since the dependency of the encoded video bit-
stream is very high, one packet loss in an I or P frame may spread to its following frames. The quality
degradation is very high in case of packets loss. In the above condition, the end-to-end scheme designs a
FEC based on the 550kbps bandwidth and total loss rate 8%. Our OM-FEC scheme identifies the

bottleneck and patitions the overlay into 3 sub-paths, which are from Server to Node 1, from Node 1 to
Node 2 and from Node2 to the receiver. The FEC is deployed within each sub-path. The OM-FEC designs
FEC at the bottleneck as 550kbps, 5% loss rate. It can recover more packet loss than the End-to-End
scheme, thus, the video quality is much higher as shown at Figure 12.

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200 250 300 350
Frame Number

PS
N

R
(d

b)

our OM-FEC Scheme End-to-End Scheme

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200 250 300 350
Frame Number

PS
N

R
 (d

b)

our OM-FEC Scheme End-to-End Scheme

 Figure 12: Video PSNR of our OM-FEC scheme vs Figure 13: Video PSNR of our OM-FEC scheme vs
 End-to-End Scheme (4 virtual links) End-to-End Scheme (5 virtual links)

We add one overlay node (Node4: planet1.ecse.rpi.edu) to the path at last hop with 1% loss rate. The
experiment result is shown at Figure 13.In this case, for the End-to-End scheme, the FEC is designed based
on 550kbps and loss rate 9%. Our OM-FEC scheme still partitions the overlay path into 3 sub-paths and the
FEC at the bottleneck still as 550kbps, 5% loss rate. From Figure 13, more degradation is seen for End-to-
End scheme. Our OM-FEC scheme has a slightly drop at around 150th frame. As more nodes involved in
the transmission, our OM-FEC scheme performs dramatically better than End-to-End scheme.

4 CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an error resilience scheme for streaming video over peer-to-peer network,
that automatically adapts its architectural complexity between the extremes of pure end-to-end or pure hop-
by-hop operation. Our protocol is TCP-friendly protocol, even though it does not use closed-loop control.
We propose a rate allocation scheme and an adaptive transmission control scheme in order to achieve
higher good-put of the constructed peer-based overlay transmission path. We have shown that video
streaming using our approach outperforms the naive end-to-end FEC approach scheme without incurring
per-hop complexity like in the hop-by-hop strategy. In our current work, we are incorporating ARQ
techniques, buffer management, and multi-path routing to build up an overall network service abstraction
for peer-to-peer video streaming and conferencing over peer-to-peer networks. We believe that this
application has sufficient characteristics of a potential killer application for the future.

5. REFERENCES

[1] T. Nguyen and A. Zakhor, “Distributed video streaming with Forward Error Correction,” Proceedings
of Packet Video Workshop (PV’02), April 2002
[2] A. Majumdar, R. Puri, and K. Ramchandran, “Distributed multimedia transmission from multiple
servers,” Proceedings of IEEE ICIP’02, vol. 3, pp. 177-180, September 2002
[3] J. G. Apostolopoulos and S. J. Wee, “Unbalanced multiple description video communication using path
diversity,” Proceedings of IEEE ICIP’01, vol. 1, pp. 966-969, October 2001.
[4] W. Xu and S. S. Hemami, “Efficient partitioning of unequal error protected MPEG video streams for
multiple channel transmission,” Proceedings of IEEE ICIP’02, vol. 2, pp. 721-724, September 2002
[5] J. Apostolopoulos, W. Tan, S. Wee, and G. W. Wornell, “Modelling Path Diversity for Multiple
Description Video Communication,” Proceedings of IEEE ICASSP’02, May 2002.
[6] V.N. Padmanabhan, H.J.Wang, P. A. Chou K. Sripanidkulchai “Distributing Streaming Media Content
Using Cooperative Networking” Microsoft technical report MSR-TR-202-37, April 2002
[7] K. Yeo, B.S.Lee and M.H.Er “A Peering Architecture for Ubiquitous IP Multicast Streaming” ACM
SIGOPS Operating Systems Review, Volume 36, Issue 3, pp 82-95, July 2002

[8] Yang-hua Chu, Sanjay G. Rao, Srinivasan Seshan and Hui Zhang “Enabling Conferencing Applications
on the Internet using an Overlay Multicast Architecture” SIGCOMM 01 August 27-31, 2001 San Diego,
CA, USA
[9] Y. Chu, S. Rao, and H. Zhang “A Case for End System Multicast” In Proceedings of ACM Sigmetrics,
June 2000
[10] D.G. Andersen, H Balakrishnan, M.F. Kaashoek, and R. Morris Resilient overlay networks. In
Proceedings of the Eighteenth ACM Symp on Operating Systems Principles, pages 131--145, Banff,
Canada, October 2001
[11] T. Nguyen and A. Zakhor, "Path Diversity with Forward Error Correction (PDF) System for Packet
Switched Networks" INFOCOM 2003, April 1-5, San Francisco CA, USA
[12] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based congestion control for unicast
applications,” Applications, Technologies, Architectures and Protocols for Computer Communication,
p.43-56, Oct. 2000.
[13] J. Bolot, S. Fosse-Parisis, and D. Towsley, “Adaptive fec-based error control for internet telephony,”
in Proceedings of IEEE INFOCOM, 1999
[14] S. Gringeri, R. Egorov, K. Shuaib, A. Lewis, and B. Basch, “Robust compression and transmission of
MPEG-4 video,” ACM MM 2000 Electronic Proceedings, June 2000, http://wood-
worm.cs.uml.edu/rprice/ep/gringeri
[15] L. Rizzo, “Effective erasure codes for reliable computer communication protocols”, ACM Computer
Communication Review, vol. 27, pp.24-36, Apr. 1997
[16] http://www.ka9q.net/
[17] http://www.planet-lab.org/
[18] Stoica, I., Morris, R., Karger, D., Kaashoek, F.,and Balakrishnan, H. Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications”. Proceedings of the SIGCOMM, pp 149-160. 2001
[19] A.Rowstron and P.Druschel “Pastry: Scalable, distributed object location and routing for large-scale
peer to peer system” In IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware), Heidelburg, Germany, 2001
[20] Yufeng Shan and Avideh Zakhor “Cross Layer Techniques for Adaptive Video Streaming Over
Wireless Networks" in International Conference on Multimedia and Expo, pp. 277 - 280. Lausanne,
Switzerland, August 2002

http://wood-worm.cs.uml.edu/rprice/ep/gringeri
http://wood-worm.cs.uml.edu/rprice/ep/gringeri
http://www.ka9q.net/
http://www.planet-lab.org/

	Overlay Multi-hop FEC scheme for Point-to-Point Video Streaming over Peer-to-Peer Networks
	
	
	ABASTACT
	1. INTRODUCTION
	1.1 Scope and Assumptions
	1.2 Motivations
	2.1 Rate Allocation Strategy in OM-FEC
	2.2.2 Overlay-Multi-hop FEC (OM-FEC)
	2.3 Loss rate and Round Trip Time Estimation
	2.4 Network Model
	3 SIMULATIONS AND EXPERIMENTS
	3.1 Matlab simulations
	3.2 Real-world Internet Overlay Experiments

	4 CONCLUSIONS AND FUTURE WORK

