
SCALABLE JOINT SOURCE-NETWORK CODING OF
VIDEO

By

Yufeng Shan

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Electrical Computer and Systems Engineering

Approved by the
Examining Committee:

Prof. Shivkumar Kalyanaraman, Thesis Adviser

Prof. John W. Woods, Thesis Adviser

Prof. William A. Pearlman, Member

Prof. Biplab Sikdar, Member

Prof. Ivan V. Bajic, Member

Rensselaer Polytechnic Institute
Troy, New York

April 2007

(For Graduation May 2007)

SCALABLE JOINT SOURCE-NETWORK CODING OF
VIDEO

By

Yufeng Shan

An Abstract of a Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Electrical Computer and Systems Engineering

The original of the complete thesis is on file
in the Rensselaer Polytechnic Institute Library

Examining Committee:

Prof. Shivkumar Kalyanaraman, Thesis Adviser

Prof. John W. Woods, Thesis Adviser

Prof. William A. Pearlman, Member

Prof. Biplab Sikdar, Member

Prof. Ivan V. Bajic, Member

Rensselaer Polytechnic Institute
Troy, New York

April 2007

(For Graduation May 2007)

c© Copyright 2007

by

Yufeng Shan

All Rights Reserved

ii

CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . viii

ACKNOWLEDGMENT . xvi

ABSTRACT . xvii

1. Introduction . 1

1.1 Motivations . 1

1.2 Outline of this Thesis . 4

2. Literature Survey . 6

2.1 Video Coding . 6

2.1.1 Hybrid Video Coding . 6

2.1.2 Subband/Wavelet Video Coding 8

2.1.2.1 EZBC Image Coding 10

2.1.2.2 SPIHT . 13

2.2 Scalability . 14

2.2.1 SNR Scalability . 14

2.2.2 Temporal Scalability . 15

2.2.3 Spatial Scalability . 16

2.3 Protection of Scalable Bitstream . 17

2.4 Bitstream Adaptation and Networking 18

3. Scalable Video Streaming with Fine Grain Adaptive Forward Error Cor-
rection . 20

3.1 Introduction . 20

3.2 Fine Grain Adaptive FEC . 21

3.2.1 System Overview . 21

3.2.2 Video Coding and Adaptation 23

3.2.3 Fine Granular Adaptation in the Presence of FEC 28

3.2.3.1 MD-FEC Overview 29

3.2.3.2 FGA-FEC Encoding 30

3.2.4 FGA-FEC Adaptation . 38

iii

3.3 Simulations and Experiments . 43

3.3.1 FGA-FEC vs. Source Coding 44

3.3.2 FGA-FEC vs. MD-FEC Encoding 46

3.3.3 FGA-FEC vs. MD-FEC - Multiple Heterogeneous Users . . . 47

3.3.4 FGA-FEC Adaptation vs. Optimal Decode/Encode 49

3.3.5 FGA-FEC vs. Unicast . 51

3.3.6 Further Comparison via ns-2 Simulation 52

3.3.7 FGA-FEC Adaptation vs. MD-FEC Transcoding in a Multi-
cast Scenario . 54

3.3.8 FGA-FEC vs. Layered Video Multicast 58

3.4 Conclusions . 60

4. Generalized FGA-FEC over Wireless Networks 61

4.1 Introduction . 61

4.2 Enhanced Link Layer Protocol . 64

4.3 Generalized FGA-FEC over Wireless Networks 65

4.3.1 Single-cluster Coding . 65

4.3.2 Fast Search Algorithm . 70

4.3.3 Multi-cluster Coding . 72

4.4 Simulations . 80

4.4.1 Optimization Performance . 81

4.4.1.1 Single Cluster Coding 81

4.4.1.2 Multi-cluster Coding 82

4.4.2 FGA-FEC Wireless Extension vs. FGA-FEC 84

4.4.3 Generalized FGA-FEC vs. Wireless MD-FEC in SNR Adap-
tation . 85

4.4.4 Generalized FGA-FEC vs. Wireless MD-FEC in Frame-rate
and Resolution Adaptation . 87

4.5 Conclusion . 88

5. Improving Multimedia Throughput Using Header Error Protection in WLANs 89

5.1 Introduction . 89

5.2 Header Error Protection and Performance Evaluation 90

5.2.1 Packet CRC in IEEE 802.11 92

5.2.2 Header CRC . 93

5.2.3 Header FEC . 94

iv

5.2.4 Comparison of the Effective Throughput of These Schemes . . 94

5.3 Simulations . 96

5.3.1 Random Network Simulations 96

5.3.2 Multi-hop Chain Scenario . 97

5.3.3 A Multi-hop Chain Topology with Cross Traffic 98

5.4 Conclusions . 100

6. Two-Stage FEC Scheme for Scalable Video Transmission over Wireless
Networks . 101

6.1 Introduction . 101

6.1.1 Related Work . 103

6.1.2 Organization . 104

6.2 System Overview . 104

6.2.1 Channel Models and Enhanced MAC Layer 105

6.2.2 Two-Stage FEC Scheme . 108

6.2.3 Effective Application-Layer Throughput 112

6.2.4 Scalable Video Coding and FEC Design 114

6.2.4.1 MC-EZBC Coding 115

6.2.4.2 FEC Design . 116

6.2.4.3 FEC Adaptation . 116

6.3 Simulations . 117

6.3.1 Effective Application Layer Throughput 118

6.3.2 Video Performance . 120

6.4 Conclusions . 121

7. Overlay Multi-hop FEC Scheme for Video Streaming 123

7.1 Introduction . 123

7.1.1 Scope and Assumptions . 125

7.1.2 Motivation . 126

7.2 Overlay Multi-hop FEC (OM-FEC) 127

7.2.1 Probe Network Parameters . 129

7.2.2 Rate Allocation Strategy of OM-FEC 130

7.2.3 Overlay Multi-hop FEC (OM-FEC) 133

7.2.4 Feasibility of Intermediate FEC Coding/Decoding 136

7.3 Results . 137

v

7.3.1 Simulations - Bandwidth Efficiency 138

7.3.2 Video Simulations . 140

7.3.3 Controlled Planet-Lab Network Experiments 142

7.4 Conclusions . 144

8. Distributed FGA-FEC . 146

8.1 Motivation . 146

8.2 Distributed FGA-FEC . 148

8.2.1 Coordination Between Algorithm Processes Running at Adja-
cent Nodes . 149

8.2.2 Coordination to Reduce Number of FGA-FEC Decode/recode
Nodes . 150

8.3 Experiments and Simulations . 155

8.3.1 Optimization Performance . 155

8.3.2 Comparison of FGA-FEC Adaptation with Hop-by-hop FGA-
FEC Decode/recode . 160

8.3.3 Comparison of Distributed FGA-FEC with Hop-by-hop FGA-
FEC Decode/recode . 162

8.3.4 Distributed FGA-FEC CPU-Time 163

8.3.4.1 FGA-FEC Decode/recode Scheme 165

8.3.4.2 FGA-FEC Adaptation Time 165

8.4 Conclusion . 167

9. Contributions and Suggested Future Work 168

9.1 Contributions . 168

9.1.1 Fine Grain Adaptive Forward Error Correction 168

9.1.2 Generalized FGA-FEC over Wireless Networks 169

9.1.3 Improving Multimedia Throughput using Header Error Pro-
tection in WLANs . 169

9.1.4 Cross-layer Two-stage FEC Scheme 169

9.1.5 Overlay Multi-hop FEC Scheme 170

9.1.6 Distributed FGA-FEC Scheme 170

9.2 Suggested Future Work . 171

LITERATURE CITED . 172

vi

LIST OF TABLES

2.1 Current video coding standards . 6

3.1 Possible adaptation orders . 25

3.2 Terms used in the algorithm descriptions 26

3.3 Summary of the differences between MD-FEC and FGA-FEC in terms
of FEC protection and in-network adaptation 38

3.4 Overall FGA-FEC procedure . 43

3.5 Network performance of using FGA-FEC vs Unicast 53

4.1 The results of optimal assignment at different BER 71

4.2 The results of optimal product codes assignment at different BER (en-
coding one GOP into two clusters) . 80

4.3 The results of optimal product codes assignment at different BER (en-
coding one GOP into three clusters) . 81

4.4 The encoding quality losses (PSNR loss in dB) of multi-cluster coding
with single cluster coding . 82

4.5 The average number of optimization iterations to reach optimal point
at different BER . 82

4.6 The optimal expected distortion (PSNR in dB) of different sequences
at different BER . 82

4.7 The average number of optimization iterations to reach optimal point
at different BER and different threshold, ε1 = 0.99,ε2 = 0.999 and
ε3 = 0.9999 . 83

4.8 Two clusters coding. The average number of optimization iterations
needed to reach optimal point at different BER and different threshold,
where ε1 = 0.99,ε2 = 0.999 and ε3 = 0.9999 83

4.9 Three clusters coding. The average number of optimization iterations
needed to reach optimal point at different BER and different threshold,
where ε1 = 0.99,ε2 = 0.999 and ε3 = 0.9999 83

4.10 The optimal expected distortion (PSNR, dB)of different sequences at
different BER, where iCL(s) means encodes to i clusters. 84

vii

6.1 Parameter setups for compare of several protection schemes 111

7.1 An example of possible bandwidth (Kbps) and loss rate of an overlay
path . 126

7.2 Path throughput (Kbps): OM-FEC vs. end-to-end and hop-by-hop FEC126

7.3 Terms used in partition algorithm . 135

7.4 RS encoding time (in ms) as a function of n − k and packet size 137

7.5 Simulation parameters for three different tests: Basic Test, Test A, and
Test B. Loss rates are randomly chosen from their defined range. . . . 139

7.6 Computational complexity comparison of the three FEC schemes 142

7.7 Nodes involved in Planet-Lab experiments 142

8.1 The PSNR loss in dB of using various stop search threshold, compared
with solutions obtained by set a threshold to a very small value 1×10−9. 156

8.2 The PSNR loss in dB of using various stop search threshold, compared
with solutions obtained by set a threshold to a very small value 1×10−9. 156

8.3 The number of iterations to reach the optimization stopping point for
various network conditions and search thresholds. 157

8.4 The measured items in FGA-FEC decode/recode and FGA-FEC adap-
tation methods . 164

8.5 Optimization CPU time. Here FTFS means full frame-rate full resolu-
tion, HTFS means half frame-rate full resolution and FTHS denotes full
frame-rate half resolution. We show the average optimization time per
GOP (sum of all four steps), the bisection search time, and the CPU
time per iteration. 165

8.6 Measured CPU time (in ms) of RS decode/recode at intermediate node.
Results show that to perform FGA-FEC decode/recode takes 44.5 ms
on average per GOP. 166

8.7 Measured CPU time (ms) of FGA-FEC adaptation 166

8.8 Intermediate node FGA-FEC decode/recode vs. FGA-FEC adaptation
in terms of CPU time. 166

viii

LIST OF FIGURES

1.1 Conventional video streaming, same piece of bitstream is sent twice over
the bottleneck . 2

1.2 Overlay video streaming, low frame-rate/resolution/quality video can
be extracted from high frame-rate/resolution/quality video at interme-
diate overlay nodes . 3

2.1 Block diagram of a conventional hybrid video coding system 7

2.2 Block diagram of the 3-D transform coding system 8

2.3 Temporal and Spatial decomposition of a 16-frame GOP 9

2.4 Block diagram EZBC image coding . 10

2.5 Examples of parent-offspring dependencies in the spatial-orientation trees 13

2.6 SNR scalability of hybrid coder . 14

2.7 Frame-rate scalability of hybrid coder 15

2.8 Spatial scalability of hybrid coder . 16

3.1 Intermediate adaptation of the video bitstream according to user video
requests and network conditions by overlay data service nodes 22

3.2 3-D video scalability in the form of atoms of a GOP, A(i, j, k) represents
an atom of {frame rate, resolution, quality} 24

3.3 One bitplane of an 8-frame GOP. The subband coding passes inside a
GOP are interleaved to achieve approximate equal significance across
time. 27

3.4 Hierarchy of MC-EZBC bitstream to facilitate 3-D adaptation 28

3.5 Rate partition of an embedded bitstream into N layers or quality levels,
from most significant bit (MSB) to least significant bit (LSB) 30

3.6 MD-FEC generates N descriptions or quality levels 30

3.7 FGA-FEC encoding of one GOP. Here, FEC is added vertically at block
level and each horizontal row of blocks is packetized into one network
packet. 31

ix

3.8 An example compares the encoding methods of MD-FEC vs. FGA-
FEC, here we only show the encoding details of section 3, other sections
should be similar . 32

3.9 Adaptation of an FGA-FEC encoded GOP, two dark blocks are removed
from each description, including both original data and parity bits. . . . 33

3.10 FGA-FEC encoded GOP can be re-organized to facilitate a certain kind
of adaptation. Here, one horizontal line is one description and vertically
it totals to N descriptions. Adaptation of PSNR can be easily achieved
by removing related vertical blocks from each packet. White blocks
contain FEC, colored blocks contains data. 37

3.11 Information packet payload and the size of each field of the packet . . . 37

3.12 (a)Effect of block size, smaller block size means finer granularity of
adaptation; (b)Effect of larger block size at different rate. 44

3.13 Video quality of 3-D adaptation to match the available bandwidth from
2 Mbps down to 512 Kbps . 45

3.14 FGA-FEC vs. MD-FEC in terms of bit allocation, GOP 1 of Foreman
is packetized into 128 packets . 47

3.15 FGA-FEC vs. MD-FEC in terms of bit allocation, GOP 1 of Foreman
is packetized into 64 packets. 47

3.16 Network topology for comparison of FGA-FEC with MD-FEC. Diverse
users connect through one DSN to a backbone link. 48

3.17 FGA-FEC vs. MD-FEC in terms of adaptation to different users with
different bandwidth ranging from 200 Kbps (User1) to 1 Mbps (User 9). 49

3.18 The operational rate distortion curve, and matched bit-allocation result
of the seventh GOP Foreman CIF sequence 49

3.19 Comparison of FGA-FEC, optimal decode/recode solution, and direct
truncation to serve users with different bandwidths; (a) against the
theoretical mean distortion by calculation, (b) against the video quality
by simulation . 50

3.20 FGA-FEC vs. random drop to response to a congested link 51

3.21 ns-2 topology for comparison of FGA-FEC with conventional unicast,
the initial channel parameter set up is indicated at each link 52

3.22 Sample video (93rd frame) of the 9th user in Table 3.5, given the avail-
able bandwidth, using FGA-FEC (a) and Unicast (b). 54

x

3.23 Comparison of PSNR of the 9th user: FGA-FEC vs. Unicast at full
frame-rate and full resolution; . 54

3.24 Comparison of FGA-FEC vs. Unicast in response to network bandwidth
change starting at Frame 97: (a)FGA-FEC adapts the bitstream at
half frame-rate and full resolution for User 6; (b) FGA-FEC adapts the
bitstream at full frame-rate and half resolution for User 8. 55

3.25 Network topology for a network of 16 nodes (link bandwidths are in
Mb), the tree is organized into groups using GFP protocol. 56

3.26 Quality delivered (in dB) at various receivers. In receivers 4 and 7, FGA-
FEC adaptation is about 0.01 dB lower than MD-FEC transcoding in
both cases. In receiver 12, FGA-FEC is about 0.4 dB lower on average. 57

3.27 Layered multicast in an example of one server, three different users.
The server sends out three video layers and users subscribe to different
layers according to their network conditions. 58

3.28 FGA-FEC vs. Layered multicast, quality delivered (in dB) at various
receivers . 59

4.1 Schematic diagram of RCPC/CRC and RS product code 62

4.2 Generalized FGA-FEC with product codes 63

4.3 Enhanced MAC/PHY protocol using header FEC 65

4.4 D(R) curves at various adaptation levels. 69

4.5 (a) probability of successful BCH(n, k, t) decoding at various channel
BER vs. t; (b) Average PSNR of video vs. t 71

4.6 FGA-FEC encoding method, one GOP of bitstream is encoded to N
descriptions, RS codes are applied across descriptions vertically at block
level. 72

4.7 Bitstream dependency of an embedded bitstream, where each node de-
notes a piece of bitstream at certain frame-rate and resolution, arrows
denote the dependency, for example, node 2 depends on node 1 74

4.8 Reorganized bitstream dependency, each dash lined group depends on
its parent bitstream from left, the dependency is in groups 74

4.9 Sample of full frame rate and CIF bitstream can be extracted from the
reorganized bitstreams . 75

xi

4.10 An example of splitting one encoded GOP into two clusters of descrip-
tions, blank blocks contains FEC, each description in the two clusters
is coded with BCH codes horizontally. 77

4.11 Generalized FGA-FEC for wireless network, the shadowed blocks are
unique for wireless network . 79

4.12 The optimization procedure of Algorithm 5 for two clusters assignment.
BCH(n, k, t) vs. expected distortion (PSNR) at each BCH code itera-
tion. 80

4.13 The optimization procedure of Algorithm 5 in three clusters assign-
ment. BCH(n, k, t) vs. expected distortion (PSNR) at each BCH code
iteration. 81

4.14 Topology of comparing FGA-FEC vs. its wireless extension. The en-
coded bitstream is sent from server to receiver through a wireless BER
channel . 84

4.15 Compare the PSNR of FGA-FEC vs. its wireless extension at different
channels with different bit error rates. 85

4.16 The topology of comparing FGA-FEC and MD-FEC over wireless lossy
channel. 86

4.17 The generalized FGA-FEC vs. wireless MD-FEC at adaptation to dif-
ferent available bandwidth from 200 Kbps to 1Mbps over a lossy wireless
channel. 86

4.18 Channel conditions between node2 and node3 87

4.19 Adaptation to different network conditions by frame rate and resolution. 88

5.1 Per-node throughput as a function of n 95

5.2 Simulation results on per-node throughput 97

5.3 A single chain with multi-hops from sender S to receiver R 97

5.4 A single chain with multi-hops from sender S to receiver R 98

5.5 A chain topology with cross traffic . 99

5.6 Performance of the chain topology with cross traffic 100

6.1 802.11 protocol stack and associated packet structure 104

6.2 System diagram of the proposed two-stage protection scheme 105

6.3 Enhanced MAC/PHY protocol using header CRC and header FEC . . . 106

xii

6.4 Application layer bandwidth efficiency vs BER 107

6.5 Detail of the proposed two-stage FEC scheme 109

6.6 Residual packet loss probability of several FEC schemes vs BER 112

6.7 Effective application layer throughput efficiency of several FEC schemes
vs physical channel BER . 113

6.8 A typical GOP of 16 frames with 5 layers of temporal scalability 116

6.9 NS-2 video simulation topology . 117

6.10 Effective application layer throughput on BSC and Gilbert channel at
different physical layer BER and corresponding Video PSNR Y 119

6.11 Video PSNR Y vs. frame number at different channel conditions of
each GOP . 120

7.1 Streaming video using overlay network 125

7.2 A sample overly path with n intermediate nodes 127

7.3 OM-FEC building blocks and the relationship among these blocks. . . . 128

7.4 Probe packet information and processing; server sends out a probe
packet downlink, the collected information of each hop is conveyed up-
link to the server. 129

7.5 An overlay path is partitioned into segments by OM-FEC to reduce
computational complexity at intermediate nodes. Only boundary nodes
perform FEC encoding/decoding. Circles denote overlay nodes. 134

7.6 Simulation configuration for bandwidth efficiency; we vary the loss rates
on each hop L1-L4 and compare the video throughput of OM-FEC vs.
the end-to-end scheme. 138

7.7 Packet loss rate on the overlay path . 139

7.8 Available bandwidth of each hop . 139

7.9 Video throughput of OM-FEC vs. end-to-end scheme. 140

7.10 Video throughput of OM-FEC vs. end-to-end scheme in Tests A & B. . 140

7.11 Video simulation path configuration, with varying loss rate on each hop
L1-L10. We compare the performance of OM-FEC vs. end-to-end and
hop-by-hop. 141

7.12 OM-FEC vs. hop-by-hop and end-to-end FEC. 141

xiii

7.13 Several sample partitionings of OM-FEC. 141

7.14 Video PSNR of OM-FEC vs. end-to-end FEC (four hops). 143

7.15 Video PSNR of OM-FEC vs. end-to-end FEC (five hops). 143

7.16 Video streaming over four hops: OM-FEC (left) vs. end-to-end FEC
(right). 144

7.17 Video streaming over five hops: OM-FEC (left) vs. end-to-end FEC
(right). 144

8.1 Streaming video from server to users through DSNs, red-dotted arrows
are overhead information flows, black-solid arrows are video flows. . . . 147

8.2 A simple topology streaming video to a user through DSN, the channel
condition is listed at each link, this backbone is congested for FGA-
FEC, but not congested for FEC decode/recode. 153

8.3 The probability of i out of N packets is successfully received at different
protection, for q2, we add additional 2 parity packets. 154

8.4 Effective Threshold: full search vs. search with previous GOP in terms
of number of iterations vs. GOP number for different bandwidths and
packet loss probabilities, (a-c) use threshold 1 × 10−9 and (d-f) use
threshold 1 × 10−5. 157

8.5 Comparison of ”Search with previous GOP” with ”Search with neigh-
bor” in terms of number of iterations to reach the optimization stopping
point vs. GOP number. (a-c) Foreman and (d-f) Mobile 158

8.6 Dynamic Channel Conditions: full search algorithm vs. our our pro-
posed ”search with previous GOP” and ”search with neighbor”, in terms
of number of iterations at a dynamic channel, (a) channel conditions
varying over GOP number, (b) the number of iterations to reach opti-
mal stopping point. 159

8.7 Comparison full search with our proposed ”search with previous GOP”
and ”search with neighbor”. There is a scene cut at GOP 19 from
Foreman to Football. Both (a) and (b) use search threshold 1 × 10−9,
and (c) and (d), use 1 × 10−5 . 160

8.8 Network topology for a network of 16 nodes (link bandwidths are in
Mbps, each link has a packet loss probability of 0.01). The backbone is
congested, with smaller bandwidth than some end-user links. 161

xiv

8.9 PSNR quality delivered to two receivers. For receiver 5, FGA-FEC
adaptation is about 0.56 dB lower than the distributed algorithm. For
receiver 12, FGA-FEC adaptation is about 0.14 dB lower on average. . 162

8.10 Network topology for a network of 16 nodes (link bandwidths are in
Mbps, each link has packet-loss probability of 0.01). The backbone is
congested, with smaller bandwidth than some end users. 163

8.11 Quality delivered in PSNR (dB) at two receivers. For receiver 5, dis-
tributed FGA-FEC average performance is less than 0.01 dB lower than
the hop-by-hop FGA-FEC decode/recode algorithm. At receiver 12,
both schemes have about the same video quality since they both do
transcoding at parent node. 164

8.12 A simple topology video streaming to one user through DSN. 164

9.1 Streaming video to heterogeneous users through an overlay network,
where DSNs are data service nodes with certain functionalities 168

xv

ACKNOWLEDGMENT

I would like to first thank my thesis advisors Prof. Shivkumar Kalyanaraman and

Prof. John W. Woods for their constant guidance in my thesis, and valuable advices

in my research. I also want to thank Profs. William A. Pearlman, Biplab Sikdar and

Ivan V. Bajic for serving on my doctoral committee, and for their helpful suggestions

on my thesis.

It’s very fortunate for me to work with two distinguished professors as my

thesis advisors at the Networks Lab and Center for Image Processing Research

(CIPR). I am grateful to the numerous students of both labs, too many to mention

individually, who contribute to my research work to various extents.

I acknowledge the financial support I received in my Ph.D program from Army

Research Office, Intel Corporation and Rensselaer Polytechnic Institute.

Finally I deeply appreciate my wife Xiu Liu and my son Zhuoheng Shan, who

accompany me at US and provided me love, support, and happiness through all the

time.

xvi

ABSTRACT

Streaming video to diverse users over heterogeneous networks is a challenging prob-

lem, and it is critical that video applications work well over wired and multi-hop

ad-hoc wireless networks. However, neither the network nor the application can

provide these assurances working independently of each other. In this thesis, we

look at the joint optimization of the video source coder, channel coder, and network

protocols for the robust transmission of video to heterogeneous users simultane-

ously. We view this problem as a Joint Source-Network Coding (JSNC) problem

and systematically investigate a set of schemes to carefully structure this interde-

pendence to maximize gains without limiting future flexibility and evolution. We

first investigate a fine grain adaptive forward error correction (FGA-FEC) scheme

for encoding and adapting a scalable video bitstream. Our FGA-FEC can encode

scalable video in such a way that both the embedded bitstream and the error con-

trol codes can be easily and precisely adapted in a multidimensional way to satisfy

diverse users without complex transcoding at intermediate nodes. We further gener-

alize this method to work in a multihop wireless network, where product codes and

bitstream adaptation are jointly optimized for both packet loss and bit error. To

improve the effective throughout of a wireless network, we proposed two link-layer

error protection schemes (header CRC and header FEC). A cross-layer two-stage

FEC scheme in cooperation with an enhanced MAC protocol (header CRC/FEC) is

then proposed to improve performance for multimedia data delivery. The proposed

scheme enables the joint optimization of protection strategies across the protocol

stack. To efficiently utilize one path of an overlay network, we propose an overlay

multi-hop FEC (OM-FEC) scheme that provides FEC encoding/decoding capabili-

ties at intermediate nodes. Based on the network conditions, the end-to-end overlay

path is partitioned into segments, and appropriate FEC codes are applied over those

segments. Finally, we investigate a distributed FGA-FEC algorithm to work on a

congested multihop network, where we do FGA-FEC adaptation whenever permit-

ted and do FGA-FEC decode/recode at edge nodes of congested links.

xvii

CHAPTER 1

Introduction

1.1 Motivations

Joint source-channel coding (JSCC) is a well known term in video transmission

circles, and refers to the combined optimization of source coding and channel cod-

ing based on the statistical characteristics of the underlying channel. Though this

approach is more powerful than a pure source-coding approach, it assumes a fairly

simple and mathematically elegant model of the ”channel”. For the future, it will be

critical that applications like video streaming work well over wired and multi-hop

ad-hoc wireless networks. However, neither the network nor the application can

provide these assurances working independent of each other. Here we look at the

joint optimization of the video source coder, channel error correction coder and the

network protocols for the robust transmission of video to heterogeneous users over

challenging network environments considering both packet loss and bit errors inside

packets. We view this problem as a Joint Source-Network Coding (JSNC) problem

and systematically investigated a specific JSNC approach, called fine grain adaptive

FEC (FGA-FEC), to carefully structure this interdependence to maximize the gains

without limiting future flexibility and evolution.

Simultaneously streaming video to heterogeneous devices, such as powerful

PCs, laptops and handset devices, is a challenging problem, since different users

may have different video frame rate/quality/resolution requirements, computational

capabilities, and network connections. In order to serve such heterogeneous users,

conventional approaches (Windows media, Real player) maintain multiple versions

of any piece of media to suit the variety of capabilities and preferences. While

streaming, the server sends separate copies of the same bitstream to different users,

which is clearly not efficient in terms of network bandwidth utilization as shown in

an example in Fig. 1.1, where two users are viewing the same video. The server

sends out the same video at the bitrates of 1 Mbps and 256 Kbps, respectively, to

different users. The total bandwidth consumed in the bottleneck is 1.25 Mbps.

1

2

Video

server

User 1

User 2

1 Mbps

256 kbps

1 M
bps

256 kbps

Figure 1.1: Conventional video streaming, same piece of bitstream is sent twice over
the bottleneck

IP multicast is an efficient way for simultaneous bulk data delivery. The most

serious problem faced by multicast today is the deficiency of its deployment in the

wide area network infrastructure. As an alternative, application layer multicast [1]

was proposed. In this approach, end systems, instead of routers, are organized into

an overlay network to relay data to each other in a peer-to-peer fashion. Application-

layer overlay is currently believed to offer us more, since end systems are flexible

enough to provide more functions than simple forwarding of packets. Recently,

service overlay networks (SON) [2, 46, 47, 8] have gained a lot of attention. Here

user defined application level functions are provided at the overlay nodes.

MPEG-21 [9] aims to enable the use of multimedia resources across a wide

range of networks and devices. The proposal for the MPEG-21 Part 7 standard is

digital item adaptation (DIA), which raises the possibility of in-network video adap-

tation [9, 10] and fits very well into an overlay infrastructure. Most recently, many

papers [10, 42, 43, 44] have reported on frameworks for modeling and arbitrary adap-

tation of scalable multimedia bitstreams. Scalable video bitstreams have the prop-

erty that the bitstream corresponding to a low resolution/frame-rate/quality version

of the video is embedded in the bitstream corresponding to higher resolution/frame-

rate/quality, and can be extracted in a simple manner without transcoding. With

the support of a service-overlay network, a single scalable bitstream would be suffi-

cient to satisfy the requirements of both users as shown in Fig. 1.2.

The video server would store one bitstream (corresponding to high frame-

rate/resolution/quality) and send it to user 1 at 1 Mbps. The bitstream for user 2

would be extracted from the 1 Mbps stream at an intermediate node and forwarded

3

Video

server

User 1

User 2

1 Mbps

1 M
bp

s

256 kbps

Figure 1.2: Overlay video streaming, low frame-rate/resolution/quality video can be
extracted from high frame-rate/resolution/quality video at intermediate
overlay nodes

at 256 Kbps. Thus, the total bandwidth consumed in the bottleneck is only 1

Mbps. The potential advantage of using scalable coders becomes even greater in the

case of multicast streaming, where different versions of the same content are sent

simultaneously to multiple diverse users.

One important issue that is not addressed in MPEG-21 and the recent research

is the error-control methods that should be used to match such bitstream adaptation

in lossy networks. This thesis addresses the bitstream protection and adaptation

problem by a set of joint source-network coding techniques for robust streaming

video to heterogeneous users simultaneously.

Our work is different from proxy-based streaming, multicast layered streaming,

joint source-channel coding (JSCC) and network coding. Proxy streaming systems

cache video content at a local proxy disk and transcode (decode/recode) the video

bitstream for different users. In multicast layered streaming, a video server sends

different layers to different multicast groups. Receivers adapt to network conditions

by joining and leaving these multicast groups, which however, results in a large

amount of signaling traffic in a dynamic network. Further, the adaptation is limited

to available layers. JSCC is an end-to-end unicast method which jointly optimizes

source coding and channel coding, subject to a total transmission rate constraint.

Network coding tries to achieve the largest network throughput in a broadcast sce-

nario, by random combining (encoding) packets at certain network nodes. It does

not care about the transmitted content and the end users. Our approach only

sends one bitstream but can arbitrarily adapt video frame-rate, quality, and spatial

resolution without transcoding. Moreover, our approach can provide an efficient

4

error-control mechanism in cooperation with scalable video to satisfy heterogeneous

users simultaneously, thus, extending the scalability features to channel coding.

1.2 Outline of this Thesis

The thesis is organized as follows. Chapter 2 is a literature survey of related

research. In Chapter 3, we investigate a fine grain adaptive forward error correction

(FGA-FEC) coding scheme for both channel coding and adaptation of scalable video

bitstreams. In our work, both the embedded source bitstream and the error-control

codes are easily and precisely adapted at intermediate overlay nodes to satisfy multi-

ple heterogeneous users without complex transcoding. We generalize this FGA-FEC

algorithm to work with multihop wireless network at Chapter 4, where product codes

and bitstream adaptation are jointly optimized for both packet loss and bit errors.

To improve effective throughput of a wireless network, we propose two link-layer

header-error protection schemes (header CRC and header FEC) in Chapter 5, the

intermediate nodes either use header CRC or header FEC to transport packets from

source to the destination. In the header error protection scheme, packets with errors

in payload are passed to next node or application layer. Therefore, we propose a

cross-layer two stage FEC scheme in Chapter 6 to corporate with the header error

protection scheme to correct both application layer packet drops and MAC/PHY

layer bit errors. The proposed scheme enables the joint optimization of protection

strategies across the protocol stack. In both FGA-FEC and its wireless extension

schemes, we did not consider the case of network congestion in the backbone. In

Chapter 7, we propose an overlay multi-hop forward error correction (OM-FEC)

scheme that provides FEC encoding/decoding capabilities at selected intermediate

nodes in the overlay path. Based on the network conditions, the end-to-end over-

lay path is partitioned into segments, and appropriate FEC codes are applied over

those segments. In Chapter 8, we investigate a distributed FGA-FEC scheme over

a congested multihop network, where we do FGA-FEC decode/recode at selected

intermediate overlay nodes, and do FGA-FEC adaptation at other nodes. We pro-

pose a coordination method between adjacent nodes to reduce the optimization

computation and apply the idea of OM-FEC to reduce the number of FGA-FEC

5

decode/recode nodes. Finally, we summarize the thesis and suggest possible future

work in Chapter 9.

CHAPTER 2

Literature Survey

2.1 Video Coding

Video compression is motivated by the following two facts: (1) raw video con-

tains an immense amount of data, and (2) communication and storage capabilities

are limited and expensive. Roughly there are two kinds of video coders: hybrid

coders and 3-D transform coders. Hybrid coders are the basis of all current video

coding standards. Subband/wavelet transform coders are more popular in the re-

search community. The most recent JPEG2000 [11] image compression standard is

based on 2-D subband/wavelet transform.

2.1.1 Hybrid Video Coding

Table. 2.1 lists the most popular video coding standards. They are all based

on hybrid video coders.

Table 2.1: Current video coding standards
Video coding Primary intended applications Bitrate

standard

MPEG-1 [12] Video CD, Audio (MP3) 1.5 Mbps
MPEG-2 [13] Digital TV, DVD 2-20 Mbps
MPEG-4 [14] Interactive, mobile services Variable

and video streaming
H.261 [15] Video conferencing over ISDN nx64 Kbps
H.263 [16] Video telephone over PSNT 33.6 Kbps and up

H.264/AVC [17] Improved video compression Variable

Due to the high similarity between adjacent video frames, and high correlation

among nearby pixels within the same frame, efficient video compression significantly

relies on effective removal of temporal and spatial redundancy in the input video.

In a conventional video coding system, such temporal and spatial redundancy is

exploited in the so called hybrid coding technique, a hybrid of motion compensated

6

7

(MC) temporal differential pulse code modulation (DPCM) and spatial transform

coding. � ��������	 ��
 ��
��	� �	��	� ���
�� �	� �	� �	��
� �� �� �	�
����	�����	�� ���
� � � ����

������ ���	 �	���� ��
�����
(a) Encoder ��� !"#$�!%&'()$# *$+,$ -!+%�# *$+.+#�$-/.+0$1!� 2'(,$1!13*#%#�!� 4 4)5 67#-7#8 *1!$
(b) Decoder

Figure 2.1: Block diagram of a conventional hybrid video coding system

The basic block diagram of hybrid coding is shown in Fig. 2.1. During encod-

ing, a sequence of video frames is first divided into GOPs (Group of Pictures) and

then input to the hybrid video coder (Fig. 2.1(a)). The first frame of the GOP is

usually coded independently of other frames, and is called an I frame. Other frames

of the GOP are coded through prediction: a P (predicted) frame is encoded from

previously coded I or P frame, and a B (bi-directional predicted) frame is encoded

from the previous and following P frames. To encode a P frame from a previous

I frame, the P frame is first divided into macroblocks (typically a 16 × 16 block

of pixels). The encoder then tries to find the matching block in previous I frame

for each microblock, and a vector, called the motion vector (MV), is calculated to

connect the two macroblocks. The corresponding block of pixels in the I frame are

subtracted from the P frame pixels and the prediction residual is quantized and

coded. After motion compensation, the frames are subject to spatial coding using

the 2-D discrete cosine transform (DCT) or an approximation represented by the

T block in Fig. 2.1(a), where each macroblock is divided into four 8 × 8 blocks in

MPEG-2 and each such block is transformed by DCT. The resulting coefficients are

8

then quantized by the Q block, and encoded by either Huffman [18] or arithmetic

[19] entropy coder. The block Q−1 simple maps quantizer indices back to output

values.

The decoding process is similar as encoding, but in a reverse order. The

video bitstream is first decoded by an entropy decoder and then passed to inverse

quantization and inverse transformation, finally a reconstructed video sequence is

produced.

2.1.2 Subband/Wavelet Video Coding

Like the DCT, the discrete wavelet transform mathematically transforms an

image into frequency components. The process is performed on the entire image,

which differs from the DCT method, that works on small blocks of the desired

data. The result is a hierarchical representation of an image, where each layer

represents a spatial frequency subband. Encouraged by some attractive properties

in subband/wavelet image coding, such as in embedded zerotree wavelet (EZW)

[32], JPEG2000 [11] and SPIHT [33], three-dimensional (3-D) transform coding is

an efficient alternative for video compression. Fig. 2.2 provides a block diagram

of a general 3-D subband/wavelet coding system. In comparison to Fig. 2.1, this

transform based system does not contain the closed DPCM loop in conventional

hybrid coders. 9: ; <=> ?@AB C D EFD G :=HB ;IG :JB@A HC EF K LM N OP LQR Q SN T UG:= HB ;IG :JB@A HV <=; <=> ?@ AB K LM N OP LQR Q SN TUWXYZ[\] ^_\ YZ [\]^
Figure 2.2: Block diagram of the 3-D transform coding system

The common 2-D separable filter bank for 3-D subband analysis/synthesis

was first generalized by Karlsson and Vetterli [20], where a pair of 2-tap Haar filters

associated with frame average and difference were adopted for temporal filtering.

Spatiotemporal or 3-D transform coding with motion compensation was pioneered

by Ohm [21]. In his paper, the 3-D subband filter bank is successfully combined

9

with the block matching motion estimation algorithm, and filtering is performed

along a determined motion trajectory. This 3-D MC subband framework is later

further developed in [22] and [23]. In the case of MC prediction, the filters are in

principle LPC analysis and synthesis filters, while in cases of transform or wavelet

coding, transform basis functions are subject to MC alignment. This is denoted as

motion-compensated temporal filtering (MCTF). Lifting scheme is introduced into

sub-pixel MCTF to realize perfect reconstruction [24, 25, 26]. Currently there are

several video coders that use subband/wavelet coding, such as 3-D SPIHT [27], MC-

EZBC [28], LZC [31], etc. The basic approach to subband/wavelet video coding is

illustrated in Fig. 2.3. ` a b b c d e f g d e h gi j k b g l g bi m k b g l g bi n k b g l g bi o k b g l g b
(a) Temporal decomposition

pqrp stu
ssutsu

stvssvtsvstwsswtswttw

(b) 3-stage spatial decomposition

Figure 2.3: Temporal and Spatial decomposition of a 16-frame GOP

Fig. 2.3(a) shows a typical GOP structure with 16 video frames. The top level

represents the video at full frame rate. These incoming frames are input to motion

estimation and the resulting motion vectors (indicated by curved arrows) are used

10

for motion-compensated temporal filtering (MCTF). In this example, neighboring

frames are decomposed using a MC Haar filter bank to produce the temporal low

frequency bands (solid lines) and temporal high frequency bands (dashed lines) at

the next lower temporal level. This process is repeated until we obtain the MC

average of all 16 frames in the GOP, at the bottom of the temporal pyramid shown

in Fig. 2.3(a). Video data in this example has five temporal scalability layers, going

from full frame rate down to L4-level at 1/16 of full frame rate. Only the lowest

temporal frequency frame, but all the high temporal frequency frames (dashed lines)

are coded, since these frames are necessary and sufficient to reconstruct the original

GOP.

The frames which are to be encoded are also subject to 2-D spatial sub-

band/wavelet analysis as shown in an example of 3-stage spatial decomposition

in Fig. 2.3(b). In the first stage, frames are low- and high-pass filtered and sub-

sampled, both horizontally and vertically, producing four 1st level subbands: LL1,

HL1, LH1 and HH1. Subbands are labeled by the type of horizontal filtering, the

type of vertical filtering, and their stage, for example, HL1 stands for high-pass (H)

horizontal filtering and low-pass (L) vertical filtering in the first stage. The second

stage of subband filtering is performed on the LL1 subband, replacing it by four 2nd

level subbands: LL2, HL2, LH2 and HH2. The third stage of decomposition would

be performed on LL2, replacing it by four 3rd level subbands LL3, HL3, LH3 and

HH3. After spatial decomposition, the subbands can be encoded using a variety

of techniques, such as EZBC, EBCOT, and SPIHT. Here, we briefly overview two

coders, EZBC and SPIHT, which were developed at RPI.

2.1.2.1 EZBC Image Coding x y z {| }~x y� | �� {�� � � ��� � � � � � � � � �� ��� � �� � �� �� � z {� �� � } {� � � y z� z �| y | �� � � �� y� �� � � �� y��� � � � �� zz {� y � �| {� � | y z� � z� | � � ��y
Figure 2.4: Block diagram EZBC image coding

The block diagram of the EZBC (Embedded ZeroBlock Coding and context

modeling) image coding algorithm [29] is shown in Fig. 2.4. It includes the following

11

four blocks:

• subband/wavelet transformation of the input image,

• quadtree representation of subband samples,

• context modeling, and

• entropy coding.

We now briefly describe each of these steps. The first step of the process is the dyadic

subband/wavelet transformation of the input image. The transformation is carried

out using the Daubechies 9/7 filterbank [30], also used in the recent JPEG2000

image coding standard [11]. If L is the number of levels of the subband/wavelet

decomposition, 3L+1 subbands are obtained. They are indexed 0, 1, ..., 3L, starting

from the lowest frequency subband.

After transformation, a quadtree representation of samples is built up for each

subband. Let k be the subband index and ck(i, j) be the value of the subband

coefficient at position (i, j) in subband k. The value of a quadtree node Qk[l](i, j)

at level l is defined recursively as [29]:

Qk[0](i, j) , |ck(i, j)|,

Qk[l](i, j) , max{Qk[l − 1](2i, 2j), Qk[l − 1](2i, 2j + 1),

Qk[l − 1](2i + 1, 2j), Qk[l − 1](2i + 1, 2j + 1)}. (2.1)

In this notation, node Qk[l](i, j) at level l > 0 has four child nodes at level l − 1:

Qk[l−1](2i, 2j), Qk[l−1](2i, 2j+1), Qk[l−1](2i+1, 2j), and Qk[l−1](2i+1, 2j+1).

Node Qk[l](i, j) is called the parent node of its child nodes. The values of the

quadtree nodes at level 0 are defined to be the magnitudes of the corresponding

individual coefficients. The values of the nodes at the next higher level are set to

the maximum value of the corresponding four child nodes in the current quadtree

level. In this way we arrive at the following representation of a subband. Level

0 of the quadtree contains the magnitudes of all coefficients of the subband; level

1 contains the largest magnitudes in 2 × 2 coefficient blocks; level 2 contains the

12

largest magnitudes in 4 × 4 coefficient blocks; and so on. The highest level of the

quadtree contains the largest magnitude of all coefficients in the subband.

After quadtree construction, subband coefficients are progressively encoded

bitplane-by-bitplane, starting from the most significant bit (MSB) towards the least

significant bit (LSB). The index of the most significant bitplane is given by nmax = x

log2(maxi,j,k |ck(i, j)|)y. The magnitude of any coefficient can be written in binary

expansion as

|ck(i, j)| = b
(i,j,k)
0 2nmax + b

(i,j,k)
1 2nmax−1 + b

(i,j,k)
2 2nmax−2 + · · · , (2.2)

where b
(i,j,k)
m ∈ {0, 1} represents the value of the bit in the bitplane nmax − m.

Encoding of biplane n (n = nmax, nmax−1, · · ·) is done independently for each l in

two stages (passes): significance pass and refinement pass. In the significance pass

for bitplane n, each quadtree node Qk[l](i, j) is compared to the threshold τn = 2n,

and is considered to be significant if Qk[l](i, j) ≥ τn, otherwise it is insignificant. The

result of the significance test is represented as a binary symbol: 1 for significant,

0 for insignificant. If a node is found to be insignificant with respect to τn, all

its descendants must also be insignificant. If a node is found to be significant,

its children are also tested for significance. The process is recursively repeated

until quadtree level 0. After significance testing for bitplane n is completed, the

refinement pass is executed. In this pass, all coefficients which have previously (i.e.

in bitplanes n + 1, n + 2,· · · , nmax) been found to be significant are refined. That

is, the value of their bit in bitplane n (i.e. b
(i,j,k)
nmax−n in (2.2)) is encoded.

The final bitstream is produced by context-based entropy coding of the results

of significance tests, sign predictions and refinement bits. This kind of context mod-

eling efficiently exploits both inter- and intra-band dependencies among subband

coefficients. Sign predictions and refinement bits are coded using contexts derived

from spatially neighboring coefficients. Interested readers can find the details of

EZBC in [29].

13

Figure 2.5: Examples of parent-offspring dependencies in the spatial-orientation
trees

2.1.2.2 SPIHT

SPIHT [33] was proposed by Amir Said and Willian Pearlman and is compu-

tationally very fast and among the best image compression algorithms known today.

The ”set partitioning in trees” working on each bitplane is actually doing the role

of the entropy coder, which gives very little loss of coding efficiency even without

using popular entropy coding, such as adaptive arithmetic coding.

In order to reduce the number of decisions in bit comparisons, the set parti-

tioning rule is defined using an expected ordering in the hierarchy implied by the

subband pyramid. The natural objective here is to derive new partitions such that

those expected to be insignificant contain a large number of elements (i.e. bits in a

zerotree), and others expected to be significant contain only one element.

A tree structure, called spatial orientation tree, naturally defines spatial re-

lationships on the hierarchical pyramid. Fig. 2.5 (adopted from [33]) shows how

the spatial orientation tree is defined in a pyramid constructed with recursive four-

subband splitting. Each node of the tree corresponds to a pixel and is identified

by the pixel coordinate. Its direct descendants (children) correspond to the pixels

of the same spatial orientation in the next finer level of the pyramid. The tree is

defined in such a way that each node has either no children (leaf nodes) or four

children, which always form a group of 2×2 adjacent pixels. In Fig. 2.5, the arrows

are oriented from the parent node to its four children. The pixels in the highest

level of the pyramid are the tree roots and are also grouped in 2×2 adjacent pixels.

14

The encoding procedure and details can be found in the original paper [33].

2.2 Scalability

In the past decade, scalable compression techniques have been widely explored.

Scalable video coding schemes are intended to encode the signal once at highest

resolution, but enable decoding from partial streams depending on the specific rate

and resolution required by a certain application. An important feature of a scalable

bitstream is that a portion of the bitstream can be discarded without compromising

the usefulness of the more important portions. This enables a simple and flexible

solution for adaptation to the variety of channels, terminals, and storage devices.

Here, we briefly describe how to achieve scalability using both hybrid DCT and

transform-based subband/wavelet coders. We only consider three basic types of

video scalability: spatial scalability (resolution), temporal scalability (frame-rate)

and quality (SNR) scalability. Both hybrid-based scalability and subband/wavelet-

based scalability have been active areas of research, which had led to MPEG-4 fine

granularity scalability (FGS) [34] (hybrid coder) and 3-D SPIHT [27], MC-EZBC

[28], and LZC [31] in subband/wavelet scalable coding.

2.2.1 SNR Scalability

¡ ¢£¤¥¦§¤¨¦ ©¤ª¦£
¡ ¢£¤¥¦«¬­¦¬®¦ ©¤ª¦£

¯ ¢£¤¥¦§¤¨¦ ©¤ª¦£
¯ ¢£¤¥¦«¬­¦¬®¦ ©¤ª¦£

Figure 2.6: SNR scalability of hybrid coder

The typical architecture to produce a scalable bitstream in a hybrid coder is as

follows. The DCT-transformed video frame is first quantized by a coarse quantizer,

then dequantized and subtracted from the non-quantized frame, and the difference

15

is then quantized by a finer quantizer [35]. This procedure can be performed sev-

eral times to produce layers of SNR scalability. Fig 2.6 sketches how to refine the

amplitude resolution of an I frame and a P frame, where the base layer uses a

coarse quantizer, and the enhancement layer applies a finer quantizer to the differ-

ence between the original DCT coefficients and the coarsely quantized base-layer

coefficients.

The subband/wavelet coders naturally produce bitstreams which are highly

SNR scalable. Lower quality video bitstreams are embedded in the higher qual-

ity video bitstreams. This is achieved by the use of embedded quantizers where

quantization cells of coarse quantizers are the union of quantization cells of finer

quantizers. With the bitstreams produced by these coders, each decoded bit refines

the quality of the signal reconstructed from the previously decoded bits.

2.2.2 Temporal Scalability

°±²³ ±´ ±µ±¶ ° ±·±¸ ³
Figure 2.7: Frame-rate scalability of hybrid coder

In a hybrid coder, temporal scalability is obtained by using B frames, which

are dependent on I and P frames on either side, however no other frames depend

on B frames. Thus, each B frame may be discarded without affecting other frames.

Fig. 2.7 sketches the dependency of frames in a nine-frame GOP. Decoding only the

I frames gives us the lowest frame rate video, called the base layer. Other frames

would construct enhancement layers. One can remove B1, B3, B5, or B2, B4, B6,

or the two P frames progressively, to obtain lower frame rates.

For a subband/wavelet coder, frame-rate scalability is achieved by decoding

the corresponding subbands of the bitstream. For example, decoding the video at

1/2 frame rate corresponds to decoding all temporal subbands up to L1 level at Fig.

2.3(a). Decoding the subbands to the L2-level would result in a video at 1/4 frame

16

rate, and so on. The number of temporal scalability levels is bounded by the size of

the GOP, usually, i=log2(‖GOP‖), where ‖GOP‖ is the number of frames in one

GOP.

2.2.3 Spatial Scalability

2

Enc
Base layer

Enh layer
Enc

2

Dec

Dec

2

Dec
Low-Res
Video

High-Res
VideoOriginal

Video

Figure 2.8: Spatial scalability of hybrid coder

In a hybrid coder, resolution scalability can be achieved by first downsam-

pling the original sequence, coding the low resolution sequence and then coding

the error between the interpolated low resolution sequence and the original. Fig.

2.8 illustrates two layers of resolution scalability. The base layer is obtained by

lowpass filtering and downsampling the original bitstream, while the interpolation

residual is called the enhancement layer. With both base layer and enhancement

layer, one can reconstruct the original sequence with the full resolution. One can

produce more than two layers of resolution scalability, by performing the filtering

and downsampling several times and then coding the residual for each layer.

In a subband/wavelet coder, similar to temporal scalability, resolution scala-

bility is also achieved by decoding corresponding subbands of the bitstream. For

example, decoding the video at 1/4 resolution corresponds to decoding all spatial

subbands except the subbands of LH1, HL1, and HH1 at Fig. 2.3(b). To achieve

1/16 spatial resolution, one should further remove the subbands of LH2, HL2, and

HH2 from the bitstream. The number of levels of the spatial SWT determines the

number of resolution scalability layers.

17

2.3 Protection of Scalable Bitstream

In many aspects, transmission of video is the most challenging problem in

multimedia communication, due to its real-time nature and large bandwidth re-

quirement, coupled with the lack of quality of service (QoS) guarantees in today’s

Internet and wireless networks. In the future, motion pictures will mostly be trans-

mitted over variable bandwidth channels, both in wireless and wired networks. They

have to be stored on media of different capacity, and be replayed on a variety of

devices, ranging from small mobile terminals to high-resolution projection systems.

Due to the lossy characteristic of all kind of channels, protection of scalably encoded

video bitstream is necessary. Much research have been done in the past decade to

protect progressive (embedded) encoded data from losses. One particularly efficient

and practical method is based on the Priority Encoding Transmission (PET) tech-

nique proposed by Albanese et al [36]. PET is a packetization scheme that combines

layered source coding with unequal erasure protection. Albanese et al applied the

PET scheme to the I, P, and B layers of MPEG video, but did not optimize the

code rate to minimize the end-to-end distortion for a given overall transmission.

Several algorithms have been proposed for optimal FEC assignment for pro-

gressive data based on PET. Mohr et al [37] described an algorithm to achieve an

approximately optimal assignment of forward error correction to progressive data

by a local search algorithm, essentially a Lagrangian optimization. The algorithm

first finds an optimal assignment under convex hull and fractional bit allocation

assumptions, and then relaxes those constraints to find an assignment that approx-

imates the global optimum. Stankovic et al [38] presented an efficient iterative

improvement algorithm for greedy search from a near optimal initial condition. The

proposed scheme is faster than that of [37]. Puri and Ramchandran [39] provided a

Lagrange multiplier based algorithm, which also starts by computing the h vertices

of the convex hull of p points of the operational distortion-rate (D(R)) function.

Then, after an O(h) step, it requires several Lagrange iterations to find the opti-

mal assignment. Stockhammer and Buchner [40] presented a dynamic programming

algorithm that is close to optimal in the general case, and optimal if the opera-

tional D(R) function is convex and the packet loss probability is a monotonically

18

decreasing function of the number of packets. Dumitrescu et al [41] proposed an

approach based on a global search, which finds a globally optimal solution for both

convex and non-convex utility length characteristics with similar computation com-

plexity. To protect progressive data in a lossy wireless channel, Sherwood and Zeger

[121] proposed a source-channel coding system where the source code is an embed-

ded bitstream and the channel code is a product code such that each row code is

a concatenation of a cyclic redundancy check (CRC) and a rate-compatible punc-

tured convolutional code (RCPC). The column codes are RS codes. Stankovic et

al [118, 119] improved this system [121] for wireless applications by efficiently re-

organizing the source code into a set of independently decodable packets, making

it more robust in time-varying channels. Cho and Pearlman [120] presented a mul-

tilayered protection of embedded video for both bit errors and packet loss using

error resiliency and error concealment in a 3-D SPIHT coder. For higher protection

against channel noise, the authors used a product code. These steps provide the

robust source coder with additional layers of protection against channel noise.

2.4 Bitstream Adaptation and Networking

The proposal for the MPEG-21 [9] Part 7 standard is Digital Item Adapta-

tion (DIA), which raises the possibility of in-network video adaptation [9, 10]. To

adapt a multimedia bitstream for multiple users, Mukherjee et al [42, 43] developed

a metadata-based method called structure scalable meta-format (SSM) [44], that

enables flexible yet fully format-agnostic adaptation of a wide class of scalable bit-

streams, in a variety of delivery architectures. To transmit data to multiple users,

IP multicast and application-layer multicast [1] were proposed for simultaneous bulk

data delivery. In the past several years, SONs [45, 46, 47, 8] are gaining attention,

in which user-defined application-level functionalities are provided at overlay nodes,

other than simple forwarding of packets. The SON fits very well into the MPEG-21

digital item adaptation infrastructure and opens the possibility of practical utiliza-

tion of DIA techniques to serve heterogeneous users. Most recently, a very hot area

in networking research is network coding [56]. The core notion of network coding is

to allow and encourage mixing of data at intermediate network nodes. The major

19

finding in [56] is that, contrary to one’s intuition, it is in general not optimal to

consider the information to be multicast in a network. Rather, network coding has

to be employed to achieve optimality. Li et al at [57] proposed an easy and fast

linear network coding scheme, and showed that the code is sufficient to achieve the

optimal network throughput. A distributed randomized network coding approach

is proposed by Ho et al [58, 59] for transmission and compression of information

in general multi-source multicast networks. Network nodes independently and ran-

domly select linear mappings from inputs onto output links over some field. Chou et

al [60] extended the randomized network coding idea and showed that it is practical

in real world networks. The coding information is carried in the packet header, and

the receiver only needs to process the header to decode the information. Microsoft

has recently announced a prototype called Avalanche [63] for large scale content dis-

tribution on peer-to-peer networks that uses network coding as its core technology.

The simulation results show that Avalanche can improve the download time over

BitTorrent [64] by 20 to 30%. Essentially, network coding is one good example of

using SON.

Overall, the development of currently scalable coding techniques, error-control

coding methods and overlay networking opens an exciting research direction for

transmission of video to multiple diverse users simultaneously.

CHAPTER 3

Scalable Video Streaming with Fine Grain Adaptive

Forward Error Correction

In this chapter, we investigate a fine grain adaptive forward error correction (FGA-

FEC) coding scheme for both channel coding and adaptation of scalable video bit-

streams. In our work, both the embedded source bitstream and the error-control

codes are easily and precisely adapted at intermediate overlay nodes to satisfy mul-

tiple heterogeneous users without complex transcoding. The proposed FGA-FEC

scheme encodes and adapts the scalable bitstream in such a way that if part of the

video source data is actively dropped, parity bits protecting that piece of data are

also removed, yielding an efficient result without FEC transcoding. Encoding once

at the source, the new method can satisfy multiple heterogeneous users simultane-

ously without decoding/recoding FEC at intermediate network nodes.

3.1 Introduction

Simultaneously streaming video to heterogeneous devices, such as powerful

PCs, laptops, and handset devices, is a challenging problem, since different users

may have different video frame-rate, resolution, and quality preferences, or com-

putational and connection-link capabilities. As we mentioned in previous chapters,

most recent research either focus on adapting a multimedia bitstream for multiple

users without applying error control methods [10, 106, 42, 43], or focus on devel-

oping end-to-end optimization schemes to protect a progressive bitstream without

any adaptation being considered for diverse users [36, 39, 37, 38]. Chou et al [60]

presented and evaluated constructions for two-layer multiple description codes using

FEC to satisfy various user preferences. Stankovic et al [107] modified the method

of [60] and defined an optimal layered multiple-description code as one that mini-

mizes the largest performance loss experienced by any client. Both of the papers

focus on quality adaptation and do not consider adaptation for diverse users with

different frame rate and/or resolution needs.

20

21

This study explores the feasibility of using a service overlay network to address

the problem of streaming video to heterogeneous users simultaneously. The challenge

is to encode the video to facilitate efficient and precise adaptation of the encoded

bitstream (adapting both the video bitstream and the error-control codes) to satisfy

multiple users without complex transcoding at intermediate overlay nodes. Here, by

’adapt’ we mean reducing one or more of the three scalability dimensions (frame-

rate, resolution, and quality or source bitrate) of a coded video bitstream along with

the corresponding error-control codewords.

The main contribution of this study is a Fine Grain Adaptive FEC scheme

which enables multidimensional, arbitrary, and efficient, yet near optimal adaptation

of both the encoded video bitstream and the error-control codes to serve multiple

diverse users. Our work is different from multicast layered streaming and proxy-

based streaming. In multicast layered video streaming, a server sends different layers

to different multicast groups. Receivers adapt to network conditions by joining

and leaving these multicast groups, which however, can result in a large amount

of signaling traffic in a dynamic network. Further, the adaptation is limited to

available layers. To solve this limited layer problem, proxy streaming systems cache

video content at local proxy disks and transcode (decode/recode) the video bitstream

for different users, which may cause delay and huge computational burden if they

serve a large number of users. Meanwhile, our method only sends one bitstream

but can efficiently adapt video frame rate, quality, and spatial resolution for diverse

users without transcoding. Moreover, FGA-FEC can provide an efficient scalable

error-control mechanism in cooperation with the scalable video coding.

This chapter is organized as follows. In Section 3.2, we describe the details of

method. Simulated and experimental results are given in Section 3.3. Conclusions

are given in Section 3.4.

3.2 Fine Grain Adaptive FEC

3.2.1 System Overview

We use an overlay infrastructure to assist video streaming to multiple users by

providing lightweight support at intermediate overlay nodes. These overlay nodes

22

with certain service functions, such as bitstream adaptation, network monitoring

and so on, more than just store-and-forward, are called data service nodes (DSN).

Diverse end users may have different network connection, computational capacity,

and video display size, hence, they probably have different subjective ideal video and

adaptation order preferences. Here, ideal video is defined as the type of bitstream

the user initially requests from the system. Additionally, adaptation order is the

user’s chosen adaptation order in terms of quality, frame rate and resolution. The

ideal video and adaptation order are input parameters to the system from the user-

node console at the beginning of streaming. Since DSNs are often placed within a

high-speed network, in this study, we assume that there is no congestion between

DSNs. We also assume that a profile (description file [108]) of the video bitstream is

sent to DSNs before the streaming session starts. The computation and adaptation

unit in this study is one GOP.

We outline our idea with a simplified example. In Fig. 3.1, DSNs construct an

overlay network to serve several users. Users ”A” to ”G” have different ideal video

preferences (shown as ”frame-rate/resolution/bitrate”). Here C and Q represent

the common CIF and QCIF formats, respectively, and pa to pg are the average

packet-loss rates of the overlay virtual links.

Figure 3.1: Intermediate adaptation of the video bitstream according to user video
requests and network conditions by overlay data service nodes

Before streaming, each user signals its ideal video, adaptation order and mini-

mum tolerable (acceptable) video in terms of frame rate, resolution and quality, and

then sends the information to its parent DSN. While streaming, the DSNs determine

a video request for each of their child users based on user’s available bandwidth, ideal

video, and adaptation order using Algorithm 1 below, on a GOP basis. Here, video

23

request is defined as the video bitstream that the DSN will request for a certain

user from server or a parent DSN. These video requests and packet-loss rates of

each link are collected and aggregated from end users to the server by the DSNs.

The server then encodes the scalable video using FGA-FEC based on the highest

video request (other less aggressive methods are possible, eg. highest quality of 90%

of users, 80% of users etc) and the current aggregated packet-loss rates using Algo-

rithm 1. FGA-FEC divides each GOP of the bitstream into small blocks and packs

the FEC coded bitstream in such a way that if any original data blocks are adapted

(actively dropped), the corresponding parity bits are also completely removed. At

intermediate DSNs, adaptation is conducted by removing some blocks from each

packet and/or dropping whole packets in concert with end users requests and net-

work conditions (described in more detail at Section 3.2.4). Since there is no video

and FEC decoding/recoding, FGA-FEC is very efficient in terms of computation.

Furthermore, the data manipulation is at block level, which can be precise in terms

of adaptation, given a sufficiently small block size.

Three important questions need to be answered.

• How should the video be encoded by FGA-FEC to facilitate multidimensional

adaptation?

• How should FGA-FEC be designed to accommodate heterogeneous users, and

yet be easily adaptable with highly scalable bitstreams at intermediate DSNs?

• How should the FGA-FEC encoded bitstream be adapted efficiently, given the

user’s ideal video, adaptation order, and network conditions?

3.2.2 Video Coding and Adaptation

In this section, we focus on how to encode and represent a scalable video to

facilitate simple and precise adaptation of the bitstream to the available bit budget,

both at the source and inside the network. This can be considered as the simplest

case of FGA-FEC, where there is no loss inside network, hence no FEC is added to

source data here. DSNs only need to adapt the source bitstream to satisfy diverse

users.

24

In general, a piece of scalable bitstream which contains N nested tiers of scal-

ability with the ith tier containing Li layers, i = 0, 1, 2, ..., N −1, can be represented

as an N -dimensional hypercube. The total number of atoms (elements) of the cube

is
∏N−1

i=0 Li. A specific atom is denoted A(l0, l1, ..., lN−1), where li ∈ {0, 1, ..., Li−1}.
For instance, Fig. 3.2 shows a cube of atoms in three dimensions {frame rate, res-

olution, quality} [44]. There are L0 = 4 frame-rate layers, L1 = 3 resolution layers,

and L2 = 5 quality layers. Each atom corresponds to a piece of subband bitstream

with size in bits:

S(l0, l1, ..., lN−1) = ‖A(l0, l1, ..., lN−1)‖, (3.1)

where ‖ · ‖ denotes the number of bits. Adaptation of the scalable bitstream is

equivalent to selecting a subset of atoms for transmission.

Since we only use three dimensions of scalability: temporal (frame-rate), spa-

tial (resolution) and SNR (quality), for simplicity, in the sequel, we use {Lt, Ls, Lq}
instead of the more general {L0, L1, L2}.

A(0,0,0
)

A(0,0,0
)

A(0,0,0
)

A(0,0,0
)A(0,0,0 A(0,0,0 A(0,0,0 A(0,0,0

A(0,0,0) A(1,0,0) A(2,0,0) A(3,0,0)

A(0,0,0
)

A(0,0,0
)

A(0,0,0
)

A(0,0,0
)A(0,0,0 A(0,0,0 A(0,0,0 A(0,0,0

A(0,0,1) A(1,0,1) A(2,0,1) A(3,0,1)

A(0,0,0
)

A(0,0,0
)

A(0,0,0
)

A(0,0,0
)A(0,0,0 A(0,0,0 A(0,0,0 A(0,0,0

A(0,0,2) A(1,0,2) A(2,0,2) A(3,0,2)

A(0,0,0
)

A(0,0,0
)

A(0,0,0
)

A(0,0,0
)A(0,0,0 A(0,0,0 A(0,0,0 A(0,0,0

A(0,0,3) A(1,0,3) A(2,0,3) A(3,0,3)

A(0,0,0
)

A(0,0,0
)

A(0,0,0
)

A(0,0,0
)A(0,0,0 A(0,0,0 A(0,0,0 A(0,0,0

A(0,0,4) A(1,0,4) A(2,0,4) A(3,0,4)

A(0,1,4) A(1,1,4) A(2,1,4) A(3,1,4)
A(0,2,4) A(1,2,4) A(2,2,4) A(3,2,4)

Resolution

Frame Rate

Quality

Figure 3.2: 3-D video scalability in the form of atoms of a GOP, A(i, j, k) represents
an atom of {frame rate, resolution, quality}

Given the representation in Fig. 3.2, we can adapt the atoms to the desired

frame-rate, resolution and quality, according to a user’s ideal video and adaptation

order, as well as the available bit budget. Given a bit budget Ω1, a subset of atoms

1In practice Ω is determined by the source bitrate permitted for the link, as determined in
Section 3.2.3.

25

can be chosen to satisfy:

T
∑

lt=0

S
∑

ls=0

Q(lt,ls)
∑

lq=0

S(lt, ls, lq) ≤ Ω, (3.2)

where T and S are the number of temporal and spatial layers, respectively, T ≤ Lt

and S ≤ Ls. Here Q(lt, ls) is the number of quality layers at that temporal and

spatial layer. There may be several different T, S, Q(lt, ls) values which satisfy (3.2),

so the particular set is chosen based on the user’s ideal video and adaptation order.

Since we have only three dimensions of adaptation, the total number of adaptation

orders is 3 × 2 × 1 = 6. Table 3.1 lists all the possible adaptation orders, where {t,
s, q} represents {frame rate, resolution, quality}. We will measure quality in terms

of PSNR.

AO Adaptation order AO Adaptation order

1 q → t → s 4 t → s → q
2 q → s → t 5 s → q → t
3 t → q → s 6 s → t → q

Table 3.1: Possible adaptation orders

The user can choose to adapt downwards SNR (Quality), frame rate, and res-

olution in any particular order. For example, the user’s ideal video may have PSNR

no less than γ dB with full frame rate and spatial resolution, and his/her chosen

adaptation order is q → t → s. If the desired PSNR cannot be met, we reduce the

frame rate down one temporal level and, if necessary, further reduce resolution down

one spatial level, and do this iteratively, until to the minimum tolerable bitstream

with Lt min temporal levels and Ls min spatial levels, or the minimum PSNR (quality)

requirement is met. If the user’s minimum quality can not be met, then no video is

sent to that user.

Table 3.2 summarizes some terms that are used in the sequel.

To respond to the available bit budget Ω, DSNs adapt the bitstream based

on users’ specified adaptation orders. At each spatial/temporal adaptation step, we

determine the best achievable video quality (maxPSNR), and iterate until satisfying

26

Terms Definitions

Lt,Ls,Lq the number of layers in user’s ideal video
in terms of temporal, spatial and quality.

AO adaptation order identification number
γ, Lt min, Ls min adaption order parameters: PSNR ≥ γ dB,

temporal layers ≥ Lt min, and spatial layers ≥ Ls min

T , S, Q the number of layers in user’s video request
in terms of temporal, spatial and quality

maxPSNR best achievable video quality at a certain spatial and
temporal layer, given the available bit budget

B available bandwidth of a link
p packet-loss rate of a link

E[D(R)] mean video distortion
Ω bit budget allocated to source data

Table 3.2: Terms used in the algorithm descriptions

maxPSNR ≥ γ dB according to the specified adaptation order:

At each step : T = i; i ∈ {Lt, Lt − 1, · · · , Lt min}

S = j; j ∈ {Ls, Ls − 1, · · · , Lsmin}

Find : maxPSNR(T, S) (3.3)

Subject to :

T
∑

lt=0

S
∑

ls=0

Q(lt,ls)
∑

lq=0

S(lt, ls, lq) ≤ Ω

A unique solution of T, S, Q(lt, ls) can be found by a simple search along the

specified adaptation order. The resulting data set could be the same as the user’s

ideal video, given enough available bit budget, or it could shrink down to zero if a

user’s minimal requirements cannot be met due to very low available link bit budget.

We use the fully scalable MC-EZBC video coder [28] to show the method of

adaptation. One bitplane of the embedded MC-EZBC coded bitstream is shown in

Fig. 3.3, employing 3-level MCTF over an eight-frame GOP as an example. After

the temporal decompositions, we obtain 8 temporal subband frames: 1 t-LLL frame,

1 t-LLH frame, 2 t-LH frames and 4 t-H frames. For these 8 frames, we do a 3-stage

spatial decomposition for each frame and encode the generated spatial subbands

27

with EZBC, bitplane by bitplane. ¹¹¹º»»¼º¼»¼º½¾¾¿½¿¾¿½
¹¹¹º»»¼º¼»¼º½¾¾¿½¿¾¿½

¹¹¹º»»¼º¼»¼º½¾¾¿½¿¾¿½
¹¹¹º»»¼º¼»¼º½¾¾¿½¿¾¿½

¹¹¹º»»¼º¼»¼º½¾¾¿½¿¾¿½
¹¹¹º»»¼º¼»¼º½¾¾¿½¿¾¿½

¹¹¹º»»¼º¼»¼º½¾¾¿½¿¾¿½
¹¹¹º»»¼º¼»¼º½¾¾¿½¿¾¿½¹ ¿¾ ½¼» º

ÀÁ Â Â Â Ã À Á Â Â Ä Ã ÀÁ Â Ä Ã ÀÁ Â Ä Å ÀÁ Ä Ã ÀÁ Ä Å ÀÁ Ä Æ ÀÁÄ Ç
È É Ê Ê Ê ¹ È É Ê Ê Ë ¹È É Ê Ë ¹ È É Ê Ë ºÈ É Ë ¹ È É Ë º È É Ë » È É Ë ¼ Ì Í Î Î ÏÐ È ÑÊ É ÎÑ Ò Ñ ÎÊ ÊÉ ÎÑ Ò Ñ ÎÊ Ê ÊÉ ÎÑ Ò Ñ Î

Ó Ô Õ Ö× ØÙ Ú Û Ô Ü × Õ Ö× Ý Þß Þ× à
á Ö Ù ß ÞÙ Ú Û Ô Ü × Õ Ö× Ý Þß Þ× à

â ã Ïä å Ñ æ æ çè æ éê è éë éå Ð è È æ Ñ È æ ì â ã Ïä å Ñ æ æ å ä Ñ ë ë éå éÑ è È æ í Í æ È È Ñ æ È æ éê è éë éå Ð è È ì â î Ñ ë éè Ñ å ä Ñ ëë éå éÑ è È
Figure 3.3: One bitplane of an 8-frame GOP. The subband coding passes inside a

GOP are interleaved to achieve approximate equal significance across
time.

Since we use an approximately orthonormal transformation both in spatial and

temporal domain, in the absence of many unconnected pixels, the corresponding

bitplanes of different subbands should have about the same importance. For each

spatial subband, there are three passes: process insignificant sets, process coefficients

just tested significant and refine the coefficients [28]. The subband coding passes

are independently addressable in the bitstream and can be interleaved to facilitate

adaptation. The resulting encoded GOP can then be illustrated as shown in Fig. 3.2,

where for example, each atom could correspond to one encoded subband bitplane.

Adaptations of the encoded bitstream can be achieved by choosing an appropriate

set of subbands. For example, if a user wants to view a video with half frame

rate, we choose all subbands of temporal frames t-LLL1, t-LLH1, t-LH1 and t-LH2.

Similarly for half frame rate and half resolution, we can further remove subbands

corresponding to spatial levels 5, 6, 7 from the half frame rate bitstream. Quality

(PSNR) scalability can be achieved by recursively coding bitplanes from the most

significant bit (MSB) to least significant bit (LSB), until the source bit budget Ω is

satisfied.

Fig. 3.4 illustrates a general bitstream hierarchy of an encoded GOP in 1-

D format, where the encoding unit consists of independently decodable bitstreams

28

{QMV , QY UV }. Here,we use the same notation as [51]. Let lt ∈ {1, 2, ..., Lt} denote

Header Q2
MV

QLt,1
YUV

... Qlt
MV ... QLt

MV

...Q1,1
YUV ...Qlt,1

YUV

QLt,2
YUV...Q1,2

YUV ...Qlt,2
YUV

.........
QLt,Ls

YUV...Q1,Ls
YUV ...Qlt,Ls

YUV

Motion vector:

Subband coefficient:

Figure 3.4: Hierarchy of MC-EZBC bitstream to facilitate 3-D adaptation

the temporal scale. The motion vector (MV) bitstream, QMV , can be divided into

temporal scales and consists of QMV
lt for 2 ≤ lt ≤ Lt. Let ls ∈ {1, 2, ..., Ls} denote

the spatial scale. The subband coefficient bitstream, QY UV , is also divided into

temporal scales and further divided into spatial scales as {QY UV
lt,ls }, for 1 ≤ lt ≤ Lt

and 1 ≤ ls ≤ Ls. Thus, the video at (1/4)m spatial resolution and (1/2)n frame rate

is obtained from the full bitstream as:

Qm,n = {QY UV
lt,ls : 1 ≤ ls ≤ Ls − m; 1 ≤ lt ≤ Lt − n}

⋃

{QMV
lt : 2 ≤ lt ≤ Lt − n} (3.4)

In every sub-bitstream QY UV
lt,ls , subbands from Y , U and V are coded in an

embedded manner from the MSB to the LSB. Scaling in terms of quality is obtained

by stopping the decoding process at any point in bitstream Qm,n, given the available

bit budget.

Since the adaptation can be implemented as simple dropping of corresponding

atoms along a pre-defined adaptation order, the DSNs do not need to decode and

recode the bitstream, and are thus computationally very efficient.

3.2.3 Fine Granular Adaptation in the Presence of FEC

In this section, we move on a more general case where error control techniques

are needed to protect the embedded bitstream from network losses. We focus on how

to channel encode a scalable bitstream to facilitate adaption of both video bitstream

29

and error control codewords for diverse users without transcoding. This effectively

extends the scalability to channel coding.

Automatic retransmission request (ARQ) and FEC coding are two widely used

methods to protect packets from channel losses. Due to the feedback implosion

problem in a multicast environment, we choose to study FEC as our protection

method. When parts of the video bitstream are actively dropped, the DSNs need to

update the FEC codes. This update has the same basic requirements as the source

video adaptation - efficiency (low computational cost) and precision (if a part of

the video data is actively dropped, parity bits protecting that piece of data should

also be removed). Based on these considerations, we propose a precise and efficient

fine grain adaptive FEC scheme based on Reed-Solomon (RS) codes and PET [36].

Arbitrary adaptation of RS codewords is difficult. For example, RS(n, k) codeword

cannot be adapted to RS(n − l, k − l) by simply dropping l symbols. One way to

adapt an RS(n, k) is to decode first and then recode RS(n − l, k − l), which is not

computationally efficient for multiple adaptations along the transmission path or for

multiple heterogeneous users. FGA-FEC solves the problem by adapting the FEC

in a ”fine granular” manner to satisfy multiple diverse users, as discussed below.

The FGA-FEC encoding method extends PET [36] and MD-FEC [39] by

adding scalability (adaptation) features. Here we briefly overview the general idea

of MD-FEC.

3.2.3.1 MD-FEC Overview

In a MD-FEC approach, one GOP of embedded bitstream is unequally pro-

tected by a sequence of erasure-correcting Reed-Solomon codes to produce N equally

important descriptions, based on current network conditions. The bitstream is

first divided into N sections, Si, (i ∈ [1, N]) marked with rate breaking points

R0, R1, R2, ..., RN at Fig. 3.5, where R0 ≤ R1 ≤ R2 ≤ ... ≤ RN and R0 = 0, and

the unit of rate is in bits per second (bps). Section i is further split into i equal size

subsections (marked by Si,1, ..., Si,i) and encoded by a RS(N, i) code.

RS codes are applied to each section vertically, the contributions from each

of the N levels are then concatenated horizontally to form the N descriptions as

30ï ð ñ ñ ñ ï ò ñ ñ ñ ï óô ð ô ò õ ð ô ò ô ó õ ð ô óô ö
÷ ø ù ú ø û ü ý ÷ þ ÿ øï ò � ð ï ò � � ñ ñ ñ ï ò � ò� ï� � ï �

Figure 3.5: Rate partition of an embedded bitstream into N layers or quality levels,
from most significant bit (MSB) to least significant bit (LSB)

shown in Fig. 3.6. In this study, one description is equivalent to one network

packet, so we will use the terms ”description” and ”packet” interchangeably. This

packetization scheme thus provides the property: if any i packets are received,

decoding is guaranteed up to Ri. This is because sections protected by RS codes

stronger than RS(N, i) can all be recovered. Thus, we can say that all descriptions

are equally important. After encoding, these generated descriptions can be sent in

order from description 1 to description N .� � � � 	 �
 � � 	 � � � � � � � 	 � � � �
 � � 	� � � �
 � � 	 � � � � � � � 	 � � � �
 � � 	� � � � � � � � � � � � � 	 � � � �
 � � 	� � � � � � � � � � � � � 	 � � � �
 � � 	� � � � � � � � � � � � � � � �
 � � � � 	� � � � � � � � � � � � � � � �
 � � 	� � � � � �� � � � � �
� � � � � � � � � � � � � � � � � �� � � � � � � � � ! � " � � # $ �� � � ! � " � � # $ �� � � ! � " � � # $ %� � � ! � " � � # $ �� � � ! � " � � # $ � & �� � � ! � " � � # $ '� � �� � �

� � � � � '

Figure 3.6: MD-FEC generates N descriptions or quality levels

3.2.3.2 FGA-FEC Encoding

FGA-FEC encoding considers not only the channel conditions, but also the

user’s video preference and predefined adaptation order, as well as the feasibility of

intermediate adaptation. Given a GOP of source-coded video bitstream organized

from MSB (R0) to LSB (RN), shown at the top in Fig. 3.7, suppose we want to

encode this GOP into N descriptions, we first run an optimal bit allocation scheme

according to network conditions and user’s video preference/adaptation order, and

31

()* +, (- * +, (.* +, // / (0 * +,1 2 3 (- *4 , (.*4 , // / (0 *4 ,1 2 3 1 2 3 (.*5 , // / (0 *5 ,1 2 3 1 2 3 (.* 6 , // / (0 * 6 ,1 2 3 1 2 3 1 2 3 // / (0 *6 7 +,1 2 3 1 2 3 1 2 3 // / (0 *8 ,99 999 9
: ; < = > ? : ; < = > @ : ; < = > A9 99 9 9 9 B ; C< DAE = AF G ?B ; C< DAE = AF G @B ; C< DAE = AF G HB ; C< DAE = AF G AB ; C < DAE = AF G AI ?B ; C < D AE = AF G J9 999 99

() // / (. // / (0K) K . L) K . K 0 L) K 0K M :; < = > J N O PP P P P PN Q PP P PP PN R Q N S Q// /// /// /// /// // //9 9 99 9 9
N ON RN TN Q9 9 9

U V W X Y Z [\] ^ [_ ` a b [c d ^ ` V b eN Qf ON Qf RN Qf T99 9N R Q N R Qf OPP PPP P9 9 9N T Q PP PPP PPP P9 9 9N S Qg h ig h i999 g h ig h i9 99 g h ig h i9 99 g h ig h i9 99
9 9 99 9 99 9 99 9 99 9 99 9 99 9 99 9 9

(. * +,(. *4 ,(. *5 ,(. * 6 ,jklmnopqmr99 9 99 9 99 9 9 9 9
Figure 3.7: FGA-FEC encoding of one GOP. Here, FEC is added vertically at block

level and each horizontal row of blocks is packetized into one network
packet.

divide the bitstream into N sections Si, (i ∈ [1, N]), marked with source-rate break

points R0, R1, R2, ..., RN , where R0 ≤ R1 ≤ R2 ≤ ... ≤ RN and R0 = 0. Here

RN would correspond with Ω of (3.2) in Section 3.2.2. The total bitrate for all

the descriptions must be less than B, the available bandwidth on the link. Section

Si (i ∈ [1, N]) is further split into equal size subsections with each subsection i

blocks, therefore, the total number of subsections of Si can be calculated as m =

‖Si‖/(i×‖block‖). These subsections are encoded by an RS(N, i) code vertically at

block level to generate parity blocks.

Actually, it is not necessary that each section Si, (i ∈ [1, N]) must have data

in it. For example, in one of our experiments (N = 64, p = 0.2 and B = 1 Mbps

in Fig. 3.15(a)), the source rate allocation result is R0 = R1 = · · · = R26 = 0

and R44 = R45 = · · · = R64, i.e. only sections Si, i ∈ [27, 44] have data and the

corresponding RS codes are RS(64, i),i ∈ [27, 44], respectively. After FEC encoding,

each vertical column represents a data subsection divided into blocks, followed by the

generated parity blocks. Each horizontal row of blocks is packed into one description,

and in this study, one description is equivalent to one network packet. In Fig. 3.7,

Si(j) denotes the bitstream of the ith section packed in jth description. Since each

column is independently coded, we can adapt the bitstream by easily removing

related columns. Obviously, a smaller block size means finer granularity and hence

better adaptation precision. The criteria to choose the size of a block is based on

the adaptation precision demand of users. In this study, we usually choose one byte

32

as the size of a block. This is possible the best block size due to adaptation of a

network packet is much more efficient at byte level than at bit level, further, 8 bits

is also a good symbol size for RS codes in networking. For example, if the size of

each encode description is 1500 bytes and the size of a block is 1 byte, we can have

1500 layers for adaptation. The main encoding difference between MD-FEC and

FGA-FEC is at the splitting and encoding of each section Si, (i ∈ [1, N]). For MD-

FEC, Si is divided into i subsections (with size ‖Si(i)‖) and the RS(N,i) is added

over these subsections vertically. Therefore, no bitstream adaptation is considered

in MD-FEC, it is an end-to-end protection method. For clarity, we compare the

encoding methods of MD-FEC vs. FGA-FEC at an example shown in Fig. 3.8.s t s u s v s w s xy t y u y v y w y xy z{ | } ~ | � � � � � � | s v � t s v � u s v � v� � ��������� � � � �� � ~ � � � � |
s v � ts v � us v � v� � �� � �� � �� � �

� � ��� � ���� �� � � �� � � �� � �� � � s v � � s v � � s v � {
Figure 3.8: An example compares the encoding methods of MD-FEC vs. FGA-FEC,

here we only show the encoding details of section 3, other sections should
be similar

In this example, the number of descriptions is N = 5, the RS codes applied to

section S1, S2, S3, S4, S5 are RS(5, 1), RS(5, 2), RS(5, 3), RS(5, 4), RS(5, 5), respec-

tively. Here we only show the encoding details of section 3 at Fig. 3.8, other sections

should be similar. In MD-FEC, section S3 is split into three equal size subsections,

S3,1, S3,2, S3,3. MD-FEC encodes this section by adding RS(5,3) code over the three

subsections. On the other hand, FGA-FEC divides section S3 into blocks (for sim-

ple, in this example, we arbitrarily choose 12 blocks for section 3, resulting 4 blocks

for each subsection), and FEC RS(5,3) is applied vertically across these data blocks

to generate parity blocks. Each vertical column represents a data section divided

into blocks, followed by the generated parity blocks, as shown in Fig. 3.8, where

Si(j) denotes the bitstream of ith section packed in jth description.

Similar to MD-FEC [39], FGA-FEC transforms the priority ordered bitstream

from an embedded video coder into equal priority descriptions. If any i out of N

33

packets are received, the decoder can decode the bitstream up to Ri. In addition,

FGA-FEC has added scalability (adaptation) features. The granularity of FGA-

FEC adaptation is at block level. For instance, suppose that a DSN needs to adapt

the video by dropping part of the bitstream, this can be achieved by removing some

original data and FEC blocks related to that piece of bitstream from each network

packet. Fig. 3.9 illustrates a possible adaptation of one FGA-FEC encoded GOP,

where two blocks need to be removed from each description of the GOP. Hence, all¡ ¢ £¤¥ ¦ § ¨ § © ª « ¬ ­ ® ¬¯ ¦¥ ¦ §° ¥ ± ² ¨ ³ ­ ® § ¨° ¥ ±
Figure 3.9: Adaptation of an FGA-FEC encoded GOP, two dark blocks are removed

from each description, including both original data and parity bits.

packets (both data and parity) are shortened, and no FEC transcoding is necessary.

Further, the removed parity bits correspond precisely to the video data bits that are

dropped. Later on, we refer to this as the direct truncation method.

Next, we find the optimal FEC assignment for a given scalable video bitstream

over a certain channel. The bitstream has three types of adaptation: SNR, frame-

rate, and resolution. Frame-rate and resolution adaptation can only be performed

in discrete layers. For instance, if the full video resolution in Fig. 3.3 is CIF,

it can only be adapted to QCIF video in terms of resolution adaptation. The

exclusive CIF-related parts of the bitstream (i.e bits related to subbands 5,6,7 in

the example in Fig. 3.3) are directly removed from the original bitstream, and no

optimization is needed. Similarly, dropping bits of subbands of all four L-level frames

(t-H1, t-H2, t-H3 and t-H4) would result in half frame rate. Since the bitstream

is progressively encoded, the SNR adaptation is fine granular. Then we need to

find the optimal solution for SNR scalability. Furthermore, whenever frame-rate

adaptation or resolution adaptation is performed, protecting the adapted bitstream

remains the problem of finding an optimal protection in terms of quality.

Suppose we want to create N packets per GOP to serve a user with minimum

34

tolerable bitstream (γ, Lt min, Ls min) and the adaptation order (AO) over a channel

with available bandwidth B. Following [39] and [55], let qi be the probability that

any i out of N packets are successfully delivered. The goal is to find the optimal

bitrate partition R = {R1, R2, ..., RN} in Fig. 3.7 at a certain adaptation step,

which minimizes the end-to-end mean distortion E[D(R)] and the corresponding

maxPSNR satisfies maxPSNR ≥ γ dB,

E[D(R)] =
N

∑

i=0

qiD(Ri), (3.5)

subject to:














0 ≤ R1 ≤ R2 ≤ ... ≤ RN ;

Rtotal ≤ B;

Ri − Ri−1 = ri × i; ri ≥ 0, ∀ i = 1, ..., N

where as mentioned earlier B is the available bandwidth for the link or channel,

and R0 = 0. Also ri is the source rate of ith section Si packed in each description.

The last constraint item of (3.5) is to make sure that each section has an integral

multiple of blocks. Given a packet-loss probability p and assuming independent

losses, qi can be calculated as:

qi =





N

i



 (1 − p)ipN−i. (3.6)

Here Rtotal is the total bitrate (bandwidth) for both FEC and video data and

is calculated as:

Rtotal =
R1

1
N +

R2 − R1

2
N + · · ·+ RN − RN−1

N
N

=
N

∑

i=1

N

i(i + 1)
Ri =

N
∑

i=1

αiRi, (3.7)

and αi = N
i(i+1)

for i = 1, 2, · · · , N − 1; with αN = 1. The total bitrate of a

GOP is actually a sum up of the rate of each column in Fig. 3.7, including both

FEC and original video data.

35

Following the adaptation order, at each adaptation step, finding the optimal

source-rate break points {Ri, i ∈ [1, N]} is effectively a bit allocation problem. Sev-

eral algorithms are available in [39, 37, 38]. For simplicity, we use a generalized

BFOS algorithm (Steps 1−5 in Algorithm 1 below) which finds the optimal bit al-

location solution by a simple search in each adaptation step. As shown in [39], if

αi/qi ≤ αi+1/qi+1 for some i, then in the optimal solution we will have Ri = Ri+1.

Hence, Ri+1 need not be computed - it is sufficient to optimize Ri and then set

Ri+1 = Ri at the end. We therefore remove from the list R1, R2, · · · , RN any such

Ri+1, remembering its indices, and re-label the remaining variables into a new list

R1, R2, · · · , RN ′ , where N ′ ≤ N . After the optimization, we insert these Ri+1 indices

back and have the result R = {R1, R2, ..., RN} . We then calculate E[D(R)] of this

adaptation step and test if the corresponding maxPSNR satisfies maxPSNR ≥ γ

dB. If so, solution found, otherwise move on to next adaptation level and repeat the

process until we exhaust all adaptation levels. Algorithm 1 is run in both DSNs and

server. The DSNs run Algorithm 1 to figure out user requests {T , S, Q}, while the

server runs it to determine the FEC encoding {R1, R2, · · · , RN}. If no solution is

found for a particular user at a DSN, no data is requested for this user. If no solution

is found at server, no data is sent to network. The calculation of △D in Algorithm

1 is based on convex experimental R-D curve of the MC-EZBC encoded video bit-

stream. Given 1bps rate allocated from section i to section i + 1, based on (3.5),

the expected distortion increase contributed by section i is qi[D(Ri − 1) − D(Ri)],

based on (3.7), the rate change is αiRi −αi(Ri −1) = αi. Similarly for section i+1,

the expected distortion decrease is qi+1[D(Ri+1)−D(Ri+1 +1)] and the rate change

is αi+1. Therefore we can calculate the change in distortion/rate as following:

(
△D

△R
)i =

qi[D(Ri − 1) − D(Ri)]

αi
− qi+1[D(Ri+1) − D(Ri+1 + 1)]

αi+1

=
qi

αi
[D(Ri − 1) − D(Ri)] −

qi+1

αi+1
[D(Ri+1) − D(Ri+1 + 1)]

More detail regarding the BFOS algorithm can be found in [4] and [5]. Given

p = 0, Algorithm 1 is equivalent to solving (3.4) with no bit budget is allocated

to FEC, i.e. the same as video adaptation in Section 3.2.2. Given the optimal

36

Algorithm 1: FGA-FEC optimization algorithm

Inputs: N , N ′, B, p, AO, γ, Lt min, Ls min;
Outputs: {R1, R2, ..., RN}, T , S, Q;

Start:
1. For i = 1, 2, ..., N ′, set Ri = B, calculate qi, αi;
Loop:
2. For i = 1, 2, ..., N ′, calculate the change in distortion based on D-R
curve at this adaptation level,

(
△D

△R
)i = − qi+1

αi+1

[D(Ri+1) − D(Ri+1 + 1)]

− qi

αi
[D(Ri) − D(Ri − 1)] (3.8)

Let l be the index i for which (△D
△R

)i is minimum;
3. Set Rl = Rl − 1.
4. Calculate the total rate Rtotal;
5. If Rtotal > B, go to Loop, otherwise go to step 6;
6. For i = 1, 2, ..., N , round down Ri to the nearest multiple of i block;
7. Calculate E[D(R)];
8. If E[D(R)] ⇔ maxPSNR ≥ γ dB, solution found, Stop; otherwise
move down one adaptation level per AO;
9. If adaptation level exhausted, Stop, no solution; otherwise, go to
Start.

bit-allocation result, the rate break points of the bitstream are known, and we can

encode the bitstream using FGA-FEC as illustrated in Fig. 3.7. Based on the

encoded bitstream shown in Fig. 3.3, we also know the amount of FEC that should

be applied to each atom. Therefore, we can re-group the atoms to facilitate a

certain kind of adaptation. For example as shown in Fig. 3.10, with Ls = 3 and

Lt = 3, we re-arrange the data for easier spatial and temporal adaptation, where

QY UV
i,j denotes sub-bitstreams corresponding to spatial level i (i = 1 corresponds

to the lowest resolution) and temporal level j (j = 1, 2, 3 corresponds to temporal

L-level, LL-level and LLL-level, respectively in Fig. 3.3), QMV
j j = 1, 2 denote the

motion-vector bitstream at temporal level j . There are no motion vectors in the

lowest temporal level (i.e. no motion vectors at LLL-level in Fig. 3.3). For temporal

and spatial adaptation, DSNs can directly remove the appropriate parts from the

37

encoded bitstream in Fig. 3.10. For SNR adaptation, the DSN needs to calculate

which sub-bitstreams need to be removed, and adapt each packet as illustrated in

Fig. 3.9. Since we shorten each packet in the same GOP by removing related blocks,

both FEC and data blocks are actively removed.´µ¶·¸¹º ´µ¶»¸¹º ´µ¶µ¸¹º ´» ¶·¸¹º ´»¶»¸¹º ´»¶µ¸¹º´µ¼º´»¼º
½¾¿ÀÁ¾ ÂÀ ÃÄÅÆ¾Á¾ÅÃÇÈ É¾ÊÀÇËÂÆÀÌÍÎÏÐÑÒÓÔÕÑÖ×ÒØÙÚØ

ÓÛÖ ÜÝ Þß àáâãÞ ãáä ãä ßåæç èßâæéãàÞãáä ´· ¶·¸¹º ´·¶»¸¹º ´·¶µ¸¹º
½¾¿ÀÁ¾ ÂÀ ÃÄÅÆ¾Á¾ÅÃÇÈ ÈÉÃ¿¾ ÉÃÂ¾

Figure 3.10: FGA-FEC encoded GOP can be re-organized to facilitate a certain kind
of adaptation. Here, one horizontal line is one description and vertically
it totals to N descriptions. Adaptation of PSNR can be easily achieved
by removing related vertical blocks from each packet. White blocks
contain FEC, colored blocks contains data.

To facilitate intermediate adaptation of a GOP, a header or information packet,

describing how FGA-FEC encodes each GOP, is sent to the DSNs ahead of the coded

and packetized video bitstream (Fig. 3.11).ê ë ì í î ïðñ ò óô õí ö ÷ ø ïó ð ïë ù ö ú û ïü í ë ý íò ÷ þ öí ÷ ð ïë ùÿ �� �� ÿ �� �� � � ��� � �� � 	
 � �� �
 � ���
 �
Figure 3.11: Information packet payload and the size of each field of the packet

In Fig. 3.11, Mode indicates the bitstream organization as temporal, spatial

and SNR, #Descriptions N denotes the number of descriptions that will be encoded

for one GOP, Bitmap denotes whether a bitstream section Si, i ∈ [1, N] has data

(indicated as 1) or no data (indicated as 0), followed by the size of each non-zero

section (occupying 2 bytes each). With this information packet and the bitstream

description file, DSNs can then easily adapt the FGA-FEC encoded bitstream for

diverse users. In this study, the block size of our scheme is set to 1 byte, a good

symbol size for RS codes in networking. This information packet occupies very

38

little bandwidth. For example, to represent one FGA-FEC encoded GOP with 64

descriptions, its bandwidth consumption is less than 2 Kbps, given 2 GOPs per

second (equivalent to 32 fps at 16 frames/GOP).

Table 3.3 summarizes the difference between MD-FEC and FGA-FEC.

MD-FEC FGA-FEC

FEC protection Near optimal Near optimal
Adaptation levels SNR SNR, Frame rate, Resolution
Adaptation by
trans-coding No No

Adaptation methods Dropping packets Dropping packets and
shortening packets

Adaptation precision Section level, coarse Block level, fine
Intermediate node No, send as many Yes, to choose

computation packets as it can the best adaptation

Table 3.3: Summary of the differences between MD-FEC and FGA-FEC in terms
of FEC protection and in-network adaptation

3.2.4 FGA-FEC Adaptation

In this section, we state how to adapt the FGA-FEC encoded bitstream ac-

cording to user video request and network conditions. The adaptation unit is one

GOP.

As mentioned above, each user node determines its ideal video, adaptation

order and minimum tolerable bitstream, and then sends these parameters to their

DSN before the streaming session as following:

{Lt, Ls, Lq, AO, γ, Lt min, Ls min},

where Lt, Ls, Lq denote the user ideal video in temporal, spatial, and quality layers,

respectively; AO and γ, Lt min, Ls min indicate the adaptation order and user minimal

requirements, cf. Table 3.2.

While streaming, each end user periodically estimates the available link band-

width B and packet-loss rate p of its uplink, where p can be measured based on

observed packet losses, and B (in bps) can be estimated using the TCP friendly

39

equation [6],

B =
S

Trtt

√

2p
3

+ Trto(3
√

3p
8
)p(1 + 32p2)

, (3.9)

where S is the packet size in bits, Trtt is the estimated round-trip time between

user and its DSN in seconds, Trto is the TCP timeout on this link. Equation (3.9)

was developed based on network experimental results to model TCP protocol and

to estimate a TCP-friendly available bandwidth for a non-TCP network flow, such

as UDP flow. If a non-TCP sender sends out packets at the estimated rate, the

non-TCP flow would fairly share the network bandwidth with TCP flows.

Based on the estimated B and p, DSN runs Algorithm 1 to determine what

it will request for this user, the result is T , S and Q, which denotes the user video

request in temporal, spatial, and quality layers, respectively. Each DSN aggregates

these video requests of its downstream users into a matrix, Θ, whose (i, j)th element

Θ(i, j) denotes the requested highest quality layer at spatial resolution i and frame

rate j among all its downstream users. The Θs are then aggregated along the DSNs

back to the server. Suppose that a given DSN has two child DSNs that send their

video requests Θ1 and Θ2, this parent DSN then produces aggregated video requests

as follows:

Θ(i, j) = max(Θ1(i, j), Θ2(i, j)).

The packet-loss rate of each link is also aggregated and sent back to the server

by the DSNs. Each DSN finds the largest packet-loss rate among its downlinks and

then aggregates the result on its uplink, continuing back to the server. For example,

in Fig. 3.1, the loss rate is aggregated as follows: DSN3 finds the largest loss rate

of its downlinks max(pe, pf , pg), and then aggregates with its uplink loss rate p3 as

p′3 = 1− (1−p3)(1−max(pe, pf , pg)). At DSN2, DSN3 is one downlink of DSN2 with

packet-loss rate p′3, the aggregated loss rate is p′2 = 1 − (1 − p2)(1−max(pc, pd, p
′
3)).

At DSN1, the aggregated loss rate to the server is 1−(1−p1)(1−max(pa, pb, p
′
2)). The

server can then encode the video bitstream according to the aggregated user video

request and loss rate. Effectively we are streaming through the overlay network to

satisfy the maximum of the user video requests, but with a packet-loss rate that

can produce an expected distortion at the users that is better than or equal to their

40

video requested value. Since we assume that there is no congestion between DSNs,

the available bandwidth B on the backbone is assumed large enough so that RN

can accommodate the aggregated video requests. Our current work is devoted to

removing this restriction.

Each DSN maintains a QoS parameter vector for both available bandwidth

and packet-loss rate {B,p} of its direct links, where

B = {Bi : i ∈ {0, 1, 2, ..., Ndown}; (3.10)

p = {pi : i ∈ {0, 1, 2, ..., Ndown}}, (3.11)

and i = 0 is for its uplink, Ndown is the total number of its direct downlinks. These

parameters would be used for adaptation of the FGA-FEC coded bitstream for each

user.

While streaming, DSNs adapt the FGA-FEC coded bitstream for their direct

downlinks based on user video requests, adaptation order, and network conditions.

Adaptation to user video request in terms of resolution/frame rate is straightforward,

DSNs can directly remove the bitstream and FEC codes as shown in Fig. 3.9 and

Fig. 3.10. However, to adapt to a lower bandwidth B and loss rate p, DSNs need

to do further adaptation of the bitstream by dropping descriptions (starting from

description N and then N − 1, · · · , until Rtotal ≤ B) or shortening each packet in

Fig. 3.7 (starting from rate break points RN , RN−1, · · · , until Rtotal ≤ B) or by a

combination of the two methods. We call this FGA-FEC adaptation. Suppose after

video adaptation, there are only N ′ (≤ N) descriptions left with the updated rate

break points R1, R2, · · · , RN ′. Then the expected distortion after adaptation is:

E[D(R)] =
N ′

∑

j=0

qjD(Rj), (3.12)

subject to:

Rtotal ≤ B,

41

where qj is the probability of receiving j out of N ′ packets,

qj =





N ′

j



 (1 − p)jpN ′−j . (3.13)

Here, D(R) is the distortion-rate curve for the relevant spatial resolution and

frame rate. We assume that these D(R) curves at all spatial and temporal layers

are available at server and represented by 21 points in terms of (Rate, Distortion).

While streaming, the server sends these D(R) curves to each DSN, these DSNs then

convex interpolate the D(R) curves to more points. For an instance, we usually

interpolate a D(R) curve to 2000 points in our optimization simulations.

Given the available bandwidth B and loss rate p of a particular user, there

might be many pairs of N ′ and rate break points {Ri, i ∈ [1, N ′]} that satisfy the bit

budget. The DSN needs to find the best combination of dropping descriptions and

shortening packets and uses the search Algorithm 2, FGA-FEC adaptation, to find a

target adaptation bitstream that minimizes E[D(R)]. In detail, a DSN first adapts

the bitstream to the user video request, since some subband bitstreams might be

removed (i.e some columns removed as shown in Figs. 3.9 and 3.10), the rate break

points R1, R2, · · · , RN should be updated. If still Rtotal > B, the DSN needs to

further adapt the bitstream to satisfy the available bandwidth, again considering

the user adaptation order. At each spatial/temporal adaptation step, the DSN first

finds the search range, by iteratively removing description N and rate break point

RN , description N − 1 and RN−1, and so on, until we are left with N ′ descriptions

and rate break points that satisfy Rtotal ≤ B. Since during transmission from

server to the DSN, some packets, say δ out of N packets, might be lost or actively

dropped by parent DSNs, the maximum number of descriptions which could be

further dropped to satisfy the bit budget is M = (N − δ) − N ′. If M ≤ 0, there

is enough bandwidth to accommodate all packets, then all N − δ packets should

be sent to the user, given video quality is satisfied, otherwise, move to next lower

spatial/temporal adaptation level in user supplied AO. If M > 0, within the search

range ((N − δ) → N ′), we start from I = N − δ (all the received descriptions), and

shorten the received descriptions by iteratively dropping the least important blocks

42

Algorithm 2: FGA-FEC Adaptation

Inputs : B, N , T , S, Q, AO, δ, γ, Lt min, Lsmin

Outputs: R1, · · · , RN ′, I

Start:
Adapt bitstream based on user video request, T , S, Q;
Update R1, R2, · · · , RN ;
If Rtotal ≤ B and maxPSNR ≥ γ dB, forward all packets, stop,
otherwise, go on;
Loop:
Determine search range, iteratively drop descriptions to yield N ′ such that
Rtotal ≤ B;
for (I = N − δ; I ≥ N ′; I −−) do

Remove descriptions N to I in Fig. 3.7;
Shorten each description such that Rtotal =

∑I
j=1 αjRj → B

Calculate qj as (3.13) with N ′ = I;

E[D(R)]I =
∑N ′

j=0 qjD(Rj);

end
minE[D(R)] = min{E[D(R)]I , I ∈ [N − δ, N ′]};
if (minE[D(R)] ⇔ maxPSNR ≥ γ dB) then

solution found, stop;
else

Move down one adaptation level;
If adaptation level exhausted, stop, no video is sent;
Adapt bitstream based on this adaptation level;
Update R1, R2, · · · , RN ;
If Rtotal ≤ B and maxPSNR ≥ γ dB, forward all packets, stop,
otherwise, go to Loop;

end

of Fig. 3.7 until we satisfy Rtotal = B, and then calculate E[D(R)]I . Then we move

to I = N − δ−1 (drop one received description), shorten each description to satisfy

the bit budget, calculate E[D(R)]I , and so on until I = N ′. Thus finding the

minimum distortion (minE[D(R)]) of this step. This process is repeated along the

adaptation order, until we meet the user minimal quality requirement maxPSNR≥ γ

dB or exhaust all adaptation levels. After calculation, the DSN only needs to send

out I updated descriptions, where I corresponds to the step with minE[D(R)].

Algorithm 2 can be simplified to a coarse, computationally efficient method,

we call direct truncation, wherein the DSN adapts the FGA-FEC coded bitstream

by directly shortening each description to satisfy the available bandwidth, with no

43

descriptions further dropped (I = N − δ). Direct truncation could be used at DSNs

that lack computational power, such as battery powered mobile nodes.

Summarizing, the FGA-FEC scheme has the overall procedure shown in Table

3.4. Steps 1 and 2 are inputs to the streaming system from the users at start up,

while steps 3-6 are repeated at every GOP.

Overall FGA-FEC procedure
1. Users decide adaptation-order, their individual input is AO, γ, Lt min, Ls min.
2. Users decide ideal video, their input is Lt, Ls, Lq.
3. DSNs determine video requests using Algorithm 1, the result is

T , S, Q for each user.
4. DSNs collect/aggregate video requests and loss rate to server.
5. Server runs Algorithm 1 to allocate FEC and then encodes video

in FGA-FEC format.
6. DSNs adapt FGA-FEC coded bitstream to serve users using Algorithm 2.

Table 3.4: Overall FGA-FEC procedure

3.3 Simulations and Experiments

We distribute video coding functions across both server and network and adapt

both the video bitstream and error-control codes to satisfy multiple diverse users

by simply adjusting the packet size and/or dropping related packets at intermediate

nodes, without decoding/recoding the data or FEC. Several questions need to be

answered about the new technique:

1. Can the in-network block-based adaptation of embedded bitstreams achieve

almost the same quality as source coding?

2. Since FGA-FEC is a generalization of MD-FEC, how does its performance

compare with MD-FEC?

3. FGA-FEC adaptation serves multiple heterogeneous users by adapting both

source- and channel-coded bitstream. Is it optimal or near optimal?

4. How does FGA-FEC perform compared with conventional Unicast streaming?

44

5. How does FGA-FEC perform in a multicast scenario compared with MD-FEC

transcoding and layered multicast?

We performed simulations and experiments using the test sequence: Fore-

man CIF, 300 frames at 30 fps, and 16 frames/GOP. The scalable source coder

MC-EZBC, and Reed-Solomon codes are employed. Adaptations are done at in-

termediate overlay nodes using the FGA-FEC encoded MC-EZBC bitstream. Each

simulation is run at least ten times, and we present only averages for statistically

meaningful results.

3.3.1 FGA-FEC vs. Source Coding

If there is no loss inside network, FGA-FEC encoding and adaptation is only

performed over source data. At an intermediate DSN node, suppose we need to

adapt the bitstream to match the available bandwidth of a certain downlink. The

scalable source coder can generate a bitstream that exactly matches the bandwidth.

But FGA-FEC adapts the bitstream at block level, so the adaptation will not be

as precise as that at the source coder. So here we focus on comparing the coding

efficiency of FGA-FEC vs. source coding, and we assume there is no FEC added.

1 2 3 4 5 6 7 8 9 10 11 12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Block Size (in Bytes)

P
S

N
R

−
Y

 D
iff

er
en

ce
 (

dB
)

Min difference
Max difference

Real difference falls
in the shadow area

(a)

16 32 48 64 80 96 112 128 144 160
15

20

25

30

35

40

45

Block Size (in Bytes)

P
S

N
R

−
Y

 (
dB

)

2Mbps
1Mbps
512kbps
256kbps

(b)

Figure 3.12: (a)Effect of block size, smaller block size means finer granularity of
adaptation; (b)Effect of larger block size at different rate.

Given a video bitstream at 1 Mbps, FGA-FEC can packetize the bitstream

into 128 packets per GOP in the order of SNR scalability, with block size of 8 bytes,

45

50 100 150 200 250 300
10

15

20

25

30

35

40

45

50

Frame Number
P

S
N

R
−

Y
 (

dB
)

SNR Adaptation
Spatial Adaptation
Temporal Adaptation

Figure 3.13: Video quality of 3-D adaptation to match the available bandwidth from
2 Mbps down to 512 Kbps

resulting in a network packet size of about 520 bytes. In a scenario where the last

mile available bandwidth of a user is 991 Kbps, to match this bandwidth, FGA-FEC

can only adapt the 1 Mbps bitstream to 976 Kbps by removing the last 3 blocks

from each packet. Therefore, the overall PSNR of FGA-FEC is 0.04 dB lower than

source coding in this case, due to the coarse FGA-FEC adaptation at block level

than source coding at bit level.

Obviously, the block size of FGA-FEC can affect adaptation precision. In Fig.

3.12(a), we plot granularity of adaptation versus block size. Here, the last block

is removed from each network packet (equivalent to remove the last block column

in Fig. 3.7). Clearly, smaller block size means finer granularity. The two curves

illustrate two extreme cases. The ”min difference” happens in the case where both

FGA-FEC and source coder remove the same amount of bitstream to satisfy a bit

budget. The ”max difference” happens at the case where FGA-FEC removes one

block from each description in a GOP, while the source coder only needs to remove

one block from a column in the bitstream. In other cases, the PSNR difference falls

in the lined area between these two extreme curves. Fig. 3.12(b) further shows the

adaptation granularity at larger block sizes and different bitrates by removing the

last block of each packet. The granularity becomes coarser as block size becomes

larger.

Each user has an adaptation order to respond to dynamic network conditions.

In Fig. 3.13 we show the corresponding video quality when the available bandwidth

46

drops. Originally, the user is receiving a 2 Mbps, Foreman, CIF, 30 fps bitstream.

Starting with frame 100, however, the user has only 512 Kbps available bandwidth.

Here, we list three possible choices for the user: (a) SNR adaptation to 512 Kbps;

(b) Temporal adaptation to 7.5 fps; (c) Spatial adaptation to QCIF. Both choices

(b) and (c) need additional SNR adaptation to fit in 512 Kbps. The user can choose

an adaptation order based on quality profiles like Fig. 3.13 and its own display and

computing capabilities.

Results in this subsection show that FGA-FEC can adapt the bitstream almost

as precisely as can the source coder. The maximum difference is less than 0.003 dB

for a block size of 1 byte in Fig. 3.12(a).

3.3.2 FGA-FEC vs. MD-FEC Encoding

FGA-FEC extends MD-FEC by providing additional multidimensional adap-

tation capabilities with both source data and FEC data, to facilitate in-network

processing. We compare the two methods by encoding the first GOP of Foreman

into 128 and 64 descriptions, using both methods. The block size of FGA-FEC is

set to 1 byte. Available bandwidth B is 1 Mbps and the average loss rate is 20% for

both schemes. After the optimal bit allocation, the total number of encoded layers is

35 (128 packets case, where R0 = R1 = · · · = R52 = 0 and R87 = R88 = · · · = R128)

and 18 (64 packet case, where R0 = R1 = · · · = R26 = 0 and R44 = R45 = · · · = R64)

in the two cases of both schemes. Here, we refer to the piece of bitstream between

two rate break points, shown at top of Fig. 3.7, as one layer.

Fig. 3.14(a) and 3.15(a) compare the numbers of bits in each layer for MD-

FEC and FGA-FEC. We see that both algorithms can generate very similar layer

sizes. The small visible difference is due to rounding at different precision levels

(step 6 in Algorithm 1). For MD-FEC, Ri is rounded down to a multiple of i at

the bit level, but for FGA-FEC, rounding is at block level, one byte. Also, smaller

N corresponds to better (smoother) bitstream round-up precision. This is why the

two methods perform even closer in Fig. 3.15(a) than in Fig. 3.14(a). We also show

in Fig. 3.14(b) and 3.15(b) that FGA-FEC and MD-FEC generate almost the same

bitrate as we move through the layers from base layer on upwards.

47

0 5 10 15 20 25 30 35
2

4

6

8

10

12

14

Layer Number

N
um

be
r

of
 b

its
 p

er
 la

ye
r

(k
b)

MD−FEC
FGA−FEC

(a) Number of bits in each layer

0 5 10 15 20 25 30 35
0

100

200

300

400

500

600

Number of Layers

B
it

ra
te

 a
s

su
bs

cr
ib

e
m

or
e

la
ye

rs
 (

K
bp

s)

MD−FEC
FGA−FEC

(b) Bitrate as layer adds up

Figure 3.14: FGA-FEC vs. MD-FEC in terms of bit allocation, GOP 1 of Foreman
is packetized into 128 packets

0 2 4 6 8 10 12 14 16 18
6

8

10

12

14

16

18

20

22

24

Layer Number

N
um

be
r

of
 b

its
 p

er
 la

ye
r

(k
b)

MD−FEC
FGA−FEC

(a) Number of bits in each layer

0 2 4 6 8 10 12 14 16 18
0

100

200

300

400

500

600

Number of Layers

B
it

ra
te

 a
s

su
bs

cr
ib

e
m

or
e

la
ye

rs
 (

K
bp

s)

MD−FEC
FGA−FEC

(b) Bitrate as layer adds up

Figure 3.15: FGA-FEC vs. MD-FEC in terms of bit allocation, GOP 1 of Foreman
is packetized into 64 packets.

3.3.3 FGA-FEC vs. MD-FEC - Multiple Heterogeneous Users

We next compare FGA-FEC vs. MD-FEC to satisfy diverse users with dif-

ferent bandwidth, by sending the encoded 64 descriptions to users with bandwidth

ranging from 200 Kbps to 1000 Kbps as shown in Fig. 3.16, where DSN adapts the

encoded GOP to response to different bandwidth. For simplicity, link packet-loss

rate is set to 10% (uniformly distributed over 9-11%) for all users and there is no

congestion between DSN and server, hence the loss rate in this backbone link is

set to zero. We arbitrarily set PSNR=0 if there is not enough bandwidth for even

the base layer. Fig. 3.17(a) shows the observed video quality (PSNR) of each user.

48

� � �
��
�� � � �� � � �� � � �� �� � �

 ! " # $
% &' " (� " #) " # ! " # *

 ! " # + ! " # ,
Figure 3.16: Network topology for comparison of FGA-FEC with MD-FEC. Diverse

users connect through one DSN to a backbone link.

Clearly, FGA-FEC has much better performance in response to diverse user require-

ments. This is because MD-FEC adapts to dynamic bandwidth by sending as many

packets as it can to the channel, hence some useless data is sent within packets. For

example, if i out of N packets can go through a channel, the server can only decode

up to rate break point Ri of the bitstream. Thus video data and FEC bits in the rate

break point interval [Ri+1, Ri+2, ..., RN] cannot be successfully decoded but is still

inside each packet, resulting in wasted bandwidth. On the other hand, FGA-FEC

actively drops and shortens packets. Further, the adaptation is more precise than

MD-FEC because all useless data is removed from each packet, thus saving some

bandwidth for useful data and hence has better adaptation performance.

In addition to SNR adaptation shown at Fig. 3.17(a), FGA-FEC can do spatial

and temporal adaptation as well. For example, at a certain time the users may want

to view a QCIF in stead of CIF video to response to a smaller bandwidth, FGA-FEC

can achieve this by adaptation using Algorithm 2 at the DSN node. Fig. 3.17(b)

shows both spatial and SNR adaptation to different users.

Results in these two sections show that FGA-FEC performs almost the same as

MD-FEC in terms of protection and bit allocation, but has a much better adaptation

performance to network conditions. One reason is that MD-FEC was not designed

for adaptation, it is simply an end-to-end protection method. It can coarsely scale

in bitrate (quality) but not in frame rate and spatial resolution.

49

200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

Available bandwidth (Kbps)

P
S

N
R

−
Y

 (
dB

)

MD−FEC
FGA−FEC

(a) SNR adaptation to different users

200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

Available bandwidth (Kbps)

P
S

N
R

−
Y

 (
dB

)

MD−FEC
FGA−FEC

(b) Spatial adaptation to different users from
CIF to QCIF

Figure 3.17: FGA-FEC vs. MD-FEC in terms of adaptation to different users with
different bandwidth ranging from 200 Kbps (User1) to 1 Mbps (User
9).

200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

Rate (kbps)

D
is

to
rt

io
n

(M
S

E
)

Distortion

(a) D-R curve of the seventh GOP of Fore-
man

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

Byte position in packet

P
ac

ke
t n

um
be

r

Parity bytes
Source bytes

(b) Bit allocation 1100 Kbps, the source data
and FEC data byte position in each 1145-byte
packet

Figure 3.18: The operational rate distortion curve, and matched bit-allocation result
of the seventh GOP Foreman CIF sequence

3.3.4 FGA-FEC Adaptation vs. Optimal Decode/Encode

At intermediate nodes, FGA-FEC adapts the bitstream and FEC by short-

ening packets and/or simply dropping packets via Algorithm 2. An upper bound

solution would be to optimize the bitstreams at the DSN for each individual user

and adapt the bitstream by decoding/recoding the FEC codewords based on user

video request, user adaptation order, and network conditions. We call this method

50

optimal decode/recode solution.

400 500 600 700 800 900 1000 1100 1200
32

33

34

35

36

37

38

Available bandwidth (Kbps)

P
S

N
R

−
Y

 (
dB

)

FGA−FEC
Optimal
Direct truncation

(a)

400 500 600 700 800 900 1000 1100 1200
32

33

34

35

36

37

38

Available bandwidth (Kbps)

P
S

N
R

−
Y

 (
dB

)

FGA−FEC
Optimal
Direct truncation

(b)

Figure 3.19: Comparison of FGA-FEC, optimal decode/recode solution, and direct
truncation to serve users with different bandwidths; (a) against the
theoretical mean distortion by calculation, (b) against the video quality
by simulation

We compare FGA-FEC, optimal decode/recode solution, and the direct trun-

cation method to satisfy users with available bandwidth ranging from 500 Kbps

to 1100 Kbps. The network topology is the same as Fig. 3.16, but with different

available bandwidth and the packet loss rate of each user is set to 15%. Encoded

video bitstream is sent from server to each user through a DSN. FGA-FEC first

optimizes the protection based on the highest bandwidth user (1100 Kbps) and the

aggregated loss rate is 15%. The number of descriptions per GOP is set to 64.

Given the rate-distortion curve of the seventh GOP of Foreman (Fig. 3.18(a)) and

the distribution of the number of packets being received, the FGA-FEC encoded

GOP (Fig. 3.18(b)) shows the byte position in each packet (refer to Fig. 3.7 for

packetization). Fig. 3.19(a) compares the theoretical calculation results of mean

PSNR of FGA-FEC adaptation using Algorithm 2, the optimal decode/recode so-

lution, and direct truncation in response to various users with different network

conditions. Algorithm 2 can both drop descriptions and shorten packets to achieve

the best adaptation, which results in a near optimal video quality. The FGA-FEC

adaptation is about 0.15 dB lower than the optimal solution in the mean distortion.

The direct truncation method has a coarse, but still acceptable adaptation result.

51

Fig. 3.19(b) compares the resulting video quality of the three schemes by simula-

tion, where the adapted bitstreams are transmitted to users through the topology

to different users with different bandwidth.

FGA-FEC adaptation is only actively removing blocks within each packet

instead of performing a complex FEC computation, so the computational burden

is very low. We tested the FEC encoding/decoding time at a Pentium 4, 1.6 GHz

machine running Linux 8.2. The task was to encode 115 packets with a size of 512

bytes each. To generate an RS(120,115) code, it took approximately 4 ms. We also

tested the FGA-FEC adaptation burden on the same computer, the adaptation time

to process the same number of packets was about 1 × 10−2 ms.

Results in this section show that FGA-FEC has near optimal performance

in terms of error protection and adaptation, but much lower FEC computational

burden than the optimal decode/recode solution that would be needed with just

MD-FEC, since it has no data adaptation capability.

3.3.5 FGA-FEC vs. Unicast

50 100 150 200 250 300
20

25

30

35

40

45

Frame Number

P
S

N
R

−
Y

 (
dB

)

FGA−FEC
Random Drop

Figure 3.20: FGA-FEC vs. random drop to response to a congested link

Conventionally, when network congestion occurs, data packets are randomly

dropped at the router to avoid congestion. On the other hand, FGA-FEC can

adapt the packets at the intermediate nodes to reduce the bandwidth requirement,

by dropping the least important parts of the bitstream. Given a 1.5 Mbps bitstream

and available bandwidth of 1.455 Mbps, in Fig. 3.20 we compare PSNR-Y of FGA-

FEC versus a random drop scheme with a 3% packet-drop ratio. There is no FEC

52

added in either scheme. Observe that the proposed scheme significantly outperforms

random drop by about 10 dB. The reason for the large degradation of the random

drop PSNR is the high dependency of the scalably coded video bitstream. If one

packet is dropped, further packets in the same GOP become useless. Thus, the

effective packet-loss rate is much higher than 3%.-
./ 0 1 23456 7

89 :; < = > ? @ A 6 B C @9 : D E F G HI J K H 9 :9 :9 :9 :9 :9 :
L M N OL M N I L M N H P Q R OL M N H P Q R IS H T U O V WX PY T Z[T U \ T U

Figure 3.21: ns-2 topology for comparison of FGA-FEC with conventional unicast,
the initial channel parameter set up is indicated at each link

3.3.6 Further Comparison via ns-2 Simulation

We further compare FGA-FEC versus unicast in terms of video quality using

the network simulator ns-2 [96] for the architecture of Fig. 3.21, wherein twelve

users are sharing a bottleneck between nodes 3 and 4. The ns-2 initial channel

parameter set up is indicated at each link. Users 0 to 9 are requesting a scalable

video from the server with the ideal video source rates and adaptation order AO

shown in Table 3.5, the supporting network protocol is TFRC [6]. In FGA-FEC,

we have designed the FEC using Algorithm 1 based on an available bandwidth of 2

Mbps and 2% packet-loss rate at the server. In Unicast, FEC is assigned based on

actual available bandwidth and 2% packet loss rate. To increase the heterogeneity

of the network, after streaming 96 frames (4 GOPs), the available bandwidths of

User 6 and User 8 are dynamically changed to 800 Kbps and 600 Kbps, respectively,

as shown in Table 3.5.

Due to congestion at the bottleneck in Unicast, each user fairly shares the

bandwidth with others, including the two TCP users. Thus, the server can only

stream video to each user according to its available bandwidth (not their ideal video

53

Users Supplied source rate (Kbps)
User ideal video adaptation order Unicast FGA-FEC

source rate (Kbps) AO

0 1000 1 750 1000
1 1100 1 752 1100
2 1200 1 753 1200
3 1300 1 754 1300
4 1400 1 754 1400
5 1500 1 747 1500
6 1600 3 752 1600→800
7 1700 1 746 1700
8 1800 2 748→600 1800→600
9 1900 1 750 1900

Table 3.5: Network performance of using FGA-FEC vs Unicast

request), shown as supplied source rate in Table 3.5. Packets are actively dropped

by the server according to their relative importance. In FGA-FEC, node 4 becomes

a DSN node, it can adapt the bitstream to support different users. The required

bandwidth between server and node 4 is 2 Mbps in this case. The total traffic at the

bottleneck is at maximum 6 Mbps (2TCPs + 1TFRC from node 4), so there is no

congestion in the FGA-FEC case. In Fig. 3.22, we show the captured video frames

(93rd frame of Foreman) of the 9th user in Table 3.5. The effective throughput

is 1.9 Mbps for FGA-FEC and 750 Kbps for Unicast. In this case, FGA-FEC is

objectively 5.1 dB better than Unicast.

Fig. 3.23 compares PSNR of both FGA-FEC and Unicast of the 9th user

at full frame rate and full resolution based on the actual available bitrate listed in

Table 3.5. When the available bandwidth of User 6 is changed to 800 Kbps, the DSN

needs to adapt the bitstream according to User 6’s adaptation order and available

bandwidth. Therefore, starting from frame 97, the DSN streams a half frame rate,

full resolution video to User 6 with PSNR in Fig. 3.24(a). In response to User

8’s network bandwidth change from 1800 Kbps to 600 Kbps, the DSN adapts the

bitstream based on its available bandwidth and adaptation order AO, then a lower

resolution (QCIF) bitstream is sent to User 8 starting from frame 97 as shown in

Fig. 3.24(b). In both cases, Unicast still streams video in full frame rate and full

54

(a) FGA-FEC (b) Unicast

Figure 3.22: Sample video (93rd frame) of the 9th user in Table 3.5, given the avail-
able bandwidth, using FGA-FEC (a) and Unicast (b).

50 100 150 200 250 300
30

32

34

36

38

40

42

44

46

48

50

Frame Number

P
S

N
R

−
Y

 (
dB

)

FGA−FEC
Unicast

Figure 3.23: Comparison of PSNR of the 9th user: FGA-FEC vs. Unicast at full
frame-rate and full resolution;

resolution.

3.3.7 FGA-FEC Adaptation vs. MD-FEC Transcoding in a Multicast

Scenario

FGA-FEC adapts to network conditions by a combination of dropping packets

and shortening descriptions. In a multicast scenario, this can be done at interme-

diate nodes to quickly response to different users. One optimal solution in terms

of bitstream protection is FEC transcoding, i.e. intermediate nodes decode, re-

optimize and re-encode FEC for diverse users. In this section, we explore how

FGA-FEC adaptation performs in a multicast situation by comparing it with the

55

50 100 150 200 250 300
30

32

34

36

38

40

42

44

46

48

Frame Number

P
S

N
R

−
Y

 (
dB

)

Unicast
FGA−FEC

(a) FGA-FEC temporal adaptation vs. Uni-
cast

50 100 150 200 250 300
30

32

34

36

38

40

42

44

46

48

Frame Number

P
S

N
R

−
Y

 (
dB

)

Unicast
FGA−FEC

(b) FGA-FEC spatial adaptation vs. Unicast

Figure 3.24: Comparison of FGA-FEC vs. Unicast in response to network band-
width change starting at Frame 97: (a)FGA-FEC adapts the bitstream
at half frame-rate and full resolution for User 6; (b) FGA-FEC adapts
the bitstream at full frame-rate and half resolution for User 8.

optimal transcoding method. We choose to compare with a method called MD-FEC

transcoding, proposed by Puri and Ramchandran [53] (Thanks for their generosity in

providing their experimental code, so that we can have this section done fairly). We

use the ns-2 network topology at [53] as shown in Fig 3.25. The protocol used here

is a group formation protocol (GFP) [54]. The idea is to identify sets of receivers

that share common bottlenecks in the multicast tree. These receivers have similar

and correlated loss patterns and are hence grouped together. This approach ends up

arranging the whole multicast tree as a hierarchy where groups downstream neces-

sarily have worse reception than groups upstream of them and different groups are

separated by bottleneck links. In the MD-FEC transcoding scheme, if the receiver

group downstream conveys its channel state to the node acting as the transcoding

agent, then that node can re-encode its received bitstream using MD-FEC encoder

to optimally match the channel state below.

In both schemes, the server fully utilizes the available bandwidth, which is 1.64

Mbps. For MD-FEC, the transcoders for groups 2, 3, and 4 were placed at nodes

1, 2, and 10 respectively and the transmission profile (network conditions) for each

group was passed to the corresponding transcoding agent. The transcoding nodes

perform FEC decoding, re-optimization and recoding for each specific user according

56]^_`ab c
cd cecf ccgh ijk l de

ckcl

c mjl
f midf mjff mjj f mjjcmlh c mkecmllc mde cmdhc mlkc mek c mde c mk ccmii

n `^_op
n `^_oqn `^_or n`^_o s

Figure 3.25: Network topology for a network of 16 nodes (link bandwidths are in
Mb), the tree is organized into groups using GFP protocol.

to its transmission profile, thus, the total number of transcoding and optimization

computation iterations is the same as number of different users. For our FGA-FEC,

we optimize the FEC protection in the server and adapt the encoded FGA-FEC by

dropping packets and shortening descriptions to match the available transmission

profile at the same agent nodes (nodes 1, 2, 10 act as DSNs), without decoding and

re-coding the FEC. In both cases, the sequence is Foreman, 16 frames/GOP, 30fp,

the number of descriptions in one GOP is 64, and the block size in FGA-FEC is one

byte. Therefore, the adaptation precision of FGA-FEC is one column in Fig. 3.7,

which contributes to bitrate 64 × 8 × 30 ÷ 16 = 960bps.

In Fig. 3.26, we compare the delivered quality in user 4 , user 7 and user 12.

For user 4 and user 7, the available bandwidths are 1.32 and 1.38 Mbps, respec-

tively. FGA-FEC can adapt the 1.64 Mbps encoded bitstream to 1.32 Mbps (1375

bytes/packet) and 1379.52 Kbps (1437 bytes/packet). Since these two adapted bi-

trate are close to the FGA-FEC encoding bitrate 1.64 Mbps, the adaptation is

accurate and the quality is very close to MD-FEC transcoding, with FGA-FEC

adaptation about 0.01 dB lower than MD-FEC transcoding in both cases. For user

12, the available bandwidth is 0.66 Mbps. FGA-FEC can adapt the encoded bit-

stream to 659.52 Kbps with 687 bytes/packet. Since the available bandwidth is far

from 1.64 Mbps, the adaptation is not accurate, the quality is about 0.4 dB lower

57

50 100 150 200 250 300
33

34

35

36

37

38

39

40

41

42

Frame Number

P
S

N
R

−
Y

 (
dB

)

MD−FEC transcoding
FGA−FEC adaptation

(a) Receiver 4

50 100 150 200 250 300
33

34

35

36

37

38

39

40

41

42

Frame Number

P
S

N
R

−
Y

 (
dB

)

MD−FEC transcoding
FGA−FEC adaptation

(b) Receiver 7

50 100 150 200 250 300
33

34

35

36

37

38

39

40

41

42

Frame Number

P
S

N
R

−
Y

 (
dB

)

MD−FEC transcoding
FGA−FEC adaptation

(c) Receiver 12

Figure 3.26: Quality delivered (in dB) at various receivers. In receivers 4 and 7,
FGA-FEC adaptation is about 0.01 dB lower than MD-FEC transcod-
ing in both cases. In receiver 12, FGA-FEC is about 0.4 dB lower on
average.

than MD-FEC transcoding.

FGA-FEC adaptation is achieved by actively dropping packets and shorting

descriptions without any complex FEC transcoding. The computational burden

is very small compared with MD-FEC transcoding. The detailed computational

burden comparison is shown in Chapter 8 Section 8.3.4.

Results in this section show that FGA-FEC can perform almost as good as

MD-FEC transcoding in terms of protection, but with much less computational

burden in a multicast scenario.

58

t u vw
x

y z { | } ~
� � } ~ �

� �� } z� } ~� } ~ � � } ~ �� � } ~ �
Figure 3.27: Layered multicast in an example of one server, three different users.

The server sends out three video layers and users subscribe to different
layers according to their network conditions.

3.3.8 FGA-FEC vs. Layered Video Multicast

In this section, we compare our FGA-FEC scheme with layered video multicast.

A receiver driven layered multicast assumes a layered source that transmits different

layers of multimedia stream to distinct multicast groups and each receiver subscribes

to the multicast groups depending on its network characteristics [61, 69, 62]. An

example is shown in Fig. 3.27, where the server sends out three video layers and

users subscribe to different layers according to their network conditions. If network

conditions change, users may change the number of layers subscribed to accordingly.

Such approaches suffer from a number of drawbacks. The frequent join-leave actions

in a dynamic network are associated with significant process overhead at the end

hosts in addition to the video stream re-synchronization problems at receiver. Also

the number of layers at source is limited (usually 3-5 layers) and thus can not satisfy

each user in a heterogeneous environment. We used the same network topology as in

Fig. 3.25. Similar to Tan and Zakhor’s paper [69], in the layered multicast scheme,

the source sends out 4 layers with the base layer at 0.6 Mbps, and the other three

enhancement layers are at 0.3 Mbps, 0.42 Mbps and 0.32 Mbps, respectively. The

criteria of deciding the rate of each layer at the server is to satisfy as many users

as it can. To generate the four layers, the source first encodes the video based on

the highest bandwidth at 1.64 Mbps with FGA-FEC and then splits each encoded

GOP into 4 layers at the designed rate. The receivers adapt to network conditions

59

by joining and leaving the appropriate layers according to available bandwidth.

Meanwhile, our proposed FGA-FEC only sends out one encoded bitstream at 1.64

Mbps and adapts the encoded bitstream to suit diverse users’ available bandwidth.

50 100 150 200 250 300
33

34

35

36

37

38

39

40

41

42

Frame Number

P
S

N
R

−
Y

 (
dB

)

FGA−FEC
Layered multicast

(a) Receiver 4

50 100 150 200 250 300
33

34

35

36

37

38

39

40

41

42

Frame Number

P
S

N
R

−
Y

 (
dB

)

FGA−FEC
Layered multicast

(b) Receiver 5

50 100 150 200 250 300
33

34

35

36

37

38

39

40

41

42

Frame Number

P
S

N
R

−
Y

 (
dB

)

FGA−FEC
Layered multicast

(c) Receiver 7

50 100 150 200 250 300
33

34

35

36

37

38

39

40

41

42

Frame Number

P
S

N
R

−
Y

 (
dB

)
FGA−FEC
Layered multicast

(d) Receiver 12

Figure 3.28: FGA-FEC vs. Layered multicast, quality delivered (in dB) at various
receivers

In Fig. 3.28, we compare the delivered quality to users 4, 5, 7 and 12, using

FGA-FEC and layered multicast, respectively. For user 4, the available bandwidth

is 1.32 Mbps, the number of layers it can subscribe to is 3, which fits very well to

the available bandwidth. In this case, both FGA-FEC and layered multicast receive

the same video quality shown in Fig. 3.28(a). For user 5, the available bandwidth is

1.25 Mbps, the number of layers it can subscribe is two, which is up to 0.9 Mbps. For

user 7, the available bandwidth is 1.38 Mbps, the number of layers it can subscribe

is three which is up to 1.32 Mbps and very close to the available bandwidth of 1.38

60

Mbps. For user 12, the available bandwidth is 0.66 Mbps, and it can subscribe only

to the base layer which is 0.6 Mbps. On the other hand, FGA-FEC adaptation is

achieved by actively dropping packets and shortening descriptions. It matches the

available bandwidth very well which has better performance in all three users. The

adapted bitrate for user 5 is 1249.92 Kbps (available bandwidth is 1.25Mbps), for

user 7 is 1379.52 Kbps (available bandwidth is 1.38 Mbps) and for user 12 is 659.52

Kbps (available bandwidth is 660 Kbps). The rate difference is mainly caused by

adaptation precision which is one byte for each description, thus resulting in 64

bytes for a whole GOP. Since the number of layers in a multicast is limited, if

more diverse users are involved in the transmission, there should be more users with

mismatched video bitrate. For example, if a set of users have available bandwidth

ranging from 200 Kbps to 2000 Kbps and there are four multicast layers available,

only a small number of users can match their available bandwidth with available

layers. FGA-FEC matches very well to the available bandwidth by adaptation.

Results in this section show FGA-FEC has much finer adaptation to diverse

users and hence better quality compared to layered multicast.

3.4 Conclusions

In this chapter, we present a fine grain adaptive forward error correction cod-

ing approach for scalable video streaming. FGA-FEC encodes a scalable embedded

video bitstream in such a way that both the video bitstream and the error control

codewords can be easily and precisely adapted in a multidimensional way at inter-

mediate overlay nodes to satisfy a diversity of users without complex transcoding.

The adaptation at the intermediate overlay nodes is fine granular at the block level.

Encoding once, the proposed scheme can adapt FEC codes by only adjusting and

deleting packets instead of FEC decoding/recoding at the intermediate nodes. Sim-

ulations and experiments show that FGA-FEC can efficiently and precisely stream

scalable video to multiple heterogeneous users. Future work will focus on coopera-

tive adaptation between DSNs and extension to the wireless case with bit errors in

the packets. Also, we will look at extension to the case where bandwidth is limited

among the DSNs.

CHAPTER 4

Generalized FGA-FEC over Wireless Networks

In this chapter, we extend our proposed FGA-FEC coding scheme, a generalized

MD-FEC method, to wireless networks. To protect the encoded scalable video

bitstream over lossy channel and facilitate content adaptation at intermediate nodes,

we use product codes based on BCH/CRC codes as row codes and RS codes as

column codes. We propose a fast algorithm to optimize the product codes within

several iterations from a near optimal point. Simulations show good performance in

both content adaptation and protection.

4.1 Introduction

In Chapter 3, we proposed a fine grain adaptive forward error correction coding

(FGA-FEC) scheme for overlay video streaming, that can encode a video to facilitate

efficient and precise adaptation of the encoded bitstream to satisfy heterogeneous

users without complex transcoding at intermediate overlay nodes. In this chapter,

we generalize the proposed FGA-FEC scheme to wireless networks. In addition to

congestion related packet losses, wireless networks have to deal with a time varying,

error-prone, physical channel that in many instances is also severely bandwidth

and computationally constrained. Therefore, bitstream protection and adaptation

methods have to consider packet erasures due to congestion/route disruption as well

as the following three unique wireless characteristics: (a) channel bit errors due to

channel fading and noise, (b) large bandwidth fluctuation, and (c) intermediate node

computational capability constraints.

For packet-erasure channels, efficient FEC is obtained by using systematic RS

codes across packets. For fading channels, state-of-the-art performance is given by

product channel codes, originally proposed by Sherwood and Zeger [121], to protect

progressively compressed (embedded) and packetized images for noisy channels as

shown in Fig. 4.1. Within packets, the product code uses the concatenation of a

rate compatible punctured convolutional code (RCPC) and an error detecting cyclic

61

62� � � � � � � � �� � � � � ���� � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � �� � � � � � � �� � � � � � � � � � � � � ��� � � � � � � �� � � � � � � � � � � � � �
� � �
� � �� � �� � � � � � �� � � �� � � �� � � �� � � �

� � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � ���¡¢£¤¥¦§£§ ¨ © ª « ¬ ­ ® ª ® ¯ ° ¬ ­ ± ² ³ « ´ µ ¶ · « ´ ³ ¸¹ ¹ ª ® ¯ ° ¶ ­ º ´
Figure 4.1: Schematic diagram of RCPC/CRC and RS product code

redundancy check (CRC) code as row codes. Across packets, RS codes are used as

column codes. At the receiver, the row codes are first decoded. Decoding failure of

the row codes is treated as erasures when decoding the column RS codes. Similar as

[121], Sachs et al [122] introduced a multiple-description product code which aims at

optimally generating multiple, equally-important wavelet image descriptions. Their

error-correction codes are concatenated channel codes including row (outer) codes

based on RCPC codes with CRC error detection, and source-channel column (in-

ner) codes consisting of the scalable SPIHT image coder and an optimized array of

unequal protection RS erasure-correction codes. Stankovic et al [119] proposed a

low-memory linear-time iterative algorithm that jointly optimizes the RS and RCPC

product codes. A good survey about optimized error protection of scalable image

bitstreams over fading channels can be found in [123].

The above papers proved that product code is an efficient error protection

method for end-to-end unicast scalable image transmission over fading channels.

None of the papers considers the adaptation of product codes and the image data for

multiple heterogeneous users. Compared to image coding, scalable video has more

degrees of adaptation, and the users’ requirements are also more diverse. Therefore,

to protect scalable video for diverse users over error prone channels, we should

consider not only the protection scheme, but also the feasibility of bitstream and

error-control codes adaptation. In this chapter, we generalize the FGA-FEC scheme

to incorporate product codes to address the additional problems in wireless network.

For a wireless network, after FGA-FEC encoding, we further encode each de-

63

» ¼»» ¼»» ¼»» ¼»» ¼» ½» ¾½» ¾½» ¾½» ¾½» ¾ ¿ÀÁ Â ¿Ã» Ä ½» ¾Å» ¼» ÃÆÇÈ É Ê É ËÌ Ç ÍÊ Î Ï¿ÀÁ Â ¿Ã» Ä ½» ¾Å» ¼» ÃÆÇÈ É Ê É ËÌ Ç ÍÊ Î Ð¿ÀÁ Â ¿Ã» Ä ½» ¾Å» ¼» ÃÆÇÈ É Ê É ËÌ Ç ÍÊ Î Ñ¿À Á Â ¿ Ã» Ä ½» ¾Å » ¼» ÃÆ ÇÈ É Ê É ËÌ Ç ÍÊ Î Ò¿À Á Â ¿ Ã» Ä ½ » ¾Å» ¼» ÃÆÇ È É Ê ËÌ ÇÍ Ê Î ÒÄ ÏÓÓ» ¼» ½» ¾ ¿ÀÁ Â ¿Ã » Ä ½» ¾Å» ¼ » ÃÇ ÆÈ É Ê É ËÌ Ç ÍÊ Î Ô
Õ Ö× ØÙ Õ Ú × ØÙ ÛÛÛ Õ Ü× ØÙ ÛÛÛ ÕÝ × ØÙÞ ß à ÕÚ ×á Ù ÛÛÛ Õ Ü×á Ù ÛÛÛ ÕÝ ×á ÙÞ ß à Þ ß à ÛÛÛ Õ Ü×â Ù ÛÛÛ ÕÝ ×â ÙÞ ß à Þ ß à ÛÛÛ Õ Ü× ã Ù ÛÛ Û ÕÝ ×ã ÙÞ ß à Þ ß à ÛÛÛ Þ ß à ÛÛÛ ÕÝ ×ã ä ØÙÞ ß à Þ ß à ÛÛÛ Þ ß à ÛÛÛ ÕÝ ×å Ùæææ æ æ ææ ææ æ æ æ

ç è é ê ë ì çè é ê ë í çè é ê ë îææ æ æ æ æ ï è ðé ñîò ê îó ô ìï è ðé ñîò ê îó ô íï è ðé ñîò ê îó ô õï è ðé ñîò êîó ô îï è ðé ñîò êîó ô îö ìï è ðé ñîò êîó ô ÷ææ æææ æ
Õ Ö ÛÛÛ Õ Ü ÛÛ Û ÕÝø Ö ø Üù Ö ø Ü ø Ý ù Ö ø Ýø ú çè é ê ë ÷

ûüýþÿ��ý��þ���ÿ��ý
�ý� � � 	 è

 è
 	 îê ðê ñè ��

Figure 4.2: Generalized FGA-FEC with product codes

scription using a BCH code with CRC error detection to protect it from bit errors as

shown in Fig. 4.2. We choose systematic BCH codes over RCPC codes based on the

following reasons: (1) BCH codes are well known codes for binary data transmission,

especially good for large block codes [114]. (2) Block codes are generally developed

and analyzed through the use of algebraic/combinatorial techniques, while convolu-

tional codes have been amenable almost solely to heuristic construction techniques.

We need more control over the FEC. (3) Since we will do intermediate bitstream

adaptation, we need to decode/re-code the bit level FEC, therefore we need to choose

a code which can be fast decoded/re-encoded. We choose systematic codes instead

of convolution codes. In the intermediate node, we first check the CRC code of

each description. If CRC check passes, we can directly drop the parity bits without

decoding the BCH codes, otherwise, a BCH decoding is triggered. On the other

hand, if using RCPC codes, each RCPC codeword (description) should be decoded

for adaptation. (4) BCH codes are cyclic codes and can be shortened, which fits

very well to the bitstream adaptation.

In addition to protecting the scalable video bitstream using product codes, the

generalized scheme also should keep the adaptivity feature of the original FGA-FEC

scheme. In FGA-FEC, we encode one GOP of a scalable video bitstream into N

descriptions (called single-cluster coding in this study). In the generalized scheme,

we will encode one GOP into multiple clusters, with each cluster N descriptions

(called multi-cluster coding). This results in a smaller packet size for each descrip-

tion. The encoding of one GOP into multiple clusters is motivated by the following

64

two reasons: (i) the maximum transmission unit size is limited in an error prone

wireless channel, we want to fit one encoded description into one network packet; (ii)

it facilitates adaptation at intermediate wireless nodes. For example, if each frame-

rate layer is encoded as one cluster of descriptions, adaptation to lower frame-rates

can be achieved by simply dropping related cluster from the encoded GOP.

Given the above generalized scheme, several important problems should be

solved.

1. How should the FEC assignment be optimized, given both channel packet-loss

rates and bit-error rate?

2. How should one GOP be encoded into multiple clusters of N descriptions,

instead of just one cluster?

3. How should the bitstream be adapted at intermediate wireless nodes, given

large channel bandwidth fluctuation and constrained computational capability

at the network nodes.

4.2 Enhanced Link Layer Protocol

In the generalized FGA-FEC scheme, we protect the application payload (i.e.,

the video bitstream) using product codes, packets with errors should be passed to

application for error correction. In a wireless network, the header part of each

protocol layer is crucial, since intermediate nodes rely on this header information

to forward a packet to its right destination. If the header has some errors in it,

usually the whole packet is useless. To ensure correct delivery, we use a link-layer

header FEC [102, 104] scheme to enhance the MAC/PHY layers (We will discuss

this protocol in Chapters 5 and 6 in detail). A bit-level FEC is added to the packet

header at link layer to protect this header from bit errors as shown in Fig. 4.3. A

packet is dropped if the header CRC/FEC fails, otherwise, it is forwarded to the

next node and ultimately up to the application. In this study, we use the enhanced

MAC/PHY protocol to pass packets with errors to application layer.

65

Payload
 APP
 UDP
 IP
 MAC

Headers
Only Header CRC/FEC

FEC

Header FEC

Figure 4.3: Enhanced MAC/PHY protocol using header FEC

4.3 Generalized FGA-FEC over Wireless Networks

Recall the generalized FGA-FEC encoding scheme as shown in Fig. 4.2, at

receiver side, the BCH decoder first tries to correct bit errors within each description.

If BCH decoding fails in a certain description (based on CRC check result, we assume

that the CRC can always detect the errors within one description), that description

is dropped as an erasure. The RS decoder then tries to decode the column codes

with only erasures.

FGA-FEC can encode and adapt the product codes based on both channel

conditions and user video preference, as well as user predefined adaptation order. A

user can chose to adapt downward quality, frame rate and resolution in any particular

order. Suppose a user’s video preference is to view a video at Lt temporal layer, Ls

spatial layer and PSNR≥ γ′ dB, and the user’s minimum tolerable bitstream is at

Lt min temporal layer, Ls min spatial layer and PSNR≥ γ dB, γ′ ≥ γ. Therefore, the

user’s video request ranges from {Lt, Ls, γ
′} to {Lt min, Ls min, γ}. Along the user’s

adaptation order, the server or intermediate nodes need to deliver the best possible

video for this user within its requested bitstream range in response to available

bandwidth. First, we need to find the optimal product code assignment for a given

scalable video bitstream over a certain BER channel under a bitrate constraint. We

start from encoding one GOP into one cluster of N descriptions, since this is the

starting point for multiple clusters assignment.

4.3.1 Single-cluster Coding

The optimization problem is to find a concatenated column RS code assign-

ment cc and row BCH code assignment cr from a set of RS codes CRS and BCH

codes CBCH , such that the end-to-end distortion is minimized and the corresponding

PSNR≥ γ dB.

66

cc, cr = argmin
cc∈CRS , cr∈CBCH

E[D|CRS, CBCH , CCRC], (4.1)

subject to:

Rs + RRS + RCRC + RBCH ≤ B,

where CCRC is the CRC code set, Rs is the source rate, RRS is the rate allocated

to RS parity bits, and RCRC (RBCH) are the rates allocated to CRC (BCH) check

bits. B denotes the maximum available channel bitrate. Since CRC codes are only

used for error detection, we use a fixed 32 bit CRC code in this study and hence,

RCRC is constant.

For any integer m ≥ 3 and t < 2m−1, there exists a primitive BCH code with

the following parameters:

n = 2m − 1

n − k ≤ mt

dmin ≥ 2t + 1

This code can correct t or fewer random errors over a span of 2m − 1 bit posi-

tions. The code is a t-error-correcting BCH code and represented as BCH(n, k, t).

Due to the discrete nature of BCH codes, given n, we know that n ≥ k ≥ n − mt.

Therefore, we can solve (4.1) by a simple search algorithm as following: Given one

BCH(n, k, t) code assignment, find the optimal RS code assignment under bitrate

constraint Rs + RRS ≤ B −RCRC −RBCH , until exhaust all possible BCH codes at

CBCH . The one with minimum end-to-end mean distortion is the solution of (4.1).

We call this method exhaustive search. Later on, we will describe a more efficient

search algorithm that starts from a near optimal point and can find the optimal

product codes assignment within several iterations. Here, one iteration is defined as

one RS code assignment optimization.

Given a BCH (n, k, t) codeword, number of bit errors larger than t in the

codeword cannot be corrected, using a BSC channel, the probability of not correctly

decoding the codeword is

67

PBCH(E) =
n

∑

j=t+1





n

j



 pj
b(1 − pb)

n−j, (4.2)

where pb is the channel bit error rate. Decoding failures in the row codes are

treated as erasures when decoding the column RS codes. Since the column codes

typically only need to correct erasures, the computational complexity is reduced,

and also twice as many lost rows can be recovered compared to a decoder without

error detection on the rows. Given bit-error rate pb, and the probability of a packet

being dropped due to congestion/route disruption is pdrop. The probability of a

packet erasure p after BCH decoding can then be approximated as:

p = pdrop + (1 − pdrop) × PBCH(E), (4.3)

Now we are encoding one GOP into a single cluster of N descriptions, after

assigning a BCH code and a CRC code, the available bandwidth for RS codes and

video data is updated to B − RCRC − RBCH . We need to optimize the assignment

of column codes under this rate constraint. The goal is to find the optimal bitrate

partition R = {R1, R2, ..., RN} in Fig. 4.2, which minimizes the end-to-end mean

distortion E[D(R)], and the corresponding PSNR≥ γ dB.

E[D(R)] =

N
∑

i=0

qiD(Ri), (4.4)

subject to:














0 ≤ R1 ≤ R2 ≤ ... ≤ RN

Rtotal ≤ B

Ri − Ri−1 = ri × i, ri ≥ 0, ∀ i ∈ [1, N]

where ri is the rate of each subsection at section i (i ∈ [1, N]) of the bitstream

(please refer to Chapter 3 for definition of sections and subsections). Let qi be the

probability that any i out of N packets are successfully delivered, given a packet-loss

68

probability p and assuming independent losses, the qi can be calculated as:

qi =





N

i



 (1 − p)ipN−i, (4.5)

where p can be calculated using (4.3). The bitrate Rtotal is the total bandwidth

(bitrate) available for both FEC and video data and can be calculated as:

Rtotal = Rs + RRS + RCRC + RBCH

=
R1

1
N +

R2 − R1

2
N + · · · + RN − RN−1

N
N + RCRC + RBCH

=

N
∑

i=1

N

i(i + 1)
Ri + RCRC + RBCH

=

N
∑

i=1

αiRi + RCRC + RBCH , (4.6)

where αi = N
i(i+1)

for i = 1, 2, · · · , N − 1; and αN = 1.

Solving (4.4) is a constrained optimization problem. To find the optimal so-

lution, we can use the Lagrange multiplier method and construct a function:

F (R1, · · · , R2, λ) =

N
∑

i=0

qiD(Ri) + λ(

N
∑

i=0

αiRi + RCRC + RBCH − B), (4.7)

The BCH(n, k, t) code and CRC code are given at a certain optimization step,

then RCRC and RBCH are constant. Taking the partial derivative of (4.7) with

respect to Ri, i = 0, 1, · · · , N and λ, setting them to 0. The optimal assignment is

the solution of the following:



























dD(R1)
dR1

= −α1

q1
λ

· · ·
dD(RN)

dRN
= −αN

qN
λ

Rtotal =
∑N

i=0 αiRi + RCRC + RBCH = B

Given a value λ, dD(Ri)
dRi

= −αi

qi
λ is essentially corresponding to one point at

69

the bitstream D(R) curve with slope equal to −αi

qi
λ and the bitrate is Ri. To match

the total budget B, we can use a bisection search (Algorithm 3) to find the smallest

λ and the corresponding rate break points (see Fig. 4.2 top). Please note that

at every adaptation level, we need to use different D(R) curves for the RS codes

optimization, an example is shown at Fig. 4.4, where we show the D(R) curves in

different frame rate and resolution of Foreman sequence.

Algorithm 3: Bisection search algorithm

1. Initialize, set λ to a high value;

2. Calculate −αi

qi
λ for all i ∈ [1, N], −αi

qi
λ is the slope of the D(R) curve at a

certain point, this point corresponds to a rate Ri at the D(R) curve;

3. Calculate Rtotal using equation (4.6);

4. Test if Rtotal = B, If so, solution found, stop, R = {R1, R2, · · · , RN}.
Otherwise, go to two branches: If Rtotal > B, total rate is too high, go to
step 5, If B > Rtotal, total rate is too low, go to step 6;

5. Bisection search, reduce λ, set λ = λ
2
, go to step 2;

6. Reverse search, increase λ, set λ = λ + (λpre − λ)/2, where λpre is the λ value
at previous step, go to step 2.

200 300 400 500 600 700 800 900 1000 1100
0

10

20

30

40

50

60

Rate (kbps)

D
is

to
rt

io
n

(M
S

E
)

Full frame rate/full resolution
Half frame rate/full resolution
Full frame rate/half resolution

Figure 4.4: D(R) curves at various adaptation levels.

Optimal column code assignment at a certain given BCH code and CRC code

is a constrained optimization problem and can be solved by using Lagrange multi-

70

plier method as described above. The optimal product code could be achieved by

exhaustively searching over all possible BCH codes along the adaptation order. The

total number of iterations is the same as choosing all possible t, which is t ∈ [0, n/m].

The computational burden is heavy if exhaustive search is performed for each GOP.

We propose a fast search algorithm which can find the optimal product codes as-

signment within several iterations from a near optimal point.

4.3.2 Fast Search Algorithm

From 4.3, we know that BCH decoding error contributes to packet loss prob-

ability. At a certain BER, stronger row codes would result in a lower probability of

decoding error, thus reduce the probability of packet erasure. On the other hand,

allocating more bandwidth to BCH codes would result in less bandwidth allocated

to the video source and RS codes, hence higher distortion. Therefore, we can find

the optimal point by leveraging these two factors.

We first did tests via exhaustive search over videos Foreman (CIF, 18 GOPs),

Mobile (SIF, 8 GOPs) and Football (SIF, 7 GOPs) at various BER, available band-

width, as well as number of descriptions. Fig. 4.5 shows an example in one of these

tests. The task is to protect MC-EZBC encoded Foreman CIF sequence, GOP #7.

Here, N = 64, B = 980 Kbps, pdrop = 0.05, pb = 2 × 10−3, 1 × 10−3, 5 × 10−4 and

1 × 10−4, respectively. The set of BCH codes are BCH(n, k, t), where n = 8191,

m = 13, k = n − mt, fixed 32 bits CRC code, therefore t can vary from 0 to 623.

In the exhaustive search, we progressively set t in BCH codes from 0 to 623

(exhaust all possibilities), update the available bandwidth and optimize the column

RS codes at each BCH assignment. Finally, find the minimum expected distortion

among all iterations. Fig. 4.5(a) shows the probability of successfully decoding these

BCH(n, k, t) codes at given BERs. Fig. 4.5(b) shows the zoomed corresponding

optimized PSNR vs. t. Table 4.1 shows the optimization results of this test.

Our key observation is that the points near the knee of Fig. 4.5(a) are near

optimal points in Fig. 4.5(b). Therefore we can pick up a starting point t from

these knee points and locally search to find the optimal solution. Since the expected

distortion E[D] curve is concave around the optimal point, we can fist test three

71

0 5 10 15 20 25 30 35 40 45 50
0.8

0.85

0.9

0.95

1

1.05

t in BCH(n,k,t)

P
ro

b.
 o

f c
or

re
ct

 d
ec

od
in

g

BER 2x10−3

BER 1x10−3

BER 5x10−4

BER 1x10−4

(a)

0 5 10 15 20 25 30 35 40 45 50
38

38.2

38.4

38.6

38.8

39

39.2

39.4

39.6

39.8

40

t in BCH(n,k,t)

E
xp

ec
te

d
P

S
N

R
−

Y
 (

dB
)

BER 2x10−3

BER 1x10−3

BER 5x10−4

BER 1x10−4

(b)

Figure 4.5: (a) probability of successful BCH(n, k, t) decoding at various channel
BER vs. t; (b) Average PSNR of video vs. t

BER E[D](PSNR, dB) BCH(n, k, t)

0 39.63 none
1 × 10−4 39.59 BCH(8191,8125,5)
5 × 10−4 39.54 BCH(8191,8034,12)
1 × 10−3 39.49 BCH(8191,7956,18)
2 × 10−3 39.40 BCH(8191,7800,30)

Table 4.1: The results of optimal assignment at different BER

points (t − 1, t, t + 1), find the search direction of t. After that, we progressively

allocate bandwidth to BCH codes along the search direction, and then optimize the

column RS codes at each BCH code assignment, until find the optimal point.

We use a threshold method to choose the starting point. We pick a value of

the threshold ε, and test the probability of correctly decoding a BCH(n, k, t) code,

PBCH(C), at a certain BER with ε, where PBCH(C) = 1 − PBCH(E). The smallest

point t with PBCH(C) > ε is the starting point. Obviously, different threshold ε

corresponds to different optimization performance in terms of number of iterations

to reach the optimal point. Simulations show that ε = 0.999 is a good starting

point. Experiments show that good convergence is obtained with just three to five

iterations on average. Formula (4.2) used in Fig. 4.5(a) can be stored in a small

table, which further reduces the computational burden and fasten the optimization

process. Algorithm 4 summaries the product code optimization method.

72

Algorithm 4: Product code optimal assignment

Input : B, pb, pdrop, N
Output: cr, cc

1 Pick starting point t, such that PBCH(C) > ε;
2 Assign BCH(n,k,t) code;
3 Calculate p as (4.3);
4 Optimize RS codes t − 1, t, t + 1, calculate

E[D]t−1, E[D]t, and E[D]t+1;
5 If E[D]t ≤min(E[D]t−1, E[D]t+1), go to Step 9;
6 If E[D]t−1 ≤ min(E[D]t, E[D]t+1), search lower t, go to Step 8;
7 If E[D]t+1 ≤ min(E[D]t−1, E[D]t), search higher t;
8 Iterate on t a few steps;
9 If PSNR≥ γ, solution found, Stop, otherwise, move down one

adaptation level following user’s adaptation order.
10 If adaptation level exhausted, Stop, no video is sent.

Otherwise, go to Step 4;

While full Lagrange-based optimization is performed at the server, only FGA-

FEC adaptation consisting of shortening and/or dropping packets is done at inter-

mediate nodes [98, 99].

4.3.3 Multi-cluster Coding�
� �� ��� �� ��� �� ��� �� � ����� ���� � ���� � ��� �� �� ���� ��� ����� ��� �� ������ ��� ���� � ��� �� �� ���� ��� ��� ��� �� ��� ����� ��� ��� ��� �� �� �������
�� ! " # �� ! " $ �� ! " %��� ��� & � ' (%)!%* + #& � ' (%)!%* + $& � ' (%)!%* + ,& � ' (%) !%* + %& �' (%) !%* + %- #& �' (%) !%* + .������

�
 ��� �� �� � ��/
 / �0
 / � / � 0
 / �/ 1 �� ! " . 2 3 444 4442 5 444 44426 5 27 5���������������� �������� 2326282 5���9 : ;<=> ?@ A B?C DE F?GHBD: F I25J 325J625J8���26 5 26 5J 3444444���28 5 444444444���27 5KLMKLM��� KLMKLM��� KLMKLM��� KLMKLM���
������������������������

��� ������ �����������NOPQRSTUQV��� ��� ��� ���
Figure 4.6: FGA-FEC encoding method, one GOP of bitstream is encoded to N

descriptions, RS codes are applied across descriptions vertically at block
level.

In wired network, FGA-FEC encodes one GOP into single cluster of N descrip-

tions as shown in Fig. 4.6. Given an available bit budget Ω for one GOP, the size of

each description can be calculated as Ω/N . In a wireless network, the transmission

packet size is usually limited. Hence, one Maximum Transmission Unit (MTU) may

73

not be large enough to transmit a FGA-FEC encoded description. Therefore, we

should use smaller description size. One solution to achieve this is to use a larger N .

The problem with this approach is that the computational burden would increase

(due to long codewords) and the adaptation precision becomes coarse as N grows,

since we must adapt out more data in one column of blocks. Another solution, we

could encode one GOP to multiple clusters of descriptions, also resulting in smaller

packet size for each description. Since each column in Fig. 4.6 is randomly accessi-

ble, an easy way to do this is to assign FEC over an entire GOP as FGA-FEC does

for a wired network, and then split each description into several new descriptions.

For example, each description can be split into two smaller descriptions by collecting

odd column blocks and even column blocks in Fig. 4.6, respectively. We will stick

to the latter solution and encode one GOP into multiple clusters of descriptions,

with each cluster N descriptions.

Scalable data sources are generally composed of nested elements. The com-

pression of these elements imposes dependencies so that a source element might

not be decodable without first correctly decoding other elements. Usually, a scal-

able video bitstream has three basic types of scalability: temporal (frame-rate)

scalability, spatial (resolution) scalability, and SNR (quality) scalability. This kind

of bitstream can be encoded in such a way that the subsets corresponding to lower

frame-rate /resolution /quality of the video are embedded in bitstreams correspond-

ing to higher frame-rate /resolution /quality. Different sub-bitstreams can be ex-

tracted in a simple manner without transcoding, to readily accommodate a variety

of users considering their computing power, connection bandwidth. Therefore, in

order to optimally encode one GOP of a scalable bitstream into multiple clusters of

descriptions, we first need to explore the dependency of the encoded bitstream and

to figure out how we should split the encoded GOP. We use MC-EZBC encoded

bitstream as example to show the bitstream dependency.

Fig. 4.7 shows the bitstream dependency of an embedded scalable bitstream

where each node denotes a sub-bitstream at a certain spatial and temporal layer.

The subbands from Y, U and V belonging to that scale are progressively encoded

from the most significant bit (MSB) towards the least significant bit (LSB) and

74WX Y Z[\]^_ `]
XZ X ^ X[X Y X a X X XWb

c d ef __ ` W_ ` Zd efZ d efX [d ef
Figure 4.7: Bitstream dependency of an embedded bitstream, where each node de-

notes a piece of bitstream at certain frame-rate and resolution, arrows
denote the dependency, for example, node 2 depends on node 1

each bitplane pass n is further divided into several sub-bitplane passes. These sub-

bitstreams are each coded as independent arithmetic codewords and are addressable

in the compressed file. We can choose to transmit any spatiotemporal resolution

sub-bitstreams. Each pass has an entry in the bit allocation table showing its size.

This is intended to access each pass in the compressed file, randomly. Since the spa-

tiotemporal layers are independently encoded, the compressed data corresponding

to the various layers can be arranged in different configurations to create a rich set

of progression orders to serve different applications. The bitstream shown at Fig.

4.7 can be reorganized as Fig. 4.8.gh i jk l m
n hj hn hkhiho hh hg

p
Figure 4.8: Reorganized bitstream dependency, each dash lined group depends on

its parent bitstream from left, the dependency is in groups

Fig. 4.8 represents the reorganized dependency of bitstreams in groups. Nodes

in one dash-lined ellipse is one group. Each group depends on its parent group from

the left. For example, node 1 is the root node. Nodes 3, 6, 9 comprise one group

and depends on nodes 2, and 5, also one group. Each low frame-rate and resolution

75

bitstream can be extract from the graph. For an instance, we can directly extract

the full frame-rate CIF bitstream from the solid line circled area as Fig. 4.9. Also

the quality layers within each node can be stopped at any point of the sub-bitstream

from MSB to LSB. qr s tu v wx
Figure 4.9: Sample of full frame rate and CIF bitstream can be extracted from the

reorganized bitstreams

Based on the above dependency analysis, we know that certain elements can

not be correctly decoded without first successfully decoding some earlier elements

that they depend on. Therefore, we should add more protection to the more im-

portant elements. Further, the spatiotemporal layers are independently encoded

bitplane by bitplane and can be accessed independently, we can arrange the sub-

bitstreams in different progression orders to serve diverse users. In the scenario

of multiple clusters of description encoding, elements are arranged into multiple

clusters. Considering the randomly accessible characteristics of an embedded bit-

stream element, it is possible to process one GOP as an entity and generate N

descriptions without the limit to descriptions size (We give this type of description

a term ”computation description”, since they are only used for optimization and are

not transmitted, until split into new smaller descriptions), then re-order and split

the FGA-FEC encoded bitstream into multiple clusters by splitting each computa-

tion description into multiple new descriptions. In the receiver, these clusters are

concatenated together to reconstruct the computation descriptions and further the

GOP. Column RS code optimization is similar as FGA-FEC at wired network, the

problem we need to solve in this part is how to optimally assign the row BCH codes

for each cluster so that the product codes assignment for this GOP is optimal.

Suppose we want to encode one GOP into multiple clusters of descriptions, say

m clusters, with N descriptions in each cluster. The size of a description in cluster

j is nj in bits for all j ∈ [1, m], and this parameter is known before encoding. The

76

BCH code applied to cluster j is BCH(nj, kj, tj). The task is to find concatenated

column RS codes assignment cc(j) and row BCH codes assignment cr(j) for cluster

j, j ∈ [1, m], from a set of RS codes CRS and BCH codes CBCH , such that the

end-to-end distortion of the encoded GOP is minimized.

cc(j), cr(j) = argmin
cc(j)∈CRS , cr(j)∈CBCH

E[D|CRS, CBCH , CCRC], ∀j ∈ [1, m] (4.8)

subject to the total rate constraint:

∑m
j=1(Rs(j) + RRS(j) + RCRC(j) + RBCH(j)) ≤ B,

where, for the jth cluster, Rs(j) is the source rate, RRS(j) is the rate allocated

to RS parity bits, and RCRC(j) (RBCH(j)) are the rates allocated to CRC (BCH)

check bits.

The total rate constraint in (4.8) can be re-written to:

m
∑

j=1

(Rs(j) + RRS(j)) ≤ B −
m

∑

j=1

(RCRC(j) + RBCH(j)) (4.9)

Given FGA-FEC encoding method as shown in Fig. 4.6, each vertical block

column is independently accessible, the left side of (4.9) can be further re-written

to:
m

∑

j=1

(Rs(j) + RRS(j)) =

m
∑

j=1

Rs(j) +

m
∑

j=1

RRS(j) = Rs + RRS (4.10)

Based on (4.9) and (4.10), as well as the FGA-FEC encoding method in block

level, we can first optimization FEC protection based on the entire GOP without the

limit to description size as in Fig. 4.6 and then split the encoded GOP into multiple

clusters with
∑m

j=1 kj = k, where k is the size of the computation description in Fig.

4.6, and the BCH code applied to cluster j is BCH(nj, kj, tj). The splitting would

not affect the optimality, since we do not change any of the FEC assignments (both

BCH codes and RS codes). The criteria of the splitting is to facilitate intermediate

overlay adaptation. Fig.4.10 shows an example of splitting one encoded GOP into

two clusters of descriptions, each clusters has N descriptions, k = k1 + k2. This

77

splitting facilitates frame rate adaptation, one cluster can be directly dropped at

intermediate nodes for half frame rate.y z {z| }~ y z {�| }~y z {�| }~ y � {z| } ~ y � {�| }~ y � {�| }~y � �~y � �~
y � {z| }~ y � {�| }~ y � {�| }~y � �~y z {z| }~ y z {�| }~y z {�| }~y � �~������ � � ���

� � � ��� �� � ���������
Figure 4.10: An example of splitting one encoded GOP into two clusters of descrip-

tions, blank blocks contains FEC, each description in the two clusters
is coded with BCH codes horizontally.

Similar as single-cluster optimization, in multiple-cluster optimization, we pro-

gressively allocate bandwidth to BCH codes for each cluster, and then optimize the

RS code protection, until exhaust all possible BCH codes at CBCH . The one with

minimum distortion is the solution to (4.8). One new problem we need to solve in

multiple-cluster optimization is how we should distribute the BCH bandwidth to

each cluster, given the total allocated bandwidth to BCH codes for all clusters. If

using the splitting method to generate multiple clusters, one new description error,

could cause the computation description useless. The probability of one computa-

tion description being successfully transmitted to the destination is determined by

the successfully transmission of all split descriptions of the computation description.

P (C) =
m
∏

j=1

(1 − pdrop)PBCH(C)j = (1 − pdrop)
m

m
∏

j=1

tj
∑

i=0

pi
b(1 − pb)

nj−i (4.11)

The probability of one computation description error

p = 1 − P (C) (4.12)

78

This p is used to optimize the RS codes assignment as packet loss probability.

Algorithm 5: Multiple-cluster optimization

Input : B, pb, pdrop, N , m, nj , ∀j ∈ [1, m]
Output: cr(j), cc(j), ∀j ∈ [1, m]

for (Φ = 0;Φ ≤ Σm
j=1nj; Φ + +) do

find maximum P (C), subject to
∑m

j=1 tj = Φ;
Assign CRC code for each cluster;
Assign BCH(nj , kj, tj) codes for cluster j, ∀j ∈ [1, m];
Calculate p as (4.12);
RS code optimization;
Calculate E[D(R)]Φ for this iteration;

end
Find cr(j), cc(j), ∀j ∈ [1, m] which corresponds minimum E[D(R)]Φ;
Solution Found;

Algorithm 5 summaries the procedure of multiple-cluster optimization. We

progressively allocate bandwidth to BCH codes. Given the total bit budget allo-

cated to BCH codes is Φ bits for each computation description, the bit budget is

distributed to the m clusters, such that
∑m

j=1 tj = Φ. We can find the maximum

P (C), subject to
∑m

j=1 tj = Φ by a simple search algorithm. Then the probability

of a computation description loss p is calculated based on BCH assignment to each

cluster. After updating Rtotal, RS codes assignment is optimized as wired FGA-

FEC. This procedure is repeated until exhausting all the BCH codes in CBCH , the

product codes assignment corresponds to the minimum mean end-to-end distortion

of this GOP is the solution. After optimization, computation descriptions are split

to new descriptions with the description size of jth cluster kj , then jth cluster is

encoded with BCH(nj, kj, tj).

Fig. 4.11 summaries the generalized FGA-FEC scheme for wireless networks.

The FEC protection is first optimized based on the network conditions (packet loss

rate, BER and available bandwidth), then the RS codes are applied to the blocks

vertically as shown in Fig. 4.6. The RS encoded GOP is split into multiple clusters

of descriptions and each cluster is encoded with appropriate BCH codes over each

description. Inside the network, the encoded GOP can be adapted based on user

video requirement. At the receiver side, BCH decoder first tries to correct bit errors

79

inside each description and then the entire GOP is concatenated together. RS

decoder decodes all the RS codes to reconstruct the original bitstream.� � �� � � � � �� � � � � � � � � � � � � �� � � � � � ¡� � � � � � � �¢ £ � � � � ¡
� � � �� � � � ¡¢ £ ¤ � ¥ � � � � � �� � � � � � £ � � � £¢ £ ¤ � ¥ � � � � � � ¤

� � ¦ § � ¨� � � � � � ¡� � ¦ § � ¨¢ £ � � � � ¡ © £ � ¦ � ¥ ª� £ � � � ¤ � ¥ � � �« � ¬
Figure 4.11: Generalized FGA-FEC for wireless network, the shadowed blocks are

unique for wireless network

We tested Algorithm 5 in the following experiment. The task is to encode

MC-EZBC coded Foreman GOP #7 into two and three clusters, respectively. Each

computation description is split into two or three descriptions in two clusters coding

or three clusters coding, respectively. The number of descriptions is 64 at each

cluster, packet drop probability is set to pdrop = 0.05. Channel BER (pb) is set to

2× 10−3, 1× 10−3, 5× 10−4 and 1× 10−4, respectively. The available bandwidth is

985 Kbps.

Table 4.2 shows the expected distortion (PSNR in dB) of the optimal product

codes assignment at different BER for encoding one GOP into two clusters. Inter-

estingly, we found that the maximum P (C) is always achieved when the allocated

bandwidth to BCH codes is evenly distributed to each cluster, i.e descriptions in

different clusters use the same BCH code. Therefore, we can use the fast optimiza-

tion algorithm to optimize product codes for multiple clusters. BCH code used

in each cluster is BCH(n
m

, k
m

, t
m

), where m is the number of clusters in one GOP,

n, k, t is the size in computation description. Fig. 4.12 shows the procedure of the

optimization.

Table 4.3 shows the expected distortion (PSNR in dB) of the optimal product

codes assignment at different BER for encoding one GOP into three clusters, Fig.

4.12 shows the procedure of the optimization.

Table 4.4 shows the encoding quality losses in dB by comparing multi-cluster

coding with single cluster coding. The reason is because the longer BCH code at

single cluster coding is always better than shorter code with the same amount of

80

BER E[D] (PSNR, dB) BCH(n, k, t)

0 39.630 none
1 × 10−4 39.572 BCH(4095,4046,4)
5 × 10−4 39.513 BCH(4095,3998,8)
1 × 10−3 39.456 BCH(4095,3962,11)
2 × 10−3 39.363 BCH(4095,3878,18)

Table 4.2: The results of optimal product codes assignment at different BER (en-
coding one GOP into two clusters)

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

t in BCH(n,k,t) in two clusters

E
xp

ec
te

d
P

S
N

R
−

Y
 (

dB
)

BER 2x10−3

BER 1x10−3

BER 5x10−4

BER 1x10−4

Figure 4.12: The optimization procedure of Algorithm 5 for two clusters assignment.
BCH(n, k, t) vs. expected distortion (PSNR) at each BCH code itera-
tion.

protection at multiple clusters coding. Results show that the encoding loss in quality

is negligible, but with a much easier adaptation in multi-cluster coding.

4.4 Simulations

We performed simulations and experiments using test sequences: Foreman

CIF, 300 frames, Mobile SIF, 128 frames and Football 112 frames. All sequences are

30 fps, 16 frames/GOP. The scalable source coder is MC-EZBC. Reed-Solomon codes

are employed as column codes and BCH codes are applied to each description as

row codes. The number of descriptions encoded in one GOP is 64. Each simulation

is run at least ten times, and we present only averages for statistically meaningful

results.

81

BER E[D] (PSNR, dB) BCH(n, k, t)

0 39.630 none
1 × 10−4 39.564 BCH(2730,2694,3)
5 × 10−4 39.489 BCH(2730,2658,6)
1 × 10−3 39.428 BCH(2730,2622,9)
2 × 10−3 39.321 BCH(2730,2562,14)

Table 4.3: The results of optimal product codes assignment at different BER (en-
coding one GOP into three clusters)

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

t in BCH(n,k,t) in three clusters

E
xp

ec
te

d
P

S
N

R
−

Y
 (

dB
)

BER 2x10−3

BER 1x10−3

BER 5x10−4

BER 1x10−4

Figure 4.13: The optimization procedure of Algorithm 5 in three clusters assign-
ment. BCH(n, k, t) vs. expected distortion (PSNR) at each BCH code
iteration.

4.4.1 Optimization Performance

We propose fast optimization algorithm to assign product codes. We want to

know how fast it can reach the optimal solution. Here, we count the number of

iterations needed to optimize the product code of one GOP. Again, we start from

single cluster coding.

4.4.1.1 Single Cluster Coding

The task is to encode all three sequences GOP by GOP, the available band-

width is B = 1 Mbps, packet drop probability pdrop = 0.05. BER (pb) is set to

1 × 10−4, 1 × 10−5, 1 × 10−6, respectively, fixed 32 bits CRC code. We use the

threshold ε = 0.999 for picking up the optimization starting point.

Table 4.5 compare the average number of iterations needed to reach the optimal

82

BER Two clusters (dB) Three clusters (dB)

0 0 0
1 × 10−4 -0.018 -0.026
5 × 10−4 -0.025 -0.049
1 × 10−3 -0.031 -0.059
2 × 10−3 -0.035 -0.077

Table 4.4: The encoding quality losses (PSNR loss in dB) of multi-cluster coding
with single cluster coding

BER Foreman Mobile Football

1 × 10−3 3.94 3.88 4.0
1 × 10−4 4.56 3.38 3.0
1 × 10−5 4.11 3.25 3.0

Table 4.5: The average number of optimization iterations to reach optimal point at
different BER

point of the three sequences. And Table 4.6 lists the optimization results, which

exactly fit the result of an exhaustive search.

BER Foreman (dB) Football (dB) Mobile (dB)

1 × 10−3 38.43 27.55 28.72
1 × 10−4 38.52 27.66 28.84
1 × 10−5 38.53 27.68 28.86

Table 4.6: The optimal expected distortion (PSNR in dB) of different sequences at
different BER

Table 4.7 compare the average number of iterations needed to reach the optimal

point at different threshold ε. Based on the results, we found ε = 0.999 is a good

threshold to choose the appropriate starting point for product codes optimization.

The simulations show that the proposed fast optimization scheme can quickly

converge to optimal point within several iterations, which is very efficient.

4.4.1.2 Multi-cluster Coding

Now, we test the optimization algorithm by encode one GOP into multiple

clusters. The sequences and the network setups are the same as single cluster coding,

83

BER Foreman Football Mobile
ε1 ε2 ε3 ε1 ε2 ε3 ε1 ε2 ε3

1 × 10−3 5.19 3.94 5.83 5.0 4.0 6.0 4.75 3.88 6.5
1 × 10−4 5.56 4.56 4.61 4.0 3.0 4.0 4.5 3.38 4.25
1 × 10−5 4.72 4.11 4.11 4.0 3.0 3.0 4.25 3.25 3.25

Table 4.7: The average number of optimization iterations to reach optimal point at
different BER and different threshold, ε1 = 0.99,ε2 = 0.999 and ε3 =
0.9999

the only difference is the number of clusters encoded. Compare with single cluster

coding, multi-cluster coding first need to distribute BCH codes to different clusters.

Table 4.8 compares the average number of iterations needed to reach the optimal

point at different threshold at 2 clusters case.

BER Foreman Football Mobile
ε1 ε2 ε3 ε1 ε2 ε3 ε1 ε2 ε3

1 × 10−3 4.67 3.39 5.44 4.14 3.43 5.43 4.13 5.5 6.5
1 × 10−4 4.94 3.94 3.06 4.06 4.0 4.0 5.38 4.25 3.38
1 × 10−5 4.0 3.94 3.06 3.0 4.0 4.0 4.38 4.38 3.38

Table 4.8: Two clusters coding. The average number of optimization iterations
needed to reach optimal point at different BER and different threshold,
where ε1 = 0.99,ε2 = 0.999 and ε3 = 0.9999

Table 4.9 lists the average number of iterations needed to reach the optimal

point at different threshold at 3 cluster case.

BER Foreman Football Mobile
ε1 ε2 ε3 ε1 ε2 ε3 ε1 ε2 ε3

1 × 10−3 5.06 3.22 4.83 4.71 3.29 5.14 4.63 3.63 5.88
1 × 10−4 4.06 3.28 4.11 4.57 3.86 4.0 4.25 3.38 4.13
1 × 10−5 3.0 3.0 4.00 3.0 3.0 4.0 3.0 3.0 4.0

Table 4.9: Three clusters coding. The average number of optimization iterations
needed to reach optimal point at different BER and different threshold,
where ε1 = 0.99,ε2 = 0.999 and ε3 = 0.9999

Table 4.10 lists the optimization expected distortion (in PSNR, dB) in all

cases. The results match very well with the results in exhaustive search.

84

BER Foreman (dB) Football (dB) Mobile (dB)
1CL 2CLs 3CLs 1CL 2CLs 3CLs 1CL 2CLs 3CLs

1 × 10−3 38.43 37.97 37.93 27.55 27.38 27.22 28.72 28.40 28.34
1 × 10−4 38.52 38.40 38.05 27.66 27.52 27.28 28.84 28.70 28.40
1 × 10−5 38.53 38.43 38.33 27.68 27.55 27.46 28.86 28.73 28.63

Table 4.10: The optimal expected distortion (PSNR, dB)of different sequences at
different BER, where iCL(s) means encodes to i clusters.

The simulations in this section show that the optimization algorithm can con-

verge both at single cluster coding and multiple cluster coding quickly.

4.4.2 FGA-FEC Wireless Extension vs. FGA-FEC

FGA-FEC wireless extension extends FGA-FEC by adding bit level protection

to each description. We want to know if it is worth to extend the original scheme

with bit level protection. We use the network topology shown in Fig. 4.14, where the

encoded Foreman video sequence is sent from server to receiver over a lossy channel.

The channel available bandwidth is set to 960 Kbps, packet drop probability is set

to 0.05. We tested two BER scenarios: BER1= 6 × 10−5 and BER2= 1.1 × 10−4.

For wired FGA-FEC we only use RS codes as column codes. The packet-loss rate

is calculated using (4.3), considering the channel BER. FGA-FEC is encoded based

on available bandwidth B = 960 Kbps and the calculated packet-loss rate. For its

wireless extension, we use product codes and the optimization algorithm proposed

in this chapter. ­ ®¯ ° ± ° ²³ ° ´µ ²¶ ° ·¸ ° ´ ³ ° ´
Figure 4.14: Topology of comparing FGA-FEC vs. its wireless extension. The en-

coded bitstream is sent from server to receiver through a wireless BER
channel

Fig. 4.15(a) and 4.15(b) compare the PSNR of FGA-FEC vs. its wireless ex-

tension at different channels bit error rate. As shown, FGA-FEC wireless extension

is much better than FGA-FEC over a wireless channel. At higher BER channel,

85

the wireless extension performs even better than FGA-FEC. This is because one bit

error in a packet is treated as one erasure while decoding the column codes. With-

out bit level error correction codes, the packet erasure probability greatly increase

in a wireless network, hence the optimizer needs to allocated more bandwidth to

FEC codes and result in a lower delivered video quality. Therefore, it is necessary

to extend the FGA-FEC to wireless network by adding product codes to correct bit

errors.

0 50 100 150 200 250 300
20

25

30

35

40

45

Frame number

P
S

N
R

−
Y

 (
dB

)

FGA−FEC wireless extention
FGA−FEC

(a) BER= 1.1 × 10−4

0 50 100 150 200 250 300
20

25

30

35

40

45

Frame number

P
S

N
R

−
Y

 (
dB

)

FGA−FEC wireless extention
FGA−FEC

(b) BER=6 × 10−5

Figure 4.15: Compare the PSNR of FGA-FEC vs. its wireless extension at different
channels with different bit error rates.

4.4.3 Generalized FGA-FEC vs. Wireless MD-FEC in SNR Adaptation

We already show the efficiency of FGA-FEC adaptation in wired network in

Chapter 3. Now we show how the generalized FGA-FEC adaptation works in a

wireless network. We compare the generalized FGA-FEC vs. wireless MD-FEC to

adapt to different bandwidth, by sending the encoded Foreman sequence to receiver

with bandwidth ranging from 200 Kbps to 1000 Kbps as shown in Fig. 4.16, where

node1 is the sender, node2 works as intermediate node which performs bitstream

adaptation and BCH decoding/re-coding, node3 is the receiver. BER between node2

and node3 are set to 1×10−4, pdrop = 0.05 at node2. There is no congestion between

node 1 and node2.

For the generalized FGA-FEC, we first optimize the product codes and encode

each GOP of Foreman to 64 descriptions with pdrop = 0.1, pb = 1 × 10−4, B = 1

86¹ º » ¼ ½ ¹ º » ¼ ¾ ¹ º » ¼ ¿À Á Â Ã Ä Å Ã Æ Â Ã Ç È Æ É Ã Ç Ê Ã Â Á Ë É ÃÆ Ä Â Ã Ì Ã Í Ã Á Î Ã Ç
Figure 4.16: The topology of comparing FGA-FEC and MD-FEC over wireless lossy

channel.

Mbps and then send the descriptions over the channel. For wireless MD-FEC, we

apply the same amount of bit level protection as the generalized FGA-FEC to each

encoded description. Fig. 4.17 shows the observed video quality (PSNR) at different

available bandwidth. Clearly, FGA-FEC has much better performance in response

to channel conditions. This is because MD-FEC responds to limited bandwidth

between nodes2 and 3 by only dropping packets, hence some useless data is sent

within remaining packets. On the other hand, FGA-FEC adaptation is performed

actively by both packet shortening and packet dropping, and so avoid transmission of

useless date, thus saving bandwidth for useful data and hence has better adaptation

performance.

200 300 400 500 600 700 800 900 1000
20

25

30

35

40

45

Available bandwidth (Kbps)

P
S

N
R

−
Y

 (
dB

)

MD−FEC
FGA−FEC

Figure 4.17: The generalized FGA-FEC vs. wireless MD-FEC at adaptation to dif-
ferent available bandwidth from 200 Kbps to 1Mbps over a lossy wire-
less channel.

87

4.4.4 Generalized FGA-FEC vs. Wireless MD-FEC in Frame-rate and

Resolution Adaptation

In addition to SNR adaptation, the generalized FGA-FEC can do spatial and

temporal adaptation as well. At Fig. 4.18, we set up a dynamic channel between

node2 and node3 to test the adaptation capability of the generalized FGA-FEC and

wireless MD-FEC, where the channel BER and bandwidth changes over time as

shown in Fig.4.18.

50 100 150 200 250
10

−6

10
−5

10
−4

10
−3

Frame Number

B
it

E
rr

or
 R

at
e

Bit error rate of different GOP

750 Kbps

1 Mbps 1 Mbps

300 Kbps

Figure 4.18: Channel conditions between node2 and node3

Again, we sent the Section 4.4.3 encoded sequence to the receiver. At the

bad condition (1 × 10−4 /750 Kbps), both the generalized FGA-FEC and wireless

MD-FEC use SNR adaptation. At the very bad channel state (1×10−3 /300 Kbps),

FGA-FEC adaptation first does SNR adaptation, however, since this alone cannot

satisfy the user requirement, our algorithm further does frame-rate adaptation by 2

(Fig. 4.19(a)) and/or resolution adaptation by 2× 2 (Fig.4.19(b)), implemented by

packet shortening at the fine-grained block level. Since wireless MD-FEC only drop

packets in this very bad condition, even the video base layer can not go through the

channel so that no video is decoded for the last two GOPs(frames 253-288).

The results in these two Sections show that the generalized FGA-FEC can

provide near optimal protection but with much better adaptation performance.

88

50 100 150 200 250
10

15

20

25

30

35

40

45

Frame Number

P
S

N
R

−
Y

 (
dB

)

MD−FEC
FGA−FEC

(a) Frame rate

50 100 150 200 250
10

15

20

25

30

35

40

45

Frame Number

P
S

N
R

−
Y

 (
dB

)

MD−FEC
FGA−FEC

(b) Resolution

Figure 4.19: Adaptation to different network conditions by frame rate and resolu-
tion.

4.5 Conclusion

In this chapter, we generalize FGA-FEC for embedded video bitstream pro-

tection and content adaptation over wireless channels and propose a fast search

algorithm to assign the optimal product codes. Simulations show the efficiency for

simultaneous content protection and adaptation.

CHAPTER 5

Improving Multimedia Throughput Using Header Error

Protection in WLANs

In addition to congestion related packet losses, wireless networks have to deal with

a time varying, error-prone, physical channel that in many instances is also severely

bandwidth constrained. As such, protocol design, such as link-layer error-control

may impact the performance of the network and the applications. In this study, we

propose two link layer error protection schemes (header CRC and header FEC) that

improve the effective throughout of wireless networks. Error control is applied to

the packet header (at link level) and packet payload (at application level) separately.

The network intermediate nodes either use header FEC or header CRC checksum to

successfully transport the packets from the source to the destination. We compare

the proposed schemes with conventional IEEE 802.11 protocol which is designed for

reliable data communication. Both theoretical analysis and ns-2 simulation results

show that header error-protection strategy can effectively increase the application

throughput.

5.1 Introduction

Throughput and bit-error rate are two important factors for wireless multi-

media data transmissions. Many error control techniques have been proposed for

both link and application layers. In this study, we focus on how to improve the

application layer effective throughput, by providing header CRC and header FEC

in the link layer. We define the effective throughput as the the fraction of channel

bandwidth used by successfully transmitted packets.

Current IEEE 802.11 wireless LAN MAC protocol [87] is designed for reliable

data transmission. One bit error in the link-layer packet could cause the drop of the

whole packet at the receiver side, even though other bits of the packet are successfully

received. We argue that this approach is not optimal for multimedia data delivery,

since the bit errors could be corrected at application level by error-control codes or

89

90

the packet could be used directly by error resilient decoders. Therefore, in order to

efficiently support multimedia data transmission, we propose a new wireless link-

layer protocol, called HEP (header error protection), where we only protect the

header part, and packets with errors are forwarded to the next node or passed up to

the application layer. The main purpose of protecting the header is because it carries

routing information for packet forwarding. Also the application header includes

important information for multimedia bitstream which is critical when decoding.

Therefore header protected in this paper treats both the IP and the application

layer headers.

There are some interesting works on performance enhancement of multimedia

transmission over wireless networks. For instance, in [88], layered video coding cou-

pled with unequal error protection obtained by using different ’retry’ limits at the

link level has been shown to balance the link erasure rate and the overflow rate.

Zheng and Boyce [109] propose a modified version of the UDP protocol to accom-

modate Internet-to-wireless video traffic. A new protocol stack design is proposed

to allow bidirectional information exchange so that the physical, and link layers

can communicate with the application layer. There are also arguments on whether

error control should reside in the link layer or in the application layer [110]. Here,

we provide another option - do part of the error control at the link level and leave

some work to be done at the application level. Specifically we propose two header

error protection schemes and analyze their impact on the throughput of the wireless

networks.

The rest of this chapter is organized as follows: Header error protection strate-

gies are introduced along with their throughput analysis in Section 5.2. In Section

5.3, we show our simulation results. The conclusion follows in Section 5.4.

5.2 Header Error Protection and Performance Evaluation

We consider three packet2 error control schemes: IEEE 802.11, our proposed

header CRC, and our header FEC scheme. The IEEE 802.11 MAC protocol uses

2In this study we talk about link-layer PDU, yet we still use the general term packet instead of
frame.

91

a stop-and-wait ARQ with a positive ACK for each packet. The CRC checksum

protects the whole packet, so we call this scheme packet CRC. Our proposed header

CRC aims to protect just the header (including IP header and application header),

not the whole packet. A packet retransmission is only triggered if an error detected

in the header. In header FEC, we further apply forward error correction (FEC) to

protect the header information from bit errors. Thus, the network might deliver

the packet with an error in the payload. A retransmission is issued when FEC

redundancy fails to correct any header errors.

Consider an ad hoc network with n nodes randomly located in a unit area

domain. It was shown in [111] that under a protocol model for interference, the

average hop number h can be given as
√

n
log n

, and each node in the network transmits

at an average rate of c√
n log n

bits/sec, where c is a positive constant. This result

indicates a vanishing throughput performance as the network scales. The evaluation

uses statistical approximation with these average values. All results are expected

to hold with high probability. In this study, we use the binary symmetric channel

(BSC) model with cross-over probability p and a binary Markov channel model.

The BSC is a memoryless model where the noise bits are produced by a sequence of

independent trials. Each has the constant probability 1−p of producing a correct bit

and probability p of producing a bit error. p is then the bit error rate (BER) for the

wireless link. Binary Markov channel is the first order binary Markov channel model

(called Gilbert model [95], [112] for packet transmission). It was shown through

analysis and simulation that a first-order Markov process is a good approximation

for fading channels [113]. The model is described by the transition matrix,





1 − p01 p01

p10 1 − p10





where p01 (p10) is the probability that the transmission of the current bit is unsuccess-

ful (successful), given that the previous transmission was successful (unsuccessful).

It can be shown that 1
p10

represents the average length of a burst of errors, and the

average BER is given by p01

p01+p10
.

92

5.2.1 Packet CRC in IEEE 802.11

In IEEE 802.11, usually there is a limit on the number of times a WLAN

card can retransmit a packet (say 4 times). The single hop packet-error probability

is defined as Pe1
for packet CRC. For simplicity, we use a simple random error

channel in performance analysis, with bit error probability p. Since the errors are

independent,

Pe1
=

N
∑

i=1

(1 − p)N−ipi





N

i



 , (5.1)

where N is the packet length (in bits). First we assume there is no limit on the

number of retransmissions. Given the probability of packet error Pe1
, the average

number of retransmissions for a single hop has a geometric distribution with suc-

cess probability 1 − Pe1
. Thus the probability that the number of retransmissions

(excluding the first transmission) in one hop is:

P{ret = i} = P i
e1

(1 − Pe1
), (5.2)

If a flow only has one hop distance and the bandwidth is W bps, then the effective

throughput of this flow is

F (h = 1) =
∞

∑

i=1

W

i
P{ret = i − 1} =

∞
∑

i=1

W

i
P i−1

e1
(1 − Pe1

) (5.3)

Note d
da

(
∑∞

i=1
ai

i
) =

∑∞
i=1 ai−1 = 1

1−a
when |a| < 1, so

∑∞
i=1

ai

i
=

∫

1
1−a

=

c0 − ln(1 − a). Let a = 0 to solve the constant value we get c0 = 0, then we have:

F (h = 1) = −(1 − Pe1
) ln(1 − Pe1

)

Pe1

W (5.4)

For multi-hop networks, the error statistics for each hop are independent. Now

suppose a flow has experienced h hops, consuming bandwidth W1, W2, ..., Wh on each

93

link, respectively. Then the aggregate throughput of this flow is

F (h) = E[
W1

i1
] + E[

W2

i2
] + · · · + E[

Wn

in
]

= −(1 − Pe1
) ln(1 − Pe1

)

Pe1

(W1 + W2 + · · ·+ Wh) (5.5)

Since all the W1, W2, ..., Wh add up to the network aggregate throughput

c
√

n
log n

, summing up all the flows in the network gives the total aggregate through-

put. Therefore, we have

A1 = −c

√

n

log n

(1 − Pe1
) ln(1 − Pe1

)

Pe1

, (5.6)

where A1 is the aggregated effective network throughput, given packet CRC

method used in IEEE 802.11 link layer. Note in (5.5), we set the retry limit to ∞.

In fact, the effect of a finite retry limit has diminishing return. For typical BER it

is easy to prove that result of the 4 retry limit can be well approximated by (5.6).

Therefore we use the results given by (5.6) for the standard IEEE 802.11 protocol

and the proposed header CRC.

5.2.2 Header CRC

The probability that any error detected in header is

Pe2
=

k+r
∑

i=1

(1 − p)k+r−ipi





k + r

i



 (5.7)

where k is the header size, and r is the CRC bits.

In a similar form with previously introduced packet CRC, the aggregate effec-

tive throughput of networks using header CRC is:

A2 = −c

√

n

log n

(1 − Pe2
) ln(1 − Pe2

)

Pe2

(5.8)

Keeping in mind that the factor − (1−Pe2
) ln(1−Pe2

)

Pe2

is a monotone decreasing

function of Pe2
. This factor decreases from 1 to 0 as Pe2

increases from 0 to 1.

94

This is consistent with heuristic expectations, because one expects the throughput

to increase when packet-error probability decreases.

5.2.3 Header FEC

In this scheme, FEC redundant bits are added to protect header part of each

packet. BCH codes are well known codes for binary data transmission, especially

good for large block codes [114]. We add m protection bits to each header for error

correction. For a t-error-correcting linear code, a BCH code is capable of correcting

a total of 2m error patterns, including those with t or fewer errors. So the probability

that the decoder commits an erroneous decoding in one packet is upper bounded by

Pe3
≤

k+m
∑

i=t+1

(1 − p)k+m−ipi





k + m

i



 (5.9)

A packet is likely to fail to reach the destination unless it succeeds at each hop

during the transmission . Given the probability that a packet will be dropped in

one-hop transmission Pe3
, it is easy to get the aggregate throughput of the network

using header FEC:

A3 = c

√

n

log n
(1 − Pe3

)h = c

√

n

log n
(1 − Pe3

)
√

n
log n (5.10)

We append the FEC protection bits to the tail of the packet, since errors tend

to be in burst. This way the header and the protection bits are less likely to be

corrupt simultaneously. Numerical results show that protecting the header, 1 or 2

redundant bytes are enough in a channel with a moderate BER.

5.2.4 Comparison of the Effective Throughput of These Schemes

By comparing Pe1
with Pe2

and Pe3
, it is quite clear the latter two have much

lower values, thus the proposed HEP schemes have the advantage in terms of effective

throughput. Fig. 5.1 shows the throughput of the three schemes versus the number

of nodes in a network. The parameters used in these plots are: p = 5 × 10−5,

payload N = 500 × 8 bits, header k = 240 bits, error correction bits m = 8, CRC

95

bits r = 8, and error correcting capability t = 1 bit. Some intermediary results are:

Pe1
= 0.1910; Pe2

= 1.5217 × 10−4; Pe3
= 7.5634 × 10−5. The Pe3

used here is an

upper bound number, i.e., the worst case scenario. The results are generated using

MATLAB and based on the equation derived above. The factor c on the y-axis is

the same as that in the above equations.

50 60 70 80 90 100
0

0.01c

0.02c

0.03c

0.04c

0.05c

0.06c

0.07c

of nodes

T
hr

ou
gh

pu
t

Header FEC
Header CRC
802.11

Figure 5.1: Per-node throughput as a function of n

Our analytical results are valid for large networks (large n). We choose the

number of nodes from 50 to 100 in this plot to meet the practical scenario. Curves

for header CRC and header FEC almost overlap over each other. The gap between

the performance of these two HEP schemes and IEEE 802.11 indicates that the

performance inefficiency of the current protocol can be improved using header error

control. This result may help in the design of different protocol stacks according to

different requirements. For applications having high requirements for data rate and

lower requirements for accuracy of data, header error control is especially helpful.

Header CRC is better for handling burst errors and header FEC can be adaptive to

the link error environment (e.g., if the link error-rate increases, the protection bits

can be added to correct more errors with little added cost).

The efficiency of coding requires the information message to be as small as

possible. On the other hand, the more redundancy bits added, the more reliable

the transmission would be. The question is how many bytes exactly we would

encode. Considering that the IP header is 20 bytes, we now suppose 30 bytes are to

be protected by error detection or correction, since there is important information

96

in headers from other layers as well. This header protection configuration can be

adapted to different applications. For binary BCH codes, we choose codes that

satisfy the block length of k + m = 255 bits, k = 247 bits, and t = 1 bit. This

combination is the closest to 30 bytes (240 bits) header. We then use 8 error

correction bits to correct single bit errors for 247 bits. So one byte extra can protect

30 bytes of header. Substituting these numbers in (5.9), we have Pe3
= 2.9884×10−5

and 3.0578× 10−6 with p = 10−4 and 10−5, respectively. That means to protect the

header no longer than 30 bytes, one byte is enough in this study. Also since Pe3
is so

small, A3 in (5.10) could be seen as asymptotically approaching c
√

n
logn

as n → ∞.

5.3 Simulations

In this section, we evaluate our proposed HEP schemes using network simu-

lator ns2 [96]. We build new protocol models based on our proposed schemes and

integrate them into ns2. The default packet-retry limits is set to 4 for long packets

(such as a data packet) and 7 for short packets (such as control packets) - in both

IEEE 802.11 and our proposed HEP protocols. We use RTP over UDP/IP with

disabled checksum at a UDP segment (we call it an extreme case of UDPLite). The

packet size used in all simulations is 500 bytes. In addition, all of our simulations

use 2 Mbps radio.

5.3.1 Random Network Simulations

Following the set up in Section 5.2, we compare our proposed schemes with

IEEE 802.11 in a random network. Nodes are placed randomly in a square domain,

and the traffic pattern is random in this network. In ns2, the default setting of the

antenna parameters results in an effective transmission range of 250 meters. The

CBR rate of the random traffic is chosen in order to place the network in a saturation

state. In this state, there is slight packet loss and if CBR rate is increased, the

network aggregate throughput will not increase statistically. The routing protocol

used is AODV [94].

We simulate random networks scaled from 50 nodes to 100 nodes under IEEE

802.11, header CRC, and header FEC protocol. The parameters in the Gilbert

97

model are p01 = 2.5 × 10−5 and p10 = 0.5, which yield an average channel BER

5 × 10−5. The duration of each simulation is 2 minutes and the result is averaged

upon 200 runs for different node distributions. The per-node throughput is shown

in Fig. 5.2. The simulation results reflect statistically significant analysis based

on a 95% confidence interval shown with error bars. If we compare Fig. 5.2 with

Fig. 5.1, we see the plots share the same decreasing trend. The sharper decrease in

the simulation results indicates the inefficiency of the MAC scheduling. When the

network scales, the distributed MAC protocol can hardly give an optimal solution

to achieve theoretical capacity. Nevertheless when the number of nodes is around

100, the average throughput improvement by using header CRC or header FEC over

IEEE 802.11 is about 18%.

50 60 70 80 90 100
0

2

4

6

8

10

12

14

of nodes

P
er

−
no

de
 T

hr
ou

gh
pu

t (
K

bp
s)

Header FEC

Header CRC

802.11

Figure 5.2: Simulation results on per-node throughput

5.3.2 Multi-hop Chain Scenario

S R

Figure 5.3: A single chain with multi-hops from sender S to receiver R

The advantage of using HEP is more apparent in multi-hop networks, since re-

transmissions increase the traffic load and limit the throughput. In the following set

of simulations we intend to find out the effective throughput of multi-hop networks

under the three schemes. We use a single traffic chain model to avoid the effect of

98

the interference from other traffic. There are n nodes placed in a straight line, and

neighboring nodes are separated by 200 meters, seen in Fig. 5.3. The multimedia

traffic is sent from the first node towards the last node, traveling through all the in-

termediate nodes. Parameters of the Gilbert burst error model are: p01 = 2.5×10−5,

and p10 = 0.5 at each hop. Fig. 5.4 illustrates our simulation results of the max-

imum throughput for a single chain. Let chain length be the number of nodes in

a chain, each curve then represents the throughput of the different protocols when

the chain length n increases from 5 to 10. The curve for IEEE 802.11 throughput

performance is basically consistent with that in [115] (their throughput is a little

bit higher since they do not have bit errors in their in ns2 model).

5 6 7 8 9 10
0

100

200

300

400

500

600

of nodes

F
lo

w
 T

h
ro

u
g

h
p

u
t

(K
b

p
s
)

Header FEC
Header CRC
802.11 ARQ

Figure 5.4: A single chain with multi-hops from sender S to receiver R

Header CRC performs not as good as header FEC, because headers cannot

be recovered by FEC, there are still some packet drops due to retries exceed limit.

Even though header CRC and header FEC consume some extra bandwidth for the

application, the effective throughput is higher than that of 802.11. Simulation results

show that there is some potential in throughput improvement for the header error

protection schemes, especially when the network is large and hop number increases.

5.3.3 A Multi-hop Chain Topology with Cross Traffic

We place ad hoc nodes to model a linear topology with cross traffic. In this

grid, shown in Fig. 5.5, the multimedia traffic is carried from node S to node R.

Besides this main traffic, there is cross traffic from node S1 to R1, S2 to R2, ...,

99

and Sn to Rn, with n as the main chain length. This cross traffic also uses the

main chain nodes as relays. The distance between each horizontally and vertically

adjacent node is 200 m. Parameters of the Gilbert error model are p01 = 1.25×10−5,

and p10 = 0.5.

S
 R

S

1

S

n

R

1

R

n

S

n-
1

S

3

S

2

R

2

R

n-1

R

3

Figure 5.5: A chain topology with cross traffic

In this chain topology with cross traffic, nodes in the main chain have to com-

pete with each other and with the nodes transmitting cross traffic. The RTS/CTS

and DATA/ACK mechanism requires nodes near the transmitting node or receiving

node to keep silent. If a transmitting node experiences a collision when sending

RTS, it will choose an exponential random backoff time and retransmit after the

backoff. The retransmission will continue if it fails, until it reaches the retry limit.

It is obvious that the number of retries has impact on the end-to-end delay. It

also increases the possibility of collision for the surrounding nodes, which further

increases the delay of each transmission. The proposed header-protection strategy

can largely reduce the number of retransmissions, thus it has the potential to reduce

the end-to-end delay, which is important for a real time application. (Regarding the

delay analysis, please refer to [116]).

Fig. 5.6(a) gives the result for the end-to-end throughput performance of the

chain topology with cross traffic. The sending rate is at 40 Kbps, with the average

channel error rate 2.5× 10−5 at each hop. The cross traffic is also at 40 Kbps. The

plot illustrates the flow throughput of the main chain (middle chain) traffic versus

the chain length n.

The IEEE 802.11 MAC mechanism cannot discover the optimum schedule of

transmissions on its own. Each node in a network experiences different degrees of

competition. For example, nodes at the edges of the grid have fewer competitors

100

5 6 7 8 9 10
15

20

25

30

35

40

of nodes in a chain

E
nd

−
to

−
en

d
th

ro
ug

hp
ut

 fo
r

th
e

m
ai

n
ch

ai
n

(k
bp

s)

Header FEC
Header CRC
802.11

(a) End-to-end Throughput

5 6 7 8 9 10
0

0.2

0.4

of nodes in the main chain

E
nd

−
to

−
en

d
de

la
y

(s
ec

)

Header FEC
Header CRC
802.11

(b) End-to-end Latency

Figure 5.6: Performance of the chain topology with cross traffic

than those in the middle of the grid. So a portion of bandwidth is wasted by

transmitting packets that are eventually dropped at middle nodes due to their higher

degree of contention. Due to the limited retries and limited interface queue-buffer

length, too many retransmissions, either from contention or packet CRC check, can

make things much worse than the theoretical prediction would predict, especially

near the network saturation point. That is why the original IEEE 802.11 scheme

has a much lower performance than either header protection scheme.

5.4 Conclusions

This study proposes two HEP schemes, header CRC and header FEC, to

improve the performance of multimedia transmissions. Both header CRC and FEC

only need slight modification to the IEEE 802.11 MAC protocol. Network simulation

results show that under a random network scenario, HEP takes advantage of FEC or

ARQ to reduce the number of dropped packets at relaying nodes, thus can improve

the throughput of the network. In this chapter, the link-layer protocol does not

perform any error correction or detection for the packet payload. Therefore, we

propose to use end-to-end error-control coding for the application layer, wherever it

is needed. Application layer FEC is needed not only because of the channel errors,

but also because of the packet losses caused by congestion. In the next chapter, we

will investigate a cross-layer two-stage FEC scheme in conjunction with the proposed

HEP scheme to streaming video over wireless networks.

CHAPTER 6

Two-Stage FEC Scheme for Scalable Video Transmission

over Wireless Networks

In this study, we propose a two-stage FEC scheme with an enhanced MAC proto-

col especially for multimedia data transmission over wireless LANs. The proposed

scheme enables the joint optimization of protection strategies across the protocol

stack. In stage 1, packet-level FEC is added across packets at the application layer

to correct packet losses due to congestion and route disruption. In stage 2, bit-level

FEC is processed within both application packets and stage-one FEC packets to

recover from bit errors in the MAC/PHY layer. Header CRC/FEC are used to

enhance the MAC/PHY layer and to cooperate with the two stage FEC scheme.

Thus, we add FEC only at the application layer, but can correct both application

layer packet drops and MAC/PHY layer bit errors. We explore both the efficiency

of bandwidth utilization and video performance using the scalable video coder MC-

EZBC and ns-2 simulations. Simulation results show that the proposed scheme

outperforms conventional IEEE 802.11.

6.1 Introduction

Current IEEE 802.11 wireless LANs are designed for reliable data transmission.

They treat classical data flows and multimedia flows alike, even though these two

kinds of flows have different requirements. The wireless physical (PHY) and media

access control (MAC) [87] layers are designed to be as reliable as possible, so that one

bit error in a packet could result in the whole packet being dropped. However, due

to the error resilience features of many state-of-the-art multimedia CODECs and

the utilization of error correction strategies at the application layer, packets with

errors are still useful for multimedia applications. Therefore, mechanisms are needed

to efficiently support multimedia data transmission over wireless networks. Packet

losses in a wireless channel can be roughly categorized into two: (a) packets are

dropped due to routing disruption, interference, and congestion in the intermediate

101

102

nodes, and (b) packets are discarded in the MAC/PHY layers due to internal bit

errors. To efficiently protect data from losses/errors in a wireless environment, two

questions occur: At which protocol layer should the protection scheme be located?

and How should the protection strategies be deployed? One simple solution is to

add protection mechanisms at each protocol layer, as in the current wireless 802.11

protocol. However, we argue that the layered protocol protection strategy does not

always result in efficient performance for the delivery of multimedia data, due to

the independency of each protocol layer.

In this study, we propose a two-stage FEC scheme with an enhanced MAC pro-

tocol to efficiently support multimedia data transmission over wireless LANs. Since

only the application knows the characteristics of the multimedia data, the proposed

scheme enables joint optimization of protection strategies across the protocol stack,

and packets with errors are delivered to the application layer for correction or drop.

The reason we choose to study FEC for video error recovery in this study is due

to the fact that a wireless ad hoc network is usually multihop and multiple re-

transmissions would result in unpredictable delay and jitter at the application layer.

We enhance the MAC/PHY layers to efficiently support multimedia flows by using

both header CRC and FEC. We also slightly modified the protocol stack so that it

can deliver packets with errors from the MAC layer to the application layer, instead

of just dropping them. For the two-stage FEC, we add FEC only at the application

layer, but can correct both application layer packet drops and MAC/PHY layer

bit errors. Packet-level FEC (Stage 1) is added across packets at the application

layer to correct packet losses due to congestion and route disruption. Bit-level FEC

(Stage 2) is processed within both application packets and stage 1 FEC packets to

recover bit errors from the MAC/PHY layers. Our proposed scheme has the follow-

ing characteristics: Network efficiency: enhanced MAC protocol using header CRC

and FEC improves application layer effective throughput; all useful information is

delivered to the application. Protection efficiency: unequal error protection is easily

deployable, since we only process FEC at the application layer. Furthermore, the

proposed scheme combines bit-level protection codes (good at random bit error cor-

rection) and symbol level codes (powerful at correcting burst losses) to correct both

103

bit errors at MAC/PHY layers and packet losses at the application layer. Since

we jointly consider the whole protocol stack, we can also call our proposed scheme

cross-layer.

6.1.1 Related Work

In recent years, many papers have proposed cross-layer solutions for wireless

video. Li and van der Schaar [88] proposed an error protection method that can pro-

vide adaptive quality of service to layered coded video by utilizing priority queueing

at the network layer and retry-limit adaptation at the link layer. The video lay-

ers are unequally protected over the wireless link by the MAC with different retry

limits that are dynamically adapted depending on the wireless channel conditions

and traffic characteristics. Krishnamachari et al [89] propose an adaptive cross-

layer protection strategy for enhancing robustness and efficiency of scalable video

transmission where application layer FEC, MAC layer re-transmission strategy and

an adaptive video packetization scheme are jointly optimized to maximize visual

performance. The proposed scheme focus on wireless links from 802.11a base sta-

tion to mobile users. Manshaei et al [90] propose a simple and efficient cross-layer

mechanism for dynamically selecting the transmission mode that considers both the

channel conditions and characteristics of the media. The proposed Media-Oriented

Rate Selection Algorithm (MORSA) finds the highest possible transmission rate

while guaranteeing a specific bit error rate by adjusting the physical layer modula-

tion. Goldsmith et al [91] propose a cross-layer approach to support real-time video

streaming, where information between different layers of the protocol stack is ex-

changed and end-to-end performance is optimized by adapting to this information at

each protocol layer. Choi et al [92] proposed a cross-layer optimizer that interfaces

the video streaming application and the radio link layer by means of parameter ab-

straction to maximize the end-to-end quality of the streaming service jointly for all

users while efficiently using the wireless resources. State information is abstracted

from selected layers and provided to the cross-layer optimizer.

104

6.1.2 Organization

The remainder of the chapter is organized as follows: In Section 6.2, we give a

detailed description and analysis of our proposed two-stage FEC protection scheme

and enhanced MAC protocol by using header CRC and FEC. In Section 6.3, simu-

lation results are provided, followed by conclusions in Section 6.4.

6.2 System Overview

Fig. 6.1 illustrates the 802.11 wireless LAN protocol stack and packet structure

associated with each layer, where ”H”s represent the header of each protocol layer.

Physical

Application

TCP/UDP

IP

MAC

APP-Payload

 UDP-Payload

H

H

 IP-Payload
H

 MAC-Payload
H

 PHY-Payload
H

Figure 6.1: 802.11 protocol stack and associated packet structure

An application packet consists of data payload and application header. When-

ever a packet is passed down to the next protocol layer, a header associated with

that layer is added, as shown in Fig. 6.1. In this stack, UDP and IP provide

source and destination IP addresses and port numbers of the communication pair

to ensure correct delivery. Packets are dropped at the IP layer due to congestion or

route disruption. On the other hand, MAC/PHY protocols support adjacent host

communications and have to deal with bit errors. Any bit error within a packet

could result in the whole packet being dropped, even though the errors could be

corrected in the application layer. To efficiently support multimedia applications,

we slightly modify the protocol stack so that it can deliver packets with errors to the

application layer. This can be achieved by simply turning off the CRC checksum

function in the MAC/PHY layers. The UDP-lite [93] protocol should be used at

transport layer to match the enhanced MAC protocol. To ensure better delivery,

we enhance the MAC/PHY layer by modifying the 802.11 packet CRC mechanism

to check only the header part possibly also with bit-level FEC for the header part.

The proposed system diagram is shown at Fig. 6.2.

105

Video

Encoder

Stage 1 FEC

Encoder

Stage 2 FEC

Decoder

Stage 2 FEC

Encoder

Stage 1 FEC

Decoder

Video

Decoder

Enhanced

Protocol

Stack

Figure 6.2: System diagram of the proposed two-stage protection scheme

At the application layer, two-stage FEC is applied to the encoded video bit-

stream based on network conditions. In stage 1, packet level FEC is added across

application layer packets to correct packet drops due to congestion or route dis-

ruption. Stage 2 is processed within each application packet, a small amount of

bit level FEC is added to recover bit errors from the MAC/PHY layers at each

packet. At the receiver side, we first process the bit-level FEC, the bit errors from

the MAC/PHY layers can be recovered. Then we pass the bitstream to the stage

1 FEC decoder for further correction. In this study, we choose Reed-Solomon (RS)

codes for packet-level protection (stage 1) and BCH codes for bit-level protection

(stage 2).

6.2.1 Channel Models and Enhanced MAC Layer

For simplicity, we start from a virtual channel with two nodes, one sender and

one receiver. We further assume no contention between these two nodes. The binary

symmetric channel (BSC) model and the Gilbert model [95] are used as our channel

models. The Gilbert model is the first order binary Markov Channel model. Given

two states, good state (G) with error probability PG and bad state (B) with error

probability PB, the burst length in state G and B are both geometrically distributed

with respective means P−1
GB and P−1

BG, where PGB (PBG) is the transition probability

from the good (bad) state to the bad (good) state. The steady state probabilities of

being in state G and B are πG = PBG

PGB+PBG
and πB = PGB

PGB+PBG
. The overall average

bit error rate pb produced by the Gilbert model is:

pb = PGπG + PBπB =
PGPBG + PBPGB

PGB + PBG
(6.1)

The BSC error model is a memoryless model where bit errors are produced by

a sequence of independent trials. Each bit has the probability pb being flipped and

1 − pb being successfully transmitted, pb is then the Bit Error Rate (BER) for the

106

wireless link. Given a packet with size L bytes being transmitted over a wireless

channel with BER pb, the probability of packet error Pe(L) can be calculated as:

Pe(L) = 1 − (1 − pb)
8L (6.2)

The 802.11 MAC layer defines two medium access coordination functions, basic

distributed coordination function (DCF) and optional point coordination function

(PCF). Since DCF can be used both in ad hoc and infrastructure modes while

PCF can only work on infrastructure mode, we will focus on DCF mode in this

study. DCF is a distributed medium access scheme based on the most popular

Carrier Sensing Multiple Access with Collision Avoidance (CSMA/CA) protocol.

The current MAC mechanism of 802.11 LAN uses stop-wait ARQ (SW-ARQ) to

transmit a packet. If a packet arrives at a node with an empty queue and the

medium has been found idle for an interval of longer than a distributed inter frame

space (DIFS), the node can transmit the frame immediately, and the successful

transmission of the packet is confirmed by an ACK packet. Therefore, both the

packet itself and the feedback ACK must be successfully transmitted. Assume that

the uplink and downlink have the same BER pb, the probability to successfully

transmit a packet Psuc is then:

Psuc = (1 − Pe(L))(1 − Pe(SACK)) = (1 − pb)
8(L+SACK) (6.3)

Where L and SACK are the size of MAC packet and ACK packet in byte, respectively.

Given a physical layer bandwidth BPH , the effective application layer throughput

BAP can be estimated as:

BAP = BPH ∗ Psuc ∗ r (6.4)

where r is the ratio defined as r = application packet size/MAC packet size

Payload
 APP
 UDP
 IP
 MAC

Headers
Only Header CRC/FEC

FEC

Header FEC

Figure 6.3: Enhanced MAC/PHY protocol using header CRC and header FEC

The header part of each protocol layer is crucial, because if header has some

107

errors in it, usually the whole packet is useless. We use header CRC and header

FEC to enhance the MAC/PHY layers to efficiently support multimedia delivery.

We slightly modified the 802.11 MAC/PHY layer packet CRC mechanism to check if

there is something wrong within the header part as shown in Fig. 6.3. The packet is

dropped if the header CRC fails. With this header CRC mechanism, the probability

of successful transmission of a packet PsucH becomes

PsucH = (1 − pb)
8(Sheader+SACK) (6.5)

Where Sheader is the size of all the header bytes. Since Sheader is much smaller than

the packet itself, the probability of successful transmission of a packet using header

CRC is larger than when using whole-packet CRC. It also results in a larger effective

throughput at the application layer according to Equation 6.4. Similarly to header

CRC, a bit-level FEC can be added to the header part to combat bit errors in

the header and further reduce the probability of header errors. We performed a

MATLAB simulation to compare the application layer bandwidth efficiency of using

header CRC, header FEC and packet CRC as shown at Fig 6.4. Here, we assume

that the application layer packet payload size is 1000 bytes, the CRC header size is

60 bytes (UDP 8 bytes, IP 20 bytes, MAC header 24 bytes, application layer header

4 bytes) and the ACK packet size 14 bytes. Physical layer bandwidth is set to 2

Mbps. In all cases, a packet should be dropped if any CRC check fails.

10
−6

10
−5

10
−4

10
−3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

PHY Layer Bit Error Rate

A
pp

lic
at

io
n

T
hr

ou
gh

pu
t (

M
bp

s)

Packet CRC
Header CRC
Header FEC
Header FEC with payload FEC

Figure 6.4: Application layer bandwidth efficiency vs BER

108

In Fig. 6.4, we use the same method as the current 802.11 does for MAC layer

packet CRC, any bit error inside a packet results in the whole packet being dropped.

For header CRC, only the header part (see Fig. 6.3) is checked at the receiver side, if

anything is wrong within the header part, the whole packet is dropped. Even if only

the header part is checked, the performance degrades a lot at high bit-error rates,

and this is due to the large number of header check errors. So, we further added a

BCH(511, 502, 1) code to protect the header part from bit errors. The performance

then becomes good even at high bit-error rates and the bandwidth overhead added

by the header FEC is only 0.1%. Clearly, the header CRC/FEC results in a better

application layer throughput, but the received packet may have errors in it. To

protect the packet payload from errors, a BCH(8191, 8000, 14) code is applied to

each packet, and therefore, any 14 bit errors out of the 8191 codeword bits can be

corrected. While fixed FEC adds overhead at low bitrates, it performs quite well at

high bit error rates. In Fig. 6.4, a plot of header FEC with payload FEC has lower

throughput compared with header FEC alone. This is because of the overhead in

payload FEC and we also artificially drop the packet if payload FEC cannot correct

the errors. This is comparable to 802.11 packet CRC with error free delivery. We

will evaluate these schemes under more realistic conditions using the ns-2 simulator

later on in this study. Here, we define a FEC decoding failure if FEC cannot correct

all errors in a codeword. To identify a decoding failure is an engineering problem.

If combined with CRC, the FEC decoder first decodes the codeword, then makes

a CRC check of the decoded codeword, if the CRC is ok, then decode, otherwise,

declare a decode failure.

6.2.2 Two-Stage FEC Scheme

At Fig. 6.4, even if a BCH code is applied to each packet payload, the curve

with payload FEC still drops at high bit-error rate. This is because the whole

packet is being dropped due to header FEC decode failure. Bit level in packet FEC

protection cannot correct packet losses. Thus, we need to have a scheme to correct

both bit errors and packet drops. We propose a two-stage FEC scheme to solve the

problem as shown in Fig. 6.5.

109

Data
 ...
Data
Data

Data

FEC
Data
 FEC
FEC

B
 FEC
 B

Stage 1

Stage 2

Packet-level FEC, RS(N,K)

Bit-level FEC

BCH(n,k,t)

Figure 6.5: Detail of the proposed two-stage FEC scheme

In stage 1, packet level FEC is added across application layer packets to correct

packet drops due to congestion or route disruption. We use RS codes for stage 1

FEC.

In stage 2, FEC is processed within each application packet, and a very small

amount of bit-level FEC is added to recover any bit errors from the MAC/PHY

layers. We use BCH codes for stage 2 FEC.

We assume a wireless channel with physical bandwidth BPH , bit-error rate pb,

and probability of a packet being dropped at the sender due to congestion pdrop. For

simplicity, we ignore ACK packet in this section. First we start from header CRC,

since any bit error in header part would result in a whole packet being dropped, the

probability of a packet loss ploss can be calculated as:

ploss = pdrop + 1 − (1 − pb)
8(Sheader) (6.6)

Bit-level FEC is added within each packet to correct bit errors. Given a BCH

(n,k,t) code, number of bit errors larger than t in a codeword cannot be corrected,

so the probability of not correctly decoding the codeword PBCH(E) is

PBCH(E) =
n

∑

j=t+1





n

j



 pj
b(1 − pb)

n−j (6.7)

All these packets with errors are passed to the packet level FEC RS(N,K)for

further correction. After BCH decoder correction, the residual bit-error rate prb can

be estimated as:

prb = pbPBCH(E) (6.8)

Reed-Solomon codes are Maximum Distance Separable (MDS) codes [79].

110

They are especially suitable for correcting burst errors. Given the correction re-

sults of BCH decoding, to calculate the probability of error on decoding the RS

codeword, is a total probability problem. We define R(E) as the event of RS de-

coder correction failure, B(E) as the event of BCH decoder correction failure and

B(C) as the event of BCH decoder successful correction. Therefore the RS correction

failure PRS(E) in the proposed two-stage FEC can be calculated as:

PRS(E) = P{R(E)|B(C)}PB(C) + P{R(E)|B(E)}PB(E) (6.9)

where PB(E) and PB(C) are the probability of BCH decoding error and the proba-

bility of BCH decoding success, respectively.

If BCH can successfully correct the bit errors inside packets, the conditional

probability of RS error decoding is an erasure correction problem as

P{R(E)|B(C)} =

N
∑

i=dmin





N

i



 pi
syc(1 − psyc)

N−i (6.10)

where the probability of symbol erasure is psyc = ploss, and dmin = N −K + 1.

If the BCH code fails to correct the bit errors inside the packets, then the

conditional probability of RS error correction is a mixed erasure and error correction

problem and can be calculated as

P{R(E)|B(E)} =

N
∑

i=[(N−K)/2]+1





N

i



 pi
sye(1 − psye)

N−i (6.11)

where the probability of symbol error is a combination of packet loss and

packet error, can be calculated as

psye = ploss + 1 − (1 − pb)
m (6.12)

Where m is the symbol size of RS(N, K) code.

After both BCH code correction and RS code correction, the residual bit error

111

Protection Method FEC codes Code rate

retransmission
802.11 SW-ARQ one time

RS only RS(255,239) 239/255
Two-stage FEC BCH(8191,8000,14)

with header CRC + RS(255,245) 239/255
Two-stage BCH(8191,8000,14)
FEC with + RS(255,245) 239/255

header FEC BCH(511,502,1)

Table 6.1: Parameter setups for compare of several protection schemes

rate can be reduced to

prsrb = prbPRS(E) = pbPBCH(E)PRS(E) (6.13)

For header FEC, we can have a similar analysis, but using a residual bit-error

rate after header FEC decoding to calculate ploss at Equation 6.6.

We compare the protection performance of our proposed schemes (Two-stage

FEC + header CRC/FEC) with conventional application layer FEC (RS only +

802.11) in terms of residual packet error rate. MAC layer re-transmission times are

set to one at all three schemes. Any bit error in a packet after FEC correction

should result in the packet being dropped, this is comparable to the situation in

conventional 802.11 error-free delivery.

The parameter setup is given in Table 6.1. The packet size is the same as in

Fig. 6.4. For RS only, we add FEC using RS code across packets and the code rate

is 239/255. For 802.11, we do the same as in the 802.11 wireless LAN. Regarding

two-stage FEC, we use RS(255, 245) as stage 1 FEC and across the application

layer packets. The BCH(8191, 8000, 14) code is applied within each application

layer packet as stage 2. Two-stage FEC with the header FEC scheme uses the

same FEC for stage 1 and stage 2 as header CRC, but uses BCH(511, 502, 1) as a

protection method for the header part as shown in Fig. 6.3. The proposed two-stage

FEC scheme significantly outperforms the conventional 802.11 plus application-only

protection strategy as shown in Fig. 6.6

112

10
−6

10
−5

10
−4

10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PHY Layer Bit Error Rate

R
es

id
ua

l P
ac

ke
t L

os
s

P
ro

ba
bi

lit
y

802.11+RS
Header CRC
Header FEC

Figure 6.6: Residual packet loss probability of several FEC schemes vs BER

6.2.3 Effective Application-Layer Throughput

In this section, we analyze the effective application-layer throughput using

different protection methods in a two-node communication topology, without con-

tention. Here, we define the effective throughput as the throughput of error free

traffic. Any packets with errors after correction are dropped at the application

layer, and is comparable with 802.11 error -free delivery. We compare four protec-

tion schemes: 802.11 ARQ, application-layer FEC using Reed-Solomon codes, the

proposed two-stage FEC with header CRC, and two-stage FEC with header FEC.

We assume the same wireless channel as in Section 6.2.1.

For 802.11, any bit error in MAC packet should result in a whole packet being

dropped. The effective application layer throughput BAP (802) can be estimated as

BAP (802) = rBPH(1 − pb)
8(L+Sheader+SACK)(1 − ploss) (6.14)

In our application-layer scheme, an RS(N, K) packet-level FEC scheme is

applied across packets with code rate CRS = K/N . After the RS code correction,

the effective application-layer throughput can be estimated as:

BAP (RS) = rBPH(1 − prbrs)
8L/CRS (1 − ploss)CRS (6.15)

Where prbrs is the residual bit error rate after RS decoding and prbrs =

pbPRSO(E). The probability of error decoding the RS codeword PRSO(E) can be

113

calculated using equation 6.11 and equation 6.12.

Regarding the two-stage FEC with header CRC/FEC, we combine both the

packet-loss correction capability and bit-level protection ability to maximize the

overall system performance. We use BCH(n, k, t) for bit-level protection within

a packet and RS(N, K) for packet-level protection. Cour represents the combined

code rate using two-stage FEC scheme.

At receiver side, the BCH decoder first decodes the received packet. No matter

whether the BCH decoder can fully correct the bit errors or not, it passes the packets

to the RS decoder for further burst-loss correction and also packet-loss correction.

The effective throughput can be estimated as

BAP (our) = rBPH(1 − prsrb)
8L/Cour(1 − ploss)Cour (6.16)

Equation 6.16 can be used for both header CRC and header FEC, but using

different ploss. The value ploss can be calculated directly from equation 6.6 if header

CRC is used. For header FEC, we still use equation 6.6 but replace of pb with prb

from equation 6.8.

10
−6

10
−5

10
−4

10
−3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

PHY Layer Bit Error Rate

E
ffe

ct
iv

e
A

pp
lic

at
io

n
T

hr
ou

gh
pu

t (
M

bp
s)

802.11
RS codes
Two−stage FEC w/o Header FEC
Two−stage FEC w/ Header FEC

Figure 6.7: Effective application layer throughput efficiency of several FEC schemes
vs physical channel BER

Fig. 6.7 shows the performance of the above mentioned four protection meth-

ods regarding their effective throughput. Except for 802.11, the same amount of

FEC is added to data in the three other schemes. The simulation parameter setup

114

is listed in Table 6.1. The results show that at very low bit-error rate, 802.11 offers

the highest effective throughput, since the SW-ARQ requires less overhead than

fixed FEC protection. If an adaptive FEC scheme is used, we can expect similar

results to those of our proposed scheme at low bit-error rates. As the bit-error rate

goes higher, the performance varies dramatically. For 802.11, the probability of re-

transmission and packet drops goes very high at high bit-error rates, and it quickly

reduces the effective throughput to a very low rate. Due to the characteristic of

RS codes (if a codeword can correct the bit-errors, it would completely correct it

or completely not correct it if errors are beyond its correction capability [79]), the

RS-only protection method is even worse than 802.11 at high bit-error rates with the

FEC overhead. On the other hand, our proposed two-stage FEC scheme effectively

joins the advantages of both bit-level protection and packet-level protection. The

performance is better than both 802.11 and RS-only protection schemes. The plot

of two-stage FEC with header CRC also drops at higher loss rates, and this is due

to the reason that at higher loss rates, the probability of header error goes up and

results in a relatively high number of packets being dropped, beyond the correction

capability of the RS code in the application layer. Further, we add a small amount of

bit level FEC to protect header from errors. Since the added BCH(511, 502, 1) can

correct one bit error in a 511 bits codeword, the performance is very good compared

to the other three schemes at high BER with less than 0.1% overhead.

6.2.4 Scalable Video Coding and FEC Design

The wireless channel is time varying, error prone, and usually bandwidth con-

strained. A distinct characteristic of wireless communications is its large variation

in bandwidth and packet loss rate. Compared with the conventional fixed-bitrate

video or multi-layer approach that only supports a discrete number of bitstream

layers, scalable video coding is more suitable for wireless communications, since

a scalable video bitstream can be almost continuously tailored to the time-varying

channel characteristics. In this study, we use the fully scalable coder MC-EZBC [28]

to evaluate our proposed two-stage FEC scheme, in conjunction with an enhanced

MAC protocol.

115

6.2.4.1 MC-EZBC Coding

MC-EZBC is a highly scalable motion-compensated subband/wavelet video

coder with high compression performance, rivaling that of the unscalable coding

standard H.264. It produces embedded bitstreams supporting a full range of sala-

bilities. Fig. 6.8 shows a typical Group-Of-Pictures (GOP) structure of this coder

with 16 video frames. The top level represents the video at full frame rate. These

incoming frames are subject to motion estimation and the resulting motion vec-

tors (shown as arrows) are used for motion-compensated (MC) temporal filtering

(MCTF). In this version of the coder, neighboring frames are decomposed using a

motion-compensated Haar filter bank to produce the temporal low frequency bands

(solid lines) and temporal high frequency bands (dashed lines) at the next lower

level. This process is repeated until we obtain the MC average of all 16 frames

in the GOP, which is at the bottom of the temporal pyramid. Video data in this

case has five temporal scalability layers, going from full frame rate down to LLLL-

level at 1/16 of full frame rate. Temporal subbands are then subject to spatial

subband/wavelet analysis and encoded using a version of the EZBC coding algo-

rithm, details of which are given in [28]. The bitstream sequence is organized in

an embedded fashion. Each GOP coding unit consists of independent bitstreams

{QMV , QY UV }, where QMV denotes the bitstream for the motion fields, and QY UV

for the subband coefficients of color components Y, U, and V of the video. The

motion vector code stream is embedded in frame rate. The remaining bitstream is

fully embedded in quality/bitrate, spatial resolution, and frame rate. Such a scal-

able bitstream is especially suitable for mid-stream adaptation and can be adapted

to different frame rates, SNRs, and resolution according users’ requirements. For

simplicity, we only consider SNR or bitrate scalability in this study. Scaling in

term of quality is obtained by stopping the extraction process at any point in the

bitstream. To achieve a certain bitrate, we simply stop extracting bits when that

bitrate is reached.

116

Full frame rate

L-level

LL-level

LLL-level

LLLL-level

Figure 6.8: A typical GOP of 16 frames with 5 layers of temporal scalability

6.2.4.2 FEC Design

Since the wireless channel is time varying, the effective video bit rate correctly

received at the receiver side is a random variable. The 802.11 wireless LAN MAC

layer uses SW-ARQ to ensure packet delivery. Therefore, a sender can easily es-

timate its sending rate based on the ACKs. A video system is time sensitive, so

excessively delayed packets are useless. The advantage of the scalable encoded bit-

stream is that it can be chopped at any point to match very well with the bandwidth

varying channel: the more bits the receiver gets, the better the video quality. In

this study, we use MD-FEC [52] as stage 1 FEC to protect the MC-EZBC video

bitstream. Detailed description of MD-FEC can be found at Chapter 3. MD-FEC

transforms this unequally important bitstream into one set of equally important

descriptions (packets) by using erasure correcting RS codes. The benefit of using

MD-FEC as stage 1 is that we can at least decode to a certain rate if any part of the

bitstream is received. According to Equation 6.2, bit error rate at lower protocol

level can dramatically affect the application layer throughput. Therefore the FEC

design should try to recover all the random errors at the low protocol levels. Given

the needed bit-level FEC bandwidth Bbit and total available bandwidth Bavail, the

allocated bandwidth for MD-FEC, Rmax, (please refer to Chapter 3, MD-FEC op-

timization algorithm) can be calculated as Rmax = Bavail − Bbit. In this study, we

use the method proposed in [55] to allocation optimal stage 1 FEC according to

network conditions.

6.2.4.3 FEC Adaptation

To efficiently protect packets from losses and to match the available sending

rate, adaptation is needed for FEC design. The FEC codes cannot only correct

117

errors, but also detect errors. The receiver estimates the loss behavior of the channel

and feeds back the result to the sender. Two types of loss information are sent back

to the sender. The packet loss information is fed back regarding stage 1 FEC

design for each GOP. This loss information does not include packet drops due to

FEC correction failure. Since bit errors in the packet can dramatically affect the

application layer loss rate, stage 2 bit-level FEC uses a Step-Increase-Step-Decrease

(SISD) method. A NACK packet is sent back to sender in the case of FEC decoder

failure. Then the sender encodes the bit-level FEC with a step higher FEC code, eg.

from BCH(n, k, t) to BCH(n, k, t+1). If errors inside a packet can be corrected, the

receiver should also know how many bit errors are inside the packet. If the correction

capability is much higher than the bit errors, for instance, the correction capability

is twice higher than the number of errors, the receiver also feeds back an ACK for

the bit-level FEC to step decrease one level from BCH(n, k, t) to BCH(n, k, t− 1).

6.3 Simulations

To evaluate the performance of our proposed scheme in terms of effective

application layer throughput and video PSNR, we perform several simulations to

compare our two-stage FEC plus enhanced MAC protocol with the conventional

802.11 based method. The network simulator ns-2 [96] wireless module is used in

this section and the simulation topology is shown at Fig. 6.9.

200m

node1
 node2
 node2

Video sender
 Receiver 1
 Receiver 2

200m

Figure 6.9: NS-2 video simulation topology

Two types of simulations are performed, single hop and multihop (2 hops in

this study). In the single hop simulation, node1 works as sender, node2 as receiver,

and node3 is idle. There is no contention in this scenario. For multihop simulation,

node1 works as sender, node3 as receiver, and node2 is the intermediate node that

forwards data from sender to receiver2. Contention exists among the three nodes.

The wireless physical layer bandwidth is set to 2 Mbps. The bit-error rates in

118

this section are all average and the average bit-error burst length on the Gilbert

channel is 2. In order to reduce delay variation, we set the maximum MAC layer

retransmission time to 2. The retransmission is based on standard 802.11 SW-

ARQ. Both RTS and CTS packets are used before a packet transmission. For clear

illustration, we artificially set PSNR = 0 if there is no enough bandwidth to sent

even the video base layer.

6.3.1 Effective Application Layer Throughput

To get the maximum effective throughput in the application layer, application

layer CBR traffic is set to 2 Mbps from sender to receiver in single hop simulations, to

saturate the channel. The packet and header size is set to the same size as in Section

6.2.1. To combat channel bit errors, a BCH(8191, 8000, 14) code is applied to each

packet in header CRC and header FEC. A packet is dropped upon BCH decoder

failure. For the 802.11 packet CRC scheme, we directly follow the standard, a packet

CRC is performed at receiver. Any bit error must result in the whole packet being

dropped and trigger retransmissions until the maximum retransmission times. In

the header CRC scheme, the receiver performs a header CRC, and drops a packet

if the header CRC fails. In the header FEC scheme, a BCH(510, 480, 3) code is

applied to the 60 byte header part, resulting in 2 additional FEC bytes. This code

can correct a number of bit errors up to 3 in a 511 bit codeword. If the BCH

decoder cannot successfully decode the codeword, the a retransmission is triggered.

In multihop simulations, since there are contentions among the three nodes, we

reduce the application layer CBR traffic to 1.2 Mbps.

Fig. 6.10 shows the effective application-layer throughput on single hop sim-

ulation on the BSC channel (Fig. 6.10(a)), Gilbert channel (Fig. 6.10(b)) and

multihop simulation on BSC channel (Fig. 6.10(d)), Gilbert channel (Fig. 6.10(e)).

Similarly to Section 6.2.1, IEEE 802.11 performs very poorly at high bit error rates,

because of the error-free-delivery design requirement. Compared to results in Sec-

tion 6.2.1, the header CRC scheme performs worse than the theoretical simulation,

this is because of the additional loss of RTS/CTS packets and ACK packets at

higher bit error rates. With the help of header FEC, the probability of header error

119

10
−6

10
−5

10
−4

10
−3

0

200

400

600

800

1000

1200

1400

1600

1800

PHY Layer Bit Error Rate

A
pp

lic
at

io
n

T
hr

ou
gh

pu
t (

K
bp

s)

Packet CRC
Header CRC
Header FEC

(a) single hop on BSC channel

10
−6

10
−5

10
−4

10
−3

0

200

400

600

800

1000

1200

1400

1600

1800

PHY Layer Bit Error Rate

A
pp

lic
at

io
n

T
hr

ou
gh

pu
t (

K
bp

s)

Packet CRC
Header CRC
Header FEC

(b) single hop on Gilbert chan-
nel

10
−6

10
−5

10
−4

10
−3

0

5

10

15

20

25

30

35

40

45

PHY Layer Bit Error Rate

P
S

N
R

−
Y

 (
dB

)

Packet CRC
Header CRC
Header FEC

(c) single hop video PSNR-Y

10
−6

10
−5

10
−4

10
−3

0

100

200

300

400

500

600

700

800

900

1000

PHY Layer Bit Error Rate

A
pp

lic
at

io
n

T
hr

ou
gh

pu
t (

K
bp

s)

Packet CRC
Header CRC
Header FEC

(d) multihop on BSC channel

10
−6

10
−5

10
−4

10
−3

0

100

200

300

400

500

600

700

800

900

1000

PHY Layer Bit Error Rate

A
pp

lic
at

io
n

T
hr

ou
gh

pu
t (

K
bp

s)

Packet CRC
Header CRC
Header FEC

(e) multihop on Gilbert chan-
nel

10
−6

10
−5

10
−4

10
−3

0

5

10

15

20

25

30

35

40

45

PHY Layer Bit Error Rate

P
S

N
R

−
Y

 (
dB

)

Packet CRC
Header CRC
Header FEC

(f) multihop video PSNR-Y

Figure 6.10: Effective application layer throughput on BSC and Gilbert channel at
different physical layer BER and corresponding Video PSNR Y

is greatly reduced. The degradation of the curve is most likely due to the ACK

error and RTS/CTS failure at higher bit error rates. For example, at 1 × 10−3 bit

error rate, the probability of ACK(14 bytes) error is around 10.6% and the RTS(20

bytes)/CTS(14 bytes) packets error probability is 23.8%.

Given the effective application layer throughput at Fig. 6.10(b), Fig. 6.10(e),

we further test the performance of the video system. We assume an MC-EZBC en-

coded video bitstream is sent over a wireless Gilbert channel. The sender can adapt

the bitstream based on channel conditions. The video sequence is monochrome Fore-

man CIF, 30 fps. The PSNRs shown in Fig. 6.10(c) and Fig.6.10(f) are the average

of the first 100 frames from the single hop and multihop simulations. We notice

that the PSNR for 802.11 packet CRC reduces to zero at higher loss rates, and this

is thought due to there not being enough bandwidth for transmission of even the

base layer of the bitstream. Clearly, we see better PSNR using our enhanced MAC

protocol (header CRC and header FEC). The contention among the three nodes

reduces the performance of the system.

120

6.3.2 Video Performance

We further tested the video performance of our proposed scheme using MD-

FEC. Three kinds of simulations were performed: single hop simulation, multihop

simulation without FEC adaptation, and multihop simulation with FEC adapta-

tion. The MC-EZBC video bitstream was first encoded with MD-FEC at maximum

bitrate 1 Mbps. Each GOP was encoded into 128 packets by the MD-FEC encoder

for stage 1 FEC and resulted in a packet size of around 500 bytes. All packets

are further encoded with bit-level FEC (stage 2), and a BCH(4195, 4000, 4) code is

applied in both single hop and multihop simulations. The physical layer average bit

error rates for each GOP are set at Fig. 6.11(d), 6.11(e) and 6.11(f), under Gilbert

channel. The corresponding PSNR of each GOP is shown above each BER graph in

Fig. 6.11. The protection schemes compared are 802.11 packet CRC, header CRC,

and header FEC, all with two-stage FEC.

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

45

Frame Number

P
S

N
R

−
Y

 (
dB

)

802.11
Header CRC
Header FEC

(a) single hop w/o adaptation

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

45

Frame Number

P
S

N
R

−
Y

 (
dB

)

802.11
Header CRC
Header FEC

(b) multihop w/o adaptation

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

45

Frame Number

P
S

N
R

−
Y

 (
dB

)

802.11
Header CRC
Header FEC

(c) multihop w/ adaptation

0 20 40 60 80 100 120
10

−6

10
−5

10
−4

10
−3

Frame Number

B
it

E
rr

or
 R

at
e

Bit error rate of different GOP

(d) BER for each GOP, single
hop

0 20 40 60 80 100 120
10

−6

10
−5

10
−4

10
−3

Frame Number

A
ve

ra
ge

 B
it

E
rr

or
 R

at
e

Bit error rate of different GOP for 3 nodes

(e) BER for each GOP, multi-
hop w/o adaptation

0 20 40 60 80 100 120
10

−6

10
−5

10
−4

10
−3

Frame Number

A
ve

ra
ge

 B
it

E
rr

or
 R

at
e

Bit error rate of different GOP for 3 nodes

(f) BER for each GOP, multi-
hop w/ adaptation

Figure 6.11: Video PSNR Y vs. frame number at different channel conditions of
each GOP

Since there is almost no contention in single hop simulation, the packet loss is

most likely caused by bit errors in the wireless channel. We see dramatic performance

drop in the 802.11 and header CRC schemes at severe bit error rate (1 × 10−3) in

121

Fig. 6.11(a). This matches very well with the trend in Fig. 6.10(b), where 802.11

has less bandwidth even than required for the video base layer, and the header CRC

scheme can only accept the video base layer. In multihop simulation without FEC

adaption, node2 works as the intermediate node to forward packets to node3, both

node1 and node2 are senders, and further node2 is also a receiver. In Fig. 6.11(b),

the MD-FEC encoded video bitstream is fixed at 1 Mbps. The wireless channel is

time varying and error prone, therefore, the stage 1 MD-FEC design is based on 10%

packet loss rate and average error burst length is 2 packets, for better protection.

Due to the limitation of physical bandwidth and high number of retransmissions

at high bit-error rates, a large number of contentions and packet drops reduces the

effective throughput greatly, and that results in a large video PSNR drop. Though

MD-FEC is very powerful, as the channel BER goes high (1×10−3), the probability

of retransmission goes very high, and none of the three protection schemes work well.

But still the proposed header FEC scheme can transmit part of the base layer at

1×10−3 BER. Fig. 6.11(b) also matches very well with Fig. 6.10(f). In Fig. 6.11(c)

multihop simulation with FEC adaption, the FEC design is based on the feedback

from the receiver and the actual sending rate. At high bit error rates, the sending

rate goes down and FEC can be designed based on the available sending rate. The

sender can truncate the scalable video bitstream to suite the channel. Therefore,

comparing to Fig. 6.11(b), all curves in Fig. 6.11(c) have better performance in

terms of video PSNR, especially two-stage FEC with header FEC, which performs

very good even in the face of severe channel conditions (1 × 10−3). Video clips

related to Fig. 6.11 can be found at my website [97].

6.4 Conclusions

In this study, we propose a two-stage FEC scheme with an enhanced MAC pro-

tocol (header CRC/FEC) to efficiently support multimedia data transmission over

wireless LANs. The proposed scheme enables the joint optimization of protection

strategies across the the protocol stack. Two-stage FEC combines bit-level protec-

tion codes (good at random bit error correction) and symbol level codes (powerful

at correcting burst losses) to correct both bit errors in the MAC/PHY layers and

122

packet losses in the application layer. Simulations show that the proposed scheme

outperforms conventional IEEE 802.11. Future work will focus on joint source and

network coding for video streaming over a mobile multihop network.

CHAPTER 7

Overlay Multi-hop FEC Scheme for Video Streaming

In this Chapter, we release the assumption of ”no congestion between DSNs” in

Chapter 3 and focus on the problem of providing lightweight support at selected

intermediate overlay forwarding nodes to achieve increased error resilience on a

single overlay path for video streaming. We propose a novel overlay multi-hop

forward error correction (OM-FEC) scheme that provides FEC encoding/decoding

capabilities at some intermediate nodes in the overlay path. Based on the network

conditions, the end-to-end overlay path is partitioned into segments, and appropriate

FEC codes are applied over those segments. Architecturally, this flexible design lies

between the end-to-end and hop-by-hop paradigms, and we argue that it is well

suited to peer-based overlay networks. We evaluate our work by both simulations

and controlled Planet-Lab network experiments. These evaluations show that OM-

FEC can outperform a pure end-to-end strategy by up to 10-15 dB in terms of

video peak-signal-to-noise ratio (PSNR), and can be much more efficient than a

heavyweight hop-by-hop strategy, in which all the overlay nodes along the path are

involved in FEC computation.

7.1 Introduction

Most recently, peer-to-peer (P2P) architectures and overlay networks are gain-

ing attention. Padmanabhan et al. [8] discussed the problem of distributing media

content, both live and on demand, to a large number of receivers in a scalable

way. They propose a solution called CoopNet for content distribution that com-

bines aspects of infrastructure and P2P-based content distribution, wherein clients

cooperate to distribute content, thereby alleviating the load on the server. CoopNet

builds multiple distribution trees spanning the source and all the receivers, for its

multiple description coded media content. Yeo et al. [65] proposed an application-

level multicast overlay using peering technology and a lightweight gossip (active

probing) mechanism to monitor prevailing network conditions and improve tree ro-

123

124

bustness. Clients can dynamically switch to other parents if they experience a poor

QoS. In [66], Chu et al. explored the possibility of video conferencing using an

overlay multicast architecture. Their constructed overlay spanning tree is optimized

according to measurements of available bandwidth and latency among users, and

can be modified by the addition of good links and the dropping of the poor links.

The main goal of a resilient overlay network (RON) [67] is to enable a group of nodes

to communicate with each other in the face of problems with the underlying Internet

paths connecting them. RON detects such problems by aggressively probing and

monitoring the paths connecting its nodes. If the underlying Internet path is the

best one, that path is used and no other RON node is involved in the forwarding

path. If the Internet path is not the best one, RON will forward the packet by way

of other RON nodes.

Providing high-quality video streaming over the current best-effort Internet

is a challenging problem due to video’s characteristics such as high bitrate, delay

variation sensitivity, and loss sensitivity. Streaming video and other media have

been intensively studied in the past several years. From the channel coding per-

spective, forward error correction (FEC) schemes are considered to protect packets

from channel losses, at the expense of increased bitrate. A Reed-Solomon (RS) code

based unequal error protection scheme in conjunction with scalable video coding

was proposed by Horn et al. in [68], where different FEC codes are applied to

video base layer and enhancement layer according to channel conditions. Tan and

Zakhor [69] proposed a layered FEC scheme as an error control mechanism in a

layered multicast framework. By organizing FEC into multiple layers, receivers can

obtain different levels of protection commensurate with their respective channel con-

ditions. Distributed video streaming using multiple servers and FEC was proposed

by Nguyen and Zakhor [70, 71] and Kim et al [72]. In [71], all packets are protected

by fixed FEC codes and the proposed rate allocation algorithm adjusts the trans-

mission rates of all senders in order to minimize the probability of lost packets. In

[72], the optimal amount of redundancy is applied to each bitplane for sub-streams

using a bitplane-wise unequal error protection algorithm. Performance characteris-

tics of peer-based overlay networks are likely to be very different and highly variable

125

with respect to the traditional Internet or even managed overlay networks. How-

ever, their massive diversity, i.e. multiple overlay paths that can be harnessed, can

compensate for the performance variability of any one path [73, 74]. In addition,

lightweight support at intermediate nodes can improve single path performance. In

this study, we focus on the latter problem and propose a novel overlay multi-hop

FEC (OM-FEC) scheme for video streaming over peer-based overlay networks. The

OM-FEC scheme dynamically partitions the end-to-end overlay path into segments

according to its error characteristic, and provides appropriate error resilience over

each segment. Here, we do not focus on overlay path construction and routing prob-

lems. Rather, we assume a peer-based overlay path has been pre-constructed and

we focus on how to efficiently utilize it. We will henceforth use the term ”overlay

path” to denote the constructed path over a P2P network.

7.1.1 Scope and Assumptions

Sender Router

Receive

(Bi, Pi, RTTi)

Overlay node

Router Router

Overlay node

Overlay node

Figure 7.1: Streaming video using overlay network

Most prior work on video over P2P/overlay networks has focused on massive

video data distribution or video conferencing using application-layer multicast. In

contrast, our objective is to revisit the problem of efficiently utilizing the resources of

a single overlay path. Our approach operates at small timescales in the data-plane,

and can be combined with overlay routing and topology management approaches

that operate in the control-plane and over larger time-scales [67]. In this sense,

OM-FEC is complementary to prior work where resilience is provided using overlay

routing methods. We assume that we can construct an overlay path with higher

bandwidth [67] than the default Internet route by using P2P techniques such as

Chord [75] or Pastry [49], to obtain a set of intermediate forwarding nodes as shown

126

in Fig. 7.1. In the figure, the dashed lines represent the virtual links between overlay

nodes and the solid lines represent the default Internet path. In this study, we refer

one virtual link as one ”overlay hop.” The quantities Bi, Pi, and RTTi represent,

respectively, the bandwidth, loss rate, and round trip time (RTT) of the ith hop.

7.1.2 Motivation

The advantage of application-layer overlay networks arises from two fundamen-

tal properties: (1) the overlay nodes have capabilities of computation and storage

power that are far beyond basic store and forward operations, and (2) the overlay

topology can be constructed and manipulated to suit one’s purposes. Based on

these two considerations, we argue that applying error correction purely end-to-end

or hop-by-hop in an overlay network is a sub-optimal strategy. For example, in Table

7.1, we list a set of possible bandwidth and loss rates on a congested 6-hop overlay

path based on the observations from [76, 77, 78], where Bi and Pi are, respectively,

the bandwidth and loss rate on the ith hop. In [76], Boyce and Gaglianello found

that the average packet-loss rate of sending a 1 Mbps MPEG video from Texas to

Bell Labs (New Jersey) was 12.6%. Also, Tan and Zakhor [78] observed an average

18% packet-loss rate between Berkeley and Information Science Institute at Los An-

geles. Here, we choose a moderate congestion case with end-to-end loss rate about

14%.

hop 1 2 3 4 5 6
Bi 660 625 615 700 900 1100
Pi 2.5% 3% 3.5% 2.5% 1.5% 1%

Table 7.1: An example of possible bandwidth (Kbps) and loss rate of an overlay
path

FEC Method end-to-end OM-FEC hop-by-hop
Throughput 529 594 594

Path loss rate 14% 14% 14%

Table 7.2: Path throughput (Kbps): OM-FEC vs. end-to-end and hop-by-hop FEC

127

Using FEC with RS erasure-correcting codes, in order to fully recover lost

packets, the end-to-end based FEC scheme would have to be designed based on

the end-to-end available bandwidth 615 Kbps and the end-to-end loss rate, approx-

imately 14% in this case. Thus, the overall data throughput is reduced to around

(1−0.14)×615 = 529 Kbps. On the other hand, if a heavyweight hop-by-hop based

FEC scheme is used, the end-to-end data throughput will be 594 Kbps with the

same path loss rate. However, the hop-by-hop FEC scheme induces more per-hop

delay and uses more computational power of the overlay nodes than is necessary.

Our proposed OM-FEC tries to minimize the overall computational complexity at

the intermediate nodes, i.e. uses as few overlay nodes as possible to do FEC en-

coding/decoding, while still maintaining nearly the highest video quality that can

be obtained over the overlay path. OM-FEC partitions the whole overlay path into

segments and performs FEC over each segment.

This chapter is organized as follows. In Section 7.2 we describe our proto-

col, rate allocation scheme, and algorithms for the novel OM-FEC strategy. Then,

we describe our simulation and controlled Planet-lab network experiments in Sec-

tion 7.3. Finally, in Section 7.4 we make some conclusions and suggest possible

extensions.

7.2 Overlay Multi-hop FEC (OM-FEC)

(B1, P1, RTT1)

N1 N2 … Ni

(Bi, Pi, RTTi)

… Nn Receiver Sender

Figure 7.2: A sample overly path with n intermediate nodes

In our video streaming system, the video server sends a fixed rate bitstream

to a user through an overlay path as shown in Fig. 7.2. There are n intermediate

overlay nodes (each denoted as Ni), where hop i has available bandwidth Bi, packet

loss rate Pi, and round trip time RTTi. In order to protect packets from channel loss,

FEC codes are deployed. Obviously, applying FEC over each hop results in the best

video quality at the receiver, but also the most intermediate FEC encoding/decoding

computation. On the other hand, an end-to-end based FEC scheme results in the

128

worst video quality but the least FEC computation. Our objective is to efficiently

utilize the resources of the overlay path and reduce the overall FEC computational

complexity while still maintaining near-highest possible video quality.

Probe path parameters

(Bi, Pi, RTTi)

Rate allocation

for each hop

Path partition

into segments

 Deploy FEC over

 each segment

Figure 7.3: OM-FEC building blocks and the relationship among these blocks.

The basic building blocks of the OM-FEC scheme include an algorithm to

determine optimal partitioning of the overlay path, a rate allocation algorithm for

allocating appropriate FEC rate for different hops of the overlay path, and the actual

deployment of the FEC on the path as shown in Fig. 3. The video server actively

sends out a probe packet every ∆t seconds. Each overlay node measures the loss

rate and RTT of its related hop using this small probe packet. The obtained per-

hop RTT and loss rate estimates are used to infer the TCP-friendly [6] available

bandwidth of each hop. With this available bandwidth and loss rate, the FEC

rate for each hop can then be calculated. However, different FEC coding is not

needed for every hop. So, our server runs a greedy algorithm to partition the

overlay path consistent with the above FEC rate estimates, so that the overall

computational complexity at intermediate hops is minimized without sacrificing

FEC-based resilience gains. This partitioning splits the overlay path into segments,

and separate FEC encoding/decoding is then employed over the segments. Hence,

only the boundary nodes between segments need to do FEC encoding/decoding.

When this path partition algorithm produces a single segment (equivalent to the

entire end-to-end overlay path), then FEC is designed based on the end-to-end

network characteristics, and the overlay nodes simply receive and forward data and

FEC packets onto the destination. The decision made by the server is conveyed

to every node by a small command packet sent out from the server, so each node

knows what it should do after it receives a command packet. The following sections

outline the details of our OM-FEC scheme step-by-step.

129

7.2.1 Probe Network Parameters

Given the overlay path shown in Fig. 7.2, the server first needs to know the

available resources of the path and then must decide how to efficiently use these

resources. In OM-FEC, as mentioned above, an active probing method is used

to estimate the RTT and loss rate of each hop. In order to synchronize overlay

parameter calculation and reduce overhead bandwidth, the sender uses a small active

probing packet to synchronize the estimation procedure. The probe packet is sent

from the server every time interval ∆t seconds. Each overlay node processes the

probe packet, and calculates the loss rate and the RTT .

 Sequen_Numb

 # pkt_sent_(i)

 Sequen_Numb

 #pkt_sent_(i−1)

 Sequen_Numb
……

RTTi+1, Pi+1

,Pi

RTTi, Pi

 Sequen_Numb
……

RTTi+1, Pi+1

, Pi−1

ii-1 i+1Downlink
Uplink

Probe Packet

Figure 7.4: Probe packet information and processing; server sends out a probe packet
downlink, the collected information of each hop is conveyed uplink to the
server.

The structure of the probe packet is shown in Fig. 7.4 where the circles de-

note overlay nodes, Sequen Numb is the sequence number of the probe packet,

#pkt sent(i) denotes the number of packets in the ith node sent at the current

calculation period. The parameters {RTTi, Pi} denote the RTT and loss rate of ith

hop, respectively. This probe packet passes through all the nodes of the constructed

overlay path. For downlink (link from server to receiver) path-parameter estima-

tion, node i caches the probe packet from its uplink neighbor, replaces the item

#pkt sent(i− 1) with its own #pkt sent(i), and then forwards the probe packet to

the next uplink node (i+1). Each node records the time Tsend – the instant when it

sends the probe packet to its down node, and this parameter is later used for RTT

calculation. With the received item #pkt sent(i − 1) and the measured received

data packets #pkt recvd from(i−1), the ith node can calculate the loss rate of the

(i−1)th link as Pi−1 = (#pkt sent(i−1)−#pkt recvd from(i−1))/#pkt sent(i−1)

The probe packet is fed-back to the server after it reaches the receiver. This feed-

130

back packet collects all information from these overlay nodes while going back to

the server along the uplink (link from receiver to server). As for RTT estimation,

as soon as a probe packet arrives at the ith node from the (i + 1)th node, the ith

node obtains the arrival time of this packet Tarrive, and then calculates the RTT for

the ith hop as follows:

RTTi = Tarrive − Tsend −
j=L
∑

j=i+1

RTTj (7.1)

where L denotes the total number of hops between server and receiver. The ith node

attaches its calculated loss rate for the (i + 1)th hop and the RTT of the ith hop to

the probe packet and then forwards it uplink to the (i− 1)th node as shown in Fig.

7.4, until it eventually arrives at the server. Thus, the server has the loss rate Pi

and RTTi of each hop along the overlay path. The probing packet consumes extra

network bandwidth. In order to save network resources, the probing packet should

be small. Since it is very unlikely that one hop has a loss rate greater than 25.5%

and RTT longer than 255 ms, we use two bytes to represent the {RTTi, Pi} pair,

four bytes to represent Sequen Numb (two bytes) and #pkt sent(i) (two bytes).

Therefore, the bandwidth consumed downlink is (4 × 8)/∆t = 32/∆t (bps). The

probe packet collects path information from each overlay node while traveling back

from the receiver to the server. At each node, two bytes are appended to the probe

packet. Thus the uplink bandwidth consumed at the hop adjacent to the receiver

is (1 × 16 + 8)/∆t = 24/∆t (bps) and the largest uplink bandwidth consumed at

the hop adjacent to the server is (L × 16 + 8)/∆t (bps). Given ∆t = 0.2s, L = 10,

the total probe downlink bandwidth is 0.16Kbps and the uplink bandwidth is in the

range of [0.12, 0.84] Kbps.

7.2.2 Rate Allocation Strategy of OM-FEC

The video server has a fixed rate bitstream of rate Bfixed, to be sent to a user

through an overlay path. At a certain time t, the server estimates the available

bandwidth Bavail(i, t), of each hop by using the information brought back in the

probe packet. Then, OM-FEC uses a very simple method to allocate the available

131

bandwidth for both FEC and video data on each hop: for the ith hop, the algorithm

assigns a portion of the available bandwidth Bavail(i, t), to video data Bdata(i, t); and

the remaining bandwidth is assigned to FEC BFEC(i, t), until either the desired FEC

rate Breq(i, t), is met or the available bandwidth budget is exhausted. In an extreme

case, if Bavail(i, t) ≤ Bfixed, all the available bandwidth is assigned to the video data,

i.e Bdata(i, t) = Bavail(i, t). The main goal of the rate allocation scheme is to find

Bdata(t) for the whole path and BFEC(i, t) for each hop based on its measured loss

rate and RTT, for further utilization by OM-FEC (to decide what kind of FEC

scheme should be deployed, OM-FEC, end-to-end FEC, or hop-by-hop FEC).

The bitrate Bavail(i, t) (in bps) or TCP-friendly bandwidth of the ith hop is

calculated using [6]:

Bavail(i, t) =
S

RTTi

√

2p(i,t)
3

+ Trto−i(3
√

3p(i,t)
8

)p(i, t)(1 + 32p(i, t)2)
(7.2)

where S is the packet size in bits, RTTi is the estimated RTT of the ith hop

in seconds, Trto−i is the TCP timeout on the ith link, and p(i, t) is the estimated

loss probability for the ith link.

After the available bandwidths Bavail(i, t), of all the hops are calculated, the

end-to-end bandwidth Be2e(t), from source to receiver is determined as the minimum

of the per-hop TCP-friendly bandwidths of the overlay paths, i.e.

Be2e(t) = min
1≤i≤L

{Bavail(i, t)} (7.3)

Thus, the server decides the bandwidth allocated to video data for each hop as

Bdata(t) = min(Be2e(t), Bfixed) (7.4)

We use systematic Reed-Solomon erasure codes RS(ni, ki) to protect packets from

channel losses on hop i. Given the target loss probability Ptarget, and channel packet

loss rate p(i, t), if ki is fixed, the lower bound of ni can be determined from (7.5)

[79]. According to the results presented in [80], the viewing quality of MPEG-4

132

encoded video is acceptable at a loss rate of 10−5, and good at a loss rate of 10−6.

In this study, we choose the target loss probability Ptarget ≤ 10−7 at each hop

Ptarget =

ni
∑

j=ni−ki+1





ni

j



 p(i, t)j(1 − p(i, t))ni−j (7.5)

Due to the randomness of the network, the FEC calculated based on the network

condition at time slot t may be not enough to protect the data from losses at time

slot t+1; Therefore, we add an extra safety factor ε to the calculated FEC. ε can be

chosen based on distribution of packet loss probability and the degree of fluctuation

of the channel. In this study, we use experimental results to choose its value for a

given channel. Thus, given the allocated video data bandwidth Bdata(t), and the

estimated FEC, ni − ki + ε, on each hop, the required minimum FEC bandwidth

Breq(i, t) to recover the lost packets of each hop becomes:

Breq(i, t) =
ni + ε

ki

Bdata(t) − Bdata(t) =
ni − ki + ε

ki

Bdata(t) (7.6)

Based on our statement at the beginning of this section, we can obtain the allocated

bandwidth for FEC on each hop:

BFEC(i, t) = min{Breq(i, t), (Bavail(i, t) − Bdata(t))} (7.7)

BFEC(i, t) ≤ Breq(i, t) ∀i = 1, 2, · · · , L (7.8)

If inequality (7.8) holds for all the hops, that means none of the allocated FEC

bandwidth of these hops can fully recover the lost packets on its link. Then FEC

should be added hop-by-hop, and in this case, OM-FEC works the same as hop-

by-hop FEC, i.e. every intermediate node performs an FEC encoding/decoding

computation. Given the available loss rate on each hop p(i, t), the end-to-end loss

rate pe2e(t) can be estimated using:

pe2e(t) = 1 −
i=L
∏

i=0

(1 − p(i, t)) (7.9)

133

Similar to (7.6), the required end-to-end FEC bandwidth Be2ereq(t) to achieve the

end-to-end loss rate can be calculated as

Be2ereq(t) =
n − k + ζ

k
Bdata(t) (7.10)

where n, k are calculated using (7.5) with an end-to-end loss rate pe2e(t), and ζ is

an added extra safety factor for end-to-end FEC. The value of ζ can be chosen using

the same method as ε.

Be2ereq(t) ≤ Be2e(t) − Bdata(t) (7.11)

If inequality (7.11) holds, it means the available end-to-end bandwidth Be2e(t) is

large enough for both video data Bdata(t), and the end-to-end required FEC band-

width Be2ereq(t), then OM-FEC just adds FEC at the path ends, i.e. works the

same as an end-to-end FEC scheme. No intermediate overlay node needs FEC

encoding/decoding.

In intermediate cases between the end-to-end and hop-by-hop extremes, OM-

FEC must partition the overlay path.

7.2.3 Overlay Multi-hop FEC (OM-FEC)

We want to minimize the overall FEC computational complexity at the inter-

mediate nodes, while still maintaining near-highest video quality, i.e. the expected

video distortion of using OM-FEC E[DOM−FEC], should be the same as that ob-

tained by using hop-by-hop FEC E[Dhop−by−hop]. In order to maintain high video

quality, we use a rate allocation algorithm to be described in previous Section 7.2.2.

To minimize the computational complexity of the overlay nodes, OM-FEC should

use as few nodes as possible for the FEC encoding/decoding. The OM-FEC parti-

tion algorithm should find the minimum number of segments Nsegment, of the overlay

path. Mathematically, the problem can be stated as follows:

Minimize(Nsegment) (7.12)

134

subject to:






E[DOM−FEC] = E[Dhop−by−hop];

Bdata(t) = min(Be2e(t), Bfixed);

Given a certain bitstream with bitrate Bfixed, OM-FEC attempts to find the

best partition of the overlay path, i.e. the minimal number of partition segments

Nsegment that can maintain the same video quality as hop-by-hop. We use a forward

partition approach to find a good partition of the path.

In order to reduce the computational burden, OM-FEC partitions the overlay

path into segments according to the characteristics of each hop as shown in Fig. 7.5.

For example, the OM-FEC algorithm partitions the overlay path into N segments,

with J nodes in segment 1, L nodes in segment 2, up till M nodes in segment

N . FEC is then deployed over each segment. The parameters J through M are

dynamically determined by the OM-FEC algorithm as explained below.

J L M

 1 n h i j ……… …

Forward partition

Figure 7.5: An overlay path is partitioned into segments by OM-FEC to reduce
computational complexity at intermediate nodes. Only boundary nodes
perform FEC encoding/decoding. Circles denote overlay nodes.

Since OM-FEC does a forward search to find the best partition of the overlay

path, the server is the start node to partition the overlay path. The forward partition

is defined as partitioning the overlay path along the direction from server to receiver.

In Table 7.3, we define the terms which will be used in the partition algorithm. The

computation unit for this part is based on a segment. For instance, BFEC(start,i) is

calculated based on the method of Section 7.2.2 and (7.2)-(7.7), but considering the

segment from the start node to the (start + i)th node as one virtual link and using

the accumulated loss rate and available bandwidth of this virtual link.

The Forward Partition algorithm is described by the following pseudo-code

given the server as the starting node. The output of Algorithm 6 is the partitioned

segments of the overlay path and the amount of FEC that should be deployed over

these segments.

135

Terms Meaning Calculation Equations
BFEC(start,i) Allocated FEC bandwidth for the segment (7.2)-(7.7)

from the start node to (start + i)th node
Breq(start,i) Required FEC bandwidth for the segment (7.9)-(7.10)

from the start node to (start + i)th node
Nsegment Number of segments partitioned

Table 7.3: Terms used in partition algorithm

Algorithm 6: Forward partition algorithm

Input : Bavail(i, t), Bdata(t), Ptarget, n, Breq(i, t)

Output: Partitioned segments, BFEC for each segment

//Begin calculation from the server;

Start = 0; Nsegment = 1;

for (i = 1; i ≤ n; i + +) do

// Calculate the FEC bandwidth from start node to (start+ i)th node;

Calculate BFEC(start,i);

//Calculate FEC bandwidth from start node to (start + i + 1)th node;

Calculate BFEC(start,i+1);

//Find a boundary node to partition the path into segments;

if ((BFEC(start,i) ≥ Breq(start,i)) && (BFEC(start,i) ≥ Breq(start,i))) then

Start node to (start + i)th node is partitioned as one segment;

Nsegment + +;

FEC is deployed over this segment, with bandwidth BFEC(start,i);

Start from boundary node to partition the rest of the path;

Start = Start + i;

end

end

The server runs this algorithm to partition the overlay path into segments and

deploys FEC over each segment. The decision is then conveyed to all intermediate

nodes by a small command packet. For each boundary node, the command packet

contains a three-byte field specifying the node ID, and the n and k parameters of the

chosen RS (n, k) code. The nodes whose IDs are not listed in the command packet

will simply forward all the packets they receive, without FEC coding/decoding.

136

Thus, each node knows what it should do after it receives the command packet.

Based on the OM-FEC strategy, the largest segment could include all the nodes of

the overlay path (same as the end-to-end scheme), and the smallest segment could

be one hop (i.e. hop-by-hop). In other words, OM-FEC is an adaptive strategy

that tunes the architectural complexity between the extremes of end-to-end and

hop-by-hop operation.

7.2.4 Feasibility of Intermediate FEC Coding/Decoding

In OM-FEC, since intermediate nodes perform FEC encoding/decoding, we

would like to evaluate the limitations of applying FEC codes in video streaming and

the feasibility of the decoding/ coding computation at the intermediate nodes. The

RS(n, k) encoder takes k data packets and generates n − k parity packets. Given

the position of the lost packets, the RS decoder can reconstruct up to n − k lost

packets out of a total of n packets. Hence, a larger ratio n/k leads to a higher level

of protection for the video data. In a video streaming system, n cannot be chosen

arbitrarily large, since the video data are time sensitive. Larger values of n imply

longer delays at the receiver. The maximum value of n is related to the bitrate of

the encoded video, its packet size, and the buffering time at the receiver side. Let

the FEC encoded bitrate be β bps, the packet size η bytes, and the receiver buffer

size λ seconds. If the receiver buffer is full, the total amount of bits in the buffer is

λβ. The amount of bits in a network packet is 8η, so the total amount of packets

in buffer is λβ/8η. If RS(n, k) is deployed over k packets, the receiver needs to be

able to accommodate at least n packets at the receiver buffer. Therefore, we need

n ≤ λβ/8η.

Using a systematic code, the encoder picks groups of k source data symbols

to generate n− k parity symbols. Every source data symbol is used n− k times, so

we can expect the encoding time to be a linear or approximately linear function of

n − k. Since our system relies on real-time FEC encoding/decoding, it is necessary

to evaluate the performance of the RS codec. We tested our implementation of the

RS codec (based on Phil Karn’s RS codec [81]) on a Dell PC with Pentium 4 CPU

at 2.0 GHz, with 256 MB RAM, running Linux RedHat 8.2, with n = 255, and k

137

variable. The time needed to produce n− k parity packets, given k data packets, is

shown (in ms) in Table 2, for various values of n − k and packet size

n − k 5 10 15 20 25 30 35 40

256 bytes/pkt 1.1 1.9 2.2 3.3 3.9 4.3 4.9 5.4
512 bytes/pkt 2.0 3.7 4.3 6.5 7.8 8.6 9.8 10.8
1024 bytes/pkt 4.2 7.3 8.6 13.0 15.6 17.2 19.5 21.6

Table 7.4: RS encoding time (in ms) as a function of n − k and packet size

From Table 7.4, we observe that very high FEC encoding rates can be achieved

even on commodity PCs (which would most likely be the peers of the overlay net-

work). For example, the encoding bitrate of the RS(255, 245) code can be up to 274

Mbps at packet size 1024 bytes, and this code can recover lost packets at random

loss rates up to 3.92%. Erasure codes tested in [82, 69] gave similar results.

7.3 Results

We now demonstrate the effectiveness of OM-FEC by comparing it with end-

to-end based FEC and hop-by-hop based FEC in both simulations and controlled

real Planet-lab network [10] experiments. Based on the OM-FEC algorithm, if the

available end-to-end bandwidth is large enough for both video data and FEC, then

OM-FEC works in the end-to-end mode. In case of severe network congestion where

none of the hops have enough bandwidth for both video data and FEC, OM-FEC

partitions the overlay path into the smallest segments (i.e. hop-by-hop) and works

the same as does hop-by-hop FEC. In this scenario, both hop-by-hop FEC and

OM-FEC outperform end-to-end FEC in terms of video quality. Here, we focus our

simulations and experiments on the cases that lie between the above two extremes.

We first test the bandwidth efficiency of OM-FEC vs. the end-to-end scheme. This

is followed by video simulations that compare the performance of OM-FEC against

both end-to-end and hop-by-hop FEC. Finally, we perform a controlled Planet-lab

network [83] video experiment. We expect that, as the number of hops increases

and the variation of their loss rates becomes larger, OM-FEC will outperform the

end-to-end FEC scheme. This expectation is confirmed by our simulations and

138

experiments. In this section, all the plotted curves are the averages of at least 10

simulation (experimental) runs.

7.3.1 Simulations - Bandwidth Efficiency

In this section we compare OM-FEC and end-to-end FEC in terms of their

provided video throughput. We assume the task is to transmit a video encoded at

512 Kbps (which also represents the highest possible video throughput) through a

sequence of overlay nodes. The simulation configuration is shown in Fig. 7.6. The

topology includes one sender, one receiver, and three intermediate overlay nodes,

with L1 through L4 denoting the overlay hops or links. Similar to [84] and [85],

we use the two-state Markov (Gilbert) model to simulate packet loss on each hop.

The sender puts out video packets through the three overlay nodes to the receiver,

and the feedback information is provided via the same nodes but in the reverse

direction. The probing packet is sent from the server once every 100 ms. We begin

Sender node1 node2 node3 Receiver

L1 L2 L3 L4

Video data

Feedback packets

Figure 7.6: Simulation configuration for bandwidth efficiency; we vary the loss rates
on each hop L1-L4 and compare the video throughput of OM-FEC vs.
the end-to-end scheme.

our simulation by starting the network in a state of slight congestion. The simulation

parameters are shown in Table 7.5. The average burst lengths are in the range of

2-3 packets. We set the RTT and range of packet loss rates for each hop. The

network condition is changed every 300 ms. At time t = 0, the sender begins to

puts out video data to the receiver. Information gathered by the probe packet from

each hop is fed back to the sender. For the Basic Test, the sender calculates the

available bandwidth of each link, as shown in Fig.7.8, according to the measured

loss rate (Fig. 7.7) and RTT on each hop. The sender determines what kind of

FEC scheme should be deployed for the current network condition. OM-FEC uses

bandwidth more efficiently in case of network congestion as shown in Fig. 7.9, where

139

Test Basic Test Test A Test B
Loss rate RTT (ms) Loss rate RTT (ms) Loss rate RTT (ms)

L1 [1-2%] 10 [1-2%] 10 [2-3%] 10
L2 [1-4%] 30 [3-5%] 30 [3-6%] 30
L3 [3-5%] 10 [3-5%] 10 [3-6%] 10
L4 [2-4%] 20 [2-4%] 20 [3-4%] 20

RS(n,k) k = 80, ε = 0, n is variable
Network conditions change every 300 ms
Video Encoded video bitrate = 512 Kbps

Table 7.5: Simulation parameters for three different tests: Basic Test, Test A, and
Test B. Loss rates are randomly chosen from their defined range.

video throughput is defined as bandwidth occupied by the video data. To test our

approach in a heavier congestion condition, we increase the loss rate of the links

in the simulation setup shown in Table 7.5, for Test A and Test B. In Fig. 7.10,

we can see that OM-FEC outperforms the end-to-end scheme by a large margin at

severe congestion. For end-to-end FEC, the increased end-to-end loss rate results

in more FEC overhead over the entire overlay path. On the other hand, OM-FEC

only considers the related segments where loss rate increases. Thus, the OM-FEC

scheme has better performance than the end-to-end FEC at severe congestion in

terms of bandwidth utilization.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 50 100 150 200 250 300 350 400 450 500

Time (second)

P
ac

k
et

 L
o
ss

 R
at

e

Link1 Link2 Link3 Link4 End-to-End

(a)

Figure 7.7: Packet loss rate on the
overlay path

0 50 100 150 200 250 300 350 400 450 500

Time (second)

0

500

1000

1500

2000

2500

3000

3500

A
v
ai

la
b

le
 B

an
d

w
id

th
 (

K
b

p
s)

Link1 Link2 Link3 Link4

(b)

Figure 7.8: Available bandwidth of
each hop

140

350

370

390

410

430

450

470

490

510

530

0 100 200 300 400 500

Time (second)

V
id

eo
 T

h
ro

u
g
h
p
u
p
 (

K
b
p
s)

our OM-FEC Scheme End-to-End Scheme

Figure 7.9: Video throughput of OM-
FEC vs. end-to-end
scheme.

350

370

390

410

430

450

470

490

510

0 50 100 150 200 250 300 350 400 450 500

Time (second)

V
id

eo
 T

h
ro

u
g

h
p

u
t
(K

b
p

s)

Our OM-FEC Scheme(A) End-to-End Scheme(A)

our OM-FEC Scheme(B) End-to-End Scheme(B)

Figure 7.10: Video throughput of
OM-FEC vs. end-to-end
scheme in Tests A & B.

7.3.2 Video Simulations

In this part, we use a more complex overlay path to compare the performance

of OM-FEC vs. end-to-end and hop-by-hop FEC. The path is shown in Fig. 7.11,

where 10 hops are denoted L1−L10. The packet loss rate for each hop is randomly

chosen in the range [0.4%, 1.2%], thus the overall path loss rate is approximately

in the range [4%, 12%]. The video sequence is Foreman, CIF resolution, 30 frames

per second. The video bitstream is encoded using an H.263+ encoder with error-

resilient option at 1530Kbps, with intraframe refresh at every second. For simplicity,

the available bandwidth of each hop is fixed at 1656Kbps, therefore a maximum 126

Kbps bandwidth can be allocated to FEC, which can recover lost data up to a 7.6%

packet loss rate. The network packet size is 512 bytes. Regarding the choice of

RS(n,k) FEC codes, we fix k = 85, while n is determined by the loss rate and the

available bandwidth. Based on our test, we got good FEC performance with ε = 3

and ζ = 6, respectively. The network conditions change every 300 ms, and the probe

interval is set to 100 ms.

Based on this setup, the server sends out a video bitstream using OM-FEC,

hop-by-hop based FEC, and end-to-end based FEC. The results are shown in Fig.

7.12. Since each hop has a packet loss rate only between 0.4% and 1.2%, the hop-

by-hop based FEC scheme has enough bandwidth for FEC to recover almost all

the packet losses except for a very few observed burst losses. On the other hand,

end-to-end FEC deploys FEC based on the end-to-end loss rate which is approxi-

141

Sender node1 node2 node9 Receiver

L1 L2 L3 L10

Video data

Feedback packets

node8

…

L9L8

Figure 7.11: Video simulation path configuration, with varying loss rate on each hop
L1-L10. We compare the performance of OM-FEC vs. end-to-end and
hop-by-hop.

mately ranging in [4%, 12%]. However, due to the limited available bandwidth, the

maximum end-to-end FEC scheme can only recover a loss rate under 7.6%. There-

fore, we observed very bad video quality on the end-to-end based FEC scheme. Our

proposed OM-FEC partitions the overall path into segments based on the available

bandwidth and loss rate in order to acquire essentially the same video quality as

hop-by-hop based FEC, with less computational complexity. OM-FEC partitions

the overlay path in such a way that the added FEC codes can almost always fully

recover the packet loss of each segment. We observed similar video results to those

of hop-by-hop based FEC. The drops in the peak signal-to-noise ratio (PSNR) curve

in OM-FEC are due to burst losses.

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200 250 300

Frame Number

P
S

N
R

_
Y

(d
B

)

Hop-by-Hop FEC

OM-FEC

End-to-End FEC

Figure 7.12: OM-FEC vs. hop-
by-hop and end-to-end
FEC.

0

1

2

3

4

5

0 2 4 6 8 10

Time (in seconds)

N
u

m
b

e
r

o
f

S
e
g

m
e
n

ts

 1%-2% 0.5%-1.5% 0%-1.5%

Figure 7.13: Several sample partition-
ings of OM-FEC.

In Fig. 7.13, we show several partition samples of OM-FEC at different per-

hop loss rates. Though OMFEC uses fewer nodes to do the FEC computations, it

can achieve similar video performance to that of hop-by-hop FEC. In Table 7.6, we

compare the computational complexity of OM-FEC with hop-by-hop and end-to-

142

Per-hop Approx. Number of Avg. OM-FEC Number of Number of
loss total loss OM-FEC segments hop-by-hop end-to-end

range (%) rate(%) segment (in 10 runs) segments segment
0.0-1.5 0.0-15 1-3 1.96 10 1
0.4-1.2 4-12 1-2 1.99 10 1
0.5-1.5 5-15 2-3 2.35 10 1

1-2 10-20 2-4 3.32 10 1

Table 7.6: Computational complexity comparison of the three FEC schemes

Server nima.eecs.berkeley.edu
Node2 planetlab-1.cmcl.cs.cmu.edu
Node3 planetlab1.cs.cornell.edu

Receiver video.testbed.ecse.rpi.edu

Table 7.7: Nodes involved in Planet-Lab experiments

end. Obviously, the number of segments in the end-to-end scheme is always 1 (no

intermediate node is involved in FEC computation) and the number of segments in

hop-by-hop is always 10 (each overlay node does FEC decoding/re-encoding). On

the other hand, OM-FEC partitions the overlay path based on the loss rate and the

available bandwidth. It uses fewer nodes than hop-by-hop based, but with nearly

the same performance in terms of video quality at the receiver side.

7.3.3 Controlled Planet-Lab Network Experiments

We also implemented our protocol over the real Internet using the Planet-

Lab infrastructure [83]. The implementation includes an overlay agent and the

protocol itself. Our overlay agent can run on any Linux Planet-Lab node. Each

agent forwards a video packet to the next node until it arrives at the destination.

The experimental topology is the same as in Fig. 7.5 and the Planet-Lab nodes

involved are listed in Table 7.7. In the experiments described in this section, we

measure the objective video quality at the receiver in terms of the PSNR. We use

the same video sequence as in Section 7.2.2 except that the resolution is QCIF

and encoded bitrate is now 512Kbps. Since there is virtually no congestion from

UC Berkeley to RPI (Internet 2), packets are artificially dropped to simulate a

143

congestion effect. A similar approach has been considered by Nguyen and Zakhor

in [71], where the authors artificially drop packets to simulate 10% loss rate from

Sweden and Indiana to UC Berkeley. The packet loss rate from Utah to CMU is set

to 5%, other links are set to 1% [84, 86]. The actual packet loss, from Utah to CMU

simulation, was 5% with a standard deviation of 1.1%. For the other links with 1%

loss, we just randomly dropped 1 packet out of each 100. The available bandwidth

from Utah to CMU is also upper bounded to 550 Kbps. Under these conditions,

the end-to-end scheme designs an FEC code based on the 550 Kbps bandwidth and

total loss rate 8%. Here, we set ε = ζ = 0. OM-FEC identifies the bottleneck and

partitions the overlay into three segments as follows: segment 1 from Server to Node

1, segment 2 from Node 1 to Node 2, and segment 3 from Node 2 to the receiver.

Two nodes are involved in FEC encoding/decoding. The FEC is deployed within

each segment. OM-FEC places FEC at the bottleneck for a bandwidth of 550 Kbps

and 5% loss rate. It can recover more packet loss than the end-to-end scheme and

its video quality is much higher than that provided by the end-to-end scheme FEC,

as shown in Fig. 7.10. The PSNR gains are on the order of 13 dB.

0

5

10

15

20

25

30

35

40

45

Frame Number

P
S

N
R

(d
b

)

our OM-FEC Scheme End-to-End Scheme

0 50 100 150 200 250 300 350

Figure 7.14: Video PSNR of OM-
FEC vs. end-to-end
FEC (four hops).

0

5

10

15

20

25

30

35

40

45

0 50 100 150 200 250 300 350

Frame Number

P
S

N
R

 (
d

b
)

our OM-FECScheme End-to-End Scheme

Figure 7.15: Video PSNR of OM-
FEC vs. end-to-end
FEC (five hops).

We add one overlay node (Node 4: planet1.ecse.rpi.edu) to the path at last

hop with 1% loss rate in the second set of experiments. In this case, for the end-

to-end scheme, the FEC is designed based on the bandwidth of 550 Kbps and loss

rate of 9%. OM-FEC still partitions the overlay path into segments as before, and

the FEC at the bottleneck is still designed for the bandwidth of 550 Kbps and 5%

loss rate. Still, two nodes are involved in FEC encoding/decoding. The PSNR

144

results are contained in Fig. 7.15, which shows that the advantage of OM-FEC

over end-to-end FEC is increased compared to Fig. 7.14. Here, the PSNR gains

are on the order of 14 dB. As the number of nodes involved in the transmission

increases, OMFEC performs dramatically better than the end-to-end scheme. For

visual comparison, we show a few decoded frames in Figs. 7.16 and 7.17. These

high PSNR improvement figures occurred because we have tried to send at a high

video bitrate, relative to what is available on the links. Of course, if we had tried to

send at a lower rate, there would be less difference between the various results (see

Figs.7.14 to 7.17).

Figure 7.16: Video streaming over four hops: OM-FEC (left) vs. end-to-end FEC
(right).

7.4 Conclusions

We have proposed an OM-FEC approach for streaming video over P2P net-

works, which automatically adapts its architectural complexity between the ex-

Figure 7.17: Video streaming over five hops: OM-FEC (left) vs. end-to-end FEC
(right).

145

tremes of pure end-to-end or pure hop-by-hop operation. The proposed OM-FEC

improves the video throughput of the constructed peer-based overlay transmission

path by dividing the overlay path into segments based on link characteristics, and

applying the appropriate amount of FEC over each segment. We have shown that

video streaming using our approach outperforms that of end-to-end FEC without

incurring high per-hop complexity.

CHAPTER 8

Distributed FGA-FEC

In the previous chapter, we proposed an OM-FEC method to efficiently utilize one

congested overlay path. In this chapter, we investigate a distributed FGA-FEC

scheme over a congested multihop network, where we do FGA-FEC decode/recode

at selected intermediate overlay nodes, and do FGA-FEC adaptation at remaining

nodes. In order to reduce the overall computational burden, we propose two meth-

ods: (1) a coordination between optimization processes running at adjacent nodes to

reduce the optimization computation, and (2) extension of OM-FEC from Chapter

7 to reduce the number of FGA-FEC decode/recode nodes. Simulations show that

the proposed scheme can greatly reduce computation, and can provide near best

possible video quality to users.

8.1 Motivation

In Chapters 3 and 4, we proposed FGA-FEC for encoding and adaptation of

scalable video to simultaneously serve diverse users. We assumed that there was

no congestion in the network backbone, i.e. that the backbone available bandwidth

was large enough to accommodate all user requirements. Therefore, the server first

encoded the scalable video based on the highest user request and aggregated net-

work conditions, then it sent the encoded bitstream into the network. Inside the

network, the DSNs adapted the FGA-FEC encoded bitstream to satisfy heteroge-

neous users by shortening and/or dropping packets. One problem still remained:

congestion could be anywhere inside the network, especially in a multihop ad hoc

wireless network. How should we modify FGA-FEC to work with a congested back-

bone? Here, a congested link is defined as a link whose available bandwidth is less

than the minimum required bandwidth to accommodate a user’s video request. One

solution to address this problem is to optimize FEC protection for each individual

link and apply FGA-FEC decode/recode at each DSN for each user. By FGA-FEC

decode/recode, we mean that a DSN decodes FGA-FEC of the received GOP, re-

146

147

optimize the multiple descriptions and then re-codes the GOP with new designed

FGA-FEC for its downlinks. This would be a heavyweight hop-by-hop computa-

tionally intensive method if done at every overlay node. Here, we argue it may not

be necessary to do FEC decode/recode at each DSN. For example, in Fig. 8.1, if

the link between the server and the DSN1 is congested, and other links are not, we

may only do FGA-FEC decode/recode at DSN1 and do FGA-FEC adaptation at

the remaining DSNs. We need to identify the congested links in the backbone and

apply the appropriate transformation at each DSN. Still, running the full FGA-FEC

optimization at even some DSN nodes may be computationally demanding. So, here

we describe a distributed algorithm, where we do FGA-FEC decode/recode at the

selected DSNs. The proposed distributed FGA-FEC scheme includes two parts:

(1) a coordination method between FGA-FEC optimization processes running at

nearby nodes to reduce the optimization computation, and (2) we apply OM-FEC

to reduce the number of FGA-FEC decode/recode nodes, i.e we use FGA-FEC adap-

tation where permitted and perform FGA-FEC decode/recode only at certain key

DSNs. This design thus lies between the end-to-end and hop-by-hop paradigms. If

there is no congestion over the backbone, we choose end-to-end FGA-FEC scheme,

no FEC decode/recode is needed at intermediate nodes. If each backbone link is

congested, it is a heavyweight hop-by-hop FEC decode/recode scheme. For this

more advanced distributed algorithm, we only focus on SNR scalability, and leave

extension to resolution and frame-rate scalability as a topic of future work.

ÏÐÑÒÐ Ñ ÓÔÐ ÑÕ
ÓÔÐÖÓÔÐ Ñ×

ÓÔÐ ÑØ ÓÔÐ ÑÙ
ÓÔÐ ÑÚ

ÓÔÐ ÑÛ
ÓÔÐ ÑÜÝÏÞ Ú ÝÏ ÞØ ÝÏÞÙÝÏÞ×ß àá âà ßã á âãßä á âäßå á âå ßæ á âæß ç á âçßè á âèßé á âéßê á âê ßë á âëßì á âìß í á âí

Figure 8.1: Streaming video from server to users through DSNs, red-dotted arrows
are overhead information flows, black-solid arrows are video flows.

We outline our idea in a simplified example as shown in Fig. 8.1, where a server

streams video to 8 diverse users through DSNs over a congested backbone. Before

148

the streaming session, each end user sends its ideal video request and maximum

tolerable distortion to its directly connected DSN. During the streaming, at each

time interval (1 GOP or multiple GOPs), edge DSNs (DSN4, whose downlinks

have only end users) initialize optimization processes for each child to figure out

what kind of bitstream it needs to request from its parent DSN (DSN3). This

request is based on its children’s link conditions and their video requests. The

combined video request of its child nodes along with the optimization result is

sent to DSN3 as overhead information. DSN3 then runs optimizations for its own

children, including DSN4 (DSN3 treats DSN4 as one ordinary user), and generates

the requested information to its parent DSN2. This process is repeated until we

arrive back at the server. The server then runs the same algorithms as DSNs to

determine the amount of FEC that should be applied to the video and then sends

the encoded video into network. Inside the network, some selected DSNs will decode,

redo the FGA-FEC design and recode FEC for some users. There are two kinds of

flows in the distributed algorithm, upstream overhead information flow (shown via

red-dotted arrows at Fig. 8.1) and downstream video data flow (shown via black

arrows). Each DSN only exchanges optimization information with its direct parent

or children, generating only local overhead information traffic. The DSNs use this

information to coordinate optimization processes running at nearby nodes to reduce

the computational burden, as well as to decide which nodes that will be involved

in the FGA-FEC decode/recode. We apply the idea of OM-FEC to minimize the

number of involved FGA-FEC decode/recode nodes while still maintaining the near

optimal video quality.

8.2 Distributed FGA-FEC

The distributed FGA-FEC algorithm includes two parts: (a) a coordination

between adjacent nodes to reduce the optimization computation, and (b) the idea

of OM-FEC to identify congested links and select key nodes to do FGA-FEC de-

code/recode. We will first focus on how to reduce the optimization computation.

149

8.2.1 Coordination Between Algorithm Processes Running at Adjacent

Nodes

As we know from Chapters 3 and 4, the optimization algorithm is run at both

DSNs and video server. A DSN runs optimization for its children to figure out what

kind of bitstream it needs to request from its parent DSN or server. The server runs

optimization to design the FEC and to encode a GOP. The only difference in the

optimization algorithms running at DSNs and server are the input parameters. The

optimization time interval is one GOP. Here, we briefly overview the optimization

algorithm.

The optimization goal is to find the optimal bitrate partition R = {R1, R2, · · · , RN}
of a GOP, which minimizes the end-to-end mean distortion E[D(R)] over a channel

with available bandwidth B and packet loss probability p.

E[D(R)] =

N
∑

i=0

qiD(Ri), (8.1)

subject to:














0 ≤ R1 ≤ R2 ≤ ... ≤ RN

Rtotal ≤ B

Ri − Ri−1 = ri × i, ri ≥ 0, ∀ i ∈ [1, N]

where N is the number of descriptions encoded in one GOP, ri is the rate of

each subsection at section i (i ∈ [1, N]) of the bitstream (please refer to Chapter 3 for

definition of sections and subsections). The probability that any i out of N packets

are successfully delivered is qi, Rtotal is the total bandwidth (bitrate) available for

both FEC and video data.

Solving (8.1) is a constrained optimization problem. To find the optimal so-

lution, we can use the Lagrange multiplier method and construct the function

F (R1, · · · , R2, λ) =
N

∑

i=0

qiD(Ri) + λ(
N

∑

i=0

αiRi − B). (8.2)

Taking the partial derivative of (8.2) with respect to Ri, i = 0, 1, · · · , N , and setting

them to 0, then, we can use a bisection search to find the appropriate λ and the

150

corresponding rate break points R = {R1, R2, · · · , RN}, and the E[D] value.

The motivation of coordination typically is from the following: (1) Video statis-

tic information between adjacent GOPs does not change rapidly. (2) Server and

parent DSNs have the optimization information from their child DSNs of the same

GOP, with only different B and p. Therefore, the problem can be simplified into

how to utilize the previous optimization information as network condition and video

statistics change. We will use two coordination methods: (1) search with previous

GOP results at this DSN, and (2) search with current GOP result from child node.

Edge DSNs (a DSN whose children are all end users) initialize optimization for a

new GOP. There, we can use optimization information from the previous GOP, we

call this method ”search with previous GOP”. Intermediate DSNs and the server

have local information not only of the same GOP from child DSNs but also have

their previous GOP optimization result. Thus, they can use information of either

of these GOPs to initialize their optimization search. Using the optimization infor-

mation from child DSN, will be called ”search with neighbor”. We also consider a

full search method, where each node runs the optimization algorithm independently.

There, the upstream communication between nodes is only the video request.

8.2.2 Coordination to Reduce Number of FGA-FEC Decode/recode

Nodes

An extreme case of the distributed FGA-FEC is hop-by-hop FGA-FEC de-

code/recode, i.e do FGA-FEC decode/recode at each DSN. This method can pro-

vide the best possible video quality for diverse users in a congested backbone, since

the protection is specifically optimized for each individual user. One may argue that

it is not necessary to do the FGA-FEC decode/recode at each DSN, if only part of

the network is congested. For example, we already have shown that if the network

backbone is not congested, our simpler FGA-FEC adaptation can also provide a

near optimal solution if the user diversity is not too great. Combining these two

ideas together, we do FGA-FEC decode/recode at some selected nodes, while still

providing similar video quality to hop-by-hop FGA-FEC decode/recode. So here,

we apply the OM-FEC concept to the network backbone to divide the network into

151

segments and hence minimize the number of FGA-FEC decode/recode nodes.

We use the topology of Fig. 8.1 to illustrate the idea. In Fig. 8.1, if there is

no congestion in the backbone, we can directly encode a video using FGA-FEC only

at the server and then use the simpler FGA-FEC adaptation inside the network.

If some links in the backbone are congested, we need to identify them and apply

FGA-FEC decode/recode functions at the edge nodes of these congest links. We still

use local information to decide the congested links. Algorithm 7 works as follows.

Algorithm 7: Distributed FGA-FEC Algorithm

1 Edge DSN initializes new GOP optimization for its children
using ”search with previous GOP”.

2 Edge DSN sends video requests and the optimization information
{D, Dmax, λB, p, pmax} to its parent DSN.

3 Intermediate DSN runs optimization for its children using
”search with neighbor”.

4 Intermediate DSN tests if its child DSN has enough bandwidth B
for an FGA-FEC adaptation.
If yes, intermediate DSN informs its child DSN as an adaptation node.
Otherwise, this is a congested link, child DSN will do
FGA-FEC decode/recode.

5 Intermediate DSN sends video request and optimization
information to its parents.

6 This process is repeated through intermediate DSNs back up to server.
Thus, the congested links are detected and so are the FGA-FEC
decode/recode nodes.

Referring to Fig. 8.1, the network conditions are listed for each link. Before

the streaming session, each end user sends its video requirement to its parent DSN

as overhead information. This requirement can be described as a quality range

[Dmin, Dmax], where Dmin is the user’s ideal video preference and Dmax is his/her

maximum tolerable distortion. The optimization starts from the edge DSN (DSN4)

and proceeds up to the server using a bottom up procedure through all the inter-

mediate DSNs.

1. DSN4 runs optimization algorithm for its child User7, the result will be

Dmin7+λ7Rtotal7, given B7 ≥ Rtotal7, we can only use part of the available bandwidth,

since Dmin7 is satisfied. If B7 < Rtotal7, link is congested, and the result will be

D′
7 + λ′

7R
′
total7, where Dmin7 < D′

7 and R′
total7 = B7, i.e. we use up all the available

152

bandwidth to get the best quality possible for User7. If Dmax7 < D′
7, no video is

sent to User7.

Similarly for User8, the result will be Dmin8 + λ8Rtotal8 given B8 ≥ Rtotal8. If

B8 < Rtotal8 the result will be D′
8 + λ′

8R
′
total8, where Dmin8 < D′

8, and R′
total8 = B8.

2. DSN4 generates its video request to send upstream which is the union of

both users’ request, in this case, it is D =min(Dmin7 or D′
7, Dmin8 or D′

8), given

both users have valid data request. The maximum tolerable distortion will be

Dmax =max(Dmax7, Dmax8) (at least should satisfy one user), the requested bit-

stream range will be at [D, Dmax]. DSN4 sends this combined video request to its

parent DSN3, along with its optimization information {λ, B, p}. Here, (B, p) cor-

responds to D. The total request is the set {D, Dmax, λ, B, p, pmax}, where pmax is

the maximum loss probability among its children links and is used for FGA-FEC

optimization test.

3. DSN3 runs the optimization algorithm for its children (including DSN4 with

video request [D, Dmax] and network conditions (Bd, pd), based on the optimization

information λ from DSN4 (DSN3 uses the optimization information to start its own

process).

4. DSN3 does one FGA-FEC optimization test, it optimizes FGA-FEC based

on Bd and the aggregated loss probability, roughly 1−(1−pd)(1−pmax). If Bd is large

enough for FGA-FEC encoding (can provide the video quality D with FGA-FEC),

DSN4 is notified as an FGA-FEC adaptation node, otherwise, the link between

DSN3 and DSN4 is congested, both DSN3 and DSN4 need to do FEC decode/recode.

5. DSN3 sends its own request {D, Dmax, λ, B, p, pmax} to DSN2.

6. This process is repeated upward to server through DSN2 and DSN1. The

backbone is then divided into segments and appropriate nodes are selected for FEC

decode/recode. Similarly as OM-FEC, the partition result could be an end-to-end

scheme (no intermediate FEC decode/recode is performed, only FGA-FEC adap-

tation) if no congestion is detected in the backbone, or could be a heavy weight

hop-by-hop FEC decode/recode scheme, given each hop is congested in the back-

bone.

7. The server runs the optimization based on video request and optimization

153

information from DSN1, encodes the GOP with FGA-FEC, and sends it to DSN1.

We test a link using FGA-FEC optimization to see if the link available band-

width is large enough for a downlink FGA-FEC adaptation. If not, the link is

congested. For a congested link, there is a possibility that the bandwidth is large

enough for a hop-by-hop FEC decode/recode (the optimization result can satisfy

the video request only for this hop), but can not satisfy an FGA-FEC adaptation.

In this situation, we need to explore how to efficiently utilize the link by assigning

appropriate FEC for this link. The solution is that we will use more bandwidth

and add more protection to the optimized FEC in the server side. We show this in

an example as in Fig. 8.2 where the link available bandwidth between server and

DSN is large enough for FEC decode/recode at DSN but not enough for FGA-FEC

adaptation. î ï ðñ ï ð ò î ó ô õ ö õ ÷ø õ ùú û üý þ ý ÿ � � � �� û ý �ý � ú û üý ý ý ÿ � � � �� û ý �ý �
Figure 8.2: A simple topology streaming video to a user through DSN, the channel

condition is listed at each link, this backbone is congested for FGA-FEC,
but not congested for FEC decode/recode.

While DSN does the optimization, it assumes that the available video source

bitstream is large enough to fulfill the receiver’s needs. Actually, this is not always

true, there is possibility that the received video at DSN is not enough for receiver.

Since there is more bandwidth available, we can add additional protection to the op-

timized FEC (for FEC decode/recode) at server side as we did at OM-FEC scheme.

We use the Fig. 8.2 topology to analyze the effect of adding more protection over

the assigned FEC, the video bitstream is Foreman GOP1, N =64.

(1) DSN first does the optimization based on user’s channel condition, the

resulting rate break points are R0 = R1 = · · · = R54 = 0 Kbps, R55 = 156 Kbps,

R56 = 415 Kbps, R57 = R58 = · · · = R64 = 880 Kbps, RS(N, i) is applied to

section i. The expected distortion at receiver is 38.15 dB. The DSN needs video

source bitstream up to bitrate 880 Kbps delivered to it, then it can satisfy the user’s

request, i.e at least 57 out of 64 packets should be delivered to DSN.

(2) The video request is sent to server, since there is enough bandwidth be-

154

tween server and DSN, the server uses the same protection as DSN optimization to

satisfy the E[D] =38.15 dB, and encodes 64 packets.

(3) While streaming over the channel, the probability of receiving at least 57

packets at DSN is 0.9597, i.e. there is a probability of 0.0403 that the DSN can not

get enough source video to fulfill its bitstream requirement.

(4) Since there is enough bandwidth for server, now we add more protection to

the optimized FEC protection. We consider directly add a number of FEC packets

to the original 64 descriptions, we add an upper integer of ǫ =
√

Np(1 − p) parity

packets which is the standard deviation of qi (the probability of i out of N packet

successfully received). In this specific test, ǫ =
√

64 × 0.05 × 0.95 = 2. i.e. we are

protecting section i with RS(N +ǫ, i). After more protection added to the optimized

results, the probability of receiving at least 57 packets at DSN becomes 0.9945, i. e.

there is a probability of only 0.0055 that the DSN can not get enough source video to

fulfill its bitstream requirement. Since the optimization is based on B=1000 Kbps,

N=64, after adding two more FEC packets, the total bandwidth consumed in the

backbone is 66 ÷ 64 × 1000 = 1031 Kbps, still less than 1080 Kbps. This can be

explain by the Fig. 8.3.

46 48 50 52 54 56 58 60 62 64
0

0.05

0.1

0.15

0.2

0.25

Number of packets (i) received

q i v
al

ue

q1: the prob. of i out of 64 packets received
q2: the prob. of i out of 66 packets received

Figure 8.3: The probability of i out of N packets is successfully received at different
protection, for q2, we add additional 2 parity packets.

Add additional protection actually push the qi curve to the right and hence

decrease the probability of receiving less than a certain number of packets.

155

8.3 Experiments and Simulations

We did experiments and simulations to show the efficiency of our proposed

distributed FGA-FEC scheme using videos Foreman CIF, 18 GOPs, Mobile, SIF,

8 GOPs and Football, SIF, 7 GOPs, with 16 frames/GOP in all three sequences.

The source encoder is MC-EZBC, N = 64. The proposed scheme includes two

approaches (1) a coordination method between optimization processes running at

adjacent nodes to reduce computation, (2) using the OM-FEC concept to reduce the

number of FGA-FEC decode/recode nodes while still maintain near optimal video

quality, measured in terms of PSNR. Regarding the first approach, we compare the

number of iterations need to reach the optimization stop point using ”full search”,

”search with previous GOP” and ”search with neighbor”. For the later approach,

we compare with hop-by-hop FEC decode/recode scheme and show that we can get

similar video quality, but use fewer node involved in FEC decode/recode. Finally,

we measured the CPU time of using the distributed FGA-FEC algorithm to show

the efficiency.

8.3.1 Optimization Performance

We solve the optimization problem using a bisection search to find the best

λ value. We need find a stopping criteria. We use |Rtotal − B| < 1
N

× B and

|λ−λprevious| < ε, i.e the total rate should be close to the available bandwidth and λ

is not changing much, where ε is a threshold. Intuitively, a larger threshold should

correspond to coarser precision. After the optimization, (N − 1
N
× B) < Rtotal <

(N + 1
N
× B). If Rtotal < B, we need to allocate more video data to RN to satisfy

Rtotal = B. If Rtotal > B, we need to remove some video data from RN to satisfy

Rtotal = B. We did experiments to show the effect of varying the ε threshold. Tables

8.1 and 8.2 show the quality loss (PSNR loss in dB), compared with solutions using

threshold ε = 1 × 10−9 under various network conditions.

In Tables 8.1 and 8.2, larger thresholds correspond to coarser optimization

precision. Still at ε = 1 × 10−5, the quality loss is almost negligible. So we will use

threshold 1× 10−5 in our experiments. The larger threshold can reduce the number

of iterations needed. We evaluate this below.

156

Channel B=1200 Kbps, p=0.12 B=1200 Kbps, p=0.03
Threshold 1 × 10−6 1 × 10−5 1 × 10−4 1 × 10−6 1 × 10−5 1 × 10−4

Foreman 7.2 E-6 3.6 E-3 1.3 E-1 7.8 E-6 1.4 E-3 8.5 E-2
Football 4.0 E-4 1.1 E-2 7.4 E-2 9.2 E-5 3.9 E-3 4.6 E-2
Mobile 5.5 E-5 6.5 E-3 7.7 E-2 1.3 E-5 1.4 E-3 5.1 E-2

Table 8.1: The PSNR loss in dB of using various stop search threshold, compared
with solutions obtained by set a threshold to a very small value 1×10−9.

Channel B=400 Kbps, p=0.12 B=400 Kbps, p=0.03
Threshold 1 × 10−6 1 × 10−5 1 × 10−4 1 × 10−6 1 × 10−5 1 × 10−4

Foreman 0 2.8 E-4 2.0 E-2 1.5 E-6 1.6 E-4 1.7 E-2
Football 0 0 7.4 E-2 0 0 1.5 E-2
Mobile 0 1.8 E-4 7.7 E-2 0 0 0

Table 8.2: The PSNR loss in dB of using various stop search threshold, compared
with solutions obtained by set a threshold to a very small value 1×10−9.

At an edge DSN, there is only previous GOP optimization information avail-

able. The DSN can use this information as a starting point for current GOP opti-

mization. In Fig. 8.4, we show several examples comparing our proposed ”search

with previous GOP” with the ”full search” in terms of number of iterations needed

to reach the optimization stoping point at various available bandwidths and differ-

ent packet-loss probabilities. Here one iteration is defined as one λ step calculation.

Initially, we set λ = 1×10−3 in the ”full search” method. This value is picked based

on experimental results, we tested the optimization in different network conditions

and observed on possible biggest value of λ = 3 × 10−4 at p = 0.05, B = 100 Kbps,

Foreman, GOP1. For full search optimization, the bisection search starts from the

initial λ to the optimization stopping point. In the ”search with previous GOP”

method, the first GOP is the same as full search, we start from an initial λ value

1 × 10−3 and search to the optimization stopping point. After the first GOP, we

use the previous GOP final λ (optimal point value) as our starting point and search

to an appropriate direction based on the analysis in the previous section. We can

quickly reach the optimization stopping point within several iterations. Of course,

if we set a different initial value for λ, the iterations of full search algorithm would

157

2 4 6 8 10 12 14 16 18
0

5

10

15

GOP number

N
um

be
r

of
 it

er
at

io
ns

Full search
Search with previous GOP

(a) B= 1200 Kbps,p=0.03,
Threshold=1× 10−9

2 4 6 8 10 12 14 16 18
0

5

10

15

GOP number

N
um

be
r

of
 it

er
at

io
ns

Full search
Search with previous GOP

(b) B=1200 Kbps, p=0.12,
Threshold=1 × 10−9

2 4 6 8 10 12 14 16 18
0

5

10

15

GOP number

N
um

be
r

of
 it

er
at

io
ns

Full search
Search with previous GOP

(c) B=600 Kbps, p=0.06,
Threshold=1 × 10−9

2 4 6 8 10 12 14 16 18
0

5

10

15

GOP number

N
um

be
r

of
 it

er
at

io
ns

Full search
Search with previous GOP

(d) B= 1200 Kbps,p=0.03,
Threshold=1× 10−5

2 4 6 8 10 12 14 16 18
0

5

10

15

GOP number

N
um

be
r

of
 it

er
at

io
ns

Full search
Search with previous GOP

(e) B=1200 Kbps, p=0.12,
Threshold=1 × 10−5

2 4 6 8 10 12 14 16 18
0

5

10

15

GOP number

N
um

be
r

of
 it

er
at

io
ns

Full search
Search with previous GOP

(f) B=600 Kbps, p=0.06,
Threshold=1 × 10−5

Figure 8.4: Effective Threshold: full search vs. search with previous GOP in terms
of number of iterations vs. GOP number for different bandwidths and
packet loss probabilities, (a-c) use threshold 1×10−9 and (d-f) use thresh-
old 1 × 10−5.

change. Table 8.3 shows the average number of iterations needed to reach the op-

timization stopping point in the tests in Fig. 8.4. As expected, larger threshold

results in fewer number of iterations.

Threshold 1 × 10−9 1 × 10−5

Search method full with previous GOP full with previous GOP

B = 1200, p = 0.12 9.89 2.83 8.56 1.94
B = 1200, p = 0.03 10.72 2.78 8.67 1.89
B = 600, p = 0.06 8.72 2.67 8.11 2.33

Table 8.3: The number of iterations to reach the optimization stopping point for
various network conditions and search thresholds.

At intermediate DSNs and server, there is optimization information not only

from previous GOP, but also overhead information from children DSNs about the

same GOP. In Fig. 8.5, we compare ”search with previous GOP” and ”Search with

158

2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

8

9

10

GOP number

N
um

be
r

of
 it

er
at

io
ns

Search with previous GOP
Search with neighbor

(a) Foreman, B= 1200, p=0.03
to B=600, p=0.06

2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

8

9

10

GOP number

N
um

be
r

of
 it

er
at

io
ns

Search with previous GOP
Search with neighbor

(b) Foreman, B=400, p=0.12
to B=1200, p=0.03

2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

8

9

10

GOP number

N
um

be
r

of
 it

er
at

io
ns

Search with previous GOP
Search with neighbor

(c) Foreman, B=600, p=0.06
to B=800, p=0.06

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10

GOP number

N
um

be
r

of
 it

er
at

io
ns

Search with previous GOP
Search with neighbor

(d) Mobile, B=1200, p=0.03 to
B=600, p=0.06

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10

GOP number

N
um

be
r

of
 it

er
at

io
ns

Search with previous GOP
Search with neighbor

(e) Mobile, B=400, p=0.12 to
B=1200, p=0.03

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10

GOP number

N
um

be
r

of
 it

er
at

io
ns

Search with previous GOP
Search with neighbor

(f) Mobile, B=600, p=0.06 to
B=800, p=0.06

Figure 8.5: Comparison of ”Search with previous GOP” with ”Search with neigh-
bor” in terms of number of iterations to reach the optimization stopping
point vs. GOP number. (a-c) Foreman and (d-f) Mobile

same GOP” methods, GOP by GOP. We show how to do the experiments in an

example. For example, in Fig. 8.5(a) caption B = 1200, p = 0.03 to B = 600, p =

0.06, this means the previous information is obtained by optimizing a GOP with

B = 1200, p = 0.03 and the current available network condition is B = 600, p = 0.06.

In ”search with previous GOP”, we use information from previous GOP to optimize

the current GOP for the current network condition. In ”search with neighbor”, we

use the same GOP information in previous network conditions from child DSN. Here

we process GOP by GOP and list them together in Fig. 8.5. Results show that if

network condition changes, these two methods have similar performance.

In Fig. 8.6, we further compare the full search algorithm with our proposed

”search with previous GOP” and ”search with neighbor” methods on a dynamic

channel, where the channel condition changes over the GOPs as in Fig. 8.6(a). The

corresponding number of iterations to reach stopping points for the three methods

are shown in Fig. 8.6(b). We can give an example to show how to do the exper-

159

2 4 6 8 10 12 14 16 18
0

200

400

600

800

1000

1200

1400

GOP number

A
va

ila
bl

e
ba

nd
w

id
th

 (
K

bp
s)

Channel condition

p=0.06

p=0.03

p=0.09

p=0.12

p=0.06

p=0.03

(a) Channel condition

2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

GOP number

N
um

be
r

of
 it

er
at

io
ns

Full search
Search with previous GOP
Search with neighbor

(b) Number of iterations

Figure 8.6: Dynamic Channel Conditions: full search algorithm vs. our our proposed
”search with previous GOP” and ”search with neighbor”, in terms of
number of iterations at a dynamic channel, (a) channel conditions vary-
ing over GOP number, (b) the number of iterations to reach optimal
stopping point.

iment with ”search with neighbor” method. For GOP 5, the child DSN first does

optimization using B = 1000 Kbps, p = 0.06, and obtains a value λ, then uses this

λ to optimize GOP5 in B = 1200 Kbps, p = 0.03 at parent DSN. If the network

condition does not change, the optimization value can be used directly without

optimization. From Fig. 8.6, we see that if the channel condition changes, both

”search with previous GOP” and ”search with neighbor” have similar performance,

but when channel condition is statistically consistent, using ”search with neighbor”

gains over ”search with previous GOP”, saving about 2 iterations on average.

Fig.8.7 illustrate what happens at a scene cut during video streaming. The

cut occurs at GOP 19, where the sequence changes from Foreman to Football. In

both cases, at the scene cut, the number of iterations increase because the statistical

character of these two clips are very different, hence the D(R) curves are not similar

at all. The results in this section show that with cooperation between adjacent

DSNs, the optimization complexity is greatly reduced.

160

5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

GOP number

N
um

be
r

of
 it

er
at

io
ns

Full search
Search with previous GOP

(a) B=1200 Kbps, p=0.12, Threshold=1 ×
10−9

5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

GOP number

N
um

be
r

of
 it

er
at

io
ns

Full search
Search with previous GOP

(b) B=600 Kbps, p=0.06, Threshold=1 ×
10−9

5 10 15 20 25
0

5

10

15

GOP number

N
um

be
r

of
 it

er
at

io
ns

Full search
Search with previous GOP

(c) B=1200 Kbps, p=0.12, Threshold=1 ×
10−5

5 10 15 20 25
0

5

10

15

GOP number

N
um

be
r

of
 it

er
at

io
ns

Full search
Search with previous GOP

(d) B=600 Kbps, p=0.06, Threshold=1 ×
10−5

Figure 8.7: Comparison full search with our proposed ”search with previous GOP”
and ”search with neighbor”. There is a scene cut at GOP 19 from
Foreman to Football. Both (a) and (b) use search threshold 1 × 10−9,
and (c) and (d), use 1 × 10−5

8.3.2 Comparison of FGA-FEC Adaptation with Hop-by-hop FGA-FEC

Decode/recode

Hop-by-hop FGA-FEC decode/recode is a special case of the distributed FGA-

FEC algorithm, where every DSN performs FGA-FEC decode/recode. This method

provides the best quality, since at each step the protection is optimal. In this section,

we compare FGA-FEC adaptation vs. hop-by-hop FGA-FEC decode/recode in a

congested multicast scenario. We use the ns-2 network topology of [53] shown in

Fig 8.8, where the network backbone is congested (1.15 Mbps between source and

node1). In this topology, we set the probability of packet drop of each link to

161

p = 0.01. ���	
� �
�
 ���� ���� ��� �
�

����

� ���
� ��
� ���� ��� � ���� ��� � ���� ���� �
� � �
�� ������� � �
� ����� ���

� 	����
� 	����� 	���� � 	��� �

Figure 8.8: Network topology for a network of 16 nodes (link bandwidths are in
Mbps, each link has a packet loss probability of 0.01). The backbone is
congested, with smaller bandwidth than some end-user links.

In the hop-by-hop FGA-FEC decode/recode scheme, each DSN optimizes

video for its down links and does FGA-FEC decode/recode for its direct children.

In the FGA-FEC adaptation, the server uses the backbone available bandwidth

1.15 Mbps and aggregated packet-loss probability, roughly 0.07, to optimize the

FGA-FEC encoding and then sends the encoded video into the network. All inter-

mediate nodes perform possibly default FGA-FEC adaptation for their downlinks.

Fig. 8.9 shows the PSNR quality delivered to receivers 5 and 12 respectively. In re-

ceiver 5, hop-by-hop FGA-FEC decode/recode performs better. The reason is that

FGA-FEC needs to encode the scalable video at the combine network conditions, in

this case, B = 1.15 Mbps and packet-loss probability approximately 0.07. On the

other hand, the hop-by-hop FGA-FEC decode/recode scheme only needs to handle

each individual link with its packet-loss probability 0.01. Regarding receiver 12,

the PSNR loss is not as much as that at receiver 5, because the backbone is not

congested compared with the user link’s available bandwidth which is only at 0.66

Mbps. Here, the PSNR loss is mainly caused by the intermediate adaptation.

Results in this Section show that the hop-by-hop FGA-FEC decode/recode

scheme outperforms FGA-FEC adaptation in a congested network, especially in the

162

50 100 150 200 250 300
36

37

38

39

40

41

42

Frame Number

P
S

N
R

−
Y

 (
dB

)

Hop−by−hop FEC decode/recode
FGA−FEC adaptation

(a) Receiver 5

50 100 150 200 250 300
33

34

35

36

37

38

39

40

Frame Number

P
S

N
R

−
Y

 (
dB

)

Hop−by−hop FEC decode/recode
FGA−FEC adaptation

(b) Receiver 12

Figure 8.9: PSNR quality delivered to two receivers. For receiver 5, FGA-FEC adap-
tation is about 0.56 dB lower than the distributed algorithm. For receiver
12, FGA-FEC adaptation is about 0.14 dB lower on average.

case of users with high quality requirements.

8.3.3 Comparison of Distributed FGA-FEC with Hop-by-hop FGA-FEC

Decode/recode

The distributed FGA-FEC scheme uses OM-FEC to partition congested net-

works into segments and appropriately selects FGA-FEC decode/recode nodes while

trying to maintain a near optimal delivered video quality. In this section, we com-

pare hop-by-hop FGA-FEC decode/recode versus the distributed FGA-FEC scheme

in a congested multicast scenario. We use the same ns-2 network topology in the

previous section. For this topology, we set the probability of packet drop on each

link to p = 0.01.

In the hop-by-hop FGA-FEC decode/recode, all intermediate nodes are in-

volved in FEC decode /recode for their direct children. In the distributed FGA-FEC

scheme, the congested network is partitioned into segments and only appropriate

FGA-FEC decode/recode nodes are selected. In this topology, distributed FGA-

FEC would identify three congested links in the backbone: (1) from source to node

1, (2) from node 1 to node 2, and (3) from node 10 to node 12. Thus, nodes 1,

2, 10, 11 are FGA-FEC decode/recode nodes. In the hop-by-hop FGA-FEC de-

code/recode method, all intermediate nodes are involved in FEC decode/recode, for

163��� !" #
#$ #%#& ##'()*+ , $%

#+#,

-#+
& -)$& -*&& -** & -**# -,(# -$%# -,,# -$% # -$(# -#+#-%+ # -$% #-+## -%+

. ��/0
. ��/1. ��/2 . ��/ 3

Figure 8.10: Network topology for a network of 16 nodes (link bandwidths are in
Mbps, each link has packet-loss probability of 0.01). The backbone is
congested, with smaller bandwidth than some end users.

a total of 7 nodes. Fig. 8.11 shows the PSNR quality delivered to receivers 5 and

12, respectively. For receiver 5, hop-by-hop FGA-FEC decode/recode is about 0.01

dB better on average than the distributed FGA-FEC, with the relative loss mainly

caused by the better performance of FGA-FEC decode/recode at node 1. For hop-

by-hop FGA-FEC decode/recode, the received video is FGA-FEC re-coded at node

4 with packet loss probability p = 0.01. For the distributed FGA-FEC, the video is

FGA-FEC re-coded at node 1 with a aggregated loss probability of about p = 0.02.

Regarding receiver 12, these two schemes perform about the same, since they both

do FGA-FEC decode/recode at node 10 specifically for node 12.

The results in this Section show that the distributed FGA-FEC algorithm can

provide similar quality to hop-by-hop FGA-FEC decode/recode, but with less than

half the nodes involved in FEC computation, 7 nodes in FGA-FEC decode/recode

versus 4 in distributed FGA-FEC in the section’s simulation.

8.3.4 Distributed FGA-FEC CPU-Time

In the distributed FGA-FEC algorithm, a DSN either does FGA-FEC adap-

tation or FGA-FEC decode/recode to satisfy its users. Here, we compare the com-

putational complexity of FGA-FEC adaptation vs. FGA-FEC decode/recode. We

164

50 100 150 200 250 300
36

37

38

39

40

41

42

Frame Number

P
S

N
R

−
Y

 (
dB

)

Distributed FGA−FEC
Hop−by−hop FEC decode/recode

(a) Receiver 5

50 100 150 200 250 300
33

34

35

36

37

38

39

40

Frame Number

P
S

N
R

−
Y

 (
dB

)

Distributed FGA−FEC
Hop−by−hop FEC decode/recode

(b) Receiver 12

Figure 8.11: Quality delivered in PSNR (dB) at two receivers. For receiver 5, dis-
tributed FGA-FEC average performance is less than 0.01 dB lower than
the hop-by-hop FGA-FEC decode/recode algorithm. At receiver 12,
both schemes have about the same video quality since they both do
transcoding at parent node.4 5 67 5 6 8 4 9 : ; < ; => ; ?@ A BC D D E F G H IG A D JD K @ A BD D D E F G H IG A D JD K

Figure 8.12: A simple topology video streaming to one user through DSN.

measured the CPU time of both schemes using the topology of Fig. 8.12, where the

DSN is a Dell desktop with Pentium 4, 1.6 GHz CPU, 256 MB Memory, running

Red Hat Linux 8.2. We use test sequences Foreman and Mobile, 7 GOPs/sequence,

and number of descriptions encoded for each GOP N =64. The D(R) curve rate

interpolation interval is 100 bytes. The number of D(R) points actually transmitted

is 21.

FGA-FEC decode/recode FGA-FEC adaptation

FGA-FEC decode time, The time to find the
FGA-FEC optimization time, appropriate combination of
and FGA-FEC recode time dropping/shortening packets

Table 8.4: The measured items in FGA-FEC decode/recode and FGA-FEC adapta-
tion methods

165

8.3.4.1 FGA-FEC Decode/recode Scheme

In the FGA-FEC decode/recode scheme, the server first does optimization

over a channel (B = 1200 Kbps and p = 0.05), then encodes the video using RS

codes. At the DSN, RS decoding is first performed, then it does the optimization for

its downlink channel (B = 1000 Kbps and p = 0.05), finally it does the RS encoding.

FEC optimization time

To optimize FEC protection for each GOP, the DSN needs to: (1) interpolate

the D(R) curve, (2) convexify D(R) curve and calculate related parameters such as

αi, qi, (3) perform bisection search at appropriate initial λ value (one step of λ value

calculation is called as one iteration), and (4) output the results. Table 8.5 shows

the measured CPU time (in ms) of the different steps of the optimization algorithm

for the two test clips.

Sequences Total Optimization Bisection search Time/iteration
time/GOP (ms) time/GOP (ms) (ms)

Foreman, FTFS 8.1 3.5 0.4
Foreman, HTFS 7.1 3.5 0.4
Foreman, FTHS 7.4 3.5 0.4
Mobile, FTFS 7.8 3.5 0.4

Table 8.5: Optimization CPU time. Here FTFS means full frame-rate full resolution,
HTFS means half frame-rate full resolution and FTHS denotes full frame-
rate half resolution. We show the average optimization time per GOP
(sum of all four steps), the bisection search time, and the CPU time per
iteration.

FGA-FEC decode/recode time

Table 8.6 shows the measured CPU time (in ms) of RS decode/recode at the

intermediate node for Foreman, only first 7 GOPs.

8.3.4.2 FGA-FEC Adaptation Time

In the FGA-FEC adaptation, the server does the optimization and RS encod-

ing based on aggregated network condition which is 1200 Kbps and p = 0.1. At

the DSN, the FGA-FEC encoded bitstream is adapted for its downlink with 1000

166

Sequences decode time (ms) recode time (ms) total (ms)

Foreman, FTFS 28.7 15.8 44.5

Table 8.6: Measured CPU time (in ms) of RS decode/recode at intermediate node.
Results show that to perform FGA-FEC decode/recode takes 44.5 ms on
average per GOP.

Kbps, p = 0.05 only by shortening packets and dropping descriptions. Here, we

measure the CPU time to find the appropriate combination of dropping/shortening

packets. In this scheme, the DSN needs to: (1) interpolate the D(R) curve, (2)

find the appropriate combination of dropping/shortening packets, and (3) output

the results. Table 8.7 shows the measured CPU time of FGA-FEC adaptation.

Sequences FGA-FEC adaptation time (ms)

Foreman, FTFS 2.9
Foreman, HTFS 1.8
Foreman, FTHS 1.9
Mobile, FTFS 2.6

Table 8.7: Measured CPU time (ms) of FGA-FEC adaptation

In summary, Table 8.8 compares the CPU time of running FGA-FEC de-

code/encode scheme and FGA-FEC adaptation on Foreman for the first 7 GOPs.

Scheme performed in DSN CPU time (ms)

FGA-FEC decode/recode 52.6
FGA-FEC adaptation 2.9

FGA-FEC direct truncation 1 × 10−2

Table 8.8: Intermediate node FGA-FEC decode/recode vs. FGA-FEC adaptation
in terms of CPU time.

If the FGA-FEC direct truncation method (how many bytes need to be trun-

cated from each packet) is used, the CPU time to process one GOP is less than

10−2ms.

In our distributed FGA-FEC method, we coordinate between optimization

processes running at adjacent nodes to reduce the number of iterations needed to

167

reach the stopping point. The DSNs usually need 2-3 iterations for each user in

our distributed scheme vs. 8-10 iterations for a full search without coordination,

thus we can save 30-40% CPU time in the optimization computation, or about

3 ms for each user. The optimization time saving is even more significant with

FGA-FEC adaptation. The 3 ms saving is comparable to one FGA-FEC adaptation

(2.9 ms) but much larger than direct truncation (< 10−2 ms). In the FGA-FEC

decode/recode case, FEC coding dominates the computation, about 52.6 ms. Since

we only need to do one decoding and many encodings, for each encoding, the CPU

time is about 16 ms, the total savings for one user is about 3 ÷ 16 = 20%. In

addition to the coordination method, we apply the idea of OM-FEC to reduce the

number of nodes involved in FEC decoding/recoding. The gain in the latter method

is very significant, since the decoding/recoding time is ten of times longer than that

of FGA-FEC adaptation (52 ms vs. 2.9 ms). i.e. each DSN can support ten times

as many users if using FGA-FEC adaptation than using FGA-FEC decode/recode.

8.4 Conclusion

In this chapter, we proposed a distributed FGA-FEC algorithm for video

streaming to diverse users on a congested network. We proposed a distributed ap-

proach to greatly reduce the computational burden of optimization by exchanging

overhead information between adjacent nodes. We also extended the idea of OM-

FEC to determine the congested links and hence to reduce the number of needed

FGA-FEC decode/encode nodes. Here we apply FGA-FEC adaptation whenever

permitted and do FGA-FEC decode/recode only at the edge of congested links.

Simulations have shown the performance of the proposed scheme.

CHAPTER 9

Contributions and Suggested Future Work

9.1 Contributions

LMNOPQ LMNOPQ LMNOPQ LMNOPQLMNOPQLMNOPQ
RSTUVWUXYUX Z[\Z[\Z[\Z[\ Z[\Z[\

Figure 9.1: Streaming video to heterogeneous users through an overlay network,
where DSNs are data service nodes with certain functionalities

We investigated several techniques to efficiently support video streaming to

heterogeneous users over both wired and wireless networks, as shown in Fig. 9.1,

where DSNs are data service nodes with certain functionalities. The main contri-

butions of this thesis are described in detail as follows.

9.1.1 Fine Grain Adaptive Forward Error Correction

In this study [98, 99], we investigate a fine grain adaptive forward error cor-

rection (FGA-FEC) coding scheme for both channel coding and adaptation of scal-

able video bitstreams. In our work, both the embedded source bitstream and the

error-control codes are easily and precisely adapted at intermediate overlay nodes

to satisfy multiple heterogeneous users without complex transcoding. The proposed

FGA-FEC scheme encodes and adapts the scalable bitstream in such a way that if

part of the video source data is actively dropped, parity bits protecting that piece

of data are also removed, yielding an efficient result without FEC transcoding. En-

coding once at the source, the new method can satisfy multiple heterogeneous users

168

169

simultaneously without decoding/recoding FEC at intermediate network nodes.

9.1.2 Generalized FGA-FEC over Wireless Networks

In this study [103], we extend our proposed FGA-FEC coding scheme, a gen-

eralized MD-FEC method, to wireless networks. To protect the encoded scalable

video bitstream over lossy channel and facilitate content adaptation at intermediate

nodes, we use product codes based on BCH/CRC codes as row codes and RS codes

as column codes. We propose a fast algorithm to optimize the product codes within

several iterations from a near optimal point. Simulations show good performance in

both content adaptation and protection.

9.1.3 Improving Multimedia Throughput using Header Error Protec-

tion in WLANs

In the generalized FGA-FEC, since we assume that packet with errors are

passed to application layer for error correction, we need to have a method to support

this. In this study [105, 104], we propose two link layer error protection schemes

(header CRC and header FEC) that improve the effective throughout of wireless

networks. Error control is applied to the packet header (at link layer) and packet

payload (at application layer) separately. The network intermediate nodes either

use header FEC or header CRC checksum to successfully transport packets from

the source to the destination. We compare the proposed schemes with conventional

IEEE 802.11 protocol which is designed for reliable data communication. Both

theoretical analysis and ns-2 simulation results show that header error protection

strategy can effectively increase the application throughput.

9.1.4 Cross-layer Two-stage FEC Scheme

In this study [102], we propose a cross-layer two-stage FEC scheme in coopera-

tion with the enhanced MAC protocol (header CRC/FEC) especially for multimedia

data transmission over wireless LANs. The proposed scheme enables the joint opti-

mization of protection strategies across the protocol stack. In stage 1, packet-level

FEC is added across packets at the application layer to correct packet losses due to

congestion and route disruption. In stage 2, bit-level FEC is processed within both

170

application packets and stage-one FEC packets to recover from bit errors in the

MAC/PHY layer. Header CRC/FEC schemes are used to enhance the MAC/PHY

layer and to cooperate with the two-stage FEC scheme. Thus, we add FEC only

at the application layer, but can correct both application layer packet drops and

MAC/PHY layer bit errors. We explore both the efficiency of bandwidth utilization

and video performance using the scalable video coder MC-EZBC and ns-2 simula-

tions. Simulation results show the efficiency of the proposed scheme.

9.1.5 Overlay Multi-hop FEC Scheme

In both FGA-FEC and its wireless extension schemes, we did not consider the

case of network congestion in backbone. In this study [100, 101], we focus on the

problem of providing lightweight support at selected intermediate overlay forward-

ing nodes to achieve increased error resilience on a single overlay path for video

streaming. We propose a novel overlay multi-hop forward error correction (OM-

FEC) scheme that provides FEC encoding/decoding capabilities at some interme-

diate nodes in the overlay path. Based on the network conditions, the end-to-end

overlay path is partitioned into segments, and appropriate FEC codes are applied

over those segments. Architecturally, this flexible design lies between the end-to-

end and hop-by-hop paradigms, and we argue that it is well suited to peer-based

overlay networks. We evaluate our work by both simulations and controlled Planet-

Lab network experiments. These evaluations show that OM-FEC can outperform a

pure end-to-end strategy up to 10-15 dB in terms of video peak signal-to-noise ratio

(PSNR), and can be much more efficient than a heavyweight hop-by-hop strategy,

in which all the overlay nodes along the path are involved in FEC computation.

9.1.6 Distributed FGA-FEC Scheme

In the previous chapter, we proposed an OM-FEC method to efficiently utilize

one congested overlay path. In this chapter, we investigate a distributed FGA-FEC

scheme over a congested multihop network, where we do FGA-FEC decode/recode

at selected intermediate overlay nodes, and do FGA-FEC adaptation at remaining

nodes. In order to reduce the overall computational burden, we proposed two meth-

ods: (1) a coordination between optimization processes running at adjacent nodes

171

to reduce the optimization computation, and (2) apply OM-FEC from Chapter 7

to reduce the number of FGA-FEC decode/recode nodes. Simulations show that

the proposed scheme can greatly reduce computation, and can provide near best

possible video quality to users.

9.2 Suggested Future Work

Having summarized the contributions of this thesis, we outline several possible

directions for future research.

(1) We propose FGA-FEC scheme to work with a highly scalable subband/wavelet

based video coder over heterogeneous networks. The encoded embedded bitstream

has a very fine grained SNR scalability, so that we can manipulate the bitstream

to fit all kind of network conditions. We did not evaluate the FGA-FEC idea over

coarse DCT-based layered video bitstream, such as SVC with only several SNR lay-

ers. We need to evaluate FGA-FEC idea with current standard DCT-based video

coders, such as H.264/AVC and SVC etc.

(2) In Chapter 8, we propose a distributed FGA-FEC scheme over congested

multihop network, where we only consider SNR scalability. Future work may focus

on multi-dimensional scalability, i.e. users have not only video request about SNR

scalability, but also video request with a certain temporal and spatial constraint.

(3) The proposed FGA-FEC scheme mainly focus on streaming video to het-

erogeneous users. Can it be extended to work with multi-points video conferencing?

Multi-point video conferencing is a real-time application, delay larger than 300ms

usually is not acceptable. We may modify FGA-FEC scheme to work with real-time

applications by encoding a smaller number of pictures, instead of a large GOP. This

is also a possible extension.

LITERATURE CITED

[1] Y. Chu, S. Rao, and H. Zhang, “A case for end system multicast,” in Proc.
ACM SIGMETRICS, pp. 1-12, Montery, CA, 2000.

[2] B. Raman, S. Agarwal, and et al, “The SAHARA model for service
composition across multiple providers,” in Proc. of International Conference
on Pervasive Computing, 2002.

[3] X. Fu, W. Shi, A. Akkerman, and V. Karamcheti, “CANS: Composable,
adaptive network services infrastructure,” in Proc. of USENIX Symposium on
Internet Technologies and Systems, 2001.

[4] E. A. Riskin, “Optimal bit allocation via the generalized BFOS algorithm,”
IEEE Trans. on Information Theory, vol. 37, pp. 400-402, March 1991.

[5] I. V. Bajic, Robust subband/wavelet coding and transmission of images and
video, Ph.D. dissertation, Rensselaer Polytechnic Institute, Troy, NY, 2003.

[6] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based congestion
control for unicast applications,” ICSI, Tech. Rep. TR-00-03, March 2000.

[7] X. Gu and K. Nahrstedt, “Qos-assured service composition in managed
service overlay networks,” in Proc. of International Conference on Distributed
Computing Systems, pp. 194-201, Providence RI, May 2003.

[8] V. N. Padmanabhan, H. J. Wang, and P. A. Chou, “Distributing streaming
media content using cooperative networking,” Microsoft Corporation, WA,
Tech. Rep. MSR-TR-02-37, 2002.

[9] The MPEG-21 website. [Online]. Available:
http://www.chiariglione.org/mpeg/

[10] A. Vetro and C. Timmerer, “Digital item adaptation: overview of
standardization and research activities,” IEEE Trans. Multimedia (special
MPEG-21 issue), April 2005.

[11] ISO/IEC 15444-1, “JPEG2000 image coding system,” 2000.

[12] ISO/IEC 11172-2, “Information technology - coding of moving pictures and
associated audio for digital storage media at up to about 1,5 Mbit/s - Part 2:
Video,” 1993

[13] ISO/IEC 13818-2, “Information technology - Generic coding of moving
pictures and associated audio information: Video,” 2000.

172

173

[14] ISO/IEC 14496-2, “Information technology - Coding of audio-visual objects -
Part 2: Visual,” 1999.

[15] International Telecommunication Union, ITU-T Recommendation H.261,
“Video codec for audiovisual services at px64 kbits,” 1993.

[16] International Telecommunication Union, ITU-T Recommendation H.263,
“Video codeing for low bitratecommunications version 2,” 1998.

[17] International Telecommunication Union, ITU-T Recommendation H.264,
“Advanced Video Coding for Generic Audiovisual Services”, 2003.

[18] T. M. Cover and J. A. Thomas, Elements of Information Theory, New York:
John Wiley & Sons, 1991.

[19] I. H. Witten, R. M. Neal and J. G. Cleary, “Arithmetic coding for data
compression,” ACM Communications, vol. 30,pp. 520-540, June 1987.

[20] G.D. Karlsson, M. Vetterli, “Three dimensional subband coding of video”, in
Proceedings of ICASSP, pp. 1100-1103, 1988

[21] J.-R. Ohm, “Three-dimensional subband coding with motion compensation,”
IEEE Trans. Image Processing,vol. 3, pp. 559-571, Sept. 1994

[22] S. Choi and J. W. Woods, “Motion-Compensated 3-D subband coding of
video,” IEEE Trans. Image Processing, vol. 8, no. 2, pp. 155-167, Feb. 1999

[23] S.T Hsiang and J.W. Woods, “Invertible three-dimensional analysis/systhesis
system for video coding with half-pixel-accurate motion compensation”, in
Proceedings of SPIE VCIP, Vol. 3652, pp. 537-546, San Jose, CA, 1999

[24] B. Pesquet-Popescu and V. Bottreau, “Three-dimensional lifting schemes for
motion compensated video compression,” in Proceedings of ICASSP, pp.
1793-1796, May 2001.

[25] A. Secker and D. Taubman, “Motion-compensated Highly Scalable Video
Compression Using An Adaptive 3-D Wavelet Transform Based on Lifting,”
in Proceedings of ICIP, October 2001

[26] J. W. Woods and P. Chen, “Improved MC-EZBC with Quarter-pixel Motion
Vectors,” ISO/IEC JTC1/SC29/WG11, MPEG2002/8366, Fairfax, USA, May
2002.

[27] B.-J. Kim, Z. Xiong, and W. A. Pearlman, “Low bit-rate scalable video coding
with 3-D set partitioning in hierarchical trees (3-D SPIHT),” IEEE Trans.
Circuits Syst. Video Technol., vol. 10, no. 8, pp. 1374-1387, December 2000.

174

[28] S.-T. Hsiang and J. W. Woods, “Embedded video coding using invertible
motion compensated 3-D subband/wavelet filter bank,” Signal Processing:
Image Commun., vol. 16, no. 8, pp. 705-724, May 2001.

[29] S.-T. Hsiang, Highly scalable subband/wavelet image and video coding, Ph.D
Thesis, Rensselaer Polytechnic Institute, Troy, NY, January 2002.

[30] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding
using wavelet transform,” IEEE Trans. Image Processing ,vol. 1, pp. 205-220,
April 1992.

[31] D.Taubman and A.Zakhor, “Multirate 3-D Subband Coding of Video,” IEEE
Trans. Image Processing, vol.3, pp.57-88, September 1994.

[32] J. M. Shapiro, “An embedded hierarchical image coder using zerotrees of
wavelet coefficients,” in Proc. IEEE Data Compression Conference, pp.
214-223, Snowbird, Utah, USA, MarchC April 1993.

[33] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec based
on set partitioning in hierarchical trees,” IEEE Trans. Circuits and Systems
for Video Technology, vol. 6, no. 3, pp. 243-250, 1996.

[34] W. Li, “Overview of fine granular scalability inMPEG-4 video standard,”
IEEE Trans. Circuits and Systems for Video Technology, vol. 11, no. 3, pp.
301-317, 2001.

[35] Y. Wang, J. Ostermann, and Y.-Q. Zhang, Video processing and
communications, Prentice-Hall, 2002.

[36] A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan, “Priority
encoding transmission,” IEEE Transactions on Information Theory, vol. 42,
pp. 1737-1744, Nov. 1996.

[37] A. E. Mohr, R. E. Ladner, and E. A. Riskin, “Approximately optimal
assignment for unequal loss protection,” in Proc. ICIP, Vancouver, BC,
September 2000

[38] V. Stankovic, R. Hamzaoui, and Z. Xiong, “Packet loss protection of
embedded data with fast local search,” in Proc. ICIP, Rochester, NY,
September 2002.

[39] R. Puri, K. Ramchandran, “Multiple description coding using forward error
correction codes”, in Proc. 33rd Asilomar Conf. on Signals and Systems,
Pacific Grove, CA, Oct. 1999.

[40] T. Stockhammer, C. Buchner, “Progressive texture video streaming for lossy
packet networks,” in Proc. 11th International Packet Video Workshop,
Kyongju, May 2001.

175

[41] S. Dumitrescu, X. Wu, Z. Wang, “Globally optimal uneven error-protected
packetization of scalable code streams”, in Proc. DCC02, Snowbird, Utah,
April 2002.

[42] D. Mukherjee, A. Said, and S. Liu, “A framework for fully formatindependent
adaptation of scalable bit streams,” IEEE Trans. on Circuits and Systems for
Video Technology, vol. 15, no. 10, pp. 1280-1290, Oct. 2005.

[43] D. Mukherjee, E. Delfosse, J. Kim, and Y. Wang, “Optimal adaptation
decision-taking for terminal and network quality of service,” (Invited paper)
IEEE Trans. on Multimedia, pp. 454-462, June. 2005.

[44] The HP SSM website. [Online]. http://www.hpl.hp.com/research/ssm

[45] B. Raman, S. Agarwal, et al, “The SAHARA model for service composition
across multiple providers,” in Proc. of International Conference on Pervasive
Computing.

[46] X. Fu, W. Shi, A. Akkerman, and V. Karamcheti, “CANS: Composable,
adaptive network services infrastructure,” in Proc. of USENIX Symposium on
Internet Technologies and Systems, 2001.

[47] X. Gu and K. Nahrstedt, “Qos-assured service composition in managed
service overlay networks,” in Proc. of International Conference on Distributed
Computing Systems, pp. 194-201, Providence RI, May 2003

[48] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Topologicallyaware
overlay construction and server selection,” in Proc. INFOCOMM, New York,
NY, 2002.

[49] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems,” in Proc. of IFIP/ACM
International Conference on Distributed Systems Platforms (Middleware), pp.
329-350, Heidelberg, Germany, 2001,

[50] D. Xu and K. Nahrstedt, “Finding service paths in a media service proxy
network,” in Proc. of SPIE/ACM Multimedia Computing and Networking
Conference, San Jose, CA, 2002.

[51] P. Chen, S. Hsiang, J. Woods, D. Mukherjee, G. Kuo, and A. Said, “Fully
scalable mc-ezbc in the structured scalable meta-formats (ssm) framework,” in
ISO/IEC JTC1/SC29/WG11 MPEG2002/M9290, Awaji, Japan, Dec. 2002.

[52] P. Puri, K. W. Lee, K. Ramchandran, and V. Bharghavan, “An integrated
source transcoding and congestion control paradigm for video streaming in
the interent,” IEEE Transactions on Multimedia, vol. 3, no. 1, pp. 18-32,
March 2001.

176

[53] R. Puri, K. Ramchandran, K.W. Lee and V. Bharghavan, “Forward error
correction codes based multiple description coding for internent video
streaming and multicast,” Signal Processing: Image Commincations, vol 16,
pp. 645-276, 2001.

[54] S.Ratnasamy, S. McCanne, “Scaling end-to-end multicast transports with a
topologically-sensitive group formation protocol” ICNP, Toronto, Oct. 1999.

[55] I. V. Bajic and J. W. Woods, “EZBC video streaming with channel coding
and error concealment,” in Proc. SPIE VCIP, July 2003, pp. 512-522.

[56] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network Information
Flow”, IEEE Trans. on Information Theory, IT-46, pp. 1204-1216, 2000.

[57] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding”. IEEE
Transactions on Information Theory, Februray, 2003

[58] T. Ho, M. Medard, M. Effros, J. Shi, and R. Koetter, “Toward a random
operation of networks,” IEEE Transactions on Information Theory, 2004.

[59] T. Ho, R. Koetter, M. Mdard, D. R. Karger and M. Effros, “The Benefits of
Coding over Routing in a Randomized Setting,” IEEE International
Symposium on Information Theory, 2003.

[60] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Allerton
Conference on Communication, Control, and Computing, Monticello,IL, 2003

[61] P.A. Chou, A. E. Mohr, A. Wang, S. Mehrotra, “FEC and pseudo-ARQ for
receiver-driven layered multcast of audio and video,” in Proceedings of the
DCC, Snowbird, UT, March 2000

[62] S.R. McCanne, “Scalable compression and transmission of internet multicast
video,” Ph.D thesis, University of California, Berkeley, Berkeley, CA 1996.

[63] C. Gkantsidis, P. Rodriguez, “Network Coding for Large Scale Content
Distribution”, in Proc. INFOCOM 2005, Miami. March 2005. (Also as
Microsoft Research Technical Report, MSR-TR-2004-80)

[64] http://www.bittorrent.com/

[65] K. Yeo, B.S. Lee, M.H. Er, “A Peering architecture for ubiquitous IP multicast
streaming,” in ACM SIGOPS Oper. Systems Rev. 36 pp. 82-95, (July 2002).

[66] Y. Chu, S.G. Rao, S. Seshan, H. Zhang, “Enabling conferencing applications
on the internet using an overlay multicast architecture,” in Proceedings of
ACM SIGCOMM, San Diego, CA, August 2001, pp. 55-67.

177

[67] D.G. Andersen, H. Balakrishnan, M.F. Kaashoek, R. Morris, “Resilient
overlay networks,” in Proceedings of the ACM SOSP, pp. 131-145, Banff,
Canada, October 2001

[68] U. Horn, K. Stuhlmuller, M. Link, B. Girod, “Robust internet video
transmission based on scalable coding and unequal error protection,” Signal
Processing: Image Commun. pp. 77-94, September 1999

[69] W. Tan, A. Zakhor, “Video multicast using layered FEC and scalable
compression,” IEEE Trans. Circuits Systems Video Technol. pp. 373-386,
March 2001.

[70] T. Nguyen, A. Zakhor, “Distributed video streaming with forward error
correction,” Packet Video Workshop, Pittsburgh, PA, April 2002.

[71] T.Nguyen, A. Zakhor, “Distributed video streaming over the internet,” in
Proceedings of the SPIEConference on Multimedia Computing and
Networking, San Jose, California, January 2002.

[72] J. Kim, R.M. Mersereau, Y. Altunbasak, “Distributed video streaming using
unbalanced multiple description coding and forward error correction,” IEEE
Globecom, San Francisco, CA, Dec. 2003.

[73] J. Apostolopoulos, W. Tan, S. Wee, G. Wornell, “Modeling path diversity for
multiple description video communication, in Proceedings of the IEEE
International Conference on Acoustics Speech Signal Processing, May 2002.

[74] A.C. Begen, Y. Altunbasak, O. Ergun, M.H. Ammar, “Multi-path selection
for multiple description video streaming over overlay networks,” Signal
Process.: Image Commun. 20/1, pp. 39-60, January 2005 .

[75] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan, “Chord: a
scalable peer-to-peer lookup service for internet applications,” in Proceeding of
the ACM SIGCOMM, pp. 149-160, San Diego, CA, August 2001, .

[76] J.M. Boyce, R.D. Gaglianello, “Packet Loss Effects on MPEG Video Sent over
the Public Internet,” in Proc. ACM Multimedia, pp. 181-190, Bristol, UK,
September 1998.

[77] V. Paxson, “End-to-end internet packet dynamics,” IEEE/ACM Trans.
Network. pp. 277C292, June 1999

[78] W. Tan, A. Zakhor, “Multicast transmission of scalable video using
receiver-driven hierarchical FEC,” in Proc. Packet Video Workshop, April
1999.

[79] S.B. Wicker, Error Control Systems for Digital Communication and Storage,
Prentice-Hall, Englewood cliffs, NJ, 1995.

178

[80] S. Gringeri, R. Egorov, K. Shuaib, A. Lewis, B. Basch, “Robust compression
and transmission of MPEG-4 video,” in Proceeding of ACM Multimedia, pp.
113-120, Orlando, Florida, June 1999, .

[81] P. Karn, General-purpose ReedCSolomon encoder/decoder in C, version 4.0,
available at http://www.ka9q.net/code/fec/.

[82] L. Rizzo, “Effective erasure codes for reliable computer communication
protocols,” ACM Comput. Commun. Rev. vol. 27, pp. 24-36, April 1997

[83] http://www.planet-lab.org/

[84] J. Bolot, S. Fosse-Parisis, D. Towsley, “Adaptive FEC-based error control for
internet telephony,” in Proceedings of the IEEE INFOCOM, pp. 1453-1460,
New York, March 1999,

[85] K. Stuhlmuller, N. Farber, M. Link, B. Girod, “Analysis of video transmission
over lossy channels,” IEEE J. Select Areas Commun. vol. 18 pp. 1012-1032,
June 2000

[86] J. Padhye, V. Firoiu, D. Towsley, J. Krusoe, “Modeling TCP throughput: a
simple model and its empirical validation,” in Proceedings of the ACM
SIGCOMM, pp.303-314, Vancouver, September 1998

[87] IEEE Computer Society LAN MAN Standard Committee, “Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications,”
IEEE Std. 802.11-1999, New York, 1999.

[88] Q. Li and M. van der Schaar, “Providing adaptive qos to layered video over
wireless local area networks through real-time retry limit adapation,” IEEE
Transactions on Multimedia vol. 6, pp. 278-290, April 2004.

[89] S. Krishnamachari, M. van der Schaar, S. Choi, and X. Xu, “Video streaming
over wireless LANs: a crosslayer approach,” in Proc. Packet Video, April 2003.

[90] M. H. Manshaei, T. Turletti, and T. Guionnet, “An evaluation of
media-oriented rate selection algorithm for multimedia transmission in
MANETs,” EURASIP Journal on Wireless Communications and Networking,
March 2005.

[91] A. Goldsmith, E. Setton, T. Yoo, X. Zhu, and B. Girod, “Cross-layer design
of ad hoc networks for real-time video streaming,” IEEE Wireless
Communications Magazine, invited paper, 2005.

[92] L. Choi, W. Kellerer, and E. Steinbach, “Cross layer optimiztion for wireless
multi-user video streaming,” in Proceeding of International Conference on
Image Processing (ICIP2004), December 2004.

179

[93] “RFC 3828: The lightweight user datagram protocol (udp-lite),” July 2004.

[94] IETF Manet Working Group AODV Draft:
http://www.ietf.org/internet-drafts/draft-ietf-manet-aodv-08.txt

[95] E. N. Gilbert, “Capacity of a burst-noise channel,” Bell Syst. Tech. J. 39, pp.
1253-1265, September 1960.

[96] The network simulator- ns-2; http://www.isi.edu/nsnam/ns/.

[97] Video clips; http://networks.ecse.rpi.edu/ yfshan/videoITcom05/.

[98] Yufeng Shan, Ivan Bajic, Shivkumar Kalyanaraman, and John W. Woods,
“Joint Source-Network Error Control Coding for Scalable Overlay
Streaming,” in proceedings of ICIP 2005

[99] Yufeng Shan, Ivan Bajic, Shivkumar Kalyanaraman, and John W. Woods,
“Scalable Video Streaming with Fine Grain Adaptive Forward Error
Correction,” submitted to IEEE Trans. CSVT 2006

[100] Yufeng Shan, Ivan Bajic, Shivkumar Kalyanaraman, and John W. Woods,
“Overlay Multi-hop FEC Scheme for Video Streaming over Peer-to-Peer
Networks,” in Proceedings of IEEE International Conference on Image
Processing (ICIP), Vol. 5, Pages 3133-3136, Singapore, October 2004

[101] Yufeng Shan, Ivan V. Bajic, Shivkumar Kalyanaraman and John W. Woods,
“Overlay Multi-hop FEC scheme for Video Streaming,” Elsevier Journal on
Signal Processing: Image Communications, Special Issue on Video
Networking, Vol 20/8, pp. 710-727, 2005

[102] Yufeng Shan, Su Yi, Shivkumar Kalyanaraman and John.W. Woods,
“Two-Stage FEC Scheme for Scalable Video Transmission over Wireless
Networks” SPIE Communications/ ITCom, Multimedia Systems and
Applications. Oct. 2005, Boston, MA

[103] Yufeng Shan, John W. Woods and Shivkumar Kalyanaraman, “Fine grain
adaptive FEC (FGA-FEC) over wireless networks”, submitted to ICIP 2007

[104] Su Yi, Yufeng Shan, Shivkumar Kalyanaraman and Babak Azimi-Sadjadi,
“Header Error Protection for Multimedia Data Transmission in Wireless Ad
Hoc Networks”, in Proceedings of IEEE International Conference on Image
Processing (ICIP), Atlanta GA, Oct. 2006

[105] Su Yi, Yufeng Shan, Shivkumar Kalyanaraman and Babak Azimi-Sadjadi,
“Video Streaming over 802.11 Ad Hoc Wireless Networks with Header Error
Protection”, submitted to Ad Hoc Networks, Dec. 2005

180

[106] D. Mukherjee, A. Said, and S. Liu, “A framework for fully formatindependent
adaptation of scalable bit streams,” IEEE Trans. on Circuits and Systems for
Video Technology, vol. 15, no. 10, pp. 1280-1290, Oct. 2005.

[107] V. Stankovic, R. Hamzaoui, and Z. Xiong, “Robust layered multiple
description coding of scalable media data for multicast,” IEEE Signal
Processing Letters, vol. 12, no. 2, pp. 154-157, Feb. 2005.

[108] J. W. Woods, P. Chen, Y. Wu, and S.-T. Hsiang, Interframe Subband/
Wavelet Scalable Video Coding, in Handbook of Image and Video Processing.
Burlington, MA: Elsevier Academic Press, 2005.

[109] H. Zheng and J. Boyce, “An improved UDP protocol for video transmission
over internet-to-wireless networks,” IEEE Trans. on Multimedia, vol. 3, no. 3,
pp. 356-365, September 2001.

[110] D. A. Eckhardt and P. Steenkiste, “Improving wireless LAN performance via
adaptive local error control,” in Proc. ICNP, 1998.

[111] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE
Trans. on Information Theory, vol. IT-46, no. 2, pp. 388-404, March 2000.

[112] E.O.Elliot, “Estimates of error rates for codes on burst-noise channels,” Bell
Syst. Tech. J., vol. 42, pp. 1977-1997, September 1963.

[113] M. Zorzi, R. R. Rao, and L. B. Milstein, “On the accuracy of a first-order
markov model for data transmission on fading channels,” in Proceedings of
ICUPC, pp. 211-215, Tokyo, Japan, Nov. 1995

[114] Shu Lin and Daniel J. Costello, Error Control Coding, 2nd Ed., Pearson
Education, 2004.

[115] J. Li, C. Blake, D. D. Couto, H. Lee, and R. Morris, “Capacity of ad hoc
wireless networks,” in Proc. ACM MobiCom, July 2001.

[116] S. Yi, Error Control Schemes and Directional Antennas in Wireless
Networks, Ph.D thesis, Department of ECSE, Rensselaer Polytechinic
Institute, Dec. 2005

[117] P.G. Sherwood and K. Zeger, “Error protection for progressive image
transmission over memoryless and fading channels,” IEEE Trans. Comm. vol.
46, pp. 1555-1559, Dec. 1998

[118] V. Stankovic, R. Hamzaoui, Z. Xiong, “Product code error protection of
packetized multimedia bitstreams”, in Proc. IEEE International Conference
on Image Processing, Barcelona, September 2003.

181

[119] V. Stankovic, R. Hamzaoui, and Z. Xiong, “Real-Time Error Protection of
Embedded Codes for Packet Erasure and Fading Channels”, IEEE
Transaction on circuits and systems for video technology, vol. 14, no. 8,
august 2004

[120] S. Cho and W. A. Pearlman, “Multilayered Protection of Embedded Video
Bitstreams over Binary Symmetric and Packet Erasure Channels,” J. Visual
Communication and Image Representation, Vol. 16, pp. 359-378, June 2005

[121] P. Greg Sherwood and Kenneth Zeger, “Error Protection for Progressive
Image Transmission Over Memoryless and Fading Channels”, IEEE
Transections on commumication, vol. 46, no. 12, Dec. 1998

[122] D. G. Sachs, R. Anand, K. Ramchandran, “Wireless Image Transmission
Using Multiple-Description Based Concatenated Codes”, in Proc. VCIP, vol.
3974, pp. 300-311, San Jose, CA, Jan. 2000.

[123] R. Hamzaoui, V. Stankovic, and Z. Xiong, “Optimized Error Protection of
Scalable Image Bit Streams” IEEE Signal processing magazine, pp. 91-107,
Nov. 2005

