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Abstract— In this paper, we investigate a joint source-network
coding scheme for adapting a scalable video bitstream. Both
embedded bitstream and error-control codes are easily and pre-
cisely adapted in a multidimensional way at intermediate overlay
nodes to satisfy multiple heterogeneous users without complex
transcoding. These distributed nodes form an overlay service
network, and adapt both the video bitstream and error-control
codes based on both user video request and network conditions.
Video coding functions are distributed across the video source
and the network. A novel fine granular adaptive FEC scheme,
a generalization of MD-FEC, is proposed for error recovery
during video transmission to heterogeneous users. Encoding
once, the new method can satisfy multiple heterogeneous users
simultaneously without decoding/recoding FEC at intermediate
network nodes.

Index Terms— scalable video, FEC, overlay network, adapta-
tion, video streaming

I. I NTRODUCTION

Simultaneously streaming video to heterogeneous devices,
such as powerful PCs, laptops, and handset devices, is a
challenging problem, since different users may have differ-
ent video frame-rate, resolution, and quality preferences, or
computational and connection-link capabilities. In orderto
serve heterogeneous users, conventional approaches (Windows
media, Real player) maintain multiple versions of any piece
of media that suit a variety of capabilities and preferences.
While streaming, the server sends separate copies of the same
bitstream to different users, which is clearly not efficientin
terms of bandwidth utilization. IP multicast is an efficient
way for simultaneous bulk data delivery. The most serious
problem faced by multicast today is the deficiency of its
deployment in the wide-area network infrastructure. As an
alternative, application-layer multicast [1] was proposed. In
this approach, end systems, instead of routers, are organized
into an overlay network to relay data to each other in a peer-to-
peer fashion. Recently, service overlay networks (SON) [2][3]
[4] [5] are gaining attention, in which user-defined application-
level functionalities are provided at overlay nodes, more than
simple forwarding of packets.

This paper explores the feasibility of using a service-
overlay network to address the problem of streaming video
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to heterogeneous users simultaneously. The challenge is to
encode a video to facilitate efficient and precise adaptation of
the encoded bitstream (adapting both the video bitstream and
error control codes) to satisfy multiple users without complex
transcoding at intermediate overlay nodes. Here, by ’adapt’ we
mean reducing one or more of the three scalability dimensions
(frame-rate, resolution, and quality) of a video bitstreamalong
with the corresponding error-control codewords to satisfy
heterogeneous users and respond to network congestion.

MPEG-21 [6] aims to enable the use of multimedia re-
sources across a wide range of networks and devices. The
proposal for the MPEG-21 Part 7 standard is digital item
adaptation (DIA), which raises the possibility of in-network
video adaptation [6][7] and fits very well into an overlay
infrastructure. To adapt a multimedia bitstream for multiple
users, Mukherjeeet al [8][9] developed a metadata-based
method called structure scalable meta-format (SSM) [10].
Their work focuses on a framework for modeling and adap-
tating arbitrary scalable multimedia bitstreams in a manner
that is fully format agnostic, but no specific error control
methods are considered to match the bitstream adaptation.
Priority encoding transmission (PET) by Albaneseet al [11]
is a packetization scheme that combines layered source coding
with unequal erasure protection. The authors applied the
PET scheme to theI, P, and B layers of MPEG video,
but did not optimize the code rate to minimize the end-to-
end distortion for a given overall transmission rate. Several
algorithms have been proposed for optimal forward error-
correction code (FEC) assignment for progressive (embedded)
data. Puriet al [12] solved the problem using a Lagrange
multiplier-based algorithm. Mohret al [13] described how to
achieve an approximately optimal assignment of FEC to pro-
gressive data using a local search algorithm that is essentially
a Lagrangian optimization. Stankovicet al [14] presented an
efficient algorithm for greedy search from a near optimal initial
condition. The above papers mainly focus on developing end-
to-end optimization schemes to protect a progressive bitstream,
without any adaptation being considered for diverse users.
Chouet al [15] presented and evaluated constructions for two-
layer multiple description codes using FEC to satisfy various
user preferences. Stankovicet al [16] modified the method of
[15] and defined an optimal layered multiple-description code
as one that minimizes the largest performance loss experienced
by any client. Both of the papers did not consider multiple
adaptations for several users simultaneously.

The main contribution of this paper is a joint source-network
coding (JSNC) scheme which enables multidimensional, arbi-
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trary, and efficient, yet near optimal adaptation of both the
encoded video bitstream and the error-control code to serve
multiple diverse users. JSNC includes the following two novel
concepts:

1) integrated video coding (IVC): Video coding functions
(i.e. bitstream truncation and packetization) are dis-
tributed across the source and the network to facilitate
simple and precise adaptation of the bitstream for het-
erogeneous users.

2) novel fine granular adaptive FEC (FGA-FEC): In co-
operation with IVC, the proposed FGA-FEC scheme
can adapt the FEC coded bitstream to satisfy multiple
heterogeneous users without FEC decoding/recoding at
intermediate overlay nodes. This extends scalability to
channel coding.

Our work is different from proxy-based streaming and mul-
ticast layered streaming. Proxy streaming systems cache video
content at a local proxy disk and transcode (decode/recode)the
video bitstream for different users. In multicast layered video
streaming, a video server sends different layers to different
multicast groups. Receivers adapt to network conditions by
joining and leaving these multicast groups, which however,
results in a large amount of signaling traffic in a dynamic
network. Further, the adaptation is limited to available layers.
Meanwhile, our JSNC only sends one bitstream but can arbi-
trarily adapt video frame rate, quality, and spatial resolution
without transcoding. Moreover, JSNC can provide an efficient
error-control mechanism in cooperation with scalable video to
satisfy heterogeneous users simultaneously.

The rest of our paper is organized as follows. In Section II,
we describe the details of our JSNC scheme. Simulated and
experimental results are given in Section III. Conclusionsand
prospective future work are listed in Section IV.

II. JOINT SOURCE NETWORK CODING

A. System Overview

JSNC uses an overlay infrastructure to assist video stream-
ing to multiple users by providing light weight support at
intermediate overlay nodes. These overlay nodes with certain
service functions, such as bitstream adaptation, FEC com-
putation and so on, more than just store-and-forward, are
called data service nodes (DSN). Diverse end users may
have different network connection, computational capacity,
and video display size, hence, they probably have different
subjective ideal video and adaptation order preferences. Here,
ideal video is defined as the type of bitstream the user initially
requests from the system. Additionally,adaptation order is
the user’s chosen adaptation order in terms of quality, frame
rate and resolution. The ideal video and adaptation order are
input to system from the user-node console at the beginning of
streaming. Since DSNs are often placed within a high-speed
network, in this paper, we assume that there isno congestion
between DSNs. We also assume that a profile (description file
[17]) of the video bitstream is sent before the streaming session
to both end users and DSNs to facilitate adaptation.

We outline our idea with a simplified example. In Fig. 1,
DSNs construct an overlay network to serve several users.

Users ”A” to ”G” have different video requests (shown as
”frame-rate/resolution/bitrate”). HereC and Q represent the
common CIF and QCIF formats, respectively, andpa to pg

are the average packet-loss rates of different overlay virtual
links.

Fig. 1. Intermediate adaptation of the video bitstream according to user
video requests and network conditions

While streaming, the user nodes determine theirvideo
request based on available bandwidth, user ideal video, and
user adaptation order using Algorithm I below. These video
requests are collected and aggregated from end users to the
server by the DSNs. The server then encodes the scalable
video using JSNC based on the highest video request (in
the Fig.1, 30/C/3M) and the current packet-loss rates. JSNC
divides each network packet into small blocks and packs the
FEC coded bitstream in such a way that if any original data
packets are adapted (dropped or shortened), the corresponding
parity bits are also completely removed. At intermediate
DSNs, the adaptation is conducted by removing some blocks
from each packet and/or dropping whole packets to satisfy
the end users (described in detail at Section II-D). Since
there is no FEC decoding/recoding, JSNC is very efficient in
terms of computation. Furthermore, the data manipulation is
at block level, which is precise in terms of adaptation, given
a sufficiently small block size.

Three important questions need to be answered.

• How should the video be encoded by JSNC to facilitate
multidimensional adaptation?

• How should the bitstream be adapted efficiently, given
the user’s ideal video, adaptation order, and network
conditions?

• How should FEC be designed to accommodate hetero-
geneous users, and yet be easily adaptable for highly
scalable bitstreams at intermediate data service nodes?

B. Integrated Video Coding (IVC)

The main goal of IVC is to encode and represent a scal-
able video to facilitate simple and precise adaptation of the
bitstream to the available bit budget, both at the source and
inside the network.

In general, a piece of scalable bitstream which containsN
nested tiers of scalability with theith tier containingLi layers,
i = 0, 1, 2, ..., N − 1, can be represented as aN -dimensional
hypercube. The total number ofatoms (elements) of the cube
is

∏N−1
i=0 Li. A specific atom is denotedA(l0, l1, ..., lN−1),

where li ∈ {0, 1, ..., Li − 1}. For instance, Fig. 2 shows a
three-dimensional (3-D) cube of atoms in dimensions{frame
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rate ,resolution ,quality} [10]. There areL0 = 5 frame-rate
layers,L1 = 3 resolution layers, andL2 = 5 quality layers.
Each atom corresponds to a piece of subband bitstream with
size in bits:

S(l0, l1, ..., lN−1) = ‖A(l0, l1, ..., lN−1)‖. (1)

Adaptation of the scalable bitstream is equivalent to selecting
a subset of atoms for transmission.

We use the fully scalable MC-EZBC video coder [18] to
show the method of adaptation. We limit the tiers of scalability
to three: temporal (frame-rate) scalability, spatial (resolution)
scalability and SNR (quality) scalability. In the sequel, we use
{Lt, Ls, Lq} instead of the more general{L0, L1, L2}.
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Fig. 2. 3-D video scalability in the form of atoms of a GOP,A(i, j, k)
represents an atom of{framerate, resolution, quality}

Given the representation in Fig. 2, we can adapt the atoms
to the desired frame-rate, resolution and quality, according to
user’s ideal video and adaptation order, as well as the available
bit budget. Given a bit budgetΩ, a subset of atoms can be
chosen to satisfy:

T
∑

lt=0

S
∑

ls=0

Q(lt,ls)
∑

lq=0

S(lt, ls, lq) ≤ Ω, (2)

whereT andS are the number of temporal and spatial layers,
respectively,T ≤ Lt and S ≤ Ls. Here Q(lt, ls) is the
number of quality layers at that temporal and spatial layer.
There may be several differentT, S, Q(lt, ls) values which
satisfy (2), so the particular set is chosen based on user’s ideal
video and adaptation order. Since we have only three forms of
adaptation{frame rate, resolution, quality}, the total number
of adaptation orders is3 × 2 × 1 = 6. Table I lists all the
possible adaptation orders, where{t, s, q} represents{frame
rate, resolution, quality} adaptations, respectively.

ID Adaptation order ID Adaptation order

1 q → t → s 4 t → s → q

2 q → s → t 5 s → q → t

3 t → q → s 6 s → t → q

TABLE I

TOTAL NUMBER OF ADAPTATION ORDERS

The user can choose to adapt SNR, frame rate, resolution
or any combination of the three. For example, the user ideal
video may be to view a video with PSNR no less thanγ dB
with full frame rate and spatial resolution, and the predefined
adaptation order isq → t → s. If the desired PSNR cannot
be met, we reduce the frame rate down one temporal level

and, if necessary, further reduce resolution down one spatial
level, and do this iteratively, until to the minimum tolerable
bitstream withξ temporal levels andζ spatial levels, or the
minimum PSNR (quality) requirement is met.

Table II summarizes the terms used in the sequel.

Terms Definitions

Lt,Ls,Lq the number of layers in user’s ideal video
ID adaptation order identification number

γ, ξ, ζ adaption order parameters: PSNR≥ γ dB,
temporal layers≥ ξ, and spatial layers≥ ζ

maxPSNR best achievable video quality at a certain spatial and
temporal layer, given the available bit budget

B available bandwidth of a link
p packet-loss rate of a link

E[D(R)] mean video distortion

TABLE II

TERMS USED IN THE ALGORITHM DESCRIPTIONS

To respond to the available bit budget, DSNs or user nodes
adapt the bitstream based on user specified adaptation orders.
At each adaptation step, we determine the best achievable
video quality (maxPSNR), and iterate until satisfying max-
PSNR≥ γ dB according to the specified adaptation order:

At each step : T = i; i ∈ {Lt, Lt − 1, · · · , ξ}
S = j; j ∈ {Ls, Ls − 1, · · · , ζ}

Find :

maxPSNR(T, S) (3)

Subject to :
∑T

lt=0

∑S

ls=0

∑Q(lt,ls)
lq=0 S(lt, ls, lq) ≤ Ω

A unique solution ofT, S, Q(lt, ls) can be found by use of
Algorithm 1 below, given a specified adaptation order. The
result of solving (3) is the target adaptation data set that
constitutes this user node’s video request. If all adaptations still
cannot meet the user requirement, there is no bitstream sentto
this user. Therefore, the user node’s video request could bethe
same as user ideal video, given enough available bit budget,
or shrink down to zero if minimal requirements cannot be met
due to very low available bit budget.

Now we show how to map this adaptation method into an
embedded MC-EZBC coded bitstream shown at the top in Fig.
3. The server encodes the bitstream in such a way that the
subsets corresponding to lower frame-rate/resolution/quality
of the video are embedded in bitstreams corresponding to
higher frame-rate/resolution/quality. Different sub-bitstreams
can be extracted by intermediate DSNs in a simple manner
without transcoding, to readily accommodate a variety of users
considering their computing power, connection bandwidth,
and so on. We use the same notation as [19]. Each GOP
coding unit consists of independently decodable bitstreams
{QMV , QY UV } as shown in Fig. 3. Letlt ∈ {1, 2, ..., Lt}
denote the temporal scale. The motion vector (MV) bitstream,
QMV , can be divided into temporal scales and consists of
QMV

lt for 2 ≤ lt ≤ Lt. Let ls ∈ {1, 2, ..., Ls} denote the
spatial scale. The subband coefficient bitstream,QY UV , is also
divided into temporal scales and further divided into spatial
scales as{QY UV

lt,ls }, for 1 ≤ lt ≤ Lt and1 ≤ ls ≤ Ls. Thus,
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Algorithm 1 : Pseudo code to findT , S, Q

Input : Ω, γ, ξ, ζ, Lt, Ls, Lq

Output : T , S, Q

T = Lt; S = Ls;
minT = ξ; minS = ζ;
while (T ≥ minT or S ≥ minS) do

solve (3) ;
if (maxPSNR < γ) then

T = T − 1 if T > minT ;
solve (3) ;
if (maxPSNR < γ) then

S = S − 1 if S > minS ;
else

solution found,stop
end

else
solution found,stop

end
end � � � � � � � � � � � 	 
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Fig. 3. Hierarchy of MC-EZBC bitstream to facilitate 3-D adaptation

the video at(1/4)m spatial resolution and(1/2)n frame rate
is obtained from the full bitstream as:

Qm,n = {QY UV
lt,ls : 1 ≤ ls ≤ Ls − m; 1 ≤ lt ≤ Lt − n}

⋃

{QMV
lt : 2 ≤ lt ≤ Lt − n} (4)

In every sub-bitstreamQY UV
lt,ls , subbands fromY , U andV

are coded in an embedded manner from the most significant
bit (MSB) to the least significant bit (LSB). Scaling in terms
of quality is obtained by stopping the decoding process at any
point in bitstreamQm,n, given the available bit budget.

Since the adaptation can be implemented as simple dropping
of corresponding atoms, DSNs do not need to decode and
recode the bitstream, thus being very efficient. Further, the
adaptation is done based on atoms in a bitstream, which is
almost as precise as pure source coding if the size of the atom
is chosen small enough.

C. Fine Granular Adaptive FEC

Automatic retransmission request (ARQ) and FEC coding
are two widely used methods to protect packets from channel
losses. Due to the feedback flood problem in a multicast
environment, we choose to study FEC as our protection
method. How to design an FEC mechanism for heterogenous
users and how to incorporate it with the IVC scheme is our
main design goal.

When parts of the video bitstream are actively dropped,
the DSNs need to update the FEC codes. This update has
the same basic requirements as the in-network video coding
- efficiency (low computational cost) and precision (if a part
of the video data is actively dropped, parity bits protecting
that piece of data should also be removed). Based on these
considerations, we propose a precise and efficient fine granular
adaptive FEC (FGA-FEC) scheme based on Reed-Solomon
(RS) codes and PET [11]. Arbitrary adaptation of RS code-
words is difficult. For example,RS(n, k) codeword cannot be
adapted toRS(n − l, k − l) by simply droppingl symbols.
One way to adapt anRS(n, k) is to decode first and then
recodeRS(n− l, k− l), which is not computationally efficient
for multiple adaptations along the transmission path or for
multiple heterogeneous users. FGA-FEC solves the problem
by adapting the FEC in a ”fine granular” manner to satisfy
multiple diverse users, as discussed below. The FGA-FEC# $% &'# ( $ (% )* (% ( + + + & (+ + +$ , -.+ + + + + ++ + ++ + + + + + + + ++ + ++ + +/ 0 $ + + +% 1 )% ) + + + + + ++ + ++ + +/ 0 $ $ ./ 0 $/ 0 $ + + + + + ++ + +$ ,/ 0 $ / 0 $/ 0 $/ 0 $ / 0 $ + + ++ + +/ 0 $+ + + + + ++ + ++ + + + + + & 2 - (+ + ++ + +/ 0 $ / 0 $/ 0 $/ 0 $ / 0 $ & 2/ 0 $/ 0 $ 3 4 5 6 7 89 : 8; < =+ + +3 4 5 6 7 89 : 8; < ># 1 $ 1% )* 1% 1 + + + & 1+ + ++ + + 3 4 5 6 7 89 : 8; < ?@ A @ B @ C @ DE
Fig. 4. FGA-FEC encoding of one GOP, FEC is added vertically at block
level and each horizontal line is packetized into one network packet. The
amount of FEC added and the bit allocation are obtained through optimization.

encoding method is quite similar to PET [11] and MD-FEC
[12]. Given a piece of coded video bitstream, shown at the
top in Fig. 4, divided into chunks asA, B, C, · · · , Y , in FGA-
FEC, we further divide each chunk of bitstream intoblocks.
A smaller block size means finer granularity and hence better
adaptation precision. In Fig. 4, the bitstream is divided into
blocks as(A1, · · · ; B1, · · · , B2i; C1, · · · , Ck; · · · ; Y1, · · · , YN ),
where i ≤ j ≤ · · · ≤ N and i, j, k, ..., N are determined
based on network conditions and the block size. RS encoding
is applied vertically across these data blocks to generate parity
blocks. Each vertical column represents a data chunk divided
into blocks, followed by the generated parity blocks. More
FEC protection is added to the more important parts of the
bitstream and less FEC is allocated to data with lower priority.
The optimal allocation of FEC to different chunks of data is
described in [12][13][14] and [20], as well as later in this
paper. After FEC encoding, each horizontal row of blocks is
one description, and in this paper, one description is equivalent
to one network packet.

Similar to MD-FEC [12], FGA-FEC transforms the priority
ordered bitstream from an embedded video coder into non-
priority descriptions. The granularity of FGA-FEC adaptation
is at block level. For instance, suppose that a DSN needs to
adapt the video bitstream by dropping one piece of bitstream,
say{Ck−j , · · · Ck} in Fig. 4. This can be achieved by remov-
ing the original data and FEC blocks related to{Ck−j , · · · Ck}
from each network packet. Fig. 5 shows the adaptation of
one FGA-FEC encoded GOP, where two blocks need to be
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removed from each description of the GOP. Hence, all packetsFGHIJKL MLNOPQRS QTKJKLUJV WMXRSLMUJV
Fig. 5. Adaptation of an FGA-FEC encoded GOP, two dark blocksare
removed from each description, including both original data and parity bits

(both data and parity) are shortened, and this is the only
processing that needs to be done - no FEC transcoding is nec-
essary. Further, the removed parity bits correspond precisely
to the data bits that are dropped. To facilitate intermediate
adaptation, an information packet is sent ahead of each GOP
to tell the DSNs about the block size, FEC code, and bitstream
organization, with the consumption of a very small amount of
bandwidth [17].

Next, we find the optimal FEC assignment for a given
scalable video bitstream. The bitstream has three types of
adaptation: SNR adaptation, frame-rate adaptation, and resolu-
tion adaptation. Frame-rate and resolution adaptation canonly
be performed in discrete layers. For instance, a CIF video
can only be adapted to QCIF video in terms of resolution
adaptation. There is no continuous resolution type between
CIF and QCIF. The CIF-related part of the bitstream is
directly removed from the original bitstream (Fig 3), and no
optimization is needed. Since the bitstream is progressively
encoded, the SNR adaptation is fine granular. Then we can
find the optimal solution for SNR scalability. Furthermore,
whenever frame-rate adaptation or resolution adaptation is per-
formed, protecting the adapted bitstream remains the problem
of finding optimal protection in terms of quality.

Suppose we want to createN packets per GOP. Following
[20] and [12], letqi be the probability that anyi out of N
packets are successfully delivered. The goal is to find the
optimal bitrate partitionR = {R1, R2, ..., RN} in Fig. 4,
which minimizes the end-to-end mean distortionE[D(R)],

E[D(R)] =

N
∑

i=0

qiD(Ri), (5)

subject to:






0 ≤ R1 ≤ R2 ≤ ... ≤ RN ;
Rtotal ≤ Rmax;
Ri − Ri−1 = ki ∗ i; ki ≥ 0 and i = 1, ..., N

where Rmax is the available bandwidth for the channel,
andR0 = 0. Given a packet-loss probabilityp and assuming
independent losses,qi can be calculated as:

qi =

(

N
i

)

(1 − p)ipN−i. (6)

Rtotal is the total bandwidth (bitrate) available for both FEC
and video data and can be calculated as:

Rtotal =
R1

1
N +

R2 − R1

2
N + · · · +

RN − RN−1

N
N

=

N
∑

i=1

N

i(i + 1)
Ri =

N
∑

i=1

αiRi, (7)

whereαi = N
i(i+1) for i = 1, 2, · · · , N − 1; andαN = 1.

Finding the optimal rate break points{Rn, n ∈ [1, N ]} is
effectively a bit allocation problem addressed in [12], [13], and
[14]. For simplicity, we use a generalized BFOS algorithm [21]
(Algorithm 2 below) which finds the optimal bit allocation
solution by a simple search. As shown in [12], ifαi/qi ≤
αi+1/qi+1 for somei, then in the optimal solution we will
have Ri = Ri+1. Hence,Ri+1 need not be computed - it
is sufficient to optimizeRi and then setRi+1 = Ri at the
end. We therefore remove from the listR1, R2, · · · , RN any
suchRi+1, remembering its indices, and re-label the remaining
variables into a new listR1, R2, · · · , RN ′ , whereN ′ ≤ N .

Algorithm 2 : BFOS algorithm

1) For i = 1, 2, ..., N ′, setRi = Rmax.
2) For i = 1, 2, ..., N ′, calculate the change in distortion.

(
△D

△R
)i = −

qi+1

αi+1
[D(Ri+1) − D(Ri+1 + 1)]

−
qi

αi

[D(Ri) − D(Ri − 1)] (8)

Let l be the indexi for which (△D

△R
)i is minimum.

3) SetRl = Rl − 1.
4) Calculate the total rateRtotal.
5) If Rtotal ≤ Rmax, stop. Otherwise go back to step 2
6) For i = 1, 2, ..., N , round downRi to the nearest

multiple of i.
7) For JSNC, we add the additional step of rounding the

resultingRi to a multiple of the block size.

More detail regarding the BFOS algorithm can be found
in [21] and [22]. Now that we have the optimal bit-allocation
result, the break points of the bitstream are known, and we can
encode the bitstream using FGA-FEC as illustrated in Fig. 4.YZ[Z\]^ YZ[_\]^ YZ[̀ \]^ Y_[Z\]^ Y_[_\]^ Y_[̀ \]^Y`a^Y_a^bcdefghdijkifl mnfghdio pdqkrd sktufls tdoklviwkc pdqkrd ik fguwdrd ufls stfqd tfid
Fig. 6. FEC assignment and adaptation to different frame rate and resolution.
Adaptation of SNR can be easily achieved by removing relatedvertical blocks
from each packet. Blank colored blocks contains FEC.

To facilitate adaptation, the JSNC encoded bitstream can
be rearranged, for example as shown in Fig. 6, withLt = 3
and Ls = 2. DSNs can adapt the JSNC encoded bitstream
according to the user node’s video request and network con-
ditions. For temporal adaptation and spatial adaptation, DSNs
can directly remove the related part from the encoded bitstream
in Fig. 6. For SNR adaptation, the DSN needs to calculate
which sub-bitstreams need to be removed, and adapt each
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packet as illustrated in Fig. 5. Since we shorten each packet
in the same GOP by removing related blocks, both FEC and
data blocks are actively removed.

D. Joint Adaptation

In this section, we state how to adapt the JSNC encoded
bitstream according to user video request and network condi-
tions. The adaptation unit is one GOP.

As mentioned already, each user node determines its video
request based on user ideal video, adaptation order and net-
work conditions. While streaming, each end user periodically
estimates the available bandwidthB and packet-loss ratep
to its uplink, wherep can be measured based on observed
packet losses, andB can be estimated using the TCP friendly
equation [23],

B =
S

Trtt

√

2p

3 + Trto(3
√

3p

8 )p(1 + 32p2)
, (9)

whereS is the packet size in bytes,Trtt is the estimated round-
trip time between user and its DSN in seconds,Trto is the TCP
timeout on this link.

User video request and adaptation order are collected and
fed back to the server by the DSNs. After the user node
determines its video request using Algorithm 1 (Section II-
B), a 7-tuple of parameters is sent to the DSN as following:

{T, S, Q, ID, γ, ξ, ζ},

where T, S, Q denote the user video request in temporal,
spatial, and quality layers, respectively; andID andγ, ξ, ζ
indicate the adaptation order and user minimal requirements,
cf. Table II. Each DSN aggregates the video requests of its
downstream users into aLs × Lt matrix, Θ, whose(i, j)th
element (Θ(i, j)) denotes the requested highest quality layer at
spatial resolutioni and frame ratej among all its downstream
users. TheΘs are aggregated along the DSNs to server.
Suppose that a given DSN has two child DSNs that send their
video requestsΘ1 and Θ2, this parent DSN then produces
aggregated video requests as follows:

Θ(i, j) = max(Θ1(i, j), Θ2(i, j)).

Effectively we are streaming through the overlay network to
satisfy the maximum of the user video requests. The server
can then encode the video bitstream according to the aggre-
gated user video request and loss rate (estimated using the
method in [24]). Since we assume that there is no congestion
between DSNs,Rmax is chosen large enough so thatRN can
accommodate the aggregated video requests.

Similar to an end user, each DSN maintains a QoS param-
eter vector for both available bandwidth and packet-loss rate
{B, p} of its direct links, where

B = {Bi : i ∈ {0, 1, 2, ..., Ndown}; (10)

p = {pi : i ∈ {0, 1, 2, ..., Ndown}}, (11)

and i = 0 is for uplink, Ndown is the total number of its
direct downlinks. These parameters are used for adaptationof
the JSNC coded bitstream for each user.

While streaming, DSNs adapt the JSNC coded bitstream for
their direct downlinks based on user video request, adaptation
order and network conditions. Adaptation to user video request
is straight forward, DSNs can directly remove the bitstream
and FEC codes as shown in Fig. 5 and 6. To adapt to a
lower bandwidth (B < Rmax), DSNs need to do further
adaptation of the bitstream by dropping descriptions (starting
from descriptionN and thenN − 1, · · ·, until Rtotal ≤ B)
or shortening each packet (starting from rate break points
RN , RN−1, · · ·, until Rtotal ≤ B) at Fig. 4 or by doing a
combination of the two methods. Suppose after adaptation,
there are onlyM (≤ N) descriptions left with the available
rate break-pointsR1, R2, · · · , RK , whereK ≤ M . Then the
expected distortion after adaptation is:

E[D(R)] =

K
∑

k=0

qkD(Rk), (12)

subject to:
Rtotal ≤ B

where the probability of receivingj out of M packets is

qi =

(

M
j

)

(1 − p)jpM−j . (13)

Algorithm 3 : Algorithm to adapt to lower bandwidth
Input : B, N , T , S, Q, ID, γ, ξ, ζ
Output : R1, · · · , RK , N − i

Adapt based on user video request,T , S, Q;
UpdateR1, R2, · · · , RN ;
Loop:
Find largestM ′, such that

∑M ′

j=1 αjRj ≤ B, where

αj = M ′

j(j+1) for j = 1, · · · , M ′ − 1, αM ′ = 1;
M ′′ = N − M ′;
for (i = 0; i ≤ M ′′; i + +) do

Remove descriptionsN to N − i in Fig. 4;
Find RK such that

∑K

j=1 αjRj = B, where
αj = N−i

j(j+1) for j = 1, · · · , N − i − 1; αN−i = 1;
RoundRK as Algorithm 2 step 7;
Calculateqj as (13) withM = N − i;
E[D(R)]i =

∑K

j=0 qjD(Rj);
end
minE[D(R)] = min{E[D(R)]i, i = 0, · · · , M ′′};
if (minE[D(R)] ⇔ maxPSNR ≥ γ) then

solution found,stop;
else

Move down one adaptation level;
Adapt bitstream based on this adaptation level;
UpdateR1, R2, · · · , RN ;
goto Loop;

end

Given the available bandwidthB of a particular user, there
might be many pairs ofM and {RK} that satisfy the bit
budget. The task of the DSN is to find a target adaptation
bitstream that has the minimumE[D(R)] using Algorithm 3,
i.e. the DSN needs to find the best combination of dropping
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descriptions and shortening packets by a search algorithm,
based on user adaptation order. In detail, a DSN first adapts
the bitstream to the user video request, since some subband
bitstreams might be removed (as shown in Figs. 5 and 6), the
rate break pointsR1, R2, · · · , RN should be updated. If still
Rtotal > B, the DSN needs to further adapt the bitstream
to satisfy the available bandwidth, again considering the user
adaptation order. At each adaptation step, the DSN first finds
the search range, by iteratively removing descriptionN and
rate break pointRN , descriptionN − 1 and RN−1, · · ·,
until there areM ′ descriptions andM ′ rate break points left,
which satisfyRtotal ≤ B. Thus, the maximum number of
descriptions which can be dropped to satisfy the bit budget is
M ′′ = N −M ′ . Within the search range (0 → M ′′), we start
from i = 0 (no description is dropped), we search for a rate
break pointRK by iteratively dropping the right-most blocks
of Fig. 4 (RK can be an original break point or a new break
point between two original points), which satisfiesRtotal = B,
to calculateE[D(R)]i. Then we move toi = 1 (drop one
description), search again for a rate break pointRK , calculate
E[D(R)]i ,· · · , until i = M ′′. Then we find the minimum
distortion (minE[D(R)]) of this step. The process is repeated
along the adaptation order, until we meet the user minimal
quality requirementmaxPSNR ≥ γdB. After calculation,
the DSN only needs to send outN − i descriptions with
maximum video bitrateRK to this user, wherei corresponds
to the step with minE[D(R)].

Algorithm 3 can be simplified to a coarse, computationally
efficient method, we calldirect truncation, wherein the DSN
adapts the JSNC coded bitstream by directly shortening each
description to satisfy the available bandwidth, with no descrip-
tions dropped (M ′′ = 0). Direct truncation could be used at
DSNs that lack computational power, such as battery powered
mobile nodes.

Summarizing, we have presented several building blocks of
the proposed JSNC scheme, with the overall procedure shown
in Table III. Steps 1 and 2 are inputs to the streaming system,
while steps 3-6 are repeated at every GOP.

Overall procedure
1. Users decide adaptation-order, the output isID, γ, ξ, ζ;
2. Users decide ideal video, the output isLt, Ls, Lq , which

are inputs to Algorithm 1;
3. User nodes determine video requests using Algorithm 1,

the result isT , S, Q;
4. DSNs collect/aggregate video requests to server;
5. Server runs Algorithm 2 to allocate FEC and then encodes

video using JSNC;
6. DSNs adapt JSNC coded bitstream to serve users using

Algorithm 3;

TABLE III

OVERALL PROCEDURE

III. S IMULATIONS AND EXPERIMENTS

JSNC distributes the video coding functions across the
server and the network and can adapt both the video bitstream
and error-control coding to satisfy multiple diverse users
by simply adjusting the packet size and/or dropping related

packets at intermediate nodes, without decoding/recodingthe
FEC. Several questions need to be answered about the new
technique:

1) Can the in-network block-based adaptation of embedded
bitstreams achieve almost the same quality as source
coding?

2) Since JSNC is a generalization of MD-FEC, how does it
perform compared with MD-FEC as block size varies?

3) JSNC serves multiple heterogeneous users by adapting
both source- and channel-coded bitstream. Is it optimal
or near optimal?

4) How does JSNC perform compared with conventional
unicast streaming?

We performed simulations and experiments to show the
effectiveness of our JSNC approach. We used 300 frames of
the Foreman CIF test sequence at 30 fps, 16 frames/GOP,
scalable source coder MC-EZBC, and Reed-Solomon codes
used for FGA-FEC channel coding. Adaptations are done
at intermediate overlay nodes using the JSNC encoded MC-
EZBC bitstream. Each simulation is run at least ten times, and
we present only averages for statistically meaningful results.

A. JSNC vs. Source Coding

At an intermediate DSN node, suppose we need to adapt
the bitstream to match the available bandwidth of a certain
downlink. The scalable source coder can generate a bitstream
that exactly matches the bandwidth. But JSNC adapts the
bitstream at block level, so the adaptation will not be as precise
as that at the source coder. So here we focus on comparing the
coding efficiency of JSNC vs. source coding, and we assume
there is no FEC added.
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Given a video bitstream at 1 Mbps, JSNC can packetize
the bitstream into128 packets per GOP in the order of SNR
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scalability, with block size of8 bytes, resulting in a network
packet size of about520 bytes. In a scenario where the last
mile available bandwidth of a user is991 Kbps, to match
this bandwidth, JSNC can only adapt the 1 Mbps bitstream
to 976 Kbps by removing the last 3 blocks from each packet.
Fig. 7 shows PSNR-Y of the source coded video at991 Kbps
versus JSNC adaptation to network condition at976 Kbps. The
overall PSNR of JSNC is0.04 dB lower than source coding
in this case.

Obviously, the block size of JSNC can affect adaptation
precision. In Fig. 8, we plot granularity of adaptation versus
block size. Here, the last block is removed from each network
packet (equivalent to removing the last column in Fig. 4).
Clearly, smaller block size means finer granularity. The two
curves illustrate two extreme cases. The ”min difference”
happens in the case where both JSNC and source coder remove
the same amount of bitstream to satisfy a bit budget. The
”max difference” happens at the case where JSNC removes the
whole ”Y” column in Fig. 4, while the source coder only needs
to remove the ”YN ” block from the bitstream. In other cases,
the PSNR difference falls in the lined area between these two
extreme curves. Fig. 9 further shows the adaptation granularity
at larger block sizes and different bitrates by removing thelast
block of each packet. The granularity becomes coarser as block
size becomes larger.

Each user has an adaptation order to respond to dynamic
network conditions. In Fig. 10 we show the corresponding
video quality when the available bandwidth drops. Originally,
the user is receiving a 2 Mbps,Foreman, CIF,30 fps bitstream.
Starting with frame100, however, the user has only512
Kbps available bandwidth. Here, we list three possible choices
for the user: (a) SNR adaptation to 512 Kbps; (b) Temporal
adaptation to 7.5 fps; (c) Spatial adaptation to QCIF. Both
choices (b) and (c) need additional SNR adaptation to fit in
512 Kbps. The user can choose an adaptation order based
on profiles like Fig. 10 and its own display and computing
capabilities.

Results in this subsection show that JSNC can adapt the
bitstream almost as precisely as can the source coder. The
maximum difference is less than 0.003 dB for a block size of
1 byte in Fig. 8.

B. JSNC vs. MD-FEC

JSNC extends MD-FEC by providing additional multidi-
mensional adaptation capabilities with both source data and
FEC data, to facilitate in-network processing. JSNC coding
is at block level, the difference between JSNC and MD-FEC
occurs at Steps 6)-7) of Algorithm II (BFOS). For MD-FEC,
Rj is rounded down to a multiple ofj in bit level, but for
JSNC, rounding is at block level, and usually the block size
is one byte.

We compare JSNC and MD-FEC by encoding the first GOP
of Foreman using JSNC and MD-FEC respectively. The block
size of JSNC is set to 1 byte.Rmax is 1 Mbps and the average
loss rate is set to20% for both schemes. The total number of
encoded layers is 35 in both cases. Here, we refer to the piece
of bitstream between two rate break points, shown at top of
Fig. 4, as one layer.
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Fig. 11 compares number of bits in each layer and we found
that the two schemes can generate a very similar layer size.
The bit difference between JSNC and MD-FEC is due to the
rounding at different precision levels. Fig. 12 shows that the
two schemes generate almost the same bitrate as we move
through the layers from base layer upwards.

Results in this section show that JSNC performs almost the
same as MD-FEC in terms of protection and bit allocation.

C. JSNC Adaptation vs. Optimal Bit Allocation
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Fig. 13. The operational rate distortion curve, binomial (64,0.15) distribution
and matched bit-allocation result of the seventh GOPForeman CIF sequence

At intermediate nodes, JSNC adapts the bitstream and FEC
by shortening packets and/or simply dropping packets to serve
multiple heterogeneous users. A better solution would be
to optimize the bitstreams on the links for each individual
user and adapt the bitstream by decoding/recoding the FEC
codewords based on user-node video request, user adaptation
order, user minimal requirements, and network conditions.
We illustrate the better solution using the seventh GOP of
the Foreman sequence in Fig. 13. The MC-EZBC encoded
video bitstream is optimized by MD-FEC for two users with
maximum available bandwidth ofRmax = 1100 Kbps and
800 Kbps, respectively. The packet-loss probabilityp is set
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to 0.15 for both users. The number of descriptions per GOP
is 64. Given the rate-distortion curve of the seventh GOP of
the Foreman sequence (Fig. 13(a)) and the distribution of the
number of packets being received (Fig. 13(b)), the optimal
resulting bit allocation (Fig. 13(c) and 13(d)) shows the byte
position in each packet (reference to Fig. 4 for packetization).
The JSNC scheme optimizes the protection based on the
highest requirement user (1100 Kbps) and adapts the encoded
bitstream of this GOP from1100 Kbps to800 Kbps by using
Algorithm 3. Fig. 14 shows the performance of our JSNC
scheme vs. the optimal bit allocation in terms of video PSNR
for the 800 Kbps user. In this case, we have only a 0.02 dB
deficit over the optimal decode/recode solution.
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Fig. 15. Comparison of JSNC, optimal decode/recode solution, and direct
truncation at different available bandwidths; (a) againstthe theoretical mean
distortion by calculation (b) against the video quality by simulation

We further compare JSNC, optimal decode/recode solu-
tion, and the direct truncation method at different available
bandwidth, where the JSNC coded bitstream is adapted from
1100 Kbps to different rates as shown in Fig. 15. Fig. 15(a)
compares the theoretical calculation results of mean PSNR of
JSNC using Algorithm 3, the optimal decode/recode solution,
and direct truncation. Algorithm 3 can both drop descriptions
and shorten packets to achieve the best adaptation, which
results in a near optimal video quality. The direct truncation
method has a coarse, but still acceptable adaptation result.
Fig.15(b) compares the resulting video quality of the three
schemes by simulation, where the adapted bitstreams are
transmitted through a channel with a 15% packet-loss rate.

The JSNC adaptation is only actively removing blocks
within each packet instead of performing a complex FEC
computation, so the computational burden is very low. We
tested the FEC encoding/decoding time at a Pentium 4, 1.6
GHz machine running Linux 8.2. The task is to encode
115 packets with a size of 512 bytes each. To generate

an RS(120,115) code, it took approximately 4 ms. We also
tested the JSNC adaptation burden on the same computer, the
adaptation time to process an equal number of packets was
about1 × 10−3 ms.

Results in this section show that JSNC has near optimal
performance in terms of protection, but has much lower
computational burden than the optimal decode/recode solution.

D. JSNC Network Performance

Conventionally, when network congestion occurs, data pack-
ets are randomly dropped at the router to avoid congestion. On
the other hand, JSNC adapts the packets at the intermediate
nodes to reduce the bandwidth requirement, by dropping the
least important part of the bitstream. Given a1.5 Mbps
bitstream and available bandwidth of1455 Kbps, in Fig. 16
we compare PSNR-Y of JSNC versus a random drop scheme
with a 3% packet-drop ratio. There is no FEC added in
either scheme. Observe that the proposed scheme significantly
outperforms random dropping by about10 dB. The reason
for the large degradation of the random drop PSNR is the
high dependency of the scalably coded video bitstream. If one
packet is dropped, further packets in the same GOP become
useless. Thus, the effective packet-loss rate is much higher
than3%.
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Fig. 16. JSNC vs. random drop
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Fig. 17. JSNC vs Hop-by-Hop FEC

Next, we compare the performance of JSNC with a hop-
by-hop FEC scheme. Both these schemes do adaptation at
intermediate nodes. Consider the server streaming video to
user ”E” in Fig. 1, the available bandwidth of ”E” is 1 Mbps,
the packet-loss rate isp1 = p2 = p3 = pe = 1.5%, and
we assume that there is no bandwidth constraint between
DSNs. In order to fully recover the losses, JSNC adds FEC
based on the end-to-end loss rate which is approximately6%.
Meanwhile, hop-by-hop FEC needs only to protect against
the 1.5% loss rate on each virtual link, so more bandwidth
is allocated to video. Thus, the received video quality using
hop-by-hop FEC is 0.22 dB better than using JSNC, as shown
in Fig.17. But this video quality gain is achieved by much
greater computational cost, since the intermediate DSN nodes
need to decode/recode the FEC. As an aside, if using our OM-
FEC [24] algorithm, JSNC can be engineered to have the same
protection performance with hop-by-hop FEC scheme.

We further compare JSNC versus unicast in terms of video
quality using the network simulator ns-2 [25] for the architec-
ture of Fig. 18, wherein twelve users are sharing a bottleneck
between nodes 3 and 4. Users0 to 9 are requesting a scalable
video from the server with theideal video rates shown in
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Fig. 18. ns-2 topology for comparison of JSNC with conventional unicast

Table IV, and the supporting network protocol is TFRC [23].
We have assigned FEC based on a max bandwidth of2 Mbps
and2% of packet-loss rate.

Users Actual available rate (Kbps)
User ID Required rate (Kbps) Unicast JSNC

0 1000 750 1000
1 1100 752 1100
2 1200 753 1200
3 1300 754 1300
4 1400 754 1400
5 1500 747 1500
6 1600 752 1600
7 1700 746 1700
8 1800 748 1800
9 1900 750 1900

TABLE IV

NETWORK PERFORMANCE OF USINGJSNCVS UNICAST

Due to congestion at the bottleneck in unicast, each user
fairly shares the bandwidth with others, including the two TCP
users. Thus, the server can only stream video to each user
according to its available bandwidth (not their ideal video),
shown asactual available rate in Table IV. Packets are actively
dropped by the server according to their relative importance.
If node 4 becomes a DSN node, it can adapt the bitstream
to support the different users. The required bandwidth from
server to node 4 is2 Mbps in this case. The total traffic at
the bottleneck is at maximum 6 Mbps (2TCPs + 1TFRC from
node 4), so there is no congestion in the JSNC case. In Fig. 19,
we show the captured video frames (93rd frame ofForeman
sequence) of the 9th user in Table IV. The effective throughput
is 1900 Kbps for JSNC and750 Kbps for unicast. In this case,
JSNC is objectively5.09 dB better than unicast.

(a) JSNC (b) Unicast

Fig. 19. Sample video (93rd frame) of the 9th user in Table IV,given the
available bandwidth, using JSNC (a) and unicast (b).
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Fig. 20. Comparison of PSNR of the 9th user: (a) JSNC vs, unicast at full
frame-rate and full resolution; (b) JSNC vs. unicast at halfframe-rate and
quarter resolution.

Fig. 20(a) compares PSNR of both JSNC and unicast of
the 9th user at full frame rate and full resolution based on the
actual available bitrate listed in Table IV. Since there is not
enough bandwidth for the 9th user with unicast transmission,
the server can adapt the video bitstream to half frame rate
or quarter resolution based on the available bandwidth and
the user adaptation order to provide higher quality (PSNR)
service. A considerably higher PNSR can be had as shown in
Fig. 20(b), but with lower frame rate or spatial resolution.

IV. CONCLUSIONS

In this paper, we presented a joint source-network coding
(JSNC) approach for scalable video streaming. JSNC encodes
a scalable embedded video bitstream in such a way that
both the video bitstream and the error control codewords can
be easily and precisely adapted in a multidimensional way
at intermediate overlay nodes to satisfy a diversity of users
without complex transcoding. The adaptation at the interme-
diate overlay nodes is fine granular at block level. Adaptation
quality is almost the same as that of pure source coding. A
novel FGA-FEC scheme is proposed for error recovery during
video transmission to heterogeneous users. Encoding once,the
proposed FGA-FEC scheme can adapt FEC codes by only ad-
justing the packet size instead of FEC decoding/recoding atthe
intermediate nodes. Simulations and experiments show thatthe
proposed JSNC can efficiently and precisely stream scalable
video to multiple heterogeneous users. Future work will focus
on cooperative adaptation between DSNs and extension to the
wireless case with bit errors in the packets.
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