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Abstract— Traditionally QoS capabilities have been con-
structed out of open-loop building blocks such as packet
schedulers and traffic conditioners. In this paper, we con-
sider closed-looptechniques to achieve a range of service
differentiation capabilities. We use an accumulation-based
congestion control scheme [31] as a data-plane building
block to provide an expected minimum rateservice that is
similar to ATM ABR, Frame Relay CIR/PIR and DiffServ
assured service and aweighted rateservice that achieves a
significantly larger range than the loss-based approaches
that extend TCP [9] [25]. The central theme is to allocate
router buffer space among competing flows in adistributed
manner to meet the rate differentiation objectives. Because
both services are provided using the congestion control
mechanisms, they are meaningful in steady state and can
be modeled as moving the equilibrium in Kelly’s nonlinear
optimization framework [16]. This scheme does not require
admission control; instead, it degrades to a well-defined,
policy-controlled bandwidth allocation during oversub-
scription. It does not require Active Queue Management
(AQM) at bottlenecks with sufficient buffer. However, with
AQM, we achieve near zero queue with high utilization
at the congested routers. We use ns-2 simulations and
Linux kernel implementation experiments to demonstrate
the performance of the services. Some practical issues and
open questions are also discussed.

Index Terms— Quality of Service, Congestion Control,
Closed-Loop Mechanisms.

I. I NTRODUCTION

As the Internet evolves as a telecommunication infras-
tructure, its best-effort service model must be augmented
to provide better quality of service (QoS) to support
more demanding application requirements. For exam-
ple, researchers have developed the Integrated Service
(IntServ) architecture [5] to provide bandwidth and delay
guaranteed services and the Differentiated Service (Diff-
Serv) architecture [4] for service differentiation. Both
architectures place their service building blocks inside
the network. Trying to move some functionality from
the network core toward the network edges or even the

end hosts, this paper proposes the use of accumulation-
based, closed-loop congestion control mechanisms as a
data-plane building block to provide expected minimum
rate and weighted rate services.

The Expected Minimum Rate (EMR) refers to a
service that offers a minimum contracted rate assurance
plus a proportionally fair share of the remaining available
capacity. It is conceptually similar to the ATM ABR
Minimum Cell Rate (MCR) [2] and the Frame Relay
CIR/PIR that guarantees (through admission control) a
Committed Information Rate (CIR) and can burst up to a
Peak Information Rate (PIR) [12]. EMR service is also
similar to the DiffServ assured service [4], though the
latter has multiple classes and drop precedences within
each class. ATM ABR MCR, Frame Relay CIR/PIR and
DiffServ assured services are realized using open-loop
building blocks, such as packet scheduling and traffic
conditioning [10] [27].

The weighted rate service (WRS) building block pro-
vides weighted bandwidth differentiation among flows
that share the same path. We demonstrate that our
mechanisms achieve a wider range of weights than the
loss-based bandwidth differentiation approaches using
TCP [15] [9] [25].

We develop concrete service building blocks based
upon our prior work on a family of Accumulation-
based Congestion Control (ACC) schemes. ACC uses
accumulation, the buffered packets of a flow inside
the network, as a congestion measure [31]. An ACC
control loop measures its accumulation and adjusts its
sending window to keep the accumulation around a target
value. In [31] we showed that ACC achieves weighted
proportional fairness and has an equilibrium decided by
the target accumulations. Our service building blocks
map a target rate allocation onto target accumulations.
One key concern is that ACC over a network of FIFO
queues inherently implies that the bottleneck routers
build physical queues, and thus the range of services is
limited by the bottleneck buffers within the network. We
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Fig. 1. Network QoS spectrum. It illustrates a range of QoS from
best-effort service, differentiated service to rate and delay guaranteed
service. Weighted rate service and expected minimum rate service
locate between the best-effort service and the differentiated service.

overcome this constraint by leveraging an Active Queue
Management (AQM) mechanism that communicates the
virtual queueing delay [7] [31] incurred on a virtual
queue [19]. With such an AQM mechanism, we achieve
near-zero queue and high utilization at the congested
routers.

Figure 1 illustrates aqualitative spectrum of packet-
switching network QoS capabilities ranging from best-
effort service, DiffServ, to rate/delay guaranteed service
offered by IntServ, including frameworks such as State-
less Core (SCORE) [29]. Services on the right-hand
side of the diagram are more complex and offered at
finer granularity. The left side of the spectrum implies
less quantitative services, the use of FIFO queuing,
closed-loop congestion control and potentially AQM
mechanisms inside the network. Our framework resides
in the middle of the spectrum, to the left of DiffServ
assured service in the sense that we do not impose
the complexity required to implement drop precedence
inside the network, but to the right of DiffServ in the
sense of the wide service range achieved. Unlike IntServ
and SCORE that offer per-packet assurances, our service
semantics are meaningful only in steady state due to the
use of the closed-loop congest control. In other words,
our model offers the lower end of the service spectrum
at very low complexity.

We evaluate the EMR and WRS building blocks using
ns-2 [26] simulations and Linux implementation experi-
ments. Several fundamental issues such as graceful ser-
vice degradation (when there is oversubscription, limits
on accumulation, or underprovisioned bottleneck buffer
size) and trade-offs (like non-AQM droptail vs. optional
AQM support at bottlenecks) are explored. We note that
this paper only develops the abstract service model,
albeit with ns-2 simulation and Linux implementation
validation, and does not explore architectural issues such
as multi-ISP service coordination, etc.

This paper is organized as follows. In Section II we
review the related work. In Section III we describe
the ACC fluid model and Monaco, one of the ACC
schemes, that serves as the basis on which we design
the EMR service building block in Section IV and the

WRS service building block in Section V. A set of ns-
2 simulation results are given in Sections IV-C and V-
B. In Section VI we multiplex all the services to show
that they can co-exist in a complex network. Section VII
discusses possible applications of our scheme and some
open issues. Section VIII concludes this paper.

II. RELATED RESEARCH

IntServ architecture [5] was proposed to provide end-
to-end bandwidth and delay guarantees. But there is no
real deployment seen due to its algorithm complexity
and that it has to maintain per-flow state inside the
routers. By carrying the per-flow state in the packet head-
ers and thus eliminating them from inside the routers,
SCORE [29] is a significant step toward achieving guar-
anteed service while keeping the core Internet stateless.

DiffServ [4] was developed to implement scalable ser-
vice differentiation in the Internet. It defines an assured
forwarding service that provides delivery of IP packets in
four independently forwarded classes with three different
levels of drop precedence. Wang proposed a differenti-
ated service scheme called “User-Share Differentiation”
that allows ISPs to differentiate traffic flows on a per-
user basis, providing minimum bandwidth guarantees
and share-based bandwidth sharing [30].

Clark and Fang suggested that each flow uses a “pro-
file” specifying how much capacity should be allocated
to TCP connections during congestion [8]. A component
is placed at the edge of the network that marks a bit in the
passing packet headers to denote whether the packets are
in- or out-of-profile. The bottleneck then uses two RED
algorithms [11] in parallel to drop the packets randomly
during congestion with preference toward keeping the
packets that are marked in-profile.

All the proposals discussed above are basically open-
loop approaches. Researchers have also designed closed-
loop mechanisms to provide service differentiation. For
instance, Crowcroft et al. implemented MulTCP which
makes a connection behave asw TCP connections by
increasing the congestion window of the single MulTCP
connection byw packets in each RTT and, when a
loss occurs, decreasing it to onlyw−0.5

w [9]. Nandagopal
et al. provided a systematic analysis on how to adjust
TCP Reno’s increase/decrease parameters to achieve the
weighted bandwidth differentiation [25]. In both works
the service is achieved by (adaptively) changing the
increase/decrease parameters of the congestion control.
Hsieh et al. tried to combine parallel TCP connec-
tions [14]. In this paper we take a different approach
to achieve service differentiation by manipulating accu-
mulation allocation among the competing flows.
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A different line of research started from Kelly’s opti-
mization framework [16], followed by Low et al. [21],
Srikant et al. [18], and Massoulie et al. [23], where
they model network congestion control as a nonlinear
optimization problem under which all the users try to
maximize their own interest, subject to a set of capacity
constraints. Our ACC scheme fits into this optimization
framework. Kunniyur and Srikant developed an Adaptive
Virtual Queue (AVQ) algorithm [19] which we leverage
to keep a small physical queue in the congested routers
(see Section IV-A). Low et al. proposed an optimization
model [22] for TCP Vegas [6] and suggested to improve
its performance by using a buffer management mecha-
nism called Randomly Exponential Marking (REM) [1].
All these works were developed for the purpose of con-
gestion control. In this paper, we extend ACC as a data-
plane building block to provide service differentiation
and guarantees.

III. B ACKGROUND

In this section we briefly describe our prior work on
the ACC fluid model and its packet-switching network
implementation, the Monaco scheme. Monaco solves the
technical problems of Vegas and thus serves as a basis
for the work in this paper. For the complete description
of ACC and Monaco, the reader is referred to [31].

A. ACC Fluid Model

We define the accumulation concept using a bit-by-
bit fluid model. Then we develop a congestion control
algorithm based on accumulation and show its steady
state properties.

1) Accumulation: Consider an ordered sequence of
FIFO nodes{R1, . . . , RJ} along the path of a unidirec-
tional flow i. The flow comes into the network at the
ingress nodeR1 and, after passing some intermediate
nodesR2, . . . , RJ−1, goes out from the egress nodeRJ .1

The propagation delay from nodeRj to nodeRj+1 is a
constantdj .

Define flow i’s accumulation as a time-shifted, dis-
tributed sum of the queued bits in all the nodes along its
path fromR1 to RJ :

ai(t) =
J∑

j=1

qij(t−
J−1∑

k=j

dk) (1)

whereqij(t−
∑J−1

k=j dk) is flow i’s bits queued in node
Rj at timet−∑J−1

k=j dk. Note it includes only those bits

1We can mapR1/RJ nodes as source/destination end hosts to form
an end-to-end control loop or ingress/egress edge routers to form an
edge-to-edge control loop. We discuss practical issues in Section VII.

backlogged inside the node buffers, not those stored on
transmission links. This definition serves as a reference
to implement an unbiased accumulation estimator in Sec-
tion III-B. We aim to control the flow rate by controlling
its accumulation.

2) Control Algorithm: We apply a window-based
control to use accumulation as a measure to detect
network congestion. If accumulation is low, we increase
the congestion window; otherwise, we decrease it to
drain accumulation. Specifically, we try to maintain a
constant target accumulationai for each flowi using a
proportional ACC control algorithm:

ẇi(t) = − κ

rtti
· (ai(t)− ai) (2)

whereκ > 0, wi(t), rtti, ai(t) andai are respectively the
congestion window size, round trip time, instantaneous
accumulation and target accumulation value of flowi.

3) Properties: Congestion control can be formalized
as a resource allocation problem [16] [21] [18] [24].
Using steady state queuing analysis and nonlinear opti-
mization we showed in [31] that the above ACC control
algorithm fits into the Kelly framework [16] and drives
the network to an equilibrium of weighted proportional
fairness, with target accumulationai as flow i’s weight.
It is this weightai that enables service differentiation. In
principle, since the equilibrium is decided by allai’s, we
can accordingly adjustai to steer the equilibrium in order
to achieve a specific service, e.g., EMR or WRS rate
allocations discussed in Sections IV and V. This allows
us to avoid the major pitfalls in the loss-based service
differentiation approaches, as discussed in Section V-C.

B. Monaco Scheme

Based on the measurement and control of accumula-
tion, we have shown that a family of congestion control
schemes can be derived [31]. One example is TCP
Vegas which estimates accumulation assending rate×
(rtt − rttp) at the sender side, wherertt is round trip
time (RTT) andrttp refers to round trip propagation
delay. The Vegas accumulation estimator is sensitive to
both the measurement error of the propagation delay
and reverse path congestion. Therefore we designed a
receiver-based, out-of-band Monaco scheme that ensures
robust accumulation estimation.

1) Accumulation Estimation:Monaco estimates ac-
cumulation at thereceiver side. It generates a pair
of back-to-back control packets once per RTT at the
sender as shown in Figure 2. One control packet is sent
out-of-band (OB) and the other in-band (IB). The OB
control packet skips queues in the intermediate routers by
passing through a separate dedicated high priority queue.
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Fig. 2. Monaco accumulation estimator generates a pair of back-
to-back OB and IB control packets once per RTT at the sender. The
number of data packets at the receiver between the OB and IB control
packets is measured as accumulation, which is sent back to the sender
using a reverse OB control packet.

Assuming the OB queues to be minimal as only other
OB control packets share them, such packets experience
only the propagation delay in the forward path. The IB
control packet goes along with the regular data packets
and reaches the receiver after experiencing the current
queueing delay in the network. The time interval between
the OB and IB control packets measured at the receiver
samples the sum of the queueing delays in the forward
path. Considering a network in steady-state with enough
buffers where there is no packet loss, then, by Little’s
law, the average number̂aM of data packet arrivals at
the receiver after the OB control packet, but before the
IB control packet equals the average accumulation.

Obviously this comes with an extra requirement of
two separate FIFO queues inside the network routers,
with a high priority queue for the OB control packets
and a low priority queue for the IB control packets and
the data packets.2

2) Control Policy: Monaco employs the proportional
control policy in Equation (2). It tries to maintain a
constant target accumulationai for each flow i by
adjusting its congestion window according to:

cwndi(n + 1) = cwndi(n)− κ · (âiM − ai) (3)

where âiM is the accumulation estimate,κ is set to
0.5, andcwndi(n) is the congestion window value at
a control periodn. In addition we conservatively bound
the increase to within one MTU per RTT.

Monaco sender implements rate-based pacing to
smooth incoming traffic into the network using a token

2As designed, Monaco can be used to control flow aggregates
or individual TCP/UDP connections. When integrated with TCP,
the IB and OB control packets can bear TCP segments. The IB
control packet is the packet bearing the TCP segment with the
next sequence number after the OB packet’s TCP segment. The
accumulation estimate can be fed back as a TCP option header.
Thus ACC-based service differentiation can be implemented without
adding new packets to the network.

bucket shaper with a rate value ofcwnd / rtt to alleviate
traffic burstiness. It also includes reliability enhance-
ments for the control and data packets lost. The reader
is referred to [31] for more details.

IV. EXPECTEDM INIMUM RATE SERVICE

In this section we demonstrate the EMR service build-
ing block. We aim to provide any flowa contracted
(or expected minimum) bandwidth plus a proportional
share of remaining capacity. It is achieved by keeping an
appropriate amount of accumulation inside the network
for that flow. We mean “expected” in the sense that the
minimum can be satisfied if there is no oversubscription.
If there is, obviously we can not fulfill all the demands.
Therefore a graceful service degradation is defined. We
show the theoretic results for a general network topology
and evaluate them using a set of ns-2 simulations based
on Monaco.

A. Algorithm

Let’s consider a network of a setL = {1, . . . , |L|} of
links, shared by a setI = {1, . . . , |I|} of flows. Each
link l ∈ L has capacitycl. Flow i ∈ I passes a route
Li consisting of a subset of links, i.e.,Li = {l ∈ L | i
traversesl}. A link l is shared by a subsetIl of flows
where Il = {i ∈ I | i traversesl}.

As we discuss in Section III-A.3, a specific rate alloca-
tion corresponds to a particular equilibrium of the control
algorithm (2); and, in turn, the equilibrium is decided
by the target accumulationai. So service provisioning
is mapped to the allocation of the target accumulations.
We use the following steady state analysis to introduce
our algorithm.

Suppose we provide flowi a bandwidthx∗i that is the
sum of an EMRxie and a proportional sharex∗ip of the
remaining network capacity3:

x∗i = xie + x∗ip. (4)

We achieve this allocation by keeping for flowi a total
accumulationai that, correspondingly, also includes two
parts:aie for xie andaip for x∗ip, i.e.,

ai = aie + aip. (5)

According to Little’s law, we have

ai = x∗i · tiq, (6)

aie = xie · tiq, (7)

aip = x∗ip · tiq (8)

3The reason we use the symbolsx∗i and x∗ip instead ofxi and
xip here and we callx∗ip a proportional share is thatx∗i andx∗ip are
solutions to a nonlinear optimization, whilexie is an input parameter.



5

(a)

0

x*

xp*

xe

(b)

0 * xi*

aip lnxip

ai lnxi

xie

utility

ratexip

Fig. 3. EMR could be modeled as two simultaneous nonlinear
optimization problems: (a) Convex constraint sets showing~x∗ =
~xe + ~x∗p: the inner one forxip while the outer one forxi; (b)
Logarithmic utility functions ofxi andxip.

wheretiq is the steady state queueing delay experienced
by flow i in its forward path. Equations (5)-(8) lead to

aip = (1− xie

x∗i
) · ai (9)

wherexie is the expected rate knowna priori, x∗i can
be measured at either the sender or the receiver, andai

is provided by the accumulation estimator.
Obviously, if we keep constant accumulation for a

flow, then its (proportionally fairly) allocated rate is
decided by network routing and other competing flows.
If we want to keep a constant rate for a flow, independent
of the changing environment, then the corresponding
accumulation has to adapt. This is reflected bytiq in
Equation (7), the queueing delay which is changing
in a dynamic environment. To avoid setting a varying
parameteraie, or equivalentlyai in Equation (6), we
use Equation (9) to calculateaip that represents the
accumulation in excess of the accumulation imposed by
the expected minimum ratexie. We steer the system
so thataip approaches a target accumulation, a preset
value (three packets in this paper) that is the same for
all the flows. This can be modeled by the following two
nonlinear optimization problems.

Firstly let’s assume enough buffers are provided in all
the congested routers and there is no oversubscription.
We consider the total ratex∗i achieved with correspond-
ing accumulationai. As proved in [31], the flow rate
x∗i is the unique maximum of the following nonlinear
optimization problem related toai:

maximize
∑

i∈I

ai lnxi (10)

subject to
∑

i∈Il

xi ≤ cl, ∀l ∈ L (11)

xi > 0, ∀i ∈ I

meaning thatx∗i achieves weighted proportional fairness:
∑

i∈I

ai · xi − x∗i
x∗i

≤ 0 (12)

wherexi is any feasible rate allocations satisfying the
constraint (11).

Beyond the expected ratexie, we then consider the
rate x∗ip achieved with corresponding accumulationaip.
Similarly we can prove that the flow ratex∗ip is the unique
maximum of the residual problem related toaip:

maximize
∑

i∈I

aip lnxip (13)

subject to
∑

i∈Il

xip ≤ cl −
∑

i∈Il

xie, ∀l ∈ L (14)

xip > 0, ∀i ∈ I

meaningx∗ip achieves similar proportional fairness:

∑

i∈I

aip ·
xip − x∗ip

x∗ip
≤ 0 (15)

wherexip is any feasible rate allocations satisfying the
constraint (14).

So a system providing an EMR service actually does
two nonlinear optimization problems. However, these
two problems are not independent – they aresimultane-
ousin that as long as one problem achieves its optimality,
the other also achieves its optimality at the same time.
We illustrate this result in Figure 3. The reader is referred
to Section 5.3 of [13] for an analysis regarding general
utility functions.

If the assumptions do not hold, i.e., there is either
oversubscription or underprovisioned buffers, then the
above two optimalities are often not realized in a real
network. There are three boundary conditions affecting
the realizability of EMR:

• Oversubscription: Without admission control, the
constraint (14) might be always invalid. Or it is
possible that

∑

i∈Il

xie ≥ cl, ∃ l ∈ L; (16)

• Accumulation limit: To avoid intolerably long
queues, we introduce an upper boundAi on ac-
cumulation, namely,

ai =
∑

l∈Li

qil ≤ Ai, ∀i ∈ I; (17)

• Buffer overflow: Even with the above accumulation
limit, we can not guarantee that each router buffer
Ql is sufficiently provisioned, i.e.,

ql =
∑

i∈Il

qil ≤ Ql, ∀l ∈ L. (18)

When any of the boundary conditions is effective,
EMR can not be satisfied. Therefore we need to define
a degraded service for this case.
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Firstly, we argue that the constraints (16) and (18)
can be translated equivalently into the form of (17).
For (18), it is obvious because both (17) and (18) are
constraints onqil. For (16), the intuition is that when
there is an oversubscribing flow, its expected minimum
rate cannot be satisfied even were it to incur infinite
accumulation, which means before this happens, its accu-
mulation constraint (17) will be effective. So these three
constraints can be summarized into one form of (17)
with an equivalent accumulation limitAeq

i . To take into
account all the above boundary conditions (16)∼(18), we
define a new optimization problem similar to (10) but
with changed coefficientsa′i and thus different, though
still logarithmic, utility functions:

maximize
∑

i∈I

a′i lnx′i (19)

subject to
∑

i∈Il

x′i ≤ cl, ∀l ∈ L

x′i > 0, ∀i ∈ I

where
a′i = min(ai, A

eq
i ), ∀i ∈ I. (20)

Again, its optimal allocationx
′∗
i achieves weighted pro-

portional fairness:

∑

i∈I

a′i ·
x′i − x

′∗
i

x
′∗
i

≤ 0 (21)

wherex′i is any feasible rate allocations.
Consequently, when there is either oversubscription,

accumulation limit, or underprovisioned buffers, these
conditions affect the realization of (10) and (13), i.e.,
EMR can not be provisioned. A new optimization
problem (19) is automatically defined by adding these
constraints (16)∼(18) into (10), achieving a weighted
proportional rate allocation which can be computed from
the boundary conditions. The weight is changed from
ai to a′i defined by Equation (20). As a result, EMR
gracefully degrades into a weighted proportionally fair
rate, with a new set of weightsa′i’s. Further, since we
have the freedom to set the accumulation limitAi for
each flow i in (17), this parameter provides a policy-
based control on bandwidth allocation. We discuss how
to setAi in Section IV-B and use simulations to illustrate
Ai’s effect in Section IV-C.

Now let’s look at a trade-off. Even if we set an
accumulation limit for each flow, the steady state queuing
delay or physical queue length might be too large as the
number of flows increases. Is it possible to provide the
requested services based on managing accumulation and,
at the same time, keep a small steady state queue? We
have adopted the AVQ algorithm [19] that emulates an

adaptively changing link capacity such that the steady
state queue is sufficiently small. We compute a virtual
queueing delay [7] defined as the ratio of virtual queue
length divided by virtual capacity and add it into the
forward control packet provided by the out-of-band ac-
cumulation estimator4. We call this mechanism Adaptive
Virtual Delay (AVD) algorithm. A nice property of AVD
is that it is incrementally deployable since a mixed set of
non-AQM droptail and AVD routers can work together
(see Section VI and [31]). In such an environment the
accumulation estimate will bêa = âFIFO+x·t̂V D where
âFIFO is the accumulation in those FIFO routers,x is
the received rate and̂tV D is the sum of all the virtual
delays at those AVD routers.

To sum up, we use the algorithm below to provide the
EMR service. It includes seven steps.

Algorithm 1 Expected Service Pseudo-code at Sender
cwnd= the congestion window in bytes
pwnd= the congestion window in the previous RTT
ssthresh= the slow start threshold
srtt = the smoothed RTT estimation
A = the total accumulation limit
ap = the target accumulation beyond the EMR
a(t), ap(t) = accumulation estimates

(1) x(t) = pwnd ∗ 8.0/srtt;
(2) ap(t) = max(a(t) ∗ (1− xe/x(t)), 0.0);
(3) pwnd = min(pwnd + mtu, cwnd);
(4) cwnd = pwnd− k ∗max(ap(t)− ap, a(t)−A);
(5) if (a(t) > A || ap(t) > ap) ssthresh = cwnd;
(6) else{

(6.1) if (pwnd + mtu >= ssthresh)
ssthresh = cwnd;

(6.2) cwnd = min(pwnd ∗ 2.0, ssthresh); }
(7) ratelimit = cwnd ∗ 8.0/srtt;

In Step 1, we compute the departure ratex as the
bits transmitted in the last RTT divided by the smoothed
RTT, or srtt.

In Step 2, we compute the accumulationap incurred
beyond the EMR according to Equation (9). When a
control loop is ramping up or during oversubscription,
the departure ratex may be less than the EMRxe,
causingap to be negative. So we max with 0.0 to force
nonnegativity.

In Step 3, we force apwnd that is within 1 MTU of

4This accumulation estimator (see Section III-A.1) sends a control
packet once per RTT out-of-band to avoid standing queues that
affect the Vegas accumulation estimator. If no control packet is
available from the accumulation estimator then the virtual delay may
be communicated using bit marking as in REM [1].
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cwnd to be equal tocwnd. This is necessary because
our algorithm stops sending when the packet at the head
of the queue would causepwnd to exceedcwnd.

In Step 4 we set the congestion window according to
the Monaco control policy defined in Equation (3) and
the accumulation limitA.

In Steps 5–6, we determine whether step 4 was a
decrease or an increase step. In Step 5, we stop a slow
start by reducingssthresh to the current congestion
window size. In other words, each control loop slow-
starts until congestion is first detected. Step 6.1 en-
sures that when acwnd decreases due to something
other than congestion (e.g., decreasing user demand),
ssthresh does not decrease, i.e.,ssthresh tracks the
congestion level in the network rather than the user
demand. It bounds the increase step to one MTU per
RTT. Thus Monaco increases no more aggressively than
TCP’s additive-increase-multiplicative-decrease (AIMD)
and less aggressively than TCP in the neighborhood of
the equilibrium. Though not shown here, Monaco backs
off by one half in response to loss and thus Monaco
degrades to TCP in the presence of significant loss. Step
6.2 bounds slow start byssthresh.

Step 7 sets the rate on the token bucket shaper used
in Monaco’s rate-based pacing.

B. How to Set the Accumulation Limit

One question remaining is how to set the accumulation
limit Ai, which serves as a policy-controlled parameter
for an EMR flowi. Obviously, a flow with a largerAi has
more chance to get its EMR during oversubscription; a
smallerAi means its EMR will probably not be obtained
in the same situation.

By the definition in Equation (1), the accumulation of
a flow is distributed in the form of the buffered packets
among the congested routers on its path. According to
Equation (5), to achieve EMR, accumulationai includes
two parts:aip steers toward three packets, the default
value we set for a general non-EMR flow;aie should
adapt according to the changing environment. SinceAi is
an upper bound ofai, it should be set in proportion to the
number of the congested routers and how congested they
are. This makes settingAi an open question in theory
when there is no AVD deployed inside the network
routers. In this caseAi is limited by the buffer available
in the congested routers in the network, but this is
difficult to know from the network edges. In practice
this assumes a management plane that can collectively
set Ai. This management plane monitors the network
for significant packet loss due to buffer overflow and
scalesAi appropriately to minimize the loss. Once the

loss has been minimized,Ai can be set relative to each
other based on policy as described below for a network
of AVD routers.

In scenarios where AVD is used,Ai no longer refers
to physical queuing and thus we are free to useAi

as purely a policy-based mechanism5 for defining how
bandwidth is distributed during oversubscription. If all
Ai are set equal then expected minima tend to be satisfied
in “smallest first” order. If allAi’s are set in proportion
to their expected minima, then “all-or-none” of the ex-
pected minima are satisfied. We can also define gold and
silver services wherein all the gold members share one
accumulation limit which is larger than the accumulation
limit shared by all the silver members. When possible,
gold members are satisfied first; otherwise, the ratio
between the gold and silver accumulation limits refers to
the ratio of their proportional shares if oversubscription
arises.

We illustrate this issue using concrete simulation ex-
amples in the next subsection and Section VI.

C. Simulations

We evaluate the performance of the EMR service
building block using ns-2 simulations on a single bot-
tleneck. Each flow has a different propagation delay.
In Section VI we provide ns-2 simulation and Linux
implementation results for a more complex network of
multiple bottlenecks. In all the experiments we set data
packet size to 1KB.

We simulate a single 100Mbps bottleneck shared by
ten flows using Monaco. We use simulation because this
allows us to temporarily set aside the practical limitation
of finite buffer sizes, so that we can study the range
of services in the absence of packet loss caused by
underprovisioned buffer. Flow 0 has an EMRx0e while
other nine flows request a proportional rate service (i.e.,
with an EMR of 0). Each sourcei (0 ≤ i ≤ 9) is
connected to the bottleneck via an 1Gbps link with
one-way propagation delay11i + 1ms. We perform two
kinds of simulations, one using a non-AQM droptail
bottleneck, the other using an AVD bottleneck.

In the first set of simulations we evaluate the range
of satisfiable EMRs without AQM and we demonstrate
the effects of setting the accumulation limit. For each
accumulation limit of 30KB and 3000KB, we run simu-
lations each with a different expected ratex0e from 0 to

5Setting Ai and the expected minima both assume coordination
at the service provider level. In end-to-end scenarios, this is only
tractable if we assume DiffServ-like building blocks for policing at
provider edges along with a management infrastructure for brokering
capacity.
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Fig. 4. EMR in a single bottleneck: (a) Monaco throughputx0 vs. EMR x0e with a non-AQM droptail bottleneck and RIO throughput
vs. DiffServ bandwidth allocation; (b) The former graph zoomed into 90-101Mbps; (c) Monaco throughputx0 vs. EMR x0e with an
AVD bottleneck, zoomed into 90-101Mbps; (d) Steady state queue length vs. EMRx0e with a droptail or AVD bottleneck (when flow 0’s
accumulation limitA is set to 30KB and 3000KB, respectively), and RIO+TSW average queue length vs. DiffServ bandwidth allocation; (e)
RIO+TSW’s measured rate for capacity allocation 80Mbps; (f) Bottleneck utilization when using Monaco and RIO+TSW. In these simulations,
we setκ=0.5, target accumulationap=3KB, AVD’s damping factorα=0.1 and target utilizationβ=0.98. For RIO+TSW simulations we use
the parameters in [8].

110Mbps. All other flows have a target accumulation of
3KB. The result is shown in Figure 4(a) and zoomed in
Figure 4(b). WithA = 3000KB, we are able to allocate
up to 99.1Mbps (i.e.,3000×100

3000+9×3 ) of the 100M bottleneck
to a single flow before the accumulation limit is reached.
When A = 30KB, the maximum satisfiable EMR is
30×100
30+9×3 = 52.6Mbps, demonstrating that the unsatisfied
EMR due to the constraint (17) degrades to a weighted
proportionally fair rate.

The upper part of Figure 4(d) shows that the queue
length grows dramatically (note the logarithmic scale
of the vertical axis) as the EMRx0e increases. This is
most apparently shown by the case whenA = 3000KB.
However in all cases, the queue growth flattens when the
accumulation limit is reached. The rapid queue growth as
the EMR approaches the available capacity demonstrates
the bound on the achievable services as a function of the
bottleneck buffer size in the network.

In the second set of simulations, we repeat the same
scenario except with an AVD bottleneck. The range of
achieved EMRs is similar to the case without AQM,
as shown in Figure 4(c) for the EMR of 90-100Mbps.
However, AVD keeps the queue length at near zero as
depicted in the lower part of Figure 4(d), since instead
of incurring physical accumulation, each control loop
incurs virtual accumulation on a virtual queue. In fact

the average queue diminishes as the ratio of the rates
increases since 1) the packets in the fast flow are nearly
evenly spaced due to rate-based pacing and therefore
do not incur queue, and 2) the slower flows send so
infrequently that they rarely perturb the queue.

As shown in Figure 4(f), the bottleneck utilization
for all cases without AQM was 100% in the steady
state (since the queue never drains completely), and
when AVD was used, the utilization was always within
half a percent of 98%, our target utilization for AVD.

Now we compare EMR and DiffServ assured service
using a set of simulations. We replace all Monaco flows
with TCP Reno connections. We vary the allocation
for one TCP Reno connection using Clark et al.’s RIO
building blocks [8]. To perform marking they propose
the Time Sliding Window (TSW) tagger which marks
packets in-profile so long as the connection sends with
rate less than 4/3 of its allocation specified in its profile.
Because TCP backs off one half of its congestion win-
dow in response to loss, the expectation is that during
congestion the TCP connection should sawtooth between
2/3 and 4/3 of its allocation, resulting in a long-term
average rate near the allocation. RIO uses two RED [11]
algorithms in parallel to randomly drops “in” and “out”
packets in the queue. The RED algorithms are configured
such that the “out” packets are dropped before the “in”
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Fig. 5. WRS in a single bottleneck: (a) Relative throughput ratio vs. weight; (b) Bottleneck queue vs. weight; (c) Bottleneck utilization.
In these simulations, we setκ=0.5, target accumulationai=wi*3KB, AVD’s damping factorα=0.1 and target utilizationβ=0.98.

packets. We use the same parameter settings for RIO
and TSW as specified in Table 1 of [8]. Additionally
our RIO algorithm has Explicit Congestion Notification
(ECN) [28] turned on. Thus packets are marked for
congestion (different than the in/out mark) when RIO
would otherwise have dropped.

In Figure 4(e) we demonstrate one of the limitations
of the TSW tagger and a more fundamental limitation
of providing assured services with TCP+RIO. First a
connection receives the same treatment for any allocation
greater than 3/4 of the bottleneck capacity since all
the packets are marked in-profile. More importantly,
in order to obtain an allocation that is a significant
fraction of the bottleneck capacity, TCP must oscillate
its window size on the same order as the bottleneck
capacity. This oscillation is a consequence of TCP’s
AIMD algorithm and thus affects all profile marking,
ECN marking, and AQM algorithms. Since the amplitude
of this sawtooth grows roughly linearly with flow rate,
accommodating a flow with a large bandwidth allocation
implies one of the following three: large queues (see
Figure 4(d)), limits on achievable allocations (as shown
for bandwidth allocations above 80Mbps in Figure 4(e)),
or low utilization (as shown in Figure 4(f) for bit
rates below 80Mbps). Thisfundamentallimitation of
TCP+RIO makes it impossible to simultaneously achieve
high utilization, low queue length, and a wide disparity
in the allocated rates. By avoiding AIMD, Monaco with
AVD simultaneously achieves all three.

V. WEIGHTED RATE SERVICE

In this section we propose the WRS service building
block. Our goal is to provideweighted rate discrimi-
nation among flows along the same path, i.e., a flow
with weightw should get a bandwidthw times that of a
flow with weight 1. We show the steady state queuing
theoretic result for a general network topology. Then
we evaluate it using ns-2 simulations and show that the

achieved WRS range significantly outperforms the loss-
based approaches bythree orders of magnitude.

A. Algorithm

Again let’s consider the general network topology
described in Section IV-A from a steady state queuing
analysis perspective. At a steady state in any bottleneck
link l where ∑

i∈Il

xi = cl (22)

we have its steady state queue lengthql including con-
tributions from a subset of flows traversing that link as

ql =
∑

i∈Il

qil (23)

whereqil is flow i’s steady state queue at bottleneckl.
We use window-based congestion control, in which

a window wi bits of flow i could be stored either on
transmission links (=wi − ai) or in router buffers as
steady state accumulation

ai =
∑

l∈Li

qil (24)

where Li is the subset of bottleneck(s) which flowi
traverses. If two flowsi1 and i2 traverse the same path
from a source to a destination, then they share the same
set of bottleneck(s), namely,

L1 = L2. (25)

At any shared bottleneckl employing FIFO scheduler
which decides packet departure totally based on its
arrival order, the flow rate allocation is proportional to
the buffer allocation (if loss amount is neglectable), i.e.,

x1

x2
=

q1l

q2l
. (26)

The above three equations lead to

x1

x2
=

∑
l∈L1

q1l∑
l∈L2

q2l
=

a1

a2
(27)
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which means that, for a general network topology,
the rate allocation to flows along the same path is
proportional to the accumulation allocation. Further, it
is the relative accumulation allocation, instead of the
absoluteaccumulation allocation, that decides the rate
differentiation.

B. Simulations

We evaluate the performance of the WRS service
building block using ns-2 simulations on a single bot-
tleneck with large enough buffer size to avoid packet
loss. For a more realistic network of multiple congested
links shared by flows passing through different numbers
of bottlenecks, we provide ns-2 simulation and Linux
implementation results in Section VI.

We use the same single bottleneck network where
an 100Mbps link is shared by ten flows with very
heterogeneous RTTs. Flow 0 has a varying weightw
while other flows have unit weight (i.e,a0 = wa1 =
· · · = wa9). We performed two sets of simulations to
evaluate the weighted service differentiation range.

In the first set of simulations we evaluate the service
differentiation range without AQM. We did a set of
simulation runs by changingw from 1 to 105 which
is at least three orders of magnitude larger than the
weights (10∼100) achieved with TCP in [9] [25]. We
discuss this huge difference in the next subsection. As
shown by the upper curve in Figure 5(a), for the wide
range of weight variation, accurate weighted sharing is
achieved. This comes with a cost, though. The upper
curve in Figure 5(b) shows that the steady state queue
length at the bottleneck increases linearly with weight.
The curvature in the mean queue length in Figure 5(b) is
due to a y-offset for a weight 1 equal to the sum of the
target accumulations (30KB). As with the EMR building
block, the large queue incurred by service differentia-
tion based on physical accumulation demonstrates the
practical bound on service differentiation that could be
achieved with finite bottleneck buffer sizes.

Again, with AVD we are able to break the coupling
between the notion of accumulation and real queuing.
This is shown by our second set of simulations. Fig-
ure 5(b) demonstrates that AVD achieves average queue
sizes less than 1 packet. This average diminishes as
weight increases for the same reason that average queue
diminishes as EMR increases as we already discussed in
Section IV-C: control loops that send rarely also rarely
perturb the queue.

As shown in Figure 5(a), for weights below103, AQM
achieves the desired weighted share. However, above
about103, the control loop with the large weight obtains

less than the desired weighted share. This arises because
AVD holds the loops with weight 1 at a window size
of one. In this regime, the Monaco control policy is no
longer defined, instead if the accumulation estimate is
larger than the target and the window size is one then
the control loop halves its shaper’s send rate. Once the
accumulation estimate reduces below the target, we reset
the respective shaper to a rate of 1 packet per RTT. From
simulation to simulation, as we increase the weight of
sourceS0 to 491, the equilibrium window size of source
S1 shrinks to 1. In the simulation with weight 2691, the
window sizes of all sourcesS1∼S9 shrink to 1 packet.
In order to obtain larger weighted shares, the control
loops must either send slower or the queue must grow.
As we know from Figure 5(b), the queue does not grow
for simulations with weights above 491. Instead, we use
rate-based pacing to halve the send rate whenever the
window size reaches 1 and the negative feedback arrives.
When the positive feedback arrives we react in the same
way as before.

This handling for the regime of low rates is similar to
the exponential back-off used by TCP when a timeout
occurs and the immediate recovery to a rate of one packet
per RTT when an acknowledgement arrives. Jumping to
one packet per RTT represents an aggressive increase
that biases the weighted share in favor of the control
loops with smaller weights. This aberration occurring at
high weights might be solved through careful redesign
of the increase step used in the low rate regime.

As shown in Figure 5(c), without AQM, the utilization
is 100%. With AQM the utilization settles around 98%,
which is our target utilization for AVD.

C. Accumulation-based vs. Loss-based Approaches

The related research has explored how to modify
TCP Reno’s handling of packet loss to provide similar
rate differentiation. In this subsection we compare the
mechanisms used by the loss-based approach and in this
paper. We argue that the accumulation-based approach
is in principle better than the loss-based one in that the
former can achieve a significantly larger range of service
differentiation (as shown by the simulation results) and
at the same time maintain good dynamic performance.

In [9] [25], the service is achieved by (adaptively)
changing congestion control increase/decrease parame-
ters. This approach creates a dilemma: it is hard to
achieveboth service differentiation and good dynamic
performance because the increase/decrease parameters
of the congestion control algorithm decide its dynamic
performance. For example, larger increase/decrease pa-
rameters lead to larger oscillation of the congestion win-
dow. Large oscillation leads to burst losses and timeouts,
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which is why [9] and [25] suffer. Further, packet loss can
only be measured accurately over long periods of time,
which accounts for their long simulation run-times.

Our accumulation-based approach achieves service
differentiation by moving the equilibriumof the con-
trol algorithm in Equation (3). Thisdecouplingof the
steady state equilibrium and the dynamics of the control
algorithm provides the capability to achieve the targeted
service as well as good dynamic behavior (large weights
without increased oscillation). So the better performance
of Monaco results from the fact that accumulation is
more manageable than loss for the purpose of service
differentiation.

Of course, since we need to keep a steady state
physical queue (i.e., accumulation) for each flow, and
ql is limited by the physical buffer sizeQl shown in the
constraint (18), the bottleneck buffer size limits the range
of the weighted service in practice. But this limitation
is very different from that of [9] [25], which results
from the coupling of the steady state objective and the
dynamic performance.

VI. SERVICE MULTIPLEXING

In this section we provide ns-2 simulation and Linux
kernel implementation results to demonstrate that EMR
and WRS canco-exist dynamicallywith bursty web-
like traffic in a complex multiple-bottleneck network
including both non-AQM droptail and AVD routers.

A. Simulations

Firstly we show the simulation results for the net-
work shown in Figure 6(a). We choose a topology
with all equal capacities and put all control loops with
EMRs along the multiple-bottleneck path, because these
choices simplify target rate computations, which are
described momentarily. There are four “long” flows
passing through all the bottlenecks and a set of “cross”
flows each using only one bottleneck. Every bottleneck
link has 100Mbps capacity and 1ms propagation delay.
The source nodes(1, 0)∼(1, 3) are connected toR0

with propagation delays evenly spread between 1ms and
100ms, i.e., 1ms, 34ms, 67ms and 100ms, respectively.
Nodes(2, 0)∼(2, 3) have the same delays but are con-
nected toR1 and likewise for nodes(3, 0)∼(3, 3) to
R2. As specified in Table I, each of the long flows has
an EMR, and they start and stop sending at different
times thereby moving the system from undersubscribed
through oversubscription and back to undersubscribed
before a barrage of web-like flows start. The 500 web-
like flows enteringR1 are evenly distributed across

TABLE I

MULTIPLE-BOTTLENECK SIMULATION PARAMETERS

flow expected A limit weight start stop
rate (xije) (Aij) (wij) time time

(0,0) 30Mbps 60KB 1 U [0, 5]s
(0,1) 35Mbps 75KB 1 25s 75s
(0,2) 50Mbps 60KB 1 50s 75s
(0,3) 10Mbps 15KB 1 U [0, 5]s
(2,0) 0Mbps 3 U [0, 5]s
web 0Mbps 1 100s
other 0Mbps 1 U [0, 5]s

twenty-five nodes, and each of these nodes is con-
nected to R1 again with propagation delays evenly
spread between 1ms and 100ms. The other twenty-
five nodes generating web-like bursty traffic toR2 are
similarly connected. We use Barford and Crovella’s web
model [3], in which each user downloads a set of files
representing a web page and then sleeps for a period of
time. The requested file size and sleep times obey heavy-
tailed distributions and thus the resulting traffic is quite
bursty. In Figure 6(a), we show the web users entering at
R1 and R2 while in fact this means that the bulk of the
traffic they generate enters R1 and R2. Because clients
download more data than they upload, this implies that
the web servers are placed at R1 and R2 while their
respective clients are attached to R2 and R3.

To determine the target rate allocation when there
is no oversubscription, we subtract the EMRs from
the capacities in each bottleneck and then compute the
weighted proportional fair share. LetK denote the num-
ber of bottlenecks. LetM denote the sum of the number
of control loops passing through all three bottlenecks
and the number of cross-flows entering each bottleneck.
Thus, the target rate allocationx∗ij for the flow (i, j) is

x∗ij =





wij

W C + xije if i = 0

wij

Wi
(1− W0

W )C if i 6= 0
(28)

where C = 100 − ∑
0≤j<M x0je, Wi =

∑
0≤j<M wij

andW =
∑

0≤i<K Wi.
If a control loop with an EMRx0je incurs its ac-

cumulation limit, we simply set its EMR to zero and
replace its weight with the control loop’s accumulation
limit to compute its degraded service rate. We describe
the following cases.

1) No Oversubscription:As specified in Table I, the
long flows labeled(0, 0) and(0, 3) as well as all the cross
flows that traverse a single bottleneck start at a uniformly
distributed random time in 0∼5s, denoted asU [0, 5]s.
The sum of the EMRs for(0, 0) and (0, 3) is 40Mbps,
well below the bottleneck capacity. Neither flow needs
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Fig. 6. Simulation of all services co-exist in a complex network of three bottlenecks: (a) A parking lot topology of 3 bottlenecks shared by
the long and short flows, plus 1,000 web sessions; (b) EMR flow throughput: Flow (0,0) gets its expected 30Mbps bandwidth, except during
50∼75s when its accumulation limit of 60KB takes effect; Flow (0,3) gets its expected 10Mbps bandwidth, except during 25∼75s when its
accumulation limit of 15KB takes effect; (c) WRS flow throughput: Flow (2,0) gets 3 times of bandwidth of flow (2,1); (d) Accumulation
for flows with rate expectations. When the accumulation of an EMR flow touches its preset limit, its EMR degrades, as shown in (b); (e)
AVD bottleneckR1 queue length is very low, even after the web traffic comes in; (f) Droptail bottleneckR2 queue length is proportional to
the number of active flows. It is made more bursty by the web traffic during 100∼140s. We setκ=0.5, target accumulationaij=3 ∗wijKB,
AVD’s damping factorα=0.1 and target utilizationβ=0.98.

to incur an accumulation greater than its accumulation
limit to achieve its EMR. Thus, as shown in Figure 6(b),
both flow (0, 0) and (0, 3)’s EMRs are satisfied and
they obtain their respective target rates as determined
by Equation (28).

2) Accumulation-limited:At 25s in the simulation,
flow (0, 1) begins transmitting and steers toward an EMR
of 35Mbps. The sum of the active EMRs 75Mbps is
still less than the capacity, but for flow(0, 3) to achieve
its expected rate would requirea03 > A03. Therefore,
flow (0, 3) becomes bounded by its accumulation limit
shown in Figure 6(d) and fails to obtain its EMR. Even
though x00e and x01e are larger thanx03e, they are
satisfied because we have a policy of giving them larger
accumulation limits.

3) Oversubscription:At 50s, flow(0, 2) begins trans-
mitting, resulting in blatant oversubscription. Because all
of the EMRs are themselves less than the capacity, we
would intuitively desire to have a subset of the EMRs
satisfied. Unfortunately, flows(0, 0), (0, 1) and(0, 2) all
have similar accumulation limits thereby forcing all to a
weighted proportionally fair share satisfying none of the
EMRs, as shown in Figures 6(b) and (d). But none of

the flows without an expected rate are starved.

At 75s, flows (0, 1) and (0, 2) stop sending thereby
allowing the system to return to an equilibrium that
satisfies all expected rates for active flows. Throughout
the simulation,x03 changes slowly compared tox00,
shown in Figure 6(b). This can be attributed to the
large difference in round trip propagation delays: Flow
(0, 0) has 10ms while flow(0, 3) has 208ms. However,
despite their difference in propagation delays these flows
still converge onto the appropriate target rate allocation
throughout the simulation, or at least until the web-like
traffic begins at 100s, at which time the equilibrium is
no longer well-defined.

4) Web-like Traffic:At 100s, five hundred web users
entering bottleneckR1 and five hundred web users
entering bottleneckR2 introduce substantial variation
in queue lengths, illustrated in Figures 6(e)-(f). We
determined empirically an appropriate number of web
users by turning off all sources except web users. We
then tuned the number of web users to consume approx-
imately 10% capacity. Of course, due to burstiness loads
are sometimes much higher. The key result is that despite
burstiness, each control loop hovers above its expected
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Fig. 7. Implementation results of all the services co-existing in a network of two bottlenecks: (a) Topology; (b) Each flow gets a throughput
around its target value shown in the dashed lines.

rate shown in right side of Figure 6(b).

Again flow (0, 3) appears to adjust more slowly than
flow (0, 0) (thus with less oscillation) in response to the
bursty web traffic because of its much longer RTT, but
it stays near the expected value.

5) Coexisting Bottleneck Mechanisms: Droptail and
AVD: As shown in the topology Figure 6(a), bottle-
neck R1 uses AVD while others use droptail without
AQM. Figures 6(e)-(f) readily demonstrate the benefits
of AVD. The bottleneckR1 experiences equilibrium
queue lengths near zero independent of the changing rate
allocations. Even when the web traffic starts, its queue
still remain substantially lower than that ofR2.

6) Weighted Sharing:Flow (2, 0) sends with weight
3 throughout the experiment. For comparison we show
its neighboring flow(2, 1) with weight 1. Because these
flows traverse the same path, we expect(2, 0) to obtain
roughly three times the throughput of(2, 1) regardless
of the changing rate expectations or the presence of
web-like flows. Figure 6(c) reveals this. Furthermore, it
shows that as the load from the EMR flows changes,
each control loop steers toward the new rate allocation
corresponding to proportional fairness for the capacity
not allocated to the satisfied EMRs.

Showing Monaco EMR and WRS performance under
different scenarios, the simulation results in this section
demonstrate that all the proposed services can be pro-
vided in a dynamic environment with non-trivial bursty
background traffic. The target rate allocations are well-
defined and controllable via our choice of accumulation
limits Ai even under oversubscription.

B. Implementation Experiments

We also implement Monaco in Linux kernel v2.2.18
based on the Click configurable router [17] and perform
a set of experiments on the Utah Emulab [20].

We show one result here for a two-bottleneck network
shown in Figure 7(a) with 1Mbps link bandwidth and

20ms one-way delay. There are four long flows which
pass all bottlenecks and two cross flows each using only
one bottleneck. Long flow 1 asks for an EMR rate of
0.2Mbps. Long flow 2 requests a WRS service with
weight 5. All other flows have weight 1. Long flow
2 is an on-off flow with a period of 20s. We did the
experiment for 60s. As depicted in Figure 7(b), each
flow gets its targeted rate.

Comparing to the previous simulations, implementa-
tion results oscillate more. This comes mainly from the
limited timer granularity in Linux kernel which makes
traffic less regulated (more bursty) than in ns-2.

VII. D ISCUSSION

We focus on using closed-loop congestion control
mechanisms as a data plane building block to provide
better QoS than the Internet’s best-effort service. Both
TCP Vegas and Monaco are delay-based, while TCP
Reno is loss-based. All of them are close-loop congestion
control schemes. For congestion control purpose, we
compared Monaco and Vegas in a previous paper [31].
The central theme of this paper is that, within the
close-loop schemes, accumulation is a more manageable
parameter in providing service differentiation than loss,
as shown in our analysis and simulations.

There are several important deployment issues for our
scheme. The first concern is scalability. Monaco requires
each (congested) router to provide two FIFO priority
queues for all EMR and WRS flows. Since these are
not per-flow queues, scalability along this dimension is
not a problem.

The overhead of the Monaco control traffic is very
low. For each flow, there are only three control packets,
one in-band and the other two out-of-band,per RTT. The
control packets are small (40 bytes). Consider a typical
situation of a flow with an average congestion window
of ten packets and each data packet is 1000 bytes, the
control packets overhead is about3×40

10×1000 ≈ 1.2%.
Furthermore, when integrated with TCP, Monaco can
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use existing TCP packets to carry the IB and OB control
packet information and would thus introduce no separate
traffic.

Compared to DiffServ which places all its data plane
building blocks inside the network, Monaco moves some
complexity from the core network to network edges
or even end hosts. Albeit, Monaco still needs network
support, such as two FIFO queues and AVD for routers
with underprovisioned buffer. Note AVD routers can
interoperate with non-AQM droptail routers (see Sec-
tion IV-A). This makes Monaco more incrementally
deployable.

One interesting scenario is to deploy Monaco in an
edge-to-edge manner. Then an ISP can provide EMR
or WRS traffic trunks to carry its customers’ flow
aggregates across its network boundaries.

VIII. S UMMARY

In this paper we propose an accumulation-based,
closed-loop congestion control mechanism to provide
bandwidth differentiation and guarantees, based on our
prior work of using accumulation, buffered packets of
a flow inside the network routers as a measure to
detect and control network congestion. The key idea
is to map service provisioning onto accumulation al-
location. We design two concrete services: EMR and
WRS. Analytically as well as experimentally, we show
that accumulation can be appropriately manipulated to
provide each specific service. Because of the use of the
closed-loop congestion control, these bandwidth services
are meaningful only in the steady state, at the flow (not
packet) granularity and in a time scale that is larger than
one RTT.

We use a set of ns-2 simulations to evaluate the
service performance under different network topologies
and conditions. We demonstrate that both services can be
provided in a network with dynamic demands, under the
conditions of oversubscription and router buffer limits.
We implement the scheme in the Linux kernel based on
the Click router and validate the simulation results using
the Utah Emulab and an internal testbed.

This paper focuses on the data-plane building blocks
for the service provisioning. The related control plane
functions and architectural issues, such as the mapping of
the scheme in an edge-to-edge manner to provide cross-
ISP services, represent our future research.
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