An Accumulation-based, Closed-loop Scheme for
Expected Minimum Rate and Weighted Rate
Services

David Harrisor, Yong Xia, Shivkumar Kalyanaraman, Arvind Venkatesan
fCS and ECSE Departments, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
Corresponding email: shivkuma@ecse.rpi.edu

Abstract— Traditionally QoS capabilities have been con- end hosts, this paper proposes the use of accumulation-
structed out of open-loop building blocks such as packet based, closed-loop congestion control mechanisms as a

schedulers and traffic conditioners. In this paper, we con- data-plane building block to provide expected minimum
sider closed-looptechniques to achieve a range of service (gte and weighted rate services.

differentiation capabilities. We use an accumulation-based The Expected Minimum Rate (EMR) refers to a
congestion control scheme [31] as a data-plane building

block to provide an expected minimum rateservice that is service that offers a m-inimum contracted _ra}te assgrance
similar to ATM ABR, Frame Relay CIR/PIR and Diffserv  PIUS @ proportionally fair share of the remaining available
assured service and aveighted rateservice that achieves a capacity. It is conceptually similar to the ATM ABR
significantly larger range than the loss-based approaches Minimum Cell Rate (MCR) [2] and the Frame Relay
that extend TCP [9] [25]. The central theme is to allocate CIR/PIR that guarantees (through admission control) a
router buffer space among competing flows in alistributed Committed Information Rate (CIR) and can burst up to a
mannertq meet the rate_ diﬁerentiation objectiveg. Because pegk Information Rate (PIR) [12]. EMR service is also
both services are provided using _the congestion control gimilar to the DiffServ assured service [4], though the
bmechanlsms, they are meaningful in steady state and can o hag myltiple classes and drop precedences within
e modeled as moving the equilibrium in Kelly’s nonlinear
optimization framework [16]. This scheme does not require eqch class. ATM ABR _MCR’ Frame_ Relay _CIR/PIR and
admission control; instead, it degrades to a well-defined, DiffServ assured services are realized using open-loop
policy-controlled bandwidth allocation during oversub- building blocks, such as packet scheduling and traffic
scription. It does not require Active Queue Management conditioning [10] [27].
(AQM) at bottlenecks with sufficient buffer. However, with The weighted rate service (WRS) building block pro-
AQM, we achieve near zero queue with high utilization vides weighted bandwidth differentiation among flows
at the congested routers. We use ns-2 simulations andihat share the same path. We demonstrate that our
Linux kernel |mplementat|or_1 experiments to _demonstrate mechanisms achieve a wider range of weights than the
the performgnce of the services. Some practical issues andloss—based bandwidth differentiation approaches using
open questions are also discussed.
TCP [15] [9] [25].
Index Terms—Quality of Service, Congestion Control,  \we develop concrete service building blocks based
Closed-Loop Mechanisms. upon our prior work on a family of Accumulation-
based Congestion Control (ACC) schemes. ACC uses
|. INTRODUCTION accumulation, the buffered packets of a flow inside
As the Internet evolves as a telecommunication infratiie network, as a congestion measure [31]. An ACC
tructure, its best-effort service model must be augmenteaintrol loop measures its accumulation and adjusts its
to provide better quality of service (QoS) to supporending window to keep the accumulation around a target
more demanding application requirements. For exawalue. In [31] we showed that ACC achieves weighted
ple, researchers have developed the Integrated Seryiceportional fairness and has an equilibrium decided by
(IntServ) architecture [5] to provide bandwidth and delafe target accumulations. Our service building blocks
guaranteed services and the Differentiated Service (Difftap a target rate allocation onto target accumulations.
Serv) architecture [4] for service differentiation. BotlOne key concern is that ACC over a network of FIFO
architectures place their service building blocks insidgieues inherently implies that the bottleneck routers
the network. Trying to move some functionality fronbuild physical queues, and thus the range of services is
the network core toward the network edges or even tlimited by the bottleneck buffers within the network. We



weighted rate  expected minimum rate service

semantics WRS service building block in Section V. A set of ns-

\ — - ) . : . )
\ \ ] 2 simulation results are given in Sections IV-C and V-
best-effort DiffServ stateless IntServ B. In Section VI we multiplex all the services to show

d senvi - .
assured service - core that they can co-exist in a complex network. Section VI

Fig. 1. Network QoS spectrum. It illustrates a range of QoS frofliSCusses possible applications of our scheme and some

best-effort service, differentiated service to rate and delay guarantwen issues. Section VIII concludes this paper.
service. Weighted rate service and expected minimum rate service

locate between the best-effort service and the differentiated service.
Il. RELATED RESEARCH

_ _ _ _ IntServ architecture [5] was proposed to provide end-
overcome this constraint by leveraging an Active QUey§ g bandwidth and delay guarantees. But there is no

Management (AQM) mechanism that communicates the,| genioyment seen due to its algorithm complexity
virtual queueing delay [7] [31] incurred on a virtualny that it has to maintain per-flow state inside the
queue [19]. With such an AQM mechanism, we achieyg, ;o1 By carrying the per-flow state in the packet head-
near-zero queue and high utilization at the congestgfl 4nq thus eliminating them from inside the routers,
routers. SCORE [29] is a significant step toward achieving guar-
Figure 1 illustrates aualitative spectrum of packet- anteed service while keeping the core Internet stateless.
switching network QoS capabilities ranging from best- piftSery [4] was developed to implement scalable ser-
effort service, DiffServ, to rate/delay guaranteed serviggee differentiation in the Internet. It defines an assured
offered by IntServ, including frameworks such as Statgsnwarding service that provides delivery of IP packets in
less Core (SCORE) [29]. Services on the right-hangyr independently forwarded classes with three different
side of the diagram are more complex and offered te|s of drop precedence. Wang proposed a differenti-
finer granularity. The left side of the spectrum impliegteq service scheme called “User-Share Differentiation”
less quantitative services, the use of FIFO queuingat allows ISPs to differentiate traffic flows on a per-
closed-loop congestion control and potentially AQMiser basis, providing minimum bandwidth guarantees
mechanisms inside the network. Our framework residgfd share-based bandwidth sharing [30].
in the middle of the spectrum, to the left of DiffServ ¢k and Fang suggested that each flow uses a “pro-
assured service in the sense that we do not impGgg” specifying how much capacity should be allocated
the complexity required to implement drop precedengg TCp connections during congestion [8]. A component
inside the network, but to the right of DiffServ in thes placed at the edge of the network that marks a bit in the
sense of the wide service range achieved. Unlike IntSe@(SSmg packet headers to denote whether the packets are
and SCORE that offer per-packet assurances, our seryigeor out-of-profile. The bottleneck then uses two RED
semantics are meaningful only in steady state due to T&!@orithms [11] in parallel to drop the packets randomly
use of the closed-loop congest control. In other Wordéuring congestion with preference toward keeping the
our model offers the lower end of the service Spectruckets that are marked in-profile.
at very low complexity. All the proposals discussed above are basically open-
We evaluate the EMR and WRS building blocks usingop approaches. Researchers have also designed closed-
ns-2 [26] simulations and Linux implementation experipop mechanisms to provide service differentiation. For
ments. Several fundamental issues such as graceful ggftance, Crowcroft et al. implemented MulTCP which
vice degradation (When there is oversubscription, limithakes a connection behave @asTCP connections by
on accumulation, or underprovisioned bottleneck buff@icreasing the congestion window of the single MulTCP
size) and trade-offs (like non-AQM droptail vs. optionatonnection byw packets in each RTT and, when a
AQM support at bottlenecks) are explored. We note thglss occurs, decreasing it to onq%& [9]. Nandagopal
this paper only develops the abstract service modet, al. provided a systematic analysis on how to adjust
albeit with ns-2 simulation and Linux implementatiomCP Reno’s increase/decrease parameters to achieve the
validation, and does not explore architectural issues sugBighted bandwidth differentiation [25]. In both works
as multi-ISP service coordination, etc. the service is achieved by (adaptively) changing the
This paper is organized as follows. In Section Il wancrease/decrease parameters of the congestion control.
review the related work. In Section Il we describdéisieh et al. tried to combine parallel TCP connec-
the ACC fluid model and Monaco, one of the ACGQions [14]. In this paper we take a different approach
schemes, that serves as the basis on which we dedigmchieve service differentiation by manipulating accu-
the EMR service building block in Section IV and thenulation allocation among the competing flows.



A different line of research started from Kelly’s opti-backlogged inside the node buffers, not those stored on
mization framework [16], followed by Low et al. [21], transmission links. This definition serves as a reference
Srikant et al. [18], and Massoulie et al. [23], wher& implement an unbiased accumulation estimator in Sec-
they model network congestion control as a nonlinetion IlI-B. We aim to control the flow rate by controlling
optimization problem under which all the users try tds accumulation.
maximize their own interest, subject to a set of capacity2) Control Algorithm: We apply a window-based
constraints. Our ACC scheme fits into this optimizatiocontrol to use accumulation as a measure to detect
framework. Kunniyur and Srikant developed an Adaptiveetwork congestion. If accumulation is low, we increase
Virtual Queue (AVQ) algorithm [19] which we leveragethe congestion window; otherwise, we decrease it to
to keep a small physical queue in the congested routdrain accumulation. Specifically, we try to maintain a
(see Section IV-A). Low et al. proposed an optimizatiooonstant target accumulatien for each flow: using a
model [22] for TCP Vegas [6] and suggested to improyaroportional ACC control algorithm:
its performance by using a buffer management mecha- ) K
nism called Randomly Exponential Marking (REM) [1]. wi(t) = Tt (ai(t) — ai) (2)
All these works were developed for the purpose of COlherer > 0, wi(£), rtt;, as(t) anda; are respectively the
gestion control. In this paper, we extend ACC as a data- , ind ; d trio time. instantaneous
plane building block to provide service diﬁerentiatior?ongesnon window size, roun p_ ' ;

accumulation and target accumulation value of fliow
and guarantees. s . .
3) Properties: Congestion control can be formalized
as a resource allocation problem [16] [21] [18] [24].
Using steady state queuing analysis and nonlinear opti-

In this section we briefly describe our prior work omnization we showed in [31] that the above ACC control
the ACC fluid model and its packet-switching networliigorithm fits into the Kelly framework [16] and drives
implementation, the Monaco scheme. Monaco solves tt network to an equilibrium of weighted proportional
technical problems of Vegas and thus serves as a basifess, with target accumulatian as flowi’s weight.
for the work in this paper. For the complete descriptiof is this weighta; that enables service differentiatiom
of ACC and Monaco, the reader is referred to [31]. principle, since the equilibrium is decided by alls, we

can accordingly adjust; to steer the equilibrium in order
A. ACC Fluid Model to achieve a specific service, e.g., EMR or WRS rate

We define the accumulation concept using a bit-b llocations discussed in Sections IV and V. This allows

bit fluid model. Then we develop a congestion contr s to avoid the major pitfalls in the loss-based service

algorithm based on accumulation and show its Steaggﬁerentlatlon approaches, as discussed in Section V-C.

state properties.

1) Accumulation: Consider an ordered sequence d8. Monaco Scheme
FIFO nodes{ Ry, ..., R,} along the path of a unidirec- Based on the measurement and control of accumula-
tional flow i. The flow comes into the network at th&jon, we have shown that a family of congestion control
ingress nodeR; and, after passing some intermediatechemes can be derived [31]. One example is TCP

IIl. BACKGROUND

nodesRy, ..., R;-1, goes out from the egress noftg.*  Vegas which estimates accumulationsasding rate x
The propagation delay from node; to nodeR;1 isa (rtt — rtt,) at the sender side, wheret is round trip
constantd;. time (RTT) andrtt, refers to round trip propagation

Define flow i's accumulation as a time-shifted, disdelay. The Vegas accumulation estimator is sensitive to
tributed sum of the queued bits in all the nodes along i%th the measurement error of the propagation delay

path fromR; to R;: and reverse path congestion. Therefore we designed a
J J—1 receiver-based, out-of-band Monaco scheme that ensures
ai(t) = aqij(t—>_ dy) (1) robust accumulation estimation.
Jj=1 k=j 1) Accumulation Estimation:Monaco estimates ac-

cumulation at thereceiver side. It generates a pair
of back-to-back control packets once per RTT at the
sender as shown in Figure 2. One control packet is sent

1We can mapR,/R; nodes as source/destination end hosts to forrc1)1Ut-0f-band (OB) and the other in-band (IB). The OB

an end-to-end control loop or ingress/egress edge routers to form%{?ﬂtf_O' packet skips queues in th_e intermediat? r_OUterS by
edge-to-edge control loop. We discuss practical issues in Section \passing through a separate dedicated high priority queue.

whereg;;(t — Zi;} dy) is flow ¢’s bits queued in node
R; attimet — Y/} di. Note it includes only those bits



sender bucket shaper with a rate value @fnd/rtt to alleviate
\ \ traffic burstiness. It also includes reliability enhance-
ments for the control and data packets lost. The reader
receiver is referred to [31] for more details.
/ — \\mp fit,

Forward T IV. EXPECTEDMINIMUM RATE SERVICE
OB ctrl pkt  accumulation est. Forward 1B . . . .
arrives. = num. of arrivals ~ Ctrl pktarrives. In this section we demonstrate the EMR service build-

o e ks, et ing block. We aim to provide any flova contracted

(or expected minimum) bandwidth plus a proportional
Fig. 2. Monaco accumulation estimator generates a pair of bacgare of remaining capacityt is achieved by keeping an
number of data packets at the receiver between the OB and 1B conrir | that fl Wi w ted” in th that th
packets is measured as accumulation, which is sent back to the se B_Er, at flow. vve mean e)'(peC e . In the sense ,a . e
using a reverse OB control packet. minimum can be satisfied if there is no oversubscription.
If there is, obviously we can not fulfill all the demands.
_ o Therefore a graceful service degradation is defined. We
Assuming the OB queues to be minimal as only othghow the theoretic results for a general network topology

OB control packets share them, such packets experieRgg| evaluate them using a set of ns-2 simulations based
only the propagation delay in the forward path. The 1By Monaco.

control packet goes along with the regular data packets

and re_aches thg receiver after exp_erier_1cing the Currﬁr.‘tAlgorithm

queueing delay in the network. The time interval between _

the OB and IB control packets measured at the receiv_erl‘etS consider a network of a sét= {1,..., |L|} of

samples the sum of the queueing delays in the forwawaks’ shared by a se_I ={L.. " [1]} of flows. Each

path. Considering a network in steady-state with enou ﬂk ; G_L_ has capacity;. FIO_W L€ I passes a rOF‘te

buffers where there is no packet loss, then, by Little’s? consisting OT a su_bset of links, i.el; = {l € L |

law, the average numbeéi,; of data packet arrivals attraversesl}. A link l_'s shared by a subséf of flows

the receiver after the OB control packet, but before gyhere I, = {i € I | i traversed}. .

IB control packet equals the average accumulation. As we discuss in Sectlo_n -A.3, g_sp_ecn‘lc rate alloca-
Obviously this comes with an extra requirement dion c_orresponds toa_lpartlcular equm_b_rlu_m of_the cqntrol

two separate FIFO queues inside the network route?slgor'thm (2); and, in tu_rn, the equm_brlum IS ‘?'ec_'ded

with a high priority queue for the OB control packet_?y the target accumulation;. So service provisioning

and a low priority queue for the IB control packets ant§ mapped to the allocation of the target accumulations.
the data packefs We use the following steady state analysis to introduce

2) Control Policy: Monaco employs the proportional®Ur algorithm. _ , _ _
control policy in Equation (2). It tries to maintain a SUPPOse we provide flowa bandwidthe; that is the
constant target accumulatiom; for each flowi by SUM Of an EMRz;. and a proportional share;, of the
adjusting its congestion window according to: remaining network capacity

cwnd;(n + 1) = cwnd;(n) — k- (aing —a;)  (3) Ti = Tie + Tip. (4)

where d;,, is the accumulation estimate, is set to e achieve this allocation by keeping for flava total

0.5, andcwnd;(n) is the congestion window value a@ccumulatiory; that, correspondingly, also includes two

a control periodr. In addition we conservatively boundParts:aic for ;. andaj, for z7,, i.e.,

the increase to within one MTU per RTT. . a; = Qie + Qip. (5)
Monaco sender implements rate-based pacing to _ )

smooth incoming traffic into the network using a tokeficcording to Little’s law, we have

*
2As designed, Monaco can be used to control flow aggregates a; = T i, (6)
or individual TCP/UDP connections. When integrated with TCP, Qie = Tje - tigs (7)
the IB and OB control packets can bear TCP segments. The IB «
control packet is the packet bearing the TCP segment with the Aip = T tig (8)

next sequence number after the OB packet's TCP segment. The

accumulation estimate can be fed back as a TCP option headefThe reason we use the symbal$ and xj, instead ofx; and
Thus ACC-based service differentiation can be implemented withat, here and we calk;, a proportional share is thaff andx;, are
adding new packets to the network. solutions to a nonlinear optimization, whitg. is an input parameter.



Y where x; is any feasible rate allocations satisfying the

constraint (11).

Beyond the expected rate,., we then consider the
rate z;, achieved with corresponding accumulatiog.
Similarly we can prove that the flow rai¢, is the unique
maximum of the residual problem relateddg;:

Ly

X+
0 / Xy x* rate
@ (b maximize Z aip Inzyy, (13)
el

Fig. 3. EMR could be modeled as two simultaneous nonlinear  subject to inp <¢ - ine’ Vi e L (14)
optimization problems: (a) Convex constraint sets showirig = iel, iel,
Ze + x5: the inner one forx,;, while the outer one forz;; (b) S0 Viel
Logarithmic utility functions ofx; and z;p. Lip » Ve

meaningz;, achieves similar proportional fairness:
wheret,, is the steady state queueing delay experienced x

Lip — Tjp
by flow i in its forward path. Equations (5)-(8) lead to > aip- — =0 (15)
Tie el P
aip = (1- ?;f) P 9) wherez;, is any feasible rate allocations satisfying the

where z,. is the expected rate knowa priori, z* can constraint (14). o _

be measured at either the sender or the receivergand S0 @ System providing an EMR service actually does
is provided by the accumulation estimator. two nonlinear optimization problems. However, these

Obviously, if we keep constant accumulation for §¥0 problems are not independent — they siraultane-

flow, then its (proportionally fairly) allocated rate isOUSin thatas long as one problem achieves its optimality,
decided by network routing and other competing flow&!€ other also achieves its optimality at the same time.
If we want to keep a constant rate for a flow, independefe illustrate this result in Figure 3. The reader is referred
of the changing environment, then the correspondifgy Section 5.3 of [13] for an analysis regarding general
accumulation has to adapt. This is reflected thyin Ulility functions. _ o
Equation (7), the queueing delay which is changing f the assumptions do not hold, i.e., there is either
in a dynamic environment. To avoid setting a varyingversubscription or underprovisioned buffers, then the
parametera;., or equivalentlya; in Equation (6), we above two optimalities are often not realized in a real
use Equation (9) to calculate;, that represents thenetwork. There are three boundary conditions affecting

accumulation in excess of the accumulation imposed Hif realizability of EMR:
the expected minimum rate;.. We steer the system e Oversubscription: Without admission control, the
so thata,;, approaches a target accumulation, a preset constraint (14) might be always invalid. Or it is
value (three packets in this paper) that is the same for possible that
all the flows. This can be modeled by the following two
nonlinear optimization problems.

Firstly let's assume enough buffers are provided in all ) o o
the congested routers and there is no oversubscription® Accumulation limit: To avoid intolerably long
We consider the total ratet achieved with correspond- ~ 9Uéues, we introduce an upper bourd on ac-

> @i > ¢, 3L E L (16)
i€l

ing accumulationa;. As proved in [31], the flow rate cumulation, namely,
x} is the unique maximum of the following nonlinear a; = Z g < Ay, Vi€ (17)
optimization problem related te;: e,
maximize Z a; lnx; (10) « Buffer overflow: Even with the above accumulation
i€l limit, we can not guarantee that each router buffer
subject to Y wi< ¢, VIEL (11) Q; is sufficiently provisioned, i.e.,
el
;>0 Viel a=> qu<Q, VL. (18)
il
meaning that:; achieves weighted proportional fairness: When any of the boundary conditions is effective
> a; T 0 (12) EMR can not be satisfied. Therefore we need to define

el Ty a degraded service for this case.



Firstly, we argue that the constraints (16) and (18daptively changing link capacity such that the steady
can be translated equivalently into the form of (17%tate queue is sufficiently small. We compute a virtual
For (18), it is obvious because both (17) and (18) ageieueing delay [7] defined as the ratio of virtual queue
constraints ony;. For (16), the intuition is that whenlength divided by virtual capacity and add it into the
there is an oversubscribing flow, its expected minimuforward control packet provided by the out-of-band ac-
rate cannot be satisfied even were it to incur infinisumulation estimatdr We call this mechanism Adaptive
accumulation, which means before this happens, its actdirtual Delay (AVD) algorithm. A nice property of AVD
mulation constraint (17) will be effective. So these threie that it is incrementally deployable since a mixed set of
constraints can be summarized into one form of (1Apn-AQM droptail and AVD routers can work together
with an equivalent accumulation limi;?. To take into (see Section VI and [31]). In such an environment the
account all the above boundary conditions (&@)8), we accumulation estimate will b= ar;ro+2z-typ Where
define a new optimization problem similar to (10) butr;ro is the accumulation in those FIFO routessjs
with changed coefficients; and thus different, thoughthe received rate antl,p is the sum of all the virtual
still logarithmic, utility functions: delays at those AVD routers.

To sum up, we use the algorithm below to provide the

. . ! !
marimize ;ai in; (19 EMR service. It includes seven steps.
K3
. !
subject to z}: zi<a, VIEL Algorithm 1 Expected Service Pseudo-code at Sender
le, : , cwnd = the congestion window in bytes
x; >0, Viel : : . .
i ’ pwnd = the congestion window in the previous RTT
where ssthresh= the slow start threshold
a; = min(a;, A1), Vi € I. (20) srtt = the smoothed RTT estimation

L . o _ _ A = the total accumulation limit
Again, its optimal allocatiorz;* achieves weighted pro- a, = the target accumulation beyond the EMR

portional fairness: a(t), a,(t) = accumulation estimates
/ " x
Zag . w <0 (21) (1) z(t) = pwnd * 8.0/ srtt;
i€l i (2) ap(t) = mazx(a(t) * (1 —z./z(t)), 0.0);

(3) pwnd = min(pwnd + mtu, cwnd);
(4) cwnd = pwnd — k * maz(ay(t) — ap, a(t) —A);
(5) if (a(t) > A || ap(t) > ap) ssthresh = cwnd,
(6) else{

(6.1) if (pwnd + mtu >= ssthresh)

ssthresh = cwnd;

(6.2) cwnd = min(pwnd x 2.0, ssthresh); }

(7) ratelimit = cwnd * 8.0/srtt;

wherez’, is any feasible rate allocations.

Consequently, when there is either oversubscription,
accumulation limit, or underprovisioned buffers, these
conditions affect the realization of (10) and (13), i.e.,
EMR can not be provisioned. A new optimization
problem (19) is automatically defined by adding these
constraints (16y(18) into (10), achieving a weighted
proportional rate allocation which can be computed from
the boundary conditions. The weight is changed from
a; to o) defined by Equation (20). As a result, EMR In Step 1, we compute the departure rateas the
gracefully degrades into a weighted proportionally faliits transmitted in the last RTT divided by the smoothed
rate, with a new set of weightsg;’'s. Further, since we RTT, or srtt.
have the freedom to set the accumulation limit for In Step 2, we compute the accumulatiep incurred
each flow: in (17), this parameter provides a policybeyond the EMR according to Equation (9). When a
based control on bandwidth allocation. We discuss hasntrol loop is ramping up or during oversubscription,
to setA; in Section IV-B and use simulations to illustratehe departure rater may be less than the EMR,,
A;'s effect in Section IV-C. causinga, to be negative. So we max with 0.0 to force

Now let’s look at a trade-off. Even if we set amonnegativity.
accumulation limit for each flow, the steady state queuingin Step 3, we force awnd that is within 1 MTU of
delay or physical queue length might be too large as the
number of flows increases. Is it possible to provide the*This accumulation estimator (see Section I1I-A.1) sends a control

requested services based on managing accumulation 8<et once per RTT out-of-band to avoid standing queues that
¢t the Vegas accumulation estimator. If no control packet is

at the same time, keep a Sma” steady state queue? AMRaple from the accumulation estimator then the virtual delay may
have adopted the AVQ algorithm [19] that emulates am communicated using bit marking as in REM [1].




cwnd to be equal tocwnd. This is necessary becausdéoss has been minimized{; can be set relative to each
our algorithm stops sending when the packet at the heattier based on policy as described below for a network
of the queue would caugavnd to exceedcwnd. of AVD routers.

In Step 4 we set the congestion window according to In scenarios where AVD is usedi; no longer refers
the Monaco control policy defined in Equation (3) antb physical queuing and thus we are free to ute
the accumulation limitA. as purely a policy-based mechanisfor defining how

In Steps 5-6, we determine whether step 4 wasbandwidth is distributed during oversubscription. If all
decrease or an increase step. In Step 5, we stop a slbyare set equal then expected minima tend to be satisfied
start by reducingssthresh to the current congestionin “smallest first” order. If allA;'s are set in proportion
window size. In other words, each control loop slowto their expected minima, then “all-or-none” of the ex-
starts until congestion is first detected. Step 6.1 epected minima are satisfied. We can also define gold and
sures that when awnd decreases due to somethingilver services wherein all the gold members share one
other than congestion (e.g., decreasing user demara)cumulation limit which is larger than the accumulation
ssthresh does not decrease, i.essthresh tracks the limit shared by all the silver members. When possible,
congestion level in the network rather than the usgold members are satisfied first; otherwise, the ratio
demand. It bounds the increase step to one MTU geetween the gold and silver accumulation limits refers to
RTT. Thus Monaco increases no more aggressively théme ratio of their proportional shares if oversubscription
TCP’s additive-increase-multiplicative-decrease (AIMDArises.
and less aggressively than TCP in the neighborhood ofWe illustrate this issue using concrete simulation ex-
the equilibrium. Though not shown here, Monaco backsnples in the next subsection and Section VI.
off by one half in response to loss and thus Monaco
degrades to TCP in the presence of significant loss. S&ep
6.2 bounds slow start bysthresh. '

Step 7 sets the rate on the token bucket shaper used/e evaluate the performance of the EMR service
in Monaco’s rate-based pacing. building block using ns-2 simulations on a single bot-
tleneck. Each flow has a different propagation delay.
In Section VI we provide ns-2 simulation and Linux
implementation results for a more complex network of

One question remaining is how to set the accumulationultiple bottlenecks. In all the experiments we set data
limit A;, which serves as a policy-controlled parametgacket size to 1KB.
for an EMR flow:. Obviously, a flow with a largedA; has ~ We simulate a single 100Mbps bottleneck shared by
more chance to get its EMR during oversubscription;tan flows using Monaco. We use simulation because this
smallerA; means its EMR will probably not be obtainedallows us to temporarily set aside the practical limitation
in the same situation. of finite buffer sizes, so that we can study the range

By the definition in Equation (1), the accumulation obf services in the absence of packet loss caused by
a flow is distributed in the form of the buffered packetenderprovisioned buffer. Flow 0 has an EMRB. while
among the congested routers on its path. According dather nine flows request a proportional rate service (i.e.,
Equation (5), to achieve EMR, accumulatienincludes with an EMR of 0). Each source (0 < i < 9) is
two parts:a;, steers toward three packets, the defautbnnected to the bottleneck via an 1Gbps link with
value we set for a general non-EMR flow;. should one-way propagation delapi + 1ms. We perform two
adapt according to the changing environment. Siaces  kinds of simulations, one using a non-AQM droptail
an upper bound af;, it should be set in proportion to thebottleneck, the other using an AVD bottleneck.
number of the congested routers and how congested theln the first set of simulations we evaluate the range
are. This makes setting; an open question in theoryof satisfiable EMRs without AQM and we demonstrate
when there is no AVD deployed inside the networkhe effects of setting the accumulation limit. For each
routers. In this casél; is limited by the buffer available accumulation limit of 30KB and 3000KB, we run simu-
in the congested routers in the network, but this lations each with a different expected raig from 0O to
difficult to know from the network edges. In practice
this assumes a management plane that can collectiveR}Setting A; and the expected minima both assume coordination

. ; ; the service provider level. In end-to-end scenarios, this is only
set 4;. This management plane monitors the I’]etwo‘ta}riactable if we assume DiffServ-like building blocks for policing at

for significant papket loss qu_e _'[O buffer overflow angqoyider edges along with a management infrastructure for brokering
scalesA; appropriately to minimize the loss. Once theapacity.

Simulations

B. How to Set the Accumulation Limit
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Fig. 4. EMR in a single bottleneck: (a) Monaco throughpytvs. EMR zo. with a non-AQM droptail bottleneck and RIO throughput

vs. DiffServ bandwidth allocation; (b) The former graph zoomed into 90-101Mbps; (c) Monaco throughpg. EMR zo. with an

AVD bottleneck, zoomed into 90-101Mbps; (d) Steady state queue length vs. EMRith a droptail or AVD bottleneck (when flow 0's
accumulation limitA is set to 30KB and 3000KB, respectively), and RIO+TSW average queue length vs. DiffServ bandwidth allocation; (e)
RIO+TSW's measured rate for capacity allocation 80Mbps; (f) Bottleneck utilization when using Monaco and RIO+TSW. In these simulations,
we setx=0.5, target accumulation,=3KB, AVD’s damping factora=0.1 and target utilizatiof$=0.98. For RIO+TSW simulations we use

the parameters in [8].

110Mbps. All other flows have a target accumulation dhe average queue diminishes as the ratio of the rates
3KB. The result is shown in Figure 4(a) and zoomed increases since 1) the packets in the fast flow are nearly
Figure 4(b). WithA = 3000KB, we are able to allocate evenly spaced due to rate-based pacing and therefore
up to 99.1Mbps (i.e.%) of the 100M bottleneck do not incur queue, and 2) the slower flows send so

to a single flow before the accumulation limit is reachethfrequently that they rarely perturb the queue.

When A = 30KB, the maximum satisfiable EMR is As shown in Figure 4(f), the bottleneck utilization

S92 = 52.6Mbps, demonstrating that the unsatisfiegbr all cases without AQM was 100% in the steady

EMR due to the constraint (17) degrades to a weightgghte (since the queue never drains completely), and
proportionally fair rate. when AVD was used, the utilization was always within
The upper part of Figure 4(d) shows that the quetnalf a percent of 98%, our target utilization for AVD.
length grows dramatically (note the logarithmic scale Now we compare EMR and DiffServ assured service
of the vertical axis) as the EMR. increases. This is using a set of simulations. We replace all Monaco flows
most apparently shown by the case whér- 3000KB. with TCP Reno connections. We vary the allocation
However in all cases, the queue growth flattens when e one TCP Reno connection using Clark et al’s RIO
accumulation limit is reached. The rapid queue growth ggilding blocks [8]. To perform marking they propose
the EMR approaches the available capacity demonstraigs Time Sliding Window (TSW) tagger which marks
the bound on the achievable services as a function of Iib@:kets in-profile so long as the connection sends with
bottleneck buffer size in the network. rate less than 4/3 of its allocation specified in its profile.
In the second set of simulations, we repeat the saf@ecause TCP backs off one half of its congestion win-
scenario except with an AVD bottleneck. The range dow in response to loss, the expectation is that during
achieved EMRs is similar to the case without AQMgongestion the TCP connection should sawtooth between
as shown in Figure 4(c) for the EMR of 90-100Mbp<2/3 and 4/3 of its allocation, resulting in a long-term
However, AVD keeps the queue length at near zero agerage rate near the allocation. RIO uses two RED [11]
depicted in the lower part of Figure 4(d), since insteagorithms in parallel to randomly drops “in” and “out”
of incurring physical accumulation, each control loopackets in the queue. The RED algorithms are configured
incurs virtual accumulation on a virtual queue. In factuch that the “out” packets are dropped before the “in”
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Fig. 5. WRS in a single bottleneck: (a) Relative throughput ratio vs. weight; (b) Bottleneck queue vs. weight; (c) Bottleneck utilization.
In these simulations, we set=0.5, target accumulation;=w;*3KB, AVD’s damping factora=0.1 and target utilizatior=0.98.

packets. We use the same parameter settings for Ri€hieved WRS range significantly outperforms the loss-
and TSW as specified in Table 1 of [8]. Additionallypased approaches lblgree orders of magnitude

our RIO algorithm has Explicit Congestion Notification

(ECN) [28] turned on. Thus packets are marked fof algorithm

congestion (different than the in/fout mark) when RIO Again let's consider the general network topology

would otherwise have dropped. described in Section IV-A from a steady state queuing

In Figure 4(e) we demonstrate one of the IImIt"’ltlongnalysis perspective. At a steady state in any bottleneck

of the TSW tagger and a more fundamental limitation
. . . . link [ where

of providing assured services with TCP+RIO. First a Zx . (22)

connection receives the same treatment for any allocation A

el
greater than 3/4 of the bottleneck capacity since all <

the packets are marked in-profile. More importantly’€ have its steady state queue lengthincluding con-
in order to obtain an allocation that is a significa ibutions from a subset of flows traversing that link as

fractign of thg bottleneck capacity, TCP must oscillate q = Z qil (23)
its window size on the same order as the bottleneck icl,

capacity. This oscillation is a consequence of TCPGqare . is flow i's steady state queue at bottlendck
AIMD algorithm and thus affects all profile marking, \ye yse window-based congestion control, in which
ECN marking, and AQM algorithms. Since the amplitudg \yinqow «; bits of flow i could be stored either on

of this sawtopth grows rpughly linearly w!th flow rat_etransmission links (=w; — a;) or in router buffers as
accommodating a flow with a large bandwidth allocatlogteady state accumulation

implies one of the following three: large queues (see

Figure 4(d)), limits on achievable allocations (as shown a; = Z qil (24)

for bandwidth allocations above 80Mbps in Figure 4(e)), leL;

or low utilization (as shown in Figure 4(f) for bitwhere L; is the subset of bottleneck(s) which floiw

rates below 80Mbps). Thisundamentallimitation of traverses. If two flows; andi, traverse the same path

TCP+RIO makes it impossible to simultaneously achie¥eom a source to a destination, then they share the same

high utilization, low queue length, and a wide disparitget of bottleneck(s), namely,

in the allocated rates. By avoiding AIMD, Monaco with

AVD simultaneously achieves all three. Ly = La. (25)

At any shared bottleneck employing FIFO scheduler

which decides packet departure totally based on its

arrival order, the flow rate allocation is proportional to
In this section we propose the WRS service buildinge buffer allocation (if loss amount is neglectable), i.e.,

block. Our goal is to provideveighted rate discrimi- T qu

nation among flows along the same path, i.e., a flow = (26)

with weightw should get a bandwidtly times that of a

flow with weight 1 We show the steady state queuing

theoretic result for a general network topology. Then T1 2en, Qu _ ap 27)

V. WEIGHTED RATE SERVICE

T2 q21
The above three equations lead to

we evaluate it using ns-2 simulations and show that the To der, @2 a2



10

which means that, for a general network topologless than the desired weighted share. This arises because
the rate allocation to flows along the same path &/D holds the loops with weight 1 at a window size
proportional to the accumulation allocation. Further, d@f one. In this regime, the Monaco control policy is no
is the relative accumulation allocation, instead of thdonger defined, instead if the accumulation estimate is
absoluteaccumulation allocation, that decides the ratarger than the target and the window size is one then
differentiation. the control loop halves its shaper’'s send rate. Once the
accumulation estimate reduces below the target, we reset
the respective shaper to a rate of 1 packet per RTT. From
simulation to simulation, as we increase the weight of
We evaluate the performance of the WRS serviggurceSo to 491, the equilibrium window size of source
building block using ns-2 simulations on a single bots1 shrinks to 1. In the simulation with weight 2691, the
tleneck with large enough buffer size to avoid packefindow sizes of all sourceS§1~.S9 shrink to 1 packet.
loss. For a more realistic network of multiple congestegl order to obtain larger weighted shares, the control
links shared by flows passing through different numbel@ops must either send slower or the queue must grow.
of bottlenecks, we provide ns-2 simulation and Linuas we know from Figure 5(b), the queue does not grow
implementation results in Section VI. for simulations with weights above 491. Instead, we use
We use the same single bottleneck network whergte-based pacing to halve the send rate whenever the
an 100Mbps link is shared by ten flows with verwindow size reaches 1 and the negative feedback arrives.
heterogeneous RTTs. Flow O has a varying weight When the positive feedback arrives we react in the same
while other flows have unit weight (i.&,y = wa; = way as before.
- = wag). We performed two sets of simulations to This handling for the regime of low rates is similar to
evaluate the weighted service differentiation range. the exponential back-off used by TCP when a timeout
In the first set of simulations we evaluate the serviagcurs and the immediate recovery to a rate of one packet
differentiation range without AQM. We did a set ofper RTT when an acknowledgement arrives. Jumping to
simulation runs by changing from 1 to 10° which one packet per RTT represents an aggressive increase
is at least three orders of magnitude larger than thieat biases the weighted share in favor of the control
weights (10-100) achieved with TCP in [9] [25]. We loops with smaller weights. This aberration occurring at
discuss this huge difference in the next subsection. Agh weights might be solved through careful redesign
shown by the upper curve in Figure 5(a), for the widef the increase step used in the low rate regime.
range of weight variation, accurate weighted sharing isAs shown in Figure 5(c), without AQM, the utilization
achieved. This comes with a cost, though. The uppierl100%. With AQM the utilization settles around 98%,
curve in Figure 5(b) shows that the steady state quewnhbich is our target utilization for AVD.
length at the bottleneck increases linearly with weight.
The curvature in the mean queue length in Figure 5(b)& Accumulation-based vs. Loss-based Approaches
due to a y-offset for a weight 1 equal to the sum of the The related research has explored how to modify
target accumulations (30KB). As with the EMR buildingrCP Reno’s handling of packet loss to provide similar
block, the large queue incurred by service differentiaate differentiation. In this subsection we compare the
tion based on physical accumulation demonstrates ftin@chanisms used by the loss-based approach and in this
practical bound on service differentiation that could bgaper. We argue that the accumulation-based approach
achieved with finite bottleneck buffer sizes. is in principle better than the loss-based one in that the
Again, with AVD we are able to break the couplingormer can achieve a significantly larger range of service
between the notion of accumulation and real queuingjifferentiation (as shown by the simulation results) and
This is shown by our second set of simulations. Figt the same time maintain good dynamic performance.
ure 5(b) demonstrates that AVD achieves average queuén [9] [25], the service is achieved by (adaptively)
sizes less than 1 packet. This average diminishes dwmnging congestion control increase/decrease parame-
weight increases for the same reason that average quiews. This approach creates a dilemma: it is hard to
diminishes as EMR increases as we already discusseadhieveboth service differentiation and good dynamic
Section IV-C: control loops that send rarely also rarelyerformance because the increase/decrease parameters
perturb the queue. of the congestion control algorithm decide its dynamic
As shown in Figure 5(a), for weights belaw?, AQM  performance. For example, larger increase/decrease pa-
achieves the desired weighted share. However, aboaeneters lead to larger oscillation of the congestion win-
about10?, the control loop with the large weight obtainglow. Large oscillation leads to burst losses and timeouts,

B. Simulations
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TABLE |

which is why [9] and [25] suffer. Further, packet loss can
MULTIPLE-BOTTLENECK SIMULATION PARAMETERS

only be measured accurately over long periods of time,

which accounts for their long simulation run-times. flow | expected | A limit | weight [ start | stop
Our accumulation-based approach achieves service 0 ragth@;je) 6(64'23 (wlij) Ut[i(;n; time
- . . . e . _ , ps s S
dlﬁerentla}tlon _bymovm_g the equ[llbrlumof_the con (©01) | 35Mbps | 75KB 1 2es | 75s
trol algorithm in Equation (3). Thiglecouplingof the (0,2) | 50Mbps | 60KB 1 50s | 75s
steady state equilibrium and the dynamics of the control | (0,3) | 10Mbps | 15KB 1 U0, 5]s
algorithm provides the capability to achieve the targeted (2,%) 8%95 i UR» 6”}5
service as well as good dynamic behavior (large weights \évtf]er OMbEE 1 U[075S}s

without increased oscillation). So the better performance
of Monaco results from the fact that accumulation is

more manageable than loss for the purpose of SerV{V\‘fenty-five nodes, and each of these nodes is con-
differentiation. nected to R; again with propagation delays evenly
Of course, since we need to keep a steady staf§read between 1ms and 100ms. The other twenty-
physical queue (i.e., accumulation) for each flow, ange nodes generating web-like bursty traffic R are
q is limited by the physical buffer siz; shown inthe gjmjlarly connected. We use Barford and Crovella’s web
constraint (18), the bottleneck buffer size limits the ranggyge| [3], in which each user downloads a set of files
of the weighted service in practice. But this Iimitatiorpepresenﬁng a web page and then sleeps for a period of
is very different from that of [9] [25], which results{ime. The requested file size and sleep times obey heavy-
from the coupling of the steady state objective and thgjleq distributions and thus the resulting traffic is quite

dynamic performance. bursty. In Figure 6(a), we show the web users entering at
R1 and R2 while in fact this means that the bulk of the
V1. SERVICE MULTIPLEXING traffic they generate enters R1 and R2. Because clients

download more data than they upload, this implies that

In this section we provide ns-2 simulation and Linu%,a \web servers are placed at R1 and R2 while their
kernel implementation results to demonstrate that E'Vpgspective clients are attached to R2 and R3.

and WRS canco-exist dynamicallywith bursty web- 1, qetermine the target rate allocation when there

like traffic in a complex multiple-bottleneck networkis o gyersubscription, we subtract the EMRs from
including both non-AQM droptail and AVD routers. e canacities in each bottleneck and then compute the
weighted proportional fair share. L&f denote the num-
A. Simulations ber of bottlenecks. Led/ denote the sum of the number
, _ _ of control loops passing through all three bottlenecks
Firstly we show the simulation results for the netyng the number of cross-flows entering each bottleneck.

work shown in Figure 6(a). We choose a topologyy s the target rate allocatiar; for the flow (i, 5) is
with all equal capacities and put all control loops with

EMRs along the multiple-bottleneck path, because these PLC + ije if i=0
choices simplify target rate computations, which are ) = (28)
described momentarily. There are four “long” flows %(1_ %)C if i#£0

passing through all the bottlenecks and a set of “cross”

flows each using only one bottleneck. Every bottlenedk€re €' = 100 — 3 o< ;cns Zojes Wi = 2o<jcns Wij

link has 100Mbps capacity and 1ms propagation deIé}PdW = 2o<i<k Wi _ _ _

The source nodegl,0)~(1,3) are connected tag, |f @ control loop with an EMRzj. incurs its ac-
with propagation delays evenly spread between 1ms dignulation limit, we simply set its EMR to zero and
100ms, i.e., 1ms, 34ms, 67ms and 100ms, respectivéﬁ?'ace its Welgh't with the control_loop’s accumulathn
Nodes (2,0)~(2,3) have the same delays but are corimit to cqmpute its degraded service rate. We describe
nected toR; and likewise for nodeg3,0)~(3,3) to the following cases.

R,. As specified in Table I, each of the long flows has 1) No Oversubscription:As specified in Table I, the
an EMR, and they start and stop sending at differeloing flows labeled0, 0) and(0, 3) as well as all the cross
times thereby moving the system from undersubscrib@dws that traverse a single bottleneck start at a uniformly
through oversubscription and back to undersubscribdidtributed random time in05s, denoted a#/|0, 5]s.
before a barrage of web-like flows start. The 500 welihe sum of the EMRs fo(0,0) and (0, 3) is 40Mbps,
like flows entering R; are evenly distributed acrosswell below the bottleneck capacity. Neither flow needs
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Fig. 6. Simulation of all services co-exist in a complex network of three bottlenecks: (a) A parking lot topology of 3 bottlenecks shared by
the long and short flows, plus 1,000 web sessions; (b) EMR flow throughput: Flow (0,0) gets its expected 30Mbps bandwidth, except during
50~75s when its accumulation limit of 60KB takes effect; Flow (0,3) gets its expected 10Mbps bandwidth, except dwTg 2fen its
accumulation limit of 15KB takes effect; (c) WRS flow throughput: Flow (2,0) gets 3 times of bandwidth of flow (2,1); (d) Accumulation
for flows with rate expectations. When the accumulation of an EMR flow touches its preset limit, its EMR degrades, as shown in (b); (e)
AVD bottleneck R, queue length is very low, even after the web traffic comes in; (f) Droptail bottleRecfueue length is proportional to

the number of active flows. It is made more bursty by the web traffic during-1@0s. We sek=0.5, target accumulatioa;; =3 * w;;KB,

AVD’s damping factora=0.1 and target utilizatio5=0.98.

Time (sec)

(d)

to incur an accumulation greater than its accumulatidine flows without an expected rate are starved.

limit to achieve its EMR. Thus, as shown in Figure 6(b), At 75s, flows (0,1) and (0,2) stop sending thereby
both flow (0,0) and (0,3)'s EMRs are satisfied andgjiowing the system to return to an equilibrium that
they obtain their respective target rates as determingglisfies all expected rates for active flows. Throughout
by Equation (28). the simulation,z¢; changes slowly compared tey,

2) Accumulation-limited: At 25s in the simulation, shown in Figure 6(b). This can be attributed to the
flow (0, 1) begins transmitting and steers toward an EMRIge difference in round trip propagation delays: Flow
of 35Mbps. The sum of the active EMRs 75Mbps i§0;0) has 10ms while flow(0, 3) has 208ms. However,
still less than the capacity, but for floge, 3) to achieve despite their difference in propagation delays these flows
its expected rate would requigs > Ags. Therefore, still converge onto the appropriate target rate allocation
flow (07 3) becomes bounded by its accumulation |imﬁhl’0ugh0ut the simulation, or at least until the web-like
shown in Figure 6(d) and fails to obtain its EMR. Eveffaffic begins at 100s, at which time the equilibrium is
though zoo. and z¢1. are larger thanzgs., they are no longer well-defined.

satisfied because we have a policy of giving them Iarger4) Web-like Traffic:At 100s, five hundred web users

accumulation limits. entering bottleneckR; and five hundred web users
3) OversubscriptionAt 50s, flow (0, 2) begins trans- entering bottleneckR, introduce substantial variation
mitting, resulting in blatant oversubscription. Because ali queue lengths, illustrated in Figures 6(e)-(f). We
of the EMRs are themselves less than the capacity, determined empirically an appropriate number of web
would intuitively desire to have a subset of the EMRssers by turning off all sources except web users. We
satisfied. Unfortunately, flow§, 0), (0,1) and(0,2) all then tuned the number of web users to consume approx-
have similar accumulation limits thereby forcing all to @anately 10% capacity. Of course, due to burstiness loads
weighted proportionally fair share satisfying none of thare sometimes much higher. The key result is that despite
EMRs, as shown in Figures 6(b) and (d). But none d&iurstiness, each control loop hovers above its expected
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Fig. 7. Implementation results of all the services co-existing in a network of two bottlenecks: (a) Topology; (b) Each flow gets a throughput
around its target value shown in the dashed lines.

rate shown in right side of Figure 6(b). 20ms one-way delay. There are four long flows which
Again flow (0,3) appears to adjust more slowly tharP@Ss all bottlenecks and two cross flows each using only
flow (0,0) (thus with less oscillation) in response to th@n€ bottleneck. Long flow 1 asks for an EMR rate of
bursty web traffic because of its much longer RTT, b&2Mbps. Long flow 2 requests a WRS service with
it stays near the expected value. weight 5. All other flows have weight 1. Long flow
5) Coexisting Bottleneck Mechanisms: Droptail and iS an on-off flow with a period of 20s. We did the
AVD: As shown in the topology Figure 6(a), bottle€Xxperiment for 60s. As depicted in Figure 7(b), each
neck R, uses AVD while others use droptail withouflow gets its targeted rate.
AQM. Figures 6(e)-(f) readily demonstrate the benefits COmparing to the previous simulations, implementa-
of AVD. The bottleneck R; experiences equilibrium tion results oscillate more. This comes mainly from the
queue lengths near zero independent of the changing réiited timer granularity in Linux kernel which makes
allocations. Even when the web traffic starts, its quedi@ffic less regulated (more bursty) than in ns-2.
still remain substantially lower than that &f,.

VIl. DISCUSSION
6) Weighted SharingFlow (2,0) sends with weight ; _ | _
3 throughout the experiment. For comparison we showWe OCUS on using cosed-loo_p.congestlon control
its neighboring flow(2, 1) with weight 1. Because thesemechanlsms as a data plane building block to provide
flows traverse the sa;ne path, we expez0) to obtain better QoS than the Internet’s best-effort service. Both
roughly three times the throughput ¢£,1) regardless TCcP \_/egas and Monaco are delay-based, while TF:P
of the changing rate expectations or the presence Rgno is loss-based. All of them are close-loop congestion
web-like flows. Figure 6(c) reveals this. Furthermore, ﬁontrol schemes. For congest!on contr.ol purpose, we
shows that as the load from the EMR flows change‘éOmpared Monaco and Vegas in a previous paper [31].
each control loop steers toward the new rate alIocatigFe central theme of this paper is that, within the

corresponding to proportional fairness for the capaci%/)se'IOOp _schemgj_, accum_ulatl(;q?f IS a more mr?nalgeable
not allocated to the satisfied EMRS. arameter in providing service differentiation than loss,

] as shown in our analysis and simulations.
Showing Monaco EMR and WRS performance under there are several important deployment issues for our

different scenarios, the simulation results in this sectiQiheme. The first concern is scalability. Monaco requires
demonstrate that all the proposed services can be pgwp, (congested) router to provide two FIFO priority

vided in a dynamic environment with non-trivial burstgﬁueues for all EMR and WRS flows. Since these are
background traffic. The target rate allocations are well perflow queues, scalability along this dimension is
defined and controllable via our choice of accumulatigi,; o problem.

limits A; even under oversubscription. The overhead of the Monaco control traffic is very
_ . low. For each flow, there are only three control packets,
B. Implementation Experiments one in-band and the other two out-of-bapdr RTT The

We also implement Monaco in Linux kernel v2.2.1&8ontrol packets are small (40 bytes). Consider a typical
based on the Click configurable router [17] and perforsituation of a flow with an average congestion window
a set of experiments on the Utah Emulab [20]. of ten packets and each data packet is 1000 bytes, the

We show one result here for a two-bottleneck netwodontrol packets overhead is aboyfXe. ~ 1.2%.
shown in Figure 7(a) with 1Mbps link bandwidth and-urthermore, when integrated with TCP, Monaco can
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packet information and would thus introduce no separaad ANI-9819112, by the DARPA contract F30602-00-
traffic. 2-0537, and a grant from Intel Corp.

Compared to DiffServ which places all its data plane
building blocks inside the network, Monaco moves some
complexity from the core network to network edges
or even end hosts. Albeit, Monaco still needs networkl] S. Athuraliya, V. Li, S. Low and Q. Yin. REM: Active Queue
support, such as two FIFO queues and AVD for routers, ManagementiEEE Network 15(3):48-53, May 2001.
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with underprowsmned buffer. Note AVD routers Can[S P. Barford and M. Crovella. A Performance Evaluation of Hyper

interoperate with non-AQM droptail routers (see Sec- Text Transfer ProtocolsSIGMETRICS'99Mar 1999.
tion IV-A). This makes Monaco more incrementally[4] S.Blake etal. An Architecture for Differentiated ServicisTF
deployable RFC 2475 Dec 1998.

o) . . .. denl M . l[15] R. Braden, D. Clark, and S. Shenker. Integrated Services in the
ne interesting scenario Is to deploy Monaco In a Internet Architecture: an OvervielETF RFC 1633 Jun 1994.

edge-to-edge manner. Then an ISP can provide EM[8] L. Brakmo and L. Peterson. TCP Vegas: End to End Congestion
or WRS traffic trunks to carry its customers’ flow Avoidance on a Global InterndEEE Journal on Selected Areas

; ; in Communications13(8):1465-1480, Oct 1995.
aggregates across its network boundaries. [7] D. Choe and S. Low. Stabilized VegaddFOCOM'03 Apr

2003.
VIIl. SUMMARY [8] D. Clark and W. Fang, Explicit Allocation of Best Effort Packet
In this paper we propose an accumulation_based’ Delivery Service lEEE/ACM Trans. on Networkings(4):362-

. . . 373, Aug 1998.
Closed_lOOp congestion control mechanism to prOVId J. Crowcroft and P. Oechslin. Differentiated End-to-End Internet

bandwidth differentiation and guarantees, based on our services Using a Weighted Proportional Fair Sharing TATM
prior work of using accumulation, buffered packets of Computer Communication Revie@8(3), Jul 1998.
a flow inside the network routers as a measure ] A. Demers, S. Keshav, and S. Shenker. Analysis and Similation

. . of a Fair Queueing AlgorithmSIGCOMM’'89 Sept 1989.
detect and control network congestion. The key id Pl] S. Floyd and V. Jacobson. Random Early Detection Gateways

is to map service provisioning onto accumulation al- ~ for Congestion Avoidanced EEE/ACM Trans. on Networking
location. We design two concrete services: EMR and 1(4):397-413, Aug 1993.

WRS. Analytically as well as experimentally, we sho 2] Frame Relay Forum. Http://http://www.frforum.cc_)m/. _
3] D. Harrison. Edge-to-edge Control: A Congestion Avoidance

that _accumUIatlon _c_an be_ approprlately mampUIatEd 0" and Service Differentiation ArchitecturBPI Ph.D. ThesisDec
provide each specific service. Because of the use of the 2001. Http://networks.ecse.rpi.edu/ harrisod/thesis.ps.gz.

closed-loop congestion control, these bandwidth servidé4l H. Hsieh, K. Kim and R. Sivakumar. Achieving Weighted

are meaningful only in the steady state, at the flow (not ?L?r':"iz%eogiﬁere”“aﬂon: An End-to-End PerspecititeQoS'03

packet) granularity and in a time scale that is larger th:[)ﬁ] V. Jacobson. Congestion Avoidance and Contr&lIG-
one RTT. COMM'88, Aug 1988.

We use a set of ns-2 simulations to evaluate tft6] F. Kelly, A. Maulloo and D. Tan. Rate Control in Commu-

. . . nication Networks: Shadow Prices, Proportional Fairness and
service performance under different network topologies Stability. Journal of the Operational Research Socjetf:237-

and conditions. We demonstrate that both services can be 755 1998
provided in a network with dynamic demands, under th&7] E. Kohler, R. Morris, B. Chen, J. Jannotti, and F. Kaashoek.
conditions of oversubscription and router buffer limits. ~ The Click Modular RouterACM Trans. on Computer Systems

: . . 18(3):263-297, Aug 2000.
We implement the scheme in the Linux kernel based S. Kunniyur and R. Srikant. End-To-End Congestion Control:

the Click router and validate the simulation results using * utility Functions, Random Losses and ECN MarksIFO-
the Utah Emulab and an internal testbed. COM'00, Mar 2000. _ _ _
This paper focuses on the data-plane building block®] S. Kunniyur and R. Srikant. Analysis and Design of an Adaptive

. L Virtual Queue (AVQ) Algorithm for Active Queue Manage-
for the service provisioning. The related control plane ment. SIGCOMM 01, Aug 2001.

functions and architectural issues, such as the mapping0f J. Lepreau et al. The Utah Emulab. Http://www.emulab.net/.
the scheme in an edge-to-edge manner to provide crdgs}t S. Low and D. Lapsley. Optimization Flow Control, I: Basic

ISP services, represent our future research Algorithm and ConvergencéEEE/ACM Trans. on Networking
’ ) 7(6):861-875, Dec 1999.
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