
1

Accumulation-based Congestion Control
Yong Xia, David Harrison, Shivkumar Kalyanaraman,

Kishore Ramachandran, and Arvind Venkatesan

Abstract—This paper1 generalizes the TCP Vegas conges-
tion avoidance mechanism and usesaccumulation, buffered
packets of a flow inside the network routers, as a conges-
tion measure based on which afamily of congestion control
schemes can be derived. We call this model accumulation-
based congestion control (ACC), which fits into the nonlin-
ear optimization framework proposed by Kelly. The ACC
model serves as a reference for packet-switching network
implementations. We show that TCP Vegas is one possi-
ble scheme under this model. It is well known that Vegas
suffers from round trip propagation delay estimation error
and reverse path congestion. We therefore design a new
Monaco scheme that solves these problems by employing an
out-of-band, receiver-basedaccumulation estimator, with the
support of two FIFO priority queues from the (congested)
routers. Comparisons between these two schemes demon-
strate that Monaco does not suffer from the problems men-
tioned above and achieves better performance than Vegas.
We use extensive ns-2 simulations and Linux implementa-
tion experiments to show that the static and dynamic per-
formance of Monaco matches the theoretic results. One key
issue regarding the ACC model in general, i.e., the scalability
of the bottleneck buffer requirement, and a solution using a
virtual queuing algorithm, are discussed and evaluated.

Keywords—Congestion control, Accumulation, TCP.

I. I NTRODUCTION

Much research has been conducted to achieve stable,
efficient and fair operation of packet-switching networks.
TCP congestion control [16], a set of end-to-end mecha-
nisms, has been widely acknowledged for its critical role
in maintaining the stability of the Internet. Among them,
TCP Reno [2] infers network congestion by detecting
packet loss that is presumably caused only by congestion;
alternatively, TCP Vegas [10] measures backlog, the num-

1This work was supported by the NSF contracts ANI-9806660 and
ANI-9819112, by the DARPA contract F30602-00-2-0537, and a grant
from Intel Corp. Part of the paper was presented at the IEEE Interna-
tional Conference on Communications in Anchorage, Alaska, USA on
May 11-15, 2003.
Yong Xia and Shivkumar Kalyanaraman are with the ECSE depart-
ment, Rensselaer Polytechnic Institute, Troy, NY 12180.
David Harrison is with the EECS department, University of California,
Berkeley, CA 94720.
Kishore Ramachandran is with the WINLAB, Rutgers University, Pis-
cataway, NJ 08855.
Arvind Venkatesan is with Bloomberg L.P., New York, NY 10022.

ber of buffered packets inside the routers along the path,
to detect network congestion and demonstrates better per-
formance than Reno. Unfortunately, Vegas has technical
problems inherent to its backlog estimator that prevent it
from functioning properly. There has been a substantial
amount of work on this issue, such as [1] [25] [15] [8] [9]
[24] [12] and references therein, which we review in Sec-
tion II. But none of them provides a solution to estimate
backlog unbiasedly in case of round trip propagation delay
estimation error or reverse path congestion.

In this paper, we offer a solution to this problem and de-
velop a systematic model to generalize Vegas’ congestion
avoidance mechanism. Formally, we define in a bit-by-bit
fluid model the backlog (hereafter we call itaccumulation)
as a time-shifted, distributed sum of queue contributions of
a flow at a set of FIFO routers on its path. The central idea
is to control flows’ rate by controlling their accumulations
in an end-to-end and distributed manner. We study a set of
closed-loop congestion control schemes that are all based
upon the idea of keeping a target accumulation for each
flow individually.

The key concepts for this accumulation-based conges-
tion control (ACC) model are developed in Section III.
An ACC model has two components: congestion estima-
tion and congestion response. The former defines a con-
gestion measure (i.e., accumulation) and provides an im-
plementable estimation of the measure; while the latter
defines an increase/decrease policy for the source throt-
tle. A class of control algorithms, including the additive-
increase/additive-decrease (AIAD) policy [11], Mo and
Walrand’s proposal [26] and a proportional control, can
be used. Based on previous research [26] [18], in the ap-
pendix we show that the equilibria of all these algorithms
achieve the same proportional fairness.

To instantiate the ACC model, choices can be made in
each of the ACC components to put together the entire
scheme. We describe two example schemes in Section IV.
We show that Vegas congestion avoidance attempts to esti-
mate accumulation and thus fits into the ACC family. But
it often fails to provide an unbiased accumulation estimate.
We therefore design a new scheme called Monaco that em-
ulates the ACC fluid model in a better way. Particularly,
Monaco solves the Vegas problems by employing anout-
of-band, receiver-basedaccumulation estimator. We pro-

2

vide resolution to a number of concerns regarding accumu-
lation estimation in Section IV-C. Section V demonstrates
the steady state and dynamic performance of Monaco us-
ing extensive ns-2 [27] simulations as well as Linux imple-
mentation experiments. Section III-C discusses a key con-
cern regarding the ACC model in general, i.e., the scalabil-
ity of bottleneck buffer requirements resulting from accu-
mulating packets in the congested router buffers for every
flow. Section IV-D presents a solution to this issue based
on the virtual queuing algorithm in [21]. We conclude this
paper in Section VI.

II. RELATED RESEARCH

The most closely related work starts from the TCP Ve-
gas protocol, followed by a series of nonlinear optimiza-
tion based models for network congestion control.

TCP Vegas [10] includes three new techniques: a modi-
fied slow start, a more reactive retransmission mechanism
resulting in less timeouts, and a new congestion avoidance
that maintains a “right” amount of extra packets inside
the network. Its authors claim that Vegas achieves higher
throughput and less packet losses than Reno using simu-
lations and Internet measurements, confirmed experimen-
tally by Ahn et al. [1] and analytically by Mo et al. [25],
who also point out Vegas’ drawbacks of estimating round
trip propagation delay (RTPD) incorrectly in the presence
of rerouting and possible persistent congestion. Instead of
using the minimum of all round trip time (RTT) samples as
an estimation of RTPD, they suggest to use the minimum
of only the most recent k RTT samples. As we discussed in
Section IV-A, this estimation is still inflated because there
is alwaysa steady state standing queue on the path.

Bonald compares Reno and Vegas by means of a fluid
approximation [8]. He finds that Vegas is more stable than
Reno, resulting in a more efficient utilization of network
resources, and shares fairly the available bandwidth be-
tween users with heterogeneous RTTs. But its fairness
critically depends on accurate estimation of RTPD, con-
firmed by the analysis of Boutremans et al. [9].

A different line of research of network congestion con-
trol theoretic models is pioneered by Kelly’s optimization
framework [18], followed by Low et al. [23] and Srikant
et al. [20], where they model congestion control as a non-
linear optimization problem under which all users try to
maximize their own interest, subject to a set of capacity
constraints. Following Gibbens and Kelly’s work [13],
Kunniyur and Srikant develop an Adaptive Virtual Queue
(AVQ) algorithm [21], which we leverage in this paper
to keep a low steady state queue in the congested routers
(see Section IV-D). Low, Peterson and Wang present an

d j

µij i,j+1

RJRj Rj+1R1

other

flows

flow i
i µ i

ingress

edge

egress

edge(a) Network Model

)(ttai

)(1
f

ii dtq
)(

1J

jk

kij dtq

jd
)(tqiJ

)(tai

f

id

t

time axis

… …

(b) Accumulation

Fig. 1. Network Fluid Model of Accumulation

optimization model for Vegas [24]. Then Jin, Wei and
Low extend Vegas and design a FAST protocol for high
bandwidth-delay-product networks [17]. Low et al. im-
prove Vegas performance using a Randomly Exponential
Marking (REM) buffer management algorithm [3]. Simi-
lar to Vegas+REM, we use Monaco+AVQ in this paper as
an alternative solution.

Mo and Walrand propose a fair end-to-end window-
based scheme that includes a proportionally fair control
algorithm [26]. However, this algorithm raises technical
challenges in its practical implementation. Our Monaco
accumulation estimator can be viewed as such an imple-
mentation that requires two-FIFO-priority-queue support
from the congested routers.

III. ACC FLUID MODEL

In this section we describe the ACC model. We define
accumulation under a bit-by-bit fluid model and use accu-
mulation to measure and control network congestion. In
the appendix we briefly prove that keeping a target accu-
mulation inside the routers for each flow is equivalent to a
nonlinear optimization that allocates network capacity pro-
portionally fairly. We show that a set of control algorithms
exist for each flow to achieve its target accumulation.

A. Accumulation

Consider an ordered sequence of FIFO nodes{R1, . . . ,
RJ} along the path of a unidirectional flowi in Figure 1(a).
The flow comes into the network at the ingress nodeR1

and, after passing some intermediate nodesR2, . . . , RJ−1,
goes out from the egress nodeRJ . At time t in any node
Rj (1 ≤ j ≤ J), flow i’s input rate isλij(t), output rate is
µij(t). The propagation delay from nodeRj to nodeRj+1

3

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

0 1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (b

ps
)

Time (secs)

Long Flow
Short Flow

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

0 1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (b

ps
)

Time (secs)

Long Flow
Short Flow

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

0 1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (b

ps
)

Time (secs)

Long Flow
Short Flow

(a) ACC-AIAD (b) ACC-MW (c) ACC-P

Fig. 2. Different ACC algorithms achieve similar steady state bandwidth allocation, but the dynamic behavior differs significantly.

is a constant valuedj .2

Define flow i’s accumulation as a time-shifted, dis-
tributed sum of the queued bits in all the nodes along its
path from the ingress nodeR1 to the egress nodeRJ , i.e.,

ai(t) =
J∑

j=1

qij(t−
J−1∑

k=j

dk) (1)

whereqij(t) is flow i’s queued bits in routerj at timet, as
illustrated as the solid slanted line in Figure 1(b). Note
the equation includes only those bits backlogged inside
the node buffers, not those stored on transmission links.
(This definition provides a reference to implement an unbi-
ased accumulation estimator in Section IV-B.1.) We aim to
control flow rates by controlling their accumulations, i.e.,
keeping a steady state accumulation inside the network for
each individual flow.

B. Control Algorithms

In the ACC model we use accumulation to measure
network congestion as well as to probe available band-
width. If accumulation is low, we increase the congestion
window; otherwise, we decrease it to drain accumulation.
More accurately, we try to maintain a constant target ac-
cumulationa∗i for each flowi anda∗i > 0. To achieve this
goal we can choose from asetof control algorithms:3

i) ACC-AIAD additively increases and additively de-
creases the congestion window value:

ẇi(t) = − κ

rtti
· sgn(ai(t)− a∗i) (3)

2In practiceR1/RJ can be mapped as a source/destination pair to
form an end-to-end control loop or ingress/egress edge routers to form
an edge-to-edge control loop. Here we focus on the ACC model itself.
The reader is refer to [14] for discussion on architectural issues.

3All these algorithms fit into the following general form:

ẇi(t) = −η · g(t) · f(ai(t)− a∗i) (2)

whereη > 0, g(t) > 0, f(·) is a function in the first and third quad-
rants. It is nondecreasing and has a single root 0 (i.e., onlyf(0) = 0).

wherewi(t), rtti, ai(t) anda∗i are respectively the conges-
tion window size, round trip time, instantaneous accumu-
lation and target accumulation value of flowi, κ > 0 and

sgn(y) =





+1 if y > 0
0 if y = 0
−1 if y < 0.

(4)

ii) ACC-MW is proposed by Mo and Walrand [26]:

ẇi(t) = −κ · rttpi

rtti
· ai(t)− a∗i

wi(t)
(5)

whererttpi is the round trip propagation delay of flowi.

iii) ACC-P is a proportional control policy that we use
in this paper:

ẇi(t) = − κ

rtti
· (ai(t)− a∗i). (6)

Note all the above algorithms have the same single zero
point ai(t) = a∗i . We present a set of algorithms here
because they share a common steady state property of pro-
portionally fair bandwidth allocation. We briefly state this
below and present more details in the appendix.

C. Properties

For any congestion control, major theoretic concerns are
stability, as well as fairness and steady state queue bound.
Stability guarantees that the algorithm approaches its equi-
librium. Fairness, either max-min [7] or proportional [18],
determines the steady state bandwidth allocation among
the competing flows. A steady state queue bound provides
an upper limit on the router buffer requirement in equilib-
rium, which is important for real network deployment.

The stability of the general algorithm (2) is still an open
question. So we turn to extensive simulations in Section V
to evaluate the stability of ACC-P.

Given that the equilibrium is achieved, we can prove
that the equilibrium bandwidth allocation of ACC is
weighted proportionally fair (See the appendix). Figure 2

4

shows simulation results of a parking-lot topology of two
9Mbps bottlenecks with one long flow and two short flows
(using the scheme developed in Section IV-B). It verifies
that all the three algorithms do achieve similar steady state
bandwidth allocations.4

Interestingly, different ACC control policies can have
the same fairness property. Thus to achieve a particular
steady state performance, we have the freedom to choose
from a set of control policies that have different dynamic
characteristics. In this sense, the ACC model manifests
congestion control in two steps: setting a target steady
state allocation (fairness) and then designing a control al-
gorithm (stability and dynamics) to achieve that allocation.

Even though we keep a finite accumulation inside the
network for every flow, the steady state queue at a bottle-
neck scales up to the number of flows sharing that bottle-
neck. In practice, we need to provide enough buffer in the
congested routers to avoid packet loss and make the con-
gestion control protocol robust to such loss, if unavoidable
(see Section IV-B). Another way to alleviate this prob-
lem is to control aggregate flow in a network edge-to-edge
manner, instead of end-to-end. (However, we focus on the
model itself and don’t elaborate the architecture issues in
this paper.) A possibly better solution to keep steady state
queue length bounded is to use an active queue manage-
ment (AQM) mechanism such as AVQ [21]. We imple-
ment this option and discuss more details in Section IV-D.

IV. ACC SCHEMES

Now we instantiate the ACC model into two schemes
for packet-switching networks. Firstly we show that TCP
Vegas tries to estimate accumulation and fits into the ACC
model, but Vegas often fails to provide an unbiased accu-
mulation estimate. Then we design a new scheme called
Monaco that solves the estimation problems of Vegas.
Monaco also improves the congestion response by utiliz-
ing the value of the estimated accumulation, unlike Vegas’
AIAD policy that is slow in reacting to a sudden change in
user demands or network capacity. By comparing Monaco
and Vegas via analysis and simulation we reach two ob-
servations: It is effective 1) to employ areceiver-based
mechanism and, 2) to measureforward path queuing de-
lay, instead of round trip queuing delay as in Vegas, for
an unbiased accumulation estimate. The scheme design is
guided by the following goals:

4More careful investigation of Figure 2 reveals that the equilibria of
the three algorithms are not exactly the same. We believe that it is due
to the burstiness in the discrete time simulation system which is not
captured by the continuous time fluid model.

Goal 1: Stability: The scheme should steer toward an
equilibrium in a reasonably dynamic environment with
changing demands or capacity;

Goal 2: Proportional Fairness: Given enough buffers,
the scheme must achieve proportional fairness and oper-
ate without packet loss at the steady state;

Goal 3: High Utilization: When a path is presented with
sufficient demand, the scheme should achieve around full
utilization of the path’s resources;

Goal 4: Avoidance of Persistent Loss: If the queue
should grow to the point of loss due to underprovisioned
buffers, the scheme must back off to avoid persistent loss.

A. Vegas

Vegas includes several modifications over Reno. How-
ever, we focus only on its congestion avoidance mecha-
nism, which fits well as an example ACC scheme.

Brakmo and Peterson [10] use the term “backlog” to
describe what we explicitly define as accumulation. For
each flow, the Vegas estimator takes as input an estimate
of its round trip propagation delay, hereafter calledrttp
(or basertt in [10] [25]). Vegas then estimates the accu-
mulation as

âV = (expected rate− actual rate)× rttp

= (
cwnd

rttp
− cwnd

rtt
)× rttp (7)

which could be simplified as

âV =
cwnd

rtt
× rttq (8)

wherecwnd/rtt is the average sending rate during that
RTT andrttq = rtt− rttp is the round trip queuing delay.
If rttp is accurately available and there is no reverse path
queuing delay, then according to Little’s Law,âV provides
an unbiased accumulation estimate.

Vegas estimatesrttp as the minimum RTT measured so
far. If the bottleneck queues drain often, it is likely that
each control loop will eventually obtain a sample that re-
flects the true propagation delay. The Vegas estimator is
used to adjust its congestion window size,cwnd, so that
âV approaches a target range ofε1 to ε2 packets. More
accurately stated, the sender adjustscwnd using a variant
version of the algorithm (3):

cwnd(n + 1) =

{
cwnd(n) + 1 if âV < ε1

cwnd(n)− 1 if âV > ε2
(9)

whereε1 andε2 are set to 1 and 3 packets, respectively.
Vegas has several well-known problems:

5

• Rttp Estimation Errors: Suppose re-routing of a flow
increases its propagation delay. Vegas misinterprets such
an increase as less congestion and sends faster. Hence, this
policy can lead to unbounded queue which introduces per-
sistent loss and congestion [24], violating Goals 1 and 4.
Mo et al. [25] suggest limiting the history on therttp es-
timate by using the minimum of the last k, instead of all,
RTT samples. We refer to this variant as the “Vegas-k”
scheme. Still, it cannot guarantee queue drain at interme-
diate bottlenecks within k RTTs, shown in Section IV-C.

• Rttp with Standing Queues: When a flow arrives at a
bottleneck with a standing queue, it obtains an exagger-
atedrttp estimate. The flow then adjusts its window size
to incur an extra backlog betweenε1 andε2 packets in ad-
dition to the standing queue. This leads to a bandwidth
allocation away from the target proportional fairness, vio-
lating Goal 2.

• Reverse Path Congestion: The Vegas estimator is af-
fected by congestion in the reverse path. Reverse path
congestion inflates the Vegas estimator leading to sharply
reduced utilization, not achieving Goal 3.

B. Monaco

Monaco emulates the accumulation defined by Equa-
tion (1) and implements a receiver-based, out-of-band
measurement. It is immune to issues such asrttp sensi-
tivities and reverse path congestion and robust to control
and data packet losses. We describe the Monaco accumu-
lation estimator and then its congestion response policy.

B.1 Congestion Estimation Protocol

Let’s look at the definition of accumulation in Equa-
tion (1). It is the sum of the queued bits of a flow at a se-
quence of FIFO routers, including both ingress and egress
nodes as well as the intermediate routers. We aim to elim-
inate the computation at intermediate routers. Actually it
is impossible for all the nodesRj (1 ≤ j ≤ J) to compute
synchronously their queuesqij(t −

∑J−1
k=j dk) at different

times since no common clock is maintained.
To estimate accumulation without explicit computation

at the intermediate routers, Monaco generates a pair of
back-to-back control packets once per RTT at the ingress
node as shown in Figure 3. One control packet is sent out-
of-band (OB) and the other in-band (IB). The OB control
packet skips queues in the intermediate routers by pass-
ing through a separate dedicated high priority queue.5 As-

5An alternative implementation is to use IP Type of Service (TOS),

receiver

sender

... ...

Forward
OB ctrl pkt
arrives.

Forward IB
ctrl pkt arrives.
Reverse OB
ctrl pkt sent.

between OB
= num. of arrivals
accumulation est.

and IB ctrl pkts.

rtt

rtt p ftt q

Fig. 3. Monaco Accumulation Estimator

suming the OB queues to be minimal as only other OB
control packets share them, such packets experience only
the forward propagation delaydf

i . The IB control packet
goes along with regular data packets and reaches the egress
node after experiencing the queuing delay in the network.
The time interval between the OB and IB control pack-
ets measured at the egress node is a sample of the cur-
rent forward trip queuing time (fttq). Considering a net-
work with enough buffers where there is no packet loss,
if the flow rates at all the routers do not change dramat-
ically, then by Little’s Law, the number of data packets
arriving at the egress node after the OB control packet,
but before the IB control packet is an unbiased accumu-
lation estimate. In Figure 3, the dashed lines cut by the
forward direction OB control packet are those data pack-
ets, with each cut happening in the routerRj at time
t −∑J−1

k=j dk, ∀j ∈ {1, ..., J}. Also observe in the figure
that we can measurertt at both ingress and egress nodes
andrttp at the egress node.

Besides, we need to consider the effect of traffic bursti-
ness. When we have a congestion window sizecwnd, we
also compute a rate based on RTT estimation:rate =
cwnd/rtt. At the ingress node we use this rate value to
smooth incoming traffic and thus alleviate the effect of
burstiness. At the egress node the accumulation is com-
puted as the product offttq and an exponentially weighted
moving average of the egress rate.

In practice, both data and control packets maybe lost
because of inadequate router buffer size or too many com-
peting flows. To enhance the robustness of the Monaco es-
timator when data packets are lost, the IB control packet,
identified by a control packet sequence number, carries a
byte count of the number of data bytes sent during that
period. If the egress node receives fewer bytes than were
transmitted, then packet loss is detected. The forward OB
control packet carries the same control packet sequence

i.e., assigning a low delay TOS to the high priority control packet if
TOS is supported in all the (congested) routers.

6

number as the associated IB control packet. Monaco sends
congestion feedback on the reverse OB control packet, in
which there is one additional piece of information: a flag
denoting whether the congestion windowcwnd should in-
crease, decrease, or decrease-due-to-loss. The subsequent
pair of forward control packets is generated after the ar-
rival of the reverse OB control packet at the ingress node.

If either IB or OB control packet is lost, then the ingress
node times out and sends a new pair of control packets with
a larger sequence number. The timer for control packet re-
transmission is similar to that of TCP. These routine relia-
bility enhancements are similar to those in the Congestion
Manager [4].

B.2 Congestion Response Protocol

As already noted, we use accumulation to measure
network congestion and to probe available bandwidth.
We keep target accumulation for each flow by increas-
ing/decreasing its congestion window when the accumu-
lation is lower/higher than the target value.

Since a pure window-based control policy introduces
undesirable burstiness we userate-paced window control
to smooth incoming traffic by employing at the ingress
node a leaky bucket shaper with a rate value ofcwnd/rtt
and a burst parameter of one packet.

We provide below the Monaco’s proportional control
policy which is the discrete version of Equation (6):

cwnd(n + 1) = cwnd(n)− κ · (âM − a∗) (10)

whereâM is the Monaco accumulation estimation,a∗, set
to 3 packets, is a target accumulation in the path akin toε1

andε2 used by Vegas,κ is set to 0.5, andcwnd(n) is the
congestion window value at a control periodn.

Monaco improves Vegas’ control policy by utilizing the
value of estimated accumulation fedback by the reverse
OB control packet, instead of taking it as binary infor-
mation (i.e., “how congested”, instead of “congested or
not”). If the congestion feedback is decrease-due-to-loss,
Monaco halves the congestion window as in TCP Reno.

C. Comparisons between Vegas and Monaco

Vegas and Monaco both aim to accurately estimate ac-
cumulation, assuming different support from the network
routers. Ifrttp can be obtained precisely and there is no
reverse path congestion, then, by Little’s law, each of them
gives an unbiased accumulation estimate. But in prac-
tice Vegas has severe problems in achieving this objective;
Monaco solves known estimation problems.

Monaco

Vegas

0

0.2

0.4

0.6

0.8

1

1.2

5 10 15 20 25 30 35 40 45

B
ot

tle
ne

ck
 u

til
iz

at
io

n

Reverse path bandwidth of the bottleneck (Mbps)

Fig. 4. Comparison between Vegas and Monaco under Reverse
Path Congestion

Vegas estimator operates at thesenderside. According
to Equation (8) it actually calculates:

âV =
cwnd

rtt
× (rtt− rttp) (11)

=
cwnd

rtt
× (tfq + tbq) (12)

wheretfq andtbq are the forward and reverse path queuing
delays, respectively. The above equations imply that Ve-
gas may suffer from two problems: 1) By Equation (12),
if there exists reverse path queuing delay (because of re-
verse direction flows), i.e.,tbq > 0, then Vegas overesti-
mates accumulation. This leads to underutilization and is
hard to handle because the forward direction flows have
no control over those in the reverse direction. To show
this effect we use a simple dumb-bell topology with a bot-
tleneck of 45Mbps forward direction bandwidth shared by
seven forward direction flows and seven reverse flows. We
change the bottleneck’s reverse direction bandwidth from
5Mbps to 45Mbps. As shown in Figure 4, Vegas utiliza-
tion is only 10%∼ 60%. 2) By Equation (11), ifrttp
is underestimated then Vegas overestimates accumulation
and conversely ifrttp is overestimated. The prior leads to
the affected flows reducing window size leading to unfair-
ness or underutilization. Results for a single bottleneck of
10Mbps bandwidth and 12ms propagation delay are shown
in Figures 5(a) and 5(b), where therttp estimation error is
introduced by a sudden propagation delay change to 52ms
at time 10s. Vegas retains its prior now inflatedrttp es-
timate and thus underutilizes the bottleneck. Vegas-k re-
covers from the increase in propagation delay, but because
the queue does not periodically drain, the minimum of the
lastk RTTs drifts upward overestimatingrttp until buffer
overflows.

Due to the above problems, Vegas falls short of quali-
fying as an effective ACC scheme, because we expect to
achieve congestion control by maintaining constant accu-
mulation for each flow at the steady state! In such a case,

7

rtt_p
increase

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16

Q
ue

ue
 le

ng
th

 (
pa

ck
et

s)

Time (sec)

rtt_p
increase

increase until loss

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16

Q
ue

ue
 le

ng
th

 (
pa

ck
et

s)

Time (sec)

rtt_p
increase

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16

Q
ue

ue
 le

ng
th

 (
pa

ck
et

s)

Time (sec)

(a1) Vegas Queue Length (b1) Vegas-k Queue Length (c1) Monaco Queue Length

rtt_p
increase

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

U
til

iz
at

io
n

Time (sec)

rtt_p
increase

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

U
til

iz
at

io
n

Time (sec)

rtt_p
increase

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

U
til

iz
at

io
n

Time (sec)

(a2) Vegas Utilization (b2) Vegas-k Utilization (c2) Monaco Utilization

Fig. 5. Comparison between Vegas, Vegas-k and Monaco underrttp (or basertt) Estimation Error

the sum of accumulations would lead to a non-zero steady
state queue which is not likely to drain, and hence dynamic
rttp estimation would not possibly be unbiased with only
in-band measurements. In summary, therttp sensitivity
issues of Vegas point to afundamentalproblem of the in-
band techniques for accumulation estimation.

Monaco solves both problems. Monaco estimator op-
erates at thereceiverside and thus excludes the influence
of reverse path congestion. By measuring the time inter-
val between the OB and IB control packets, Monaco does
not need to explicitly estimate the forward path propaga-
tion delay. (Actually the forward path OB control packet
implicitly provides this value.) More specifically, since
Monaco implements a rate-paced window control algo-
rithm to smooth out incoming traffic, the time difference
between the OB and IB control packet arrivals gives a sam-
ple of the current forward path queuing delayfttq. By Lit-
tle’s law, the number of data packets arriving during this
time period is the backlogged packets along the path. Us-
ing the OB control packet also makes Monaco adaptive to
re-routing since it is sent every RTT. As shown in Figures 4
and 5(c), after a brief transient period of three seconds,
Monaco operates again at around 100% utilization with no
packet loss. So it’s immune torttp estimation inaccuracy
and reverse path congestion.

The above comparisons between Vegas, Vegas-k and
Monaco suggest two observations on how to estimate ac-
cumulation unbiasedly: 1) The key is to measureforward
pathqueuing delay (via the OB and IB control packets in
Monaco), instead ofround trip queuing delay (as in Ve-
gas); and consequently, 2) it’s better to measure accumula-

tion at thereceiver side, otherwise it’s difficult to eliminate
the effect of reverse path queuing delay, which is hardly
under the forward direction congestion control.

D. Adaptive Virtual Delay Queuing

As we discussed in Section III-C there is a buffer scala-
bility problem forall the ACC schemes, including Vegas,
Monaco and FAST, since all of them keep non-zero steady
state accumulation inside the network for all the flows.

According to the analysis in the appendix, the key to
all the ACC schemes is to provide the queuing delay, or
the Lagrange multiplier from the optimization perspective,
that is a measure of network congestion. In a non-AQM
droptail FIFO router, the Lagrange multipliertql = ql/cl

is provided by aphysicalFIFO queuing process wherecl

is fixed and we have no freedom to control the physical
queueql. But similar to AVQ, we can provide the same
value of the Lagrange multipliertql by running an AQM
algorithm in the bottleneck such thattql = q′l/c′l if we
adapt the virtual capacityc′l appropriately (Also see dis-
cussions in [12]). At the same time the physical queueql

can be bounded.
So we leverage AVQ to emulate an adaptively changing

link capacity and compute a virtual queuing delay, which is
defined as the ratio of virtual queue length divided by vir-
tual capacity and add it into the forward IB control packet.
We call this mechanism Adaptive Virtual Delay (AVD) al-
gorithm. A nice property of AVD is that it isincremen-
tally deployablesince a mixed set of droptail and AVD
routers can work together (see Section V-B). In such an
environment the Monaco accumulation estimate changes

8

S1

.

..

.

..

.

..

.

..

R0

1ms

1ms

1ms
S20

S11

All other links are 10Mbps.
S=Source, D=Destination, R=Router.

30Mbps

2ms
D11

D20{

{ R1

11ms

6ms

1ms
set 1:
10 flows

set 2:
5 flows

set 3:
5 flows

}

D1

}

}{

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 5 10 15 20 25 30 35 40 45 50

U
til

iz
at

io
n

Time (sec)

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20 25 30 35 40 45 50

C
on

ge
st

io
n

w
in

do
w

 (b
yt

es
)

Time (sec)

"Flow_in_Set_1"
"Flow_in_Set_2"
"Flow_in_Set_3"

(a) Topology (b) Bottleneck Utilization (c) Flow Congestion Window

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 5 10 15 20 25 30 35 40 45 50

Q
ue

ue
 le

ng
th

 (b
yt

es
)

Time (sec)

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

0 5 10 15 20 25 30 35 40 45 50

Th
ro

ug
hp

ut
 (b

ps
)

Time (sec)

"Flow_in_Set_1"
"Flow_in_Set_2"
"Flow_in_Set_3"

(d) Bottleneck Queue Length (e) Flow Throughput

Fig. 6. Monaco with Enough Buffer (90 packets) in a Droptail Bottleneck

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 5 10 15 20 25 30 35 40 45 50

U
til

iz
at

io
n

Time (sec)

0

10000

20000

30000

40000

50000

60000

0 5 10 15 20 25 30 35 40 45 50

Q
ue

ue
 le

ng
th

 (b
yt

es
)

Time (sec)

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

0 5 10 15 20 25 30 35 40 45 50

Th
ro

ug
hp

ut
 (b

ps
)

Time (sec)

"Flow_in_Set_1"
"Flow_in_Set_2"
"Flow_in_Set_3"

(a) Bottleneck Utilization (b) Bottleneck Queue Length (c) Flow Throughput

Fig. 7. Monaco with Underprovisioned Buffer (55 packets) in a Droptail Bottleneck

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 5 10 15 20 25 30 35 40 45 50

U
til

iz
at

io
n

Time (sec)

0

10000

20000

30000

40000

50000

60000

0 5 10 15 20 25 30 35 40 45 50

Q
ue

ue
 le

ng
th

 (b
yt

es
)

Time (sec)

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

0 5 10 15 20 25 30 35 40 45 50

Th
ro

ug
hp

ut
 (b

ps
)

Time (sec)

"Flow_in_Set_1"
"Flow_in_Set_2"
"Flow_in_Set_3"

(a) Bottleneck Utilization (b) Bottleneck Queue Length (c) Flow Throughput

Fig. 8. Monaco with the Same Buffer as the Above Case (55 packets) in an AVD Bottleneck

to âM = âDT + x · t̂AV D, whereâDT is the accumulation
in the droptail bottlenecks measured between two control
packets as in Figure 3,x is the egress flow rate and̂tAV D is
the sum of all the virtual delays at those AVD bottlenecks.

V. SIMULATIONS AND EXPERIMENTS

In the last section we have shown that Monaco out-
performs Vegas. So we focus on evaluating the Monaco
scheme using simulations and implementation experi-

ments in this section. Our ns-2 simulations illustrate:
A) Dynamic behaviors such as convergence of through-

put, instantaneous link utilization and queue length in Sec-
tion V-A. We use a single bottleneck topology with hetero-
geneous RTTs for tens of flows periodically entering and
leaving;

B) Steady state performance such as throughput fairness
in Section V-B. We use a linear topology of multiple con-
gested links shared by a set of flows passing different num-
ber of droptail and AVD bottlenecks.

9

S1 D1

D2

D3

R0

S3

S2 R1

s c1 s c2

dc1 dcn
4ms

12ms

20ms

S=Source, D=Destination, R=Router, N=2~9.
All links are 100Mbps 4ms if unspecified.

RN

4

6

8

10

12

14

16

18

20

22

2 3 4 5 6 7 8 9

Th
ro

ug
hp

ut
 o

f l
on

g
flo

w
s

(M
bp

s)

Num of bottlenecks

theory curve
long flow 1
long flow 2
long flow 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

2 3 4 5 6 7 8 9

Th
ro

ug
hp

ut
 C

.O
.V

. o
f l

on
g

flo
w

s
(M

bp
s)

Num of bottlenecks

(a) Topology (b) Long Flow Average Throughput (c) Throughput Spread

0

5000

10000

15000

20000

25000

30000

35000

0 5 10 15 20 25 30 35 40 45 50

Q
ue

ue
 le

ng
th

 (b
yt

es
)

Time (sec)

0

5000

10000

15000

20000

25000

30000

35000

0 5 10 15 20 25 30 35 40 45 50

Q
ue

ue
 le

ng
th

 (b
yt

es
)

Time (sec)

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

9e+07

0 5 10 15 20 25 30 35 40 45 50

Th
ro

ug
hp

ut
 (b

ps
)

Time (sec)

short flow c1
long flow 1

(d) Droptail Bottleneck Queue Length (e) AVD Bottleneck Queue Length (f) Throughput Convergence

Fig. 9. Monaco without Background Traffic under Multiple Mixed Droptail and AVD Bottlenecks

TABLE I
PARAMETER SETTINGS

Parameter Value
κ 0.5

target accumulation,a∗ 3000 bytes
data packet size 1000 bytes

We also implement Monaco in Linux kernel v2.2.18
based on the Click router [19]. In Section V-C we use
Linux implementation experiments to validate the ns-2
simulation results. In all the simulations and experiments
we use the parameter settings shown in Table I. In brief,
in combination with Section IV-C, this section shows that
Monaco satisfies all the goals outlined in the beginning of
Section IV.

A. A Single Bottleneck with Dynamic Demands

Firstly we consider a single 30Mbps bottleneck with
2ms propagation delay shared by three sets of flows us-
ing Monaco, as shown in Figure 6(a). Set 1 has ten flows
starting at 0s and stopping at 30s; Set 2 has five flows start-
ing at 10s and stopping at 40s; Set 3 has five flows start-
ing at 20s and stopping at 50s. Each source-destination
pair is connected to the bottleneck via a 10Mbps 1ms link.
The one-way propagation delays for the three sets of flows
are 4ms, 9ms and 14ms, respectively. We simulate for 50
seconds. We perform three simulations, the first one with
enough buffer provided for a droptail bottleneck, the sec-
ond one with underprovisioned buffer also for the droptail
bottleneck, and the third one with an AVD bottleneck.

In the first simulation, the bottleneck router has enough
buffer of 90 packets, as shown in Figure 6(d), where there
is no packet loss. We randomly pick one flow from each set
and draw its individual throughput in Figure 6(e). We ob-
serve that from 0s to 30s, the throughput is about 3Mbps,
since only ten flows are active. When the five flows from
set 2 jump in at 10s, the throughput drops to 2Mbps, as
we have fifteen active flows. Similarly, when the final
five flows from set 3 enter at 20s, the throughput changes
to 1.5Mbps. Then at 30s, set 1 stops, the throughput in-
creases to 3Mbps. At 40s, set 2 leaves, only the five flows
of set 3 are in the system with throughput of about 6Mbps.
The congestion window dynamics is similar, as shown in
Figure 6(c). Bottleneck queue length is depicted in Fig-
ure 6(d) where the incoming flows build up a steady queue
and the flows leave with queue decrease, on average 3
packets for each flow. This matches the target accumula-
tion specified as a control parameter in Table I. During the
simulation the bottleneck utilization always stays around
100%, except two soon-recovered drops during abrupt de-
mand changes at 30s and 40s as seen in Figure 6(b). From
this simulation, we validate that Monaco demonstrates a
stable behavior under a dynamic and heterogeneous envi-
ronment and keeps steady queues inside the bottleneck.

In the second simulation, the droptail bottleneck router
buffer is underprovisioned, as illustrated in Figure 7(b),
we can see that the queue length grows to the limit of
the whole buffer size of 55 packets, and there is a corre-
sponding packet loss leading to halving of the congestion
window during 20s∼ 30s. Consequently, the throughput
oscillates more as seen in Figure 7(c), but the bottleneck

10

Dst: C1, C2 Dst: C3, C4 Dst: C5, C6

100M100M

D1

……

1-100ms 1-100ms

R1 R2 R3

D2

1-100ms

1ms

100ms

R0

S1

S2

…

100M

…
500 web

B users

Src: C5, C6

…
500 web

A users

Src: C3, C4

…

Src: C1, C2

…

…

web B
…

web A

…

Bandwidth for all unlabelled links are 1Gbps; Delay 1ms.

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

2e+07

0 5 10 15 20 25 30 35 40 45 50

Th
ro

ug
hp

ut
 (b

ps
)

Time (sec)

"Long_Flow_1"
"Long_Flow_2"

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

0 5 10 15 20 25 30 35 40 45 50

Th
ro

ug
hp

ut
 (b

ps
)

Time (sec)

"Short_Flow_1"
"Short_Flow_4"
"Short_Flow_6"

(a) Topology (b) Long Flow Throughput (c) Short Flow Throughput

0

5000

10000

15000

20000

25000

30000

35000

40000

0 5 10 15 20 25 30 35 40 45 50

Q
ue

ue
 le

ng
th

 (b
yt

es
)

Time (sec)

0

5000

10000

15000

20000

25000

30000

35000

40000

0 5 10 15 20 25 30 35 40 45 50

Q
ue

ue
 le

ng
th

 (b
yt

es
)

Time (sec)

(d) R1 AVD Queue Length (e)R2 Droptail Queue Length

Fig. 10. Monaco with a Large Amount of Background Web Traffic under Multiple Mixed Droptail and AVD Bottlenecks

is still fully utilized. From this simulation, we see that
without enough buffer, Monaco shows a degraded behav-
ior under dynamically changing demands.

In the third simulation, the AVD bottleneck buffer is
the same as the second one. As illustrated in Figure 8(b),
for most of time the bottleneck queue length is below 10
packets. The throughput converges without oscillation as
shown in Figure 8(c), comparable to result in the first sim-
ulation. The bottleneck utilization is around 98%, which
is the target utilization value we configure in the AVD al-
gorithm. This simulation shows that the AVD mechanism
is effective in controlling the queue size and thus makes
Monaco more stable comparing to the droptail bottleneck
without enough buffer provisioned.

B. Multiple Bottlenecks

Firstly we show the steady state performance of Monaco
when a flow traverses more than one bottleneck. We use a
linear topology with multiple congested links depicted in
Figure 9(a). We perform a series of simulations by chang-
ing the number of the bottlenecksN from 2 to 9. To show
the compatibility of AVD in a droptail environment, we
randomly set some bottlenecks droptail and others AVD.
There are three “long” flows passing all the bottlenecks
and a set of “short” flows each using only one bottleneck.
Every bottleneck link has 100Mbps capacity and 4ms de-
lay. The long flows have very different RTTs. We simu-
late for 50 seconds under only one condition with enough
buffer provided for all the droptail routers.

As illustrated in Figure 9(b), the steady state throughput
curves of all long flows are located near the theoretic curve

for proportional fairness,100/(3 + N)Mbps. Each indi-
vidual long flow gets roughly its fair share, for all cases
of N = 2, 3, ..., 9 bottlenecks. The difference of through-
put between the 3 long flows is measured by the Coef-
ficient of Variance (C.O.V.) of their throughput, depicted
in Figure 9(c), which is between 2% and 5% for all the
cases. For a particular simulation of five bottlenecks, we
pick up two of them, one droptail and one AVD, and draw
their queue length in Figures 9(d) and 9(e), respectively.
Obviously the AVD bottleneck keeps a lower queue than
the droptail. We show the throughput convergence of two
kinds of flows in Figure 9(f), where after about 10s of
transient period, the long flow’s throughput converges to
12Mbps (around its theoretic fair share of 12.5Mbps), and
the short flow’s to some 65Mbps (around its theoretic fair
share of 62.5Mbps). This simulation demonstrates that,
with enough buffer provisioned, Monaco achieves a pro-
portionally fair bandwidth allocation in a multiple bottle-
neck case, validating our theoretic results in Section III.

Now we go further for a more realistic condition by
adding web traffic into the former multiple bottleneck
network. To simulate web traffic, we use Barford and
Crovella’s HTTP model introduced in [5]. A three-
bottleneck topology is shown in Figure 10(a) whereR1 is
an AVD router and others are droptail. All the bottleneck
bandwidth is 100Mbps, whereas the access bandwidth is
1Gbps. The propagation delay for each link is also shown
in the figure. Note “1-100ms” means that there are a num-
ber of links with propagation delays evenly ranging from
1ms to 100ms. All the unlabeled links have 1ms delay.
There are two long flows, three short-flow sets each of

11

S1

R1

s c2

dc1

1Mbps 1Mbps

sc1

c2d

R 0 2R

S2 D2

D1

S=Source, D=Destination, R=Router.
All other links are 10Mbps.

20ms 20ms

short flow 1 & 2

long flow 1

long flow 2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

(a) Topology (b) Flow Throughput

Fig. 11. Monaco Linux Kernel Implementation Results

them includes two flows, and two web-traffic sets which
totally have one thousand web connections multiplexed on
the fifty access links. Long flow 1 starts at 0s and stops at
50s, while long flow 2 starts at 20s and stops at 40s. All
short flows start randomly during 0∼3s. Web traffic starts
at 30s. We simulate for 50 seconds.

The throughput dynamics for the two long flows and
three randomly chosen short flows is shown in Fig-
ures 10(b) and 10(c) which demonstrate that both long and
short flows’ throughput rates converge respectively onto
their theoretic values, i.e., 1 (or 3)×100Mbps

6+number of active long flows
for the long (or short) flows. For example, the long flow
1 gets 14Mbps during 0∼20s, 12.4Mbps during 20s∼30s,
drops a little when web traffic comes in and then goes up to
about 13Mbps after the long flow 2 leaves at 40s; whereas
the short flow 1 gets 43Mbps during 3∼20s, 38Mbps dur-
ing 20∼30s, and then a little more than those because the
web traffic at the bottlenecksR1 → R2 andR2 → R3 lim-
its the throughput of the long flows. The queue length of
the AVD bottleneckR1 is shown in Figure 10(d), while the
droptail bottleneckR2’s is depicted in Figure 10(e). Ob-
viously AVD keeps a low and constant queue, while the
droptail queue is sensitive to the number of flows. Even
when the web traffic jumps in, which makes the AVD
queue more oscillating, it is still much lower than the drop-
tail queue. In summary, this simulation shows that Monaco
works in an environment of multiple bottlenecks with dy-
namic demands and bursty background traffic.

C. Implementation Results

We did a set of experiments using our Monaco Linux
implementation to validate the stability and fairness results
from the ns-2 simulations in the last two subsections. Here
we show one result for a two-bottleneck topology with dy-
namic demands. For more details, the reader is referred to
[28]. We have 2 droptail bottlenecks each of 1Mbps band-
width and 20ms delay as drawn in Figure 11(a). During
the 80s experiment, we have 2 short flows always active,
one long flow coming in at 20s and going out at 60s, and
another long flow active from 40s to 80s. After a brief tran-

sient period, each flow stabilizes at its proportionally fair
share, illustrated by Figure 11(b). For instance, the first
long flows’ throughput starts with 0.33Mbps (its propor-
tionally fair share) at 20s and changes to some 0.25Mbps
at 40s when the second long flow shows up. At the same
time, the short flows get 0.5Mbps, dropping from their for-
mer throughput of about 0.65Mbps. After 60s, the second
long flow gets about its fair share of 0.33Mbps.

Comparing with the simulation throughput results in
Section V-A, the implementation results in Figure 11(b)
oscillate more. This comes mainly from the limited timer
granularity in the Linux kernel which makes traffic less
regulated (more bursty) than in ns-2.

VI. SUMMARY

In this paper we generalize TCP Vegas and develop a
general model using accumulation, buffered packets of a
flow inside the network routers, as a measure to detect
and control network congestion. Applying Mo and Wal-
rand’s queuing analysis and Kelly’s nonlinear optimization
framework on the model (in the appendix), we show that
ACC allocates network bandwidth proportionally fairly at
the equilibrium – which is its steady state feature. A set
of control algorithms can drive the network to the same
equilibrium – this is related to its dynamic characteristics.
A family of schemes, including Vegas, could be derived
based on ACC. Using the model as a reference, we design
a new Monaco scheme that, with two FIFO priority queues
provided by the (congested) network routers, solves the
well-known problems of Vegas. In particular, using analy-
sis and simulations, we show that the receiver-based, out-
of-band estimator is able to produce an unbiased accumu-
lation measurement.

Using extensive ns-2 simulations, we evaluate the dy-
namic and steady state performance of Monaco under dif-
ferent topologies and conditions. The scheme demon-
strates its effectiveness in keeping network stable, fair,
and efficiently utilized, given enough buffers in the bot-
tlenecks. With underprovisioned buffer, Monaco’s perfor-

12

mance degrades. This buffer scalability problem can be
solved by running the AVQ algorithm inside the bottle-
necks, which works compatibly with the non-AQM drop-
tail routers. We implement Monaco in Linux kernel based
on the Click router and validate most of the simulation re-
sults on an internal testbed and the Utah Emulab [22].

In summary, the main contributions of this paper are:

• a model of accumulation-based congestion control based
on which a family of schemes could be derived;

• a Monaco scheme implemented as a packet-switching
network protocol which estimates accumulation unbias-
edly and utilizes this value in a non-binary manner to con-
trol congestion;

• a comparison between Vegas and Monaco showing that
Monaco’s receiver-based, out-of-band accumulation mea-
surement solves Vegas’ well-known estimation problems;

• an incrementally deployable virtual delay queuing algo-
rithm based on AVQ as a solution to the problem of un-
bounded bottleneck buffer size requirement.

One may ask that if the two-queue support from all the
bottlenecks, even its complexity is very low, is unrealistic.
Firstly, this requirement is largely eliminated at an AVD
bottleneck which provides virtual delay, instead of using
physical queuing delay, as its congestion measure. Sec-
ondly, for a non-AQM droptail bottleneck, as already ex-
plored in related research and this paper, in-band measure-
ment techniques suffer from inherently hard accumulation
estimation problem. So there is a fundamental tradeoff
between an ACC scheme’s performance and its require-
ments.

By keeping different accumulation for different flows,
it’s possible to provide differentiated services, such as min-
imum bandwidth assurance and weighted rate differentia-
tion. These issues are explored in our related work [14].

VII. A CKNOWLEDGMENT

The authors would like to thank Prof. Steven Low
of Caltech for discussions on REM. Thanks to their col-
leagues at RPI: Josh Hort, Sthanu Ramakrishnan and
Rahul Sachdev for their related work, Prof. Murat Arcak
and Xinzhe Fan for helpful discussions, and Prof. Biplab
Sikdar and Kerry Wood for proofreading a draft version of
this paper. They are grateful to the anonymous reviewers
and the editor for their insightful comments.

REFERENCES

[1] J. Ahn, P. Danzig, Z. Liu and L. Yan. Evaluation of TCP Vegas:
Emulation and Experiment.Proc. SIGCOMM’95, August 1995.

[2] M. Allman, V. Paxson and W. Stevens. TCP Congestion Control.
IETF RFC 2581, April 1999.

[3] S. Athuraliya, V. Li, S. Low and Q. Yin. REM: Active Queue
Management.IEEE Network, 15(3):48-53, May 2001.

[4] H. Balakrishnan, H. Rahul and S. Seshan. An Integrated Con-
gestion Management Architecture for Internet Hosts.Proc. SIG-
COMM’99, September 1999.

[5] P. Barford and M. Crovella. A Performance Evaluation of Hyper
Text Transfer Protocols.Proc. SIGMETRICS’99, March 1999.

[6] M. Bazaraa, H. Sherali and C. Shetty. Nonlinear Programming:
Theory and Algorithms. 2nd Ed., John Wiley & Sons, 1993.

[7] D. Bertsekas and R. Gallager. Data Networks. 2nd Ed., Simon &
Schuster, December 1991.

[8] T. Bonald. Comparison of TCP Reno and TCP Vegas via Fluid
Approximation.INRIA Tech Report, November 1998.

[9] C. Boutremans and J. Le BoudecT. A Note on the Fairness of
TCP Vegas.Proc. of International Zurich Seminar on Broadband
Communications, February 2000.

[10] L. Brakmo and L. Peterson. TCP Vegas: End to End Congestion
Avoidance on a Global Internet.IEEE Journal on Selected Areas
in Communications, 13(8):1465-1480, October 1995.

[11] D. Chiu and R. Jain. Analysis of the Increase/Decrease Algo-
rithms for Congestion Avoidance in Computer Networks.Journal
of Computer Networks and ISDN, 17(1):1-14, June 1989.

[12] D. Choe and S. Low. Stabilized Vegas.Proc. INFOCOM’03,
April 2003.

[13] R. Gibbens and F. Kelly. Resource Pricing and the Evolution of
Congestion Control.Automatica, 35:1969-1985, 1999.

[14] D. Harrison, Y. Xia, S. Kalyanaraman and A. Venkatesan. A
Closed-loop Scheme for Expected Minimum Rate and Weighted
Rate Services.Accepted by Computer Networks Journal, March
2004. Http://www.rpi.edu/˜xiay/pub/accqos.ps.gz.

[15] U. Hengartner, J. Bolliger and T. Gross. TCP Vegas Revisited.
Proc. INFOCOM’00, March 2000.

[16] V. Jacobson. Congestion Avoidance and Control.Proc. SIG-
COMM’88, August 1988.

[17] C. Jin, D. Wei and S. Low. FAST TCP: Motivation, Architecture,
Algorithms, Performance.Proc. INFOCOM’04, March 2004.

[18] F. Kelly, A. Maulloo and D. Tan. Rate Control in Communica-
tion Networks: Shadow Prices, Proportional Fairness and Sta-
bility. Journal of the Operational Research Society, Vol.49, pp.
237-252, 1998.

[19] E. Kohler, R. Morris, B. Chen, J. Jannotti, and F. Kaashoek.
The Click Modular Router.ACM Trans. on Computer Systems
18(3):263-297, August 2000.

[20] S. Kunniyur and R. Srikant. End-To-End Congestion Control:
Utility Functions, Random Losses and ECN Marks.Proc. INFO-
COM’00, March 2000.

[21] S. Kunniyur and R. Srikant. Analysis and Design of an Adaptive
Virtual Queue (AVQ) Algorithm for Active Queue Management.
Proc. SIGCOMM’01, August 2001.

[22] J. Lepreau et al. The Utah Emulab. Http://www.emulab.net/.
[23] S. Low and D. Lapsley. Optimization Flow Control, I: Basic

Algorithm and Convergence.IEEE/ACM Trans. on Networking,
7(6):861-875, December 1999.

[24] S. Low, L. Peterson and L. Wang. Understanding TCP Vegas: A
Duality Model.Proc. SIGMETRICS’01, June 2001.

[25] J. Mo, R. La, V. Anantharam and J. Walrand. Analysis and Com-

13

parison of TCP Reno and Vegas.Proc. INFOCOM’99, March
1999.

[26] J. Mo and J. Walrand. Fair End-to-End Window-based Congestion
Control. IEEE/ACM Trans. on Networking, 8(5):556-567, Octo-
ber 2000.

[27] Network Simulator ns-2. Http://www.isi.edu/nsnam/ns/.
[28] A. Venkatesan. An Implementation of Accumulation-based Con-

gestion Control Schemes.RPI M.S. Thesis, August, 2002.

APPENDIX

We apply Mo and Walrand’s queuing analysis [26] and
Kelly’s nonlinear optimization framework [18] to demon-
strate the equilibrium characteristics of the ACC model
described in Section III. It turns out that, given an ap-
propriate control algorithm, ACC steers the network to an
equilibrium of proportional fairness.

Network congestion control can be formalized as a re-
source allocation problem. Consider a network of a set
L = {1, . . . , |L|} of links, shared by a setI = {1, . . . , |I|}
of flows. Each linkl ∈ L has capacitycl. Flow i ∈ I
passes a routeLi consisting of a subset of links, i.e.,
Li = {l ∈ L | i traversesl}. A link l is shared by a subset
Il of flows where Il = {i ∈ I | i traversesl}. Obviously
l ∈ Li if and only if i ∈ Il.

Firstly consider the queuing perspective [26]. After the
system approaches a steady state (so we can neglect the
time variablet in all the equations in Section III), at any
link l the queue lengthql (=

∑
i∈Il

qil), or equivalently the
queuing delaytql (= ql/cl), could be non-zeroonly if the
capacitycl is fully utilized by the sharing flows of the ag-
gregate rate

∑
i∈Il

xi, wherexi is the sending rate of flowi.
This suggests eitherql = 0 (i.e., tql = 0 which means the
link is not congested) or

∑
i∈Il

xi = cl (which means the
link is congested). We use window-based congestion con-
trol, in which a windowwi bits of flow i could be stored
either in node buffers as accumulationai (=

∑
l∈Li

qil) or
on transmission links asxi · rttp i, whererttp i is flow i’s
round trip propagation delay. Notewi = xi · rtti, where
rtti is the round trip time observed by flowi. We summa-
rize the above analysis to get the following result:

Proposition 1: If we use accumulationai as a steering
parameter to control flowi’s congestion window sizewi,
then at the steady state we have,∀i ∈ I,∀l ∈ L :
(a) wi = ai + xi · rttp i, i.e., ai = xi(rtti − rttp i) =
xi ·

∑
l∈Li

tql;
(b) tql · (cl −

∑
i∈Il

xi) = 0;
(c)

∑
i∈Il

xi ≤ cl;
(d) tql ≥ 0;
(e)xi > 0.

Alternatively, network resource allocation can also be

modeled as an optimization problem [18] [23] [20], where
the system tries to maximize the sum of all flows’ util-
ity functions

∑
i∈I Ui(xi), in which flow i’s concave util-

ity function Ui(xi) is a measure of its welfare when it
sends at a rate ofxi > 0, subject to a set of capacity con-
straints

∑
i∈Il

xi ≤ cl at all the links. Using the Lagrange
multiplier method [6], we construct a Lagrange function
L(x, p) =

∑
i∈I Ui(xi) +

∑
l∈L pl · (cl −

∑
i∈Il

xi). If
utility functions are defined asUi(xi) = si lnxi, where
si > 0 is a weight, then because of the strict concavity
of the objective function constrained by a convex set, the
Karush-Kuhn-Tucker condition can be applied to obtain:

Proposition 2: The nonlinear programming problem

maximize
∑

i∈I

si lnxi (13)

subject to
∑

i∈Il

xi ≤ cl,∀l ∈ L

xi > 0,∀i ∈ I

has a unique global maximum. The sufficient and neces-
sary condition for the maximum is,∀i ∈ I, ∀l ∈ L :
(a)∂L(x, p)/∂xi = 0, i.e.,si = xi ·

∑
l∈Li

pl;
(b) pl · (cl −

∑
i∈Il

xi) = 0;
(c)

∑
i∈Il

xi ≤ cl;
(d) pl ≥ 0;
(e)xi > 0.

Now let’s compare the above two results. If replacingsi

with ai, pl with tql, we find that Proposition 2 is turned into
Proposition 1, and vice versa. This observation indicates
that, by using accumulation as the steering parameter to
control flow rate, the network is actually doing a nonlinear
optimization in which flowi’s utility function is

Ui(xi) = ai lnxi. (14)

So accumulationai is an instance of the weightsi, which
could be used to provide a weighted proportionally fair
congestion control. Besides, the Lagrange multiplierpl is
a measure of congestion, or price explored in [23], at link
l. In particular, the queuing delaytql is an instance of such
price. The more severe the congestion at linkl, the higher
the pricepl, the larger the queuing delaytql. If there is no
congestion at that link, then there is no queuing delay at
all, i.e.,tql = 0, the pricepl is also 0.

Given the above utility function of ACC, it is straight-
forward to show that its equilibrium bandwidth allocation
is weighted proportionally fair where the accumulationai

is the weight for flowi.

