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Abstract—This paper! generalizes the TCP Vegas conges-ber of buffered packets inside the routers along the path,
tion avoidance mechanism and useaccumulation buffered  to detect network congestion and demonstrates better per-
packets of a flow inside the network routers, as a conges-formance than Reno. Unfortunately, Vegas has technical
tion measure based on which damily of congestion control - -oh1ems inherent to its backlog estimator that prevent it

schemes can be derived. We call this model accumulation-from functionin roverlv. There has been a substantial
based congestion control (ACC), which fits into the nonlin- g properly.

ear optimization framework proposed by Kelly. The ACC amount of work on this issue, such as [1] [25] [15] [8] [9]

model serves as a reference for packet-switching network [24] [12] and references therein, which we review in Sec-
implementations. We show that TCP Vegas is one possi-tion Il. But none of them provides a solution to estimate
ble scheme under this model. It is well known that Vegas backlog unbiasedly in case of round trip propagation delay

suffers from round trip propagation delay estimation error  estimation error or reverse path congestion.
and reverse path congestion. We therefore design a new In thi p lution to thi bl dd
Monaco scheme that solves these problems by employing an n this paper, we ofier a soiution to this probiem and de-

out-of-band, receiver-baseaccumulation estimator, with the ~ VEIOp & systematic model to generalize Vegas’ congestion
support of two FIFO priority queues from the (congested) avoidance mechanism. Formally, we define in a bit-by-bit
routers. Comparisons between these two schemes demonfluid model the backlog (hereafter we calditcumulation
strate that Monaco does not suffer from the problems men- as a time-shifted, distributed sum of queue contributions of
tioned above and achieves better performance than Vegas.a flow at a set of FIFO routers on its path. The central idea
We use extensive ns-2 simulations and Linux implementa- g 1, control flows’ rate by controlling their accumulations
tion experiments to show that the static and dynamic per- . o

formance of Monaco matches the theoretic results. One key in an end-to-end anq distributed manner. We study a set of
issue regarding the ACC model in general, i.e., the scalability ¢/0S€d-loop congestion control schemes that are all based
of the bottleneck buffer requirement, and a solution using a Upon the idea of keeping a target accumulation for each
virtual queuing algorithm, are discussed and evaluated. flow individually.

Keywords—Congestion control, Accumulation, TCP. The key concepts for this accumulation-based conges-
tion control (ACC) model are developed in Section lIl.
An ACC model has two components: congestion estima-
tion and congestion response. The former defines a con-

Much research has been conducted to achieve stablestion measure (i.e., accumulation) and provides an im-
efficient and fair operation of packet-switching network@lementable estimation of the measure; while the latter
TCP congestion control [16], a set of end-to-end mechdefines an increase/decrease policy for the source throt-
nisms, has been widely acknowledged for its critical rotée. A class of control algorithms, including the additive-
in maintaining the stability of the Internet. Among thenincrease/additive-decrease (AIAD) policy [11], Mo and
TCP Reno [2] infers network congestion by detecting/alrand’s proposal [26] and a proportional control, can
packet loss that is presumably caused only by congestibe;used. Based on previous research [26] [18], in the ap-
alternatively, TCP Vegas [10] measures backlog, the nupendix we show that the equilibria of all these algorithms

T achieve the same proportional fairness.
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tional Conference on Communications in Anchorage, Alaska, USA Qtheme. We describe two example schemes in Section IV.
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vide resolution to a number of concerns regarding accumu- : — —

lation estimation in Section IV-C. Section V demonstrateglowi?li R, 2 Ry _R—l_,
the steady state and dynamic performance of Monaco us- ' — — R =
ing extensive ns-2 [27] simulations as well as Linux imple- edge (@) Networlchodel edge
mentation experiments. Section I1I-C discusses a key com—d/), P
cern regarding the ACC model in general, i.e., the scalabil-  /~ s 5
ity of bottleneck buffer requirements resulting from accu- 4/ =4 0,0
mulating packets in the congested router buffers for every S — /a'(,)
flow. Section IV-D presents a solution to this issue based '
on the virtual queuing algorithm in [21]. We conclude this A
paper in Section VI. - b
(b) Accumulation
II. RELATED RESEARCH Fig. 1. Network Fluid Model of Accumulation

The most closely related work starts from the TCP Ve-
gas protocol, followed by a series of nonlinear optimizaptimization model for Vegas [24]. Then Jin, Wei and
tion based models for network congestion control. Low extend Vegas and design a FAST protocol for high

TCP Vegas [10] includes three new techniques: a mothandwidth-delay-product networks [17]. Low et al. im-
fied slow start, a more reactive retransmission mechanignove Vegas performance using a Randomly Exponential
resulting in less timeouts, and a new congestion avoidaMarking (REM) buffer management algorithm [3]. Simi-
that maintains a “right” amount of extra packets insider to Vegas+REM, we use Monaco+AVQ in this paper as
the network. Its authors claim that Vegas achieves higtar alternative solution.

throughput and less packet losses than Reno using simuyio and Walrand propose a fair end-to-end window-
lations and Internet measurements, confirmed experimg@sed scheme that includes a proportionally fair control
tally by Ahn et al. [1] and analytically by Mo et al. [25],algorithm [26]. However, this algorithm raises technical
who also point out Vegas’ drawbacks of estimating rounghallenges in its practical implementation. Our Monaco
trip propagation delay (RTPD) incorrectly in the presenGgcumulation estimator can be viewed as such an imple-

of rerouting and possible persistent congestion. Instead@éntation that requires two-FIFO-priority-queue support
using the minimum of all round trip time (RTT) samples agom the congested routers.

an estimation of RTPD, they suggest to use the minimum

of only the most recent k RTT samples. As we discussed in

Section IV-A, this estimation is still inflated because there 1. ACC FLUID MODEL
is alwaysa steady state standing queue on the path.

Bonald compares Reno and Vegas by means of a quiofn this section we describe the ACC model. We define

approximation [8]. He finds that Vegas is more stable th&Fcumulation under a bit-by-bit fluid model and use accu-

Reno, resulting in a more efficient utilization of net\NorIgwIatIon to measure and control network congestion. In

resources, and shares fairly the available bandwidth 6'3@ appendix we briefly prove that keeping a target accu-

tween users with heterogeneous RTTs. But its faimergléjlation inside the routers for each flow is equivalent to a
critically depends on accurate estimation of RTPD, COI;]g)nlinearoptimization that allocates network capacity pro-

firmed by the analysis of Boutremans et al. [9]. portionally fairly. We show that a set of control algorithms

A different line of research of network congestion Cone_X|st for each flow to achieve its target accumulation.

trol theoretic models is pioneered by Kelly’s optimization

framework [18], followed by Low et al. [23] and Srikanty  Accumulation

et al. [20], where they model congestion control as a non-

linear optimization problem under which all users try to Consider an ordered sequence of FIFO nddes .. .,
maximize their own interest, subject to a set of capacify;} along the path of a unidirectional floiin Figure 1(a).
constraints. Following Gibbens and Kelly’s work [13];The flow comes into the network at the ingress nétle
Kunniyur and Srikant develop an Adaptive Virtual Queuand, after passing some intermediate ndes .., Ry_1,
(AVQ) algorithm [21], which we leverage in this papegoes out from the egress no&g. At timet in any node
to keep a low steady state queue in the congested routefg1 < j < J), flow i's input rate is\;;(¢), output rate is
(see Section IV-D). Low, Peterson and Wang present aj}(t). The propagation delay from nod& to nodeR;
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(a) ACC-AIAD (b) ACC-MW (c) ACC-P

Fig. 2. Different ACC algorithms achieve similar steady state bandwidth allocation, but the dynamic behavior differs significantly

is a constant valué; . wherew;(t), rtt;, a;(t) anda} are respectively the conges-

Define flow i's accumulation as a time-shifted, distion window size, round trip time, instantaneous accumu-
tributed sum of the queued bits in all the nodes along I&tion and target accumulation value of fleys > 0 and
path from the ingress node, to the egress nodgj, i.e.,

; - +1 iof y>0
ai(t) = qi(t— > dy) (1) sgnly) = _01 z; z z 8 “
=1 k=

whereg;; (¢) is flow i's queued bits in routef at timet, as 1) ACC-MW is proposed by Mo and Walrand [26]:
illustrated as the solid slanted line in Figure 1(b). Note

the equation includes only those bits backlogged inside wi(t) =
the node buffers, not those stored on transmission links.

(This definition provides a reference to implement an unhitherertt,, is the round trip propagation delay of flow
ased accumulation estimator in Section IV-B.1.) We aimto ___ ] ] ]

control flow rates by controlling their accumulations, i.e,, ) ACC-P is a proportional control policy that we use
keeping a steady state accumulation inside the network F&Fh's paper.

each individual flow . K
wi(t) = —
T’tti

K- rtty  ai(t) —af

T’tti W (t) (5)

+(ai(t) — ag). (6)
B. Control Algorithms Note all the above algorithms have the same single zero
In the ACC model we use accumulation to measupint a;(t) = a). We present a set of algorithms here
network congestion as well as to probe available bansecause they share a common steady state property of pro-
width. If accumulation is low, we increase the congestigrortionally fair bandwidth allocation. We briefly state this

window; otherwise, we decrease it to drain accumulatidmelow and present more details in the appendix.
More accurately, we try to maintain a constant target ac-
cumulationa; for each flow: anda; > 0. To achieve this ¢ properties

goal we can choose fromsetof control algorithms® ) ) )
For any congestion control, major theoretic concerns are

i) ACC-AIAD additively increases and additively de_stabi'li_ty, as well as fairness and sf[eady state queue bounpl.
creases the congestion window value: Stability guarantees that the algorithm approaches its equi-
librium. Fairness, either max-min [7] or proportional [18],

_ -sgn(a;(t) — a}) (3) determines the steady state bandwidth allocation among
Tt the competing flows. A steady state queue bound provides
2In practice R1/R; can be mapped as a source/destination pair &1 upper limit on the router buffer requirement in equilib-

form an end-to-end control loop or ingress/egress edge routers to faqimm, which is important for real network deployment.

an edge-to-fedge control loop. Here we focus on the ACQ model itself.-l-he stability of the general algorithm (2) is still an open

The reader is refer to [14] for discussion on architectural issues. . . . : . .

3 All these algorithms fit into the following general form: guestion. So we turn to extensive simulations in Section V
to evaluate the stability of ACC-P.
wit) = —n-g(t) - flai(t) - ai) (2 Given that the equilibrium is achieved, we can prove
wheren > 0, g(t) > 0, f(-) is a function in the first and third quad-that the equilibrium bandwidth allocation of ACC is
rants. It is nondecreasing and has a single root 0 (i.e., pily = 0). ~ weighted proportionally fair (See the appendix). Figure 2

w;(t) =




shows simulation results of a parking-lot topology of tw&oal 1: Stability: The scheme should steer toward an
9Mbps bottlenecks with one long flow and two short flowsquilibrium in a reasonably dynamic environment with
(using the scheme developed in Section IV-B). It verifiehanging demands or capacity;

that all the three algorithms do achieve similar steady stiga| 2: Proportional Fairness: Given enough buffers,

bandwidth allocation$. the scheme must achieve proportional fairness and oper-
Interestingly, different ACC control policies can haV@_te without packet loss at the steady state;

the same fairness property. Thus to achieve a partlcu&\(gal 3: High Utilization: When a path is presented with

steady state performanc'e., we have the freedom to Chogﬁﬁicient demand, the scheme should achieve around full
from a set of control policies that have different dynam'ﬁtilization of the path’s resources;

characteristics. In this sense, the ACC model manifests . _

congestion control in two steps: setting a target steaip@l 4: Avoidance of Persistent Loss: If the queue
state allocation (fairmess) and then designing a control §fiould grow to the point of loss due to underprovisioned
gorithm (stability and dynamics) to achieve that allocatioRUffers, the scheme must back off to avoid persistent loss.

Even though we keep a finite accumulation inside the
network for every flow, the steady state queue at a bottfd- Vegas
neck scales up to the number of flows sharing that bottle-Vegas includes several modifications over Reno. How-
neck. In practice, we need to provide enough buffer in tlger, we focus only on its congestion avoidance mecha-
congested routers to avoid packet loss and make the caidm, which fits well as an example ACC scheme.
gestion control protocol robust to such loss, if unavoidableBrakmo and Peterson [10] use the term “backlog” to
(see Section IV-B). Another way to alleviate this probdescribe what we explicitly define as accumulation. For
lem is to control aggregate flow in a network edge-to-edgach flow, the Vegas estimator takes as input an estimate
manner, instead of end-to-end. (However, we focus on tBeits round trip propagation delay, hereafter calied,
model itself and don't elaborate the architecture issues(tr basertt in [10] [25]). Vegas then estimates the accu-
this paper.) A possibly better solution to keep steady staiglation as
queue length bounded is to use an active queue manage- _

ment (AQM) mechanism such as AVQ [21]. We imple- 4V = (ezpected rate — actual rate) X rtt,
ment this option and discuss more details in Section IV-D. _ (cwnd _cwnd ) x rtt @)
p
rtty rit
IV. ACC SCHEMES which could be simplified as
. cwnd
Now we instantiate the ACC model into two schemes ay = - X ritg (8)

for packet-switching networks. Firstly we show that TCP ) ) )

Vegas tries to estimate accumulation and fits into the AC¥€re cwnd/rtt is the average sending rate during that
model, but Vegas often fails to provide an unbiased acdg! T andrttq = rtt —rtt, is the round trip queuing delay.
mulation estimate. Then we design a new scheme calléd?!» S accurately available and there is no reverse path
Monaco that solves the estimation problems of Vegdtieuing delay, then according to Little’s La; provides
Monaco also improves the congestion response by util?2 unbiased accumulation estimate.

ing the value of the estimated accumulation, unlike Vegas’ Ve9as estimatesi?, as the minimum RTT measured so
AIAD policy that is slow in reacting to a sudden change if@" If the bottleneck queues drain often, it is likely that
user demands or network capacity. By comparing Monaggch control loop will e\_/entually obtain a sample _that re-
and Vegas via analysis and simulation we reach two difCts the true propagation delay. The Vegas estimator is
servations: It is effective 1) to employ raceiver-based USed t0 adjust its congestion window sizejnd, so that
mechanism and, 2) to meastgward path queuing de- v approaches a target range=0fto <, packets. More
lay, instead of round trip queuing delay as in Vegas, f@ccurately stated, the sender adjusts.d using a variant

an unbiased accumulation estimate. The scheme desigVFision of the algorithm (3):

guided by the following goals: cond(n) +1 if ay <er

cwnd(n +1) = { cund(n) —1 if ay > e ©

4 . I . S
More careful investigation of Figure 2 reveals that the equilibria gh .
the three algorithms are not exactly the same. We believe that it is uQereel ande; are set to 1 and 3 packets, respectively.

to the burstiness in the discrete time simulation system which is n€9as has several well-known problems:
captured by the continuous time fluid model.



« Ritt, Estimation Errors Suppose re-routing of a flow sender
increases its propagation delay. Vegas misinterprets such
an increase as less congestion and sends faster. Hence, this
policy can lead to unbounded queue which introduces per-

receiver

sistent loss and congestion [24], violating Goals 1 and 4. / ——~ \r;t‘; o T,
Mo et al. [25] suggest limiting the history on thet, es- T \

timate by using the minimum of the last k, instead of all, g‘g"gﬂ%kt accumulation est.  Forward 1B
RTT samples. We refer to this variant as the “Vegas-k” arrives. =num. of arrivals Gl pktarives.
scheme. Siill, it cannot guarantee queue drain at interme- hetween O Tkts. hodsey

diate bottlenecks within k RTTs, shown in Section IV-C.
Fig. 3. Monaco Accumulation Estimator

 Ritt, with Standing QueueswWhen a flow arrives at a

bottleneck With a standing queue, i'_[ obtgins an exag_ggh—ming the OB queues to be minimal as only other OB
at?drttp estimate. The flow then adjusts its wmdpw SIZ€ontrol packets share them, such packets experience only
t‘? incuran extra ba_lcklog between_andsg packets in ad—_ the forward propagation delagg . The IB control packet
dition t_o the standing queue. This Iegds to a bandW|_ es along with regular data packets and reaches the egress
allpcatlon away from the target proportional fairness, VIQT e after experiencing the queuing delay in the network.
lating Goal 2. The time interval between the OB and IB control pack-

hC iorh _ is of ets measured at the egress node is a sample of the cur-
« Reverse Path Congestionthe Vegas estimator is af- o foryard trip queuing timeftt,). Considering a net-

fected by congestion in the reverse path. Reverse pgif \ith enough buffers where there is no packet loss,
congestion inflates the Vegas estimator leading to Sharﬂl¥he flow rates at all the routers do not change dramat-

reduced utilization, not achieving Goal 3. ically, then by Little’s Law, the number of data packets
arriving at the egress node after the OB control packet,

B. Monaco but before the IB control packet is an unbiased accumu-

lJ tion estimate. In Figure 3, the dashed lines cut by the

Monaco emulates the accumulation defined by E L
y =d (%J'ward direction OB control packet are those data pack-

tion (1) and implements a receiver-based, out-of-ba ) U .
measurement. It is immune to issues suchtas sensi- ets, VY,'Ehl each.cut happening in the routey at time
tivities and reverse path congestion and robust to contfol Zk:j di, Vj € {L,..., J}. AI.SO observe in the figure
and data packet losses. We describe the Monaco accu gt we can measunet at both ingress and egress nodes
lation estimator and then its congestion response policyfn’mdrtt_p at the egress node. _ ) ,
Besides, we need to consider the effect of traffic bursti-

ness. When we have a congestion window sized, we
also compute a rate based on RTT estimationte =

Let's look at the definition of accumulation in Equacwnd/rtt. At the ingress node we use this rate value to
tion (1). It is the sum of the queued bits of a flow at a seémooth incoming traffic and thus alleviate the effect of
quence of FIFO routers, including both ingress and egréggstiness. At the egress node the accumulation is com-
nodes as well as the intermediate routers. We aim to eliputed as the product ¢gft, and an exponentially weighted
inate the computation at intermediate routers. Actuallyroving average of the egress rate.
is impossible for all the nodeB; (1 < j < J)tocompute In practice, both data and control packets maybe lost
synchronously their queues; (¢ — Zi;; dy) at different because of inadequate router buffer size or too many com-
times since no common clock is maintained. peting flows. To enhance the robustness of the Monaco es-

To estimate accumulation without explicit computatioimator when data packets are lost, the IB control packet,
at the intermediate routers, Monaco generates a pairidgntified by a control packet sequence number, carries a
back-to-back control packets once per RTT at the ingrdage count of the number of data bytes sent during that
node as shown in Figure 3. One control packet is sent operiod. If the egress node receives fewer bytes than were
of-band (OB) and the other in-band (IB). The OB contrdtansmitted, then packet loss is detected. The forward OB
packet skips queues in the intermediate routers by passntrol packet carries the same control packet sequence
ing through a separate dedicated high priority queie-

B.1 Congestion Estimation Protocol

i.e., assigning a low delay TOS to the high priority control packet if
®An alternative implementation is to use IP Type of Service (TOSJOS is supported in all the (congested) routers.
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number as the associated IB control packet. Monaco sends

congestion feedback on the reverse OB control packet, in 1

which there is one additional piece of information: a flag os T ,

denoting whether the congestion windownd should in- Monaco

crease, decrease, or decrease-due-to-loss. The subseque t°°] T

pair of forward control packets is generated after the ar- g o4 P T ]

rival of the reverse OB control packet at the ingress node. o, " Vegas ]
If either IB or OB control packet is lost, then the ingress 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘

node times out and sends a new pair of control packets with © Fj:mepai‘;ndwidfof o (M?’jps) 0o

a larger sequence number. The timer for control packet re-

transmission is similar to that of TCP. These routine reli&ig. 4. Comparison between Vegas and Monaco under Reverse

bility enhancements are similar to those in the Congestion Path Congestion

Bottlen&X utilization

Manager [4].
Vegas estimator operates at senderside. According

B.2 Congestion Response Protocol to Equation (8) it actually calculates:

As already no'ted, we use accumulgtion to meqsure Gy = cwnd x (rtt —rtt,) (11)
network congestion and to probe available bandwidth. rit
We keep target accumulation for each flow by increas- _ ownd (] +12) (12)
ing/decreasing its congestion window when the accumu- rtt
lation is lower/higher than the target value. wheret/ andt! are the forward and reverse path queuing

Since a pure window-based control policy introducefelays, respectively. The above equations imply that Ve-
undesirable burstiness we usge-paced window control gas may suffer from two problems: 1) By Equation (12),
to smooth incoming traffic by employing at the ingresi$ there exists reverse path queuing delay (because of re-
node a leaky bucket shaper with a rate valuewhd/rtt verse direction flows), i.ei;’; > 0, then Vegas overesti-

and a burst parameter of one packet. mates accumulation. This leads to underutilization and is
We provide below the Monaco’s proportional contrdhard to handle because the forward direction flows have
policy which is the discrete version of Equation (6): no control over those in the reverse direction. To show

this effect we use a simple dumb-bell topology with a bot-
cwnd(n + 1) = cwnd(n) — K - (apr — a*) (10) tleneck of 45Mbps forward direction bandwidth shared by
seven forward direction flows and seven reverse flows. We
wherea), is the Monaco accumulation estimatiarf, set change the bottleneck’s reverse direction bandwidth from
to 3 packets, is a target accumulation in the path aki to5Mbps to 45Mbps. As shown in Figure 4, Vegas utiliza-
andes used by Vegass is set to 0.5, andwnd(n) is the tion is only 10%~ 60%. 2) By Equation (11), iftt,
congestion window value at a control period is underestimated then Vegas overestimates accumulation
Monaco improves Vegas’ control policy by utilizing theand conversely if-tt, is overestimated. The prior leads to
value of estimated accumulation fedback by the rever$e affected flows reducing window size leading to unfair-
OB control packet, instead of taking it as binary infomess or underutilization. Results for a single bottleneck of
mation (i.e., “how congested”, instead of “congested ad0OMbps bandwidth and 12ms propagation delay are shown
not”). If the congestion feedback is decrease-due-to-logsFigures 5(a) and 5(b), where th&, estimation error is
Monaco halves the congestion window as in TCP Renointroduced by a sudden propagation delay change to 52ms
at time 10s. Vegas retains its prior now inflated, es-
timate and thus underutilizes the bottleneck. Vegas-k re-
covers from the increase in propagation delay, but because
Vegas and Monaco both aim to accurately estimate dke queue does not periodically drain, the minimum of the
cumulation, assuming different support from the netwot&stk RTTs drifts upward overestimatingt, until buffer
routers. Ifrtt, can be obtained precisely and there is noverflows.
reverse path congestion, then, by Little’s law, each of themDue to the above problems, Vegas falls short of quali-
gives an unbiased accumulation estimate. But in prdging as an effective ACC scheme, because we expect to
tice Vegas has severe problems in achieving this objectiaehieve congestion control by maintaining constant accu-
Monaco solves known estimation problems. mulation for each flow at the steady state! In such a case,

C. Comparisons between Vegas and Monaco
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the sum of accumulations would lead to a non-zero steatityn at thereceiver sideotherwise it’s difficult to eliminate
state queue which is not likely to drain, and hence dynanthe effect of reverse path queuing delay, which is hardly
rtt, estimation would not possibly be unbiased with onlynder the forward direction congestion control.

in-band measurements. In summary, iftg, sensitivity

issues of Vegas point tofandamentaproblem of the in- Adaptive Virtual Delay Queuing

band techniques for accumulation estimation. _ . _ _
As we discussed in Section IlI-C there is a buffer scala-

Monaco solves both problems. Monaco estimator Ogjjiry nroblem forall the ACC schemes, including Vegas,
erates at theeceiverside and thus excludes the influencg,naco and EAST. since all of them keep non-zero steady
of reverse path congestion. By measuring the time int@fe 5ccumulation inside the network for all the flows.
val between the 'O'B and .IB control packets, Monaco doesAccording to the analysis in the appendix, the key to
qot need to explicitly estimate the forward path Propagaq the ACC schemes is to provide the queuing delay, or
tion delay. (Actually the forward path OB control packehe | 4grange multiplier from the optimization perspective,
implicitly _prowdes this value.) More_speuﬂcally, SINC& 4t is a measure of network congestion. In a non-AQM
Monaco implements a rate-paced window control alg@;qnail FIFO router, the Lagrange multipliey = q;/¢;
rithm to smooth out incoming traffic, the time dlfferenc% provided by ahysicalFIFO queuing process wherg
between the OB and IB control packet arrivals gives_a Safl-ived and we have no freedom to control the physical
ple of the current forward path queuing defgy,. By Lit- 0.6, But similar to AVQ, we can provide the same

t!e’s Iaw,_ th(aT number of data packets arriving during th(rcalue of the Lagrange multipliet; by running an AQM
time period is the backlogged packets along the path. Lé?gorithm in the bottleneck such thay = q//c| if we
ing the OB control packet also makes Monaco adaptive i, ¢ the virtual capacity, appropriately (Also see dis-
re-routing since itis sent every RTT. As shown in F'guresc‘bssions in [12]). At the same time the physical queue
and 5(c), after a brief transient period of three secon n be bounded
Monaco operates again at around 100% utilization with Nogy we leverage AVQ to emulate an adaptively changing
packet loss. So it's immune tat, estimation inaccuracy jin capacity and compute a virtual queuing delay, which is
and reverse path congestion. defined as the ratio of virtual queue length divided by vir-
The above comparisons between Vegas, Vegas-k dndl capacity and add it into the forward IB control packet.
Monaco suggest two observations on how to estimate &ge call this mechanism Adaptive Virtual Delay (AVD) al-
cumulation unbiasedly: 1) The key is to measfmevard gorithm. A nice property of AVD is that it isncremen-
path queuing delay (via the OB and IB control packets itally deployablesince a mixed set of droptail and AVD
Monaco), instead ofound trip queuing delay (as in Ve-routers can work together (see Section V-B). In such an
gas); and consequently, 2) it's better to measure accumwavironment the Monaco accumulation estimate changes
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to Gaa; = apr + = - tav p, Whereapr is the accumulation ments in this section. Our ns-2 simulations illustrate:

in the droptail bottlenecks measured between two controlA) Dynamic behaviors such as convergence of through-
packets as in Figure 3,is the egress flow rate andy p is  put, instantaneous link utilization and queue length in Sec-
the sum of all the virtual delays at those AVD bottleneckgon V-A. We use a single bottleneck topology with hetero-

geneous RTTs for tens of flows periodically entering and

leaving;
V. SIMULATIONS AND EXPERIMENTS

B) Steady state performance such as throughput fairness
In the last section we have shown that Monaco oty Section V-B. We use a linear topology of multiple con-
performs Vegas. So we focus on evaluating the Monagested links shared by a set of flows passing different num-
scheme using simulations and implementation expebier of droptail and AVD bottlenecks.
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TABLE | In the first simulation, the bottleneck router has enough
PARAMETER SETTINGS buffer of 90 packets, as shown in Figure 6(d), where there
is no packet loss. We randomly pick one flow from each set
Parameter Vglge and draw its individual throughput in Figure 6(e). We ob-
K .

serve that from Os to 30s, the throughput is about 3Mbps,
since only ten flows are active. When the five flows from
set 2 jump in at 10s, the throughput drops to 2Mbps, as
we have fifteen active flows. Similarly, when the final
_ o five flows from set 3 enter at 20s, the throughput changes
We also implement Monaco in Linux kernel v2.2.1§, 1 5Mpps. Then at 30s, set 1 stops, the throughput in-
based on the Click router [19]. In Section V-C we USgeases to 3Mbps. At 40s, set 2 leaves, only the five flows
Linux implementation experiments to validate the ns get 3 are in the system with throughput of about 6Mbps.
simulation results. In all the simulations and experimenig,q congestion window dynamics is similar, as shown in
we use the parameter settings shown in Table I. In briggyre 6(c). Bottleneck queue length is depicted in Fig-
in combination with Section IV-C, this section shows thgfe 6(d) where the incoming flows build up a steady queue
Mongco satisfies all the goals outlined in the beginning 9,4 the flows leave with queue decrease, on average 3
Section IV. packets for each flow. This matches the target accumula-
tion specified as a control parameter in Table |. During the
simulation the bottleneck utilization always stays around
Firstly we consider a single 30Mbps bottleneck withpgos, except two soon-recovered drops during abrupt de-
2ms propagation delay shared by three sets of flows ¥sand changes at 30s and 40s as seen in Figure 6(b). From
ing Monaco, as shown in Figure 6(a). Set 1 has ten floy§s simulation, we validate that Monaco demonstrates a
starting at Os and stopping at 30s; Set 2 has five flows stafiple behavior under a dynamic and heterogeneous envi-

ing at 10s and stopping at 40s; Set 3 has five flows staggnment and keeps steady queues inside the bottleneck.
ing at 20s and stopping at 50s. Each source-destination

pair is connected to the bottleneck via a 10Mbps 1ms link.In the second simulation, the droptail bottleneck router
The one-way propagation delays for the three sets of flotusffer is underprovisioned, as illustrated in Figure 7(b),

are 4ms, 9ms and 14ms, respectively. We simulate for %@ can see that the queue length grows to the limit of
seconds. We perform three simulations, the first one witie whole buffer size of 55 packets, and there is a corre-
enough buffer provided for a droptail bottleneck, the sesponding packet loss leading to halving of the congestion
ond one with underprovisioned buffer also for the droptaNindow during 20s~ 30s. Consequently, the throughput

bottleneck, and the third one with an AVD bottleneck. oscillates more as seen in Figure 7(c), but the bottleneck

target accumulatiory* | 3000 bytes
data packet size | 1000 bytes

A. A Single Bottleneck with Dynamic Demands
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is still fully utilized. From this simulation, we see thafor proportional fairness}00/(3 + N)Mbps. Each indi-
without enough buffer, Monaco shows a degraded behaidual long flow gets roughly its fair share, for all cases
ior under dynamically changing demands. of N = 2,3, ...,9 bottlenecks. The difference of through-
In the third simulation, the AVD bottleneck buffer isput between the 3 long flows is measured by the Coef-
the same as the second one. As illustrated in Figure 8(igient of Variance (C.O.V.) of their throughput, depicted
for most of time the bottleneck queue length is below 10 Figure 9(c), which is between 2% and 5% for all the
packets. The throughput converges without oscillation @gses. For a particular simulation of five bottlenecks, we
shown in Figure 8(c), comparable to result in the first sinpick up two of them, one droptail and one AVD, and draw
ulation. The bottleneck utilization is around 98%, whicktheir queue length in Figures 9(d) and 9(e), respectively.
is the target utilization value we configure in the AVD alObviously the AVD bottleneck keeps a lower queue than
gorithm. This simulation shows that the AVD mechanisitie droptail. We show the throughput convergence of two
is effective in controlling the queue size and thus makéids of flows in Figure 9(f), where after about 10s of
Monaco more stable comparing to the droptail bottlenettansient period, the long flow’s throughput converges to

without enough buffer provisioned. 12Mbps (around its theoretic fair share of 12.5Mbps), and
the short flow’s to some 65Mbps (around its theoretic fair
B. Multiple Bottlenecks share of 62.5Mbps). This simulation demonstrates that,

with enough buffer provisioned, Monaco achieves a pro-
%ortmnally fair bandwidth allocation in a multiple bottle-
eck case, validating our theoretic results in Section Il

Firstly we show the steady state performance of Monatd
when a flow traverses more than one bottleneck. We us
linear topology with multiple congested links depicted in
Figure 9(a). We perform a series of simulations by chang-Now we go further for a more realistic condition by
ing the number of the bottlenecké from 2 to 9. To show adding web traffic into the former multiple bottleneck
the compatibility of AVD in a droptail environment, wenetwork. To simulate web traffic, we use Barford and
randomly set some bottlenecks droptail and others AVBrovella’'s HTTP model introduced in [5]. A three-
There are three “long” flows passing all the bottlenecksttleneck topology is shown in Figure 10(a) whéitgis
and a set of “short” flows each using only one bottlenecin AVD router and others are droptail. All the bottleneck
Every bottleneck link has 100Mbps capacity and 4ms deandwidth is 100Mbps, whereas the access bandwidth is
lay. The long flows have very different RTTs. We simutGbps. The propagation delay for each link is also shown
late for 50 seconds under only one condition with enouginthe figure. Note “1-100ms” means that there are a num-
buffer provided for all the droptail routers. ber of links with propagation delays evenly ranging from

As illustrated in Figure 9(b), the steady state throughpiims to 100ms. All the unlabeled links have 1ms delay.
curves of all long flows are located near the theoretic curVhere are two long flows, three short-flow sets each of
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them includes two flows, and two web-traffic sets whicsient period, each flow stabilizes at its proportionally fair

totally have one thousand web connections multiplexed share, illustrated by Figure 11(b). For instance, the first

the fifty access links. Long flow 1 starts at Os and stopslahg flows’ throughput starts with 0.33Mbps (its propor-

50s, while long flow 2 starts at 20s and stops at 40s. Aibnally fair share) at 20s and changes to some 0.25Mbps

short flows start randomly during@s. Web traffic starts at 40s when the second long flow shows up. At the same

at 30s. We simulate for 50 seconds. time, the short flows get 0.5Mbps, dropping from their for-
The throughput dynamics for the two long flows anther throughput of about 0.65Mbps. After 60s, the second

three randomly chosen short flows is shown in Figeng flow gets about its fair share of 0.33Mbps.

ures 10(b) and 10(c) which demonstrate that both long andComparing with the simulation throughput results in

short flows’ throughput rates converge respectively on8ection V-A, the implementation results in Figure 11(b)

their theoretic values, i.ex +numigfﬂ°ﬁ’;?};§?§%ﬁfgf 5w OScillate more. This comes mainly from the limited timer

for the long (or short) flows. For example, the long floigranularity in the Linux kernel which makes traffic less

1 gets 14Mbps during-020s, 12.4Mbps during 28s30s, regulated (more bursty) than in ns-2.

drops a little when web traffic comes in and then goes up to

about 13Mbps after the long flow 2 leaves at 40s; whereas

the short flow 1 gets 43Mbps during-20s, 38Mbps dur- VI. SUMMARY

ing 20~30s, and then a little more than those because thq, this paper we generalize TCP Vegas and develop a
web traffic at the bottleneck8; — R, andRy — Rz lim-  general model using accumulation, buffered packets of a
its the throughput of the long flows. The queue length @by inside the network routers, as a measure to detect
the AVD bottleneckR, is shown in Figure 10(d), while the 3nd control network congestion. Applying Mo and Wal-
droptail bottlenecki?,’s is depicted in Figure 10(e). Ob-rangd's queuing analysis and Kelly’s nonlinear optimization
viously AVD keeps a low and constant queue, while thggmework on the model (in the appendix), we show that
droptail queue is sensitive to the number of flows. EvVefcc allocates network bandwidth proportionally fairly at
when the web traffic jumps in, which makes the AVhe equilibrium — which is its steady state feature. A set
queue more oscillating, itis still much lower than the drogst control algorithms can drive the network to the same
tail queue. In summary, this simulation shows that Monagguilibrium — this is related to its dynamic characteristics.
works in an environment of multiple bottlenecks with dya family of schemes, including Vegas, could be derived
namic demands and bursty background traffic. based on ACC. Using the model as a reference, we design
a new Monaco scheme that, with two FIFO priority queues
provided by the (congested) network routers, solves the
We did a set of experiments using our Monaco Linuwell-known problems of Vegas. In particular, using analy-
implementation to validate the stability and fairness resuiis and simulations, we show that the receiver-based, out-
from the ns-2 simulations in the last two subsections. Hep&band estimator is able to produce an unbiased accumu-
we show one result for a two-bottleneck topology with dyation measurement.
namic demands. For more details, the reader is referred tdJsing extensive ns-2 simulations, we evaluate the dy-
[28]. We have 2 droptail bottlenecks each of 1Mbps bandamic and steady state performance of Monaco under dif-
width and 20ms delay as drawn in Figure 11(a). Durirfgrent topologies and conditions. The scheme demon-
the 80s experiment, we have 2 short flows always activarates its effectiveness in keeping network stable, fair,
one long flow coming in at 20s and going out at 60s, arehd efficiently utilized, given enough buffers in the bot-
another long flow active from 40s to 80s. After a brief trartlenecks. With underprovisioned buffer, Monaco’s perfor-

C. Implementation Results
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APPENDIX

Network congestion control can be formalized as a re- mazimize Y silna; (13)
source allocation problem. Consider a network of a set el
L={1,...,|L|} oflinks, shared by asdt= {1,...,|I|} subjectto Y x; <,V €L
of flows. Each linkl € L has capacity;. Flowi € I i€l
passes a routd; consisting of a subset of links, i.e., z; >0,Viel

Li={i € L|itraverses}. Alink !is shared by a SUbsethas a unique global maximum. The sufficient and neces
I; of flows where I; = {i € I | i traverses}. Obviousl o : - )
! =lie ] } y sary condition for the maximum is; € I,Vl € L

le L;ifand onlyifi € I;. . .
Firstly consider the queuing perspective [26]. After thg) OL(w,p)/dx; =0, €. 8 = Ti - LieL; Pri
system approaches a steady state (so we can neglec gw (e = Zieﬁ zi) =0;

time variablet in all the equations in Section Ill), at any( e, i S €

link I the queue lengtly (= 3>~ ;, ¢a), or equivalently the (
queuing delay,; (= ¢;/c;), could be non-zeronly if the
capacityc; is fully utilized by the sharing flows of the ag-
gregateratg ., x;, wherez; is the sending rate of flow

C
d)yp > 0;
(e)x; > 0.

Now let's compare the above two results. If replacing
. A . ; with a;, p; with ¢,;, we find that Proposition 2 is turned into
This suggests eithey = 0 (i.e., t,; = 0 which means the v q . . o
99 A ( al Proposition 1, and vice versa. This observation indicates

link is not congested) oy, ; = ¢; (which means the . . .
o 9 ) Fier, i = ( . that, by using accumulation as the steering parameter to
link is congested). We use window-based congestion con-

. ) : . . control flow rate, the network is actually doing a nonlinear
trol, in which a windoww; bits of flow ¢ could be stored o . o L
. . . optimization in which flowi’s utility function is
either in node buffers as accumulation(= >"c . i) or
on trans_mlssmn I|nI§s as; - rtt,;, wherertt,; is flow i’s Ui(zi) = a; Inz;. (14)
round trip propagation delay. Note; = z; - rtt;, where
rtt; is the round trip time observed by flawWe summa- So accumulation; is an instance of the weight, which
rize the above analysis to get the following result: could be used to provide a weighted proportionally fair
congestion control. Besides, the Lagrange multigles
Proposition 1 If we use accumulation; as a steering a measure of congestion, or price explored in [23], at link
parameter to control flow's congestion window size;, . In particular, the queuing delay; is an instance of such

then at the steady state we haveg I,V] € L: price. The more severe the congestion at lintke higher

@ wi = a;i +x; - rtty;, i€, a; = z(rtt; — rtty;) =  the pricep,, the larger the queuing delay. If there is no
Ti* Y er, Lol congestion at that link, then there is no queuing delay at
() tgr - (c1 = Xier, i) = 0; all, i.e.,t,; = 0, the pricep; is also 0.

©) Xicr, i < Given the above utility function of ACC, it is straight-
(d)tg > 0; forward to show that its equilibrium bandwidth allocation
(e)z; > 0. is weighted proportionally fair where the accumulatign

is the weight for flow.
Alternatively, network resource allocation can also be



