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Abstract— An automated minimum description length (MDL) based approach is presented for selecting optimal parameter 

settings for segmentation software without detailed knowledge of the internal (often arcane) mechanisms. The method trades off 

the coverage of image content provided by the segmentation against its conciseness. The coverage is measured by a multi-scale 

probabilistic segmentation evaluation measure, made robust by an ε -insensitive loss function. The conciseness, as measured by 

the description length, is modulated by a coefficient w  to account for the unavoidable inefficiency of real-world segmentation 

description formats. A recursive random search algorithm is used for efficient global optimization. The proposed method is 

modular and extensible, allowing the segmentation and optimization software to be modified/substituted independently.  

When applied to vessel/neurite segmentation problems in neurobiology and ophthalmology, the proposed method resulted in 

parameter settings that were always superior to fixed default values. Even with 1000 iterations, estimated settings were within 5% 

of the globally optimal result for a tube segmentation algorithm with 9 settings. It enables non-expert users across application 

areas to select parameters effectively, and objectively, minimizing the need for technical support. It is also an effective approach 

to minimizing and simplifying the external interface of complex segmentation software.  

 

EDICS—2-SEGM Segmentation; 2-MODL Modeling; 2-ANAL Analysis  
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I. INTRODUCTION 

One practical barrier to more widespread adoption of automated image analysis systems in 

quantitative biomedicine is the need to adapt/customize them to cope with biological variability. Of 

particular interest to this work is, but not limited to, automated segmentation of tube-like structures (e.g., 

blood vessels and neurites) in biomedical images [1-21]. Significant variability is observed across 

imaging modalities, instrument settings, applications, and even across images from a single application. 

This inevitably forces algorithm designers to incorporate user parameter settings to adapt the software 

system to a particular class of images. Consequently, the users of such software are faced with the 

difficulty of selecting these parameters without sufficient expertise and/or knowledge of the internal 

mechanisms, some of which may even be arcane/irrelevant for the specific application at hand. 

Furthermore, the non-linearity of image analysis algorithms implies that changes in the settings do not 

always lead to intuitive and/or proportional changes in the results [22, 23]. The end result is that a time-

consuming manual trial-and-error effort, as well as extensive technical support on the part of the 

developer, is often necessary to properly configure the software for a given application. Even then, these 

settings are, in the end, subjective, and there is no assurance of optimality. 

The primary goal of this work is to enable a non-expert user to select parameters effectively, and 

objectively, treating the segmentation software as a “black box.” The secondary goal is to enable the 

algorithm developer to modify the internal details while maintaining a consistent and simple external 

interface; and to minimize the cost of technical support. 

The rationale behind the proposed method is that automated image analysis systems are expected 

to perform a non-trivial data reduction, extracting as much of the structural content in the image as 

possible, and expressing it concisely - in terms of instances and descriptive parameters of object models. 

In the fitting of these models to the image data, a tradeoff must be made between the fitting error, and 

conciseness of the representation. This requires a quantitative metric to evaluate the segmentation quality 

along these two terms. 
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In this paper, we propose a minimum description length (MDL) based metric [24, 25] for 

achieving the above-mentioned tradeoff. The parameter selection process is formulated as a global 

optimization using a measure that combines a multi-scale probabilistic segmentation evaluation measure 

[26] with the description length of the segmentation. A recursive random search based algorithm is used 

to perform an efficient and application-independent optimization.  

The proposed approach is modular by design. This is imperative due to the already high and 

growing complexity of modern segmentation software, making it impractical to interface with internal 

routines. A similar statement could be made concerning global optimization software. Modularity also 

enables substitutions of algorithms written by different groups. With this in mind, we have chosen an 

implementation strategy (Fig. 1b) in which a general model-based segmentation algorithm is externally 

interfaced with the evaluation and optimization modules in a manner that allows them to be developed 

and modified independently. 

 

II. SUMMARY OF RELATED LITERATURE 

This work draws upon four main bodies of literature: (i) automated/quantitative/objective 

segmentation evaluation; (ii) MDL estimation; (iii) global optimization; and, (iv) automated 

vessel/neurite segmentation algorithms.  

The traditional approach to evaluating segmentation algorithms is by visual inspection [22]. 

Significant progress has been made on automated approaches. Metrics for segmentation evaluation [22, 

23, 27-35] can be either goal-oriented, i.e., evaluation based on the performance of post-segmentation 

steps such as pattern classification [30], based on other application-guided criteria such as the probability 

of false detection [27, 28, 31], or based on mismatch with manual ground truth segmentations (e.g., [35]). 

Most of them are specific for low-level vision tasks, such as edge detection [22, 23, 27, 29, 31, 36] and 

region growing [34, 37], but are mentioned here nevertheless since they usually form the foundations of 
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the more complex and specialized image segmentation algorithms (e.g., [6, 38]).  

The MDL principle [25] offers a systematic way to obtain an objective balance between 

segmentation conciseness and coverage [24, 37, 39]. In this paper, we present a MDL-based variational 

formulation [37, 39, 40], similar to the Mumford-Shah approach for segmentation [34].  

Automated segmentation of tube-like structures in biological images, especially neurons [1-5] 

and blood vessels [6-21], are of particular interest to this work. These references are just a sparse 

sampling of the literature in this area, and the interested reader is referred to the literature review sections 

of these publications.  

In the field of global optimization, genetic algorithms [41] and simulated annealing methods [42] 

are widely used since they require little a priori domain-specific information. Controlled random search 

[43], is also often considered for such cases. These are also known as stochastic optimization algorithms, 

mainly based on random sampling methods [44, 45], as opposed to deterministic algorithms (e.g., [46]). 

To improve efficiency, they are normally combined with local search techniques, such as steepest descent 

[47] and pattern search [48]. Limitations of global optimization algorithms are discussed in [49, 50]. 

III. GENERAL OBJECTIVE FUNCTION 

Although our immediate interest is the segmentation of tube-like objects, the description that 

follows is presented more generally to enable the reader to adapt this approach to other applications and 

object types. To begin, let a segmentation algorithm to be a function { }: ,f →ξI M   that maps an 

image I  to a set of object(s), denotedM , using a parameter vector (“settings”) ∈Ωξ  (see Fig. 1a). 

Our goal is to automate the search for the optimal ξ̂  that yields the optimal M̂ in some defined sense, 

trading off the conciseness of the segmentation result against its coverage, using the MDL principle as a 

natural and appropriate guide [24].  

The optimal segmentationM̂ minimizes the descriptional code length ( )L I M . Since typical 

images are large, the two-part MDL formulation, 
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                                          ( ) ( )2 2

coverage conciseness

log log
2
kP n= − +L I M I M , (1) 

is appropriate since the shortest code length given by (1) asymptotically approaches the shortest code 

length obtained using an assumed coding system for the image I of n  pixels given a segmentation 

(estimated model of the data) M  that can be described with k parameters [24]. 

We can also view an image segmentation as the partitioning { }, C=I M M , i.e., into the 

foreground and background regions. Let ( )P x  be the probability that a pixel x  belongs to the 

foreground. Since the first term in (1) measures the coverage of M , it must be integrated over the 

unaccounted region of I , i.e., the region C∈x M . Assuming independent and identically distributed 

pixels, the coverage term in (1) becomes ( )2log
C

P
∈

−∑
x

x
M

. 

We are not interested in pixels with insignificant ( )P x  values for two reasons. First, the results 

of the automated image analysis system are not expected to enable exact reconstruction of the image – 

they are merely a meaningful extraction of the structures in the image. Second, the segmentation 

coverage should not be affected heavily by pixels with low probability of structural presence for which 

( )log P x  diverges. Accordingly, we adopt an “ε -insensitive” approach [51] where terms for which 

( )P ε<x  are dropped, yielding the following measure:  

                                     ( ) ( )
( ){ }

2 2
,

log log
C P

P P
ε∈ <

− = −∑
x x

x
M

I M . (2) 

The second term of (1), which measures the conciseness of M , is adapted directly from the 

standard two-part MDL formulation which has been shown to be an asymptotically optimal measure of 

model conciseness [24]. For the same reasons, the term n  in (1) is defined to be ( ){ }n P ε≥x x . 

In order to adapt the above approach to the immediate task of vessel/neurite segmentation, we 

need to instantiate the term ( )P I M  in (2) for the segmentations of interest since it is not provided by 
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the MDL principle [24]. We start by noting that typically, a segmentation algorithm is based on a 

geometrical model G , or “shape”, of the objects of interest (e.g., tubes, blobs, etc.) that are instantiated 

in the image data over a set of size scales [ ]min max,σ σ σ∈  pixels. These two pieces of problem-domain 

information are logically provided by the user, and hence should be incorporated into ( )P x . Below, we 

explicitly estimate ( )P x  for the tube geometrical model, and the generalization to other object shapes 

follows thereafter. 

To measure the probability of a pixel being on a tube (e.g., vessel/neurite), we adopt the multi-

scale probabilistic vesselness measure [26, 52, 53] that forms the basis for numerous tube-segmentation 

algorithms [3, 4, 10]. Denoted ( ) [ )0,1σ ∈xV , it measures the likelihood that a local group of pixels 

centered at x  belong to a tube of size scale σ  [26, 52, 53]. It inspects second-order features [54] of the 

image I , at scale σ , at each pixel x , which is obtained from the Hessian matrix 

( ) ( )
2

2H Gγ
σ σσ ⎡ ⎤∂= ∗⎢ ⎥∂⎣ ⎦

x x
x

I . The Gaussian function with standard deviation σ  is denoted as Gσ , the 

Lindeberg constant [55] for a family of scale-normalized derivatives is denoted γ , and “*” is the 

convolution operator. The eigenvalues of ( )Hσ x , denoted 1λ  and 2λ , are ordered such that 1 2λ λ≤ . 

For two-dimensional (2-D) images, ( )σ xV  is given by: 

                                   ( )
2

2 2

2 2

0,  if 0

exp 1 exp
2 2

BR S
c

σ

λ

β

>⎧
⎪

= ⎡ ⎤⎛ ⎞ ⎛ ⎞⎨ − − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎪
⎝ ⎠⎝ ⎠ ⎣ ⎦⎩

xV , (3) 

where 1 2BR λ λ= (probability of being on a tube) and 2
d

d D
S λ

≤

= ∑  (image intensity contrast factor) 

incorporate the eigenvalues dλ   of ( )Hσ x  and 2D =  for 2-D images. The terms β   and c  in (3) are 

weighting parameters for BR and S .  

Frangi et al. [26] have described approaches to adapt this method to other key geometrical 
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models in biological images. Table I is a simplified summary linking key geometrical models and the 

corresponding eigenvalues.   In 3-D, the 3 3×  ( )Hσ x  has three eigenvalues, similarly ordered as 

1 2 3λ λ λ≤ ≤ . Notice that the vesselness value in (3) increases with decreasing magnitude of BR , 

effectively capturing the eigenvalues-shape associations for tube-like objects. This suggests that (3) can 

be modified accordingly for other geometrical models.  

Returning to the specific case for tube-like objects, the probability that a pixel x  belongs to a 

tube-like structure, ( )P x , also denoted as [ ] ( )
min max,σ σ xV , is defined as follows: 

( ) ( )
min max

maxP σσ σ σ≤ ≤
x xV . 

At this point, the problem of image segmentation is ready to be wrapped into an optimization 

framework using the optimization metric based on (1).  Before proceeding, two practical issues must be 

addressed in the optimization metric: (i) to give the users the optional ability to override/bias the tradeoff 

between conciseness and segmentation coverage; and (ii) to enable the use of diverse representations of 

the segmentation results since results of segmentation are commonly fed to other software modules. To 

allow such interfacing, the outputs of a segmentation routine are cast in a specific format. However, these 

formats are not always designed to be efficient in the sense of minimizing number of bits used to describe 

the segmentation. In terms of the MDL formulation, we recognize that different representations of M  

result in relatively different k  values in (1).  Now, to a first approximation, we assume that different 

formats for representing the same segmentation have different, but fixed inherent inefficiencies relative 

to each other. With this approximation, the relative representational inefficiency is effectively a scaling 

factor, denoted w  for the conciseness term in (1). 

As noted earlier, we allow a user to optionally influence/bias the tradeoff between coverage and 

conciseness by incorporating a parameter, denoted α , between them. The overall segmentation quality 

measure, denoted ( ), , , ,q wα σ ξM G , is then given by: 
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( ) ( )2 2

coverage concisenessinefficiency

1log 1 log ,
2
kq P n

w
α α

⎡ ⎤⎡ ⎤ ⎢ ⎥⎛ ⎞⎢ ⎥= − + − ⎢ ⎥⎜ ⎟⎢ ⎥ ⎝ ⎠⎢ ⎥⎣ ⎦ ⎣ ⎦

I M  

for a given geometrical model G  and size scales [ ]min max,σ σ . The segmentation coverage term is the ε -

insensitive probability term given by (2). When 0.5α = , the conciseness-coverage tradeoff is a balanced 

one. We also note that ideally 1w =  for the relatively most-efficient (concise) representation of M .  

 

IV. RECURSIVE RANDOM SEARCH STRATEGY 

Genetic algorithms [41] and simulated annealing methods [42] are widely used for global 

optimization since they require little a priori domain-specific information. However, these algorithms are 

mainly designed to seek full optimization and were found to lack efficiency for our application. 

Controlled random search [43] is also often considered for such cases but still suffers from lack of 

efficiency. To improve efficiency, these algorithms are normally combined with albeit noise-prone local 

search techniques, such as steepest descent [47], and pattern search [48].  

Several considerations motivate the selection of an alternative search strategy known as the 

Recursive Random Search (RRS). First, exhaustive search is prohibitive. Second, the objective function 

is not differentiable with respect to the parameter vector, mainly because the mapping itself is not 

differentiable. Third, for the image segmentation problems of interest, it is rational to seek approximate 

solutions within a defined time frame, rather than truly global optima. Fourth, it is common for 

segmentation software to have several irrelevant/ineffective settings for a given application, and search 

algorithms that are able to minimize the computational effort in such dimensions are preferable. Finally, 

we expect the search algorithm to be robust to minor noise-like fluctuations in the objective function. 

Interestingly, Ye et al. [44] developed this algorithm motivated by similar parameter spaces encountered 

in computer networking – specifically, automatic and dynamic configuration of network components to 
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maximize network throughput.  

As indicated by the name, the RRS algorithm is based on random sampling. This algorithm 

searches the parameter space in two recursive steps: exploration and exploitation, respectively. The 

exploration step examines the macroscopic features of the objective function (e.g., globally convex or 

“big valleys” structure [12]) and attempts to identify promising areas in Ω  that are subsequently 

“exploited” intensively by the second step. For the random sampling, a uniform distribution over Ω  is 

used. This has been shown to be the simplest search technique for similar non-linear problems, and is 

widely used [43-45, 56]. It has been shown to be more efficient for exploring high-dimensional parameter 

spaces compared to deterministic exploration methods [44, 57], and can be shown to converge to the 

global optima [58]. 

We show below that random sampling is in fact very efficient in its initial steps and only starts to 

become inefficient in the later sampling steps. Given a measurable objective function ( )q ξ  over the 

parameter space Ω , we can define the distribution of objective function values for some [ ]0 min max,q q q∈  

as ( ) ( ){ }( ) ( )0 0|q m q q mφ ξΩ = ∈Ω ≤ Ωξ , where ( ).m  is the Lebesgue measure. Hence, the distribution 

function ( )0qφΩ  represents the portion of the points in the parameter space whose objective function 

values are smaller than a certain level 0q . Furthermore, it has a maximum value of 1 when 0 maxq q= , and 

has minimum value(s) of ( ) ( )ˆm m Ωξ  where ξ̂  is (the set of) global optimum(optima). Without loss of 

generality, assume that ( )q ξ  is a continuous function and ( ){ }( ) [ ]0 0 min max| 0,  ,m q q q q q∈Ω = = ∀ ∈ξ ξ .  

Assuming a [ ]min max,rq q q∈  such that ( )rq rφΩ = , [ ]0,1r ∈ , an r -percentile subspace ( )rΩS  in 

the parameter space can be defined as ( ) { | ( ) }rr q qΩ = ∈Ω ≤ξ ξS . In other words, ( )rΩS  is the subspace 

containing parameter vectors such that the probability of existence of a global optimum ξ̂  within this 

subspace is 1 r− . Note that (1)ΩS  is just the whole parameter space and 
0

lim ( )
δ

δΩ→
S  converges to the 
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global optima. Suppose the sample sequence generated by n  steps of random sampling is { } 1

n

i=
ξ  and ( )iξ  

is the one with the minimum objective function value, then the probability of ( )iξ  in ( )rΩS  is given 

by ( ){ }( )( ) 1 (1 )i nP r r pΩ∈ = − − =ξ S . Stated in another way, the value of r  for which ( )iξ  will be 

reached with probability p  is given by 1/1 (1 ) nr p= − − . 

For any 0 1p< < , r  will tend to 0 with increasing n , implying that random sampling will 

converge to the global optima with increasing numbers of samples. Since r  decreases exponentially with 

increasing n , clearly the efficiency of random sampling is high at initial samples but falls sharply at later 

samples. This observation commenced the idea of restarting the random sampling before its efficiency 

drops off. 

The recursive exploitation phase of the search is described next. An important idea behind this 

phase is to maintain the initial high efficiency of random sampling by “restarting” it before its efficiency 

becomes low [44], either by moving or resizing the sample space according to sample history. 

Specifically, RRS performs exploitation in two iterative steps: realign and shrink. As illustrated in Fig. 

2a, if a more promising sample 2ξ  is found during random sampling, the current sample space 1S  

centered at the current sample 1ξ  is realigned (moved) to the sample space 2S . Else, the parameter space 

is shrunk to 3S  as shown in Fig. 2b.  

The strategy for limiting the exploitation step to promising subspaces is based on identifying an 

r -percentile subspace for exploitation, as described above. In this way, most trivial subspaces will be 

excluded from exploitation, improving the overall efficiency of the search. In contrast, many algorithms, 

such as multi-start [56], do not distinguish between subspaces and hence may waste time in trivial areas. 

The RRS is efficient at handling an objective function with a subset of ineffective parameters 

[44] because random samples maintain a uniform distribution within the subspace composed of only the 

relevant/effective parameters, effectively minimizing the computational effort invested on negligible 
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parameters. In contrast, local search methods are affected by unimportant parameters because of their 

high dependency on dimensionality of the search space. For more details, the interested reader is referred 

to [44].  

V. EXPERIMENTAL RESULTS AND EXAMPLES  

This section provides a series of examples of progressively increasing complexity, starting with 

the simplest case of segmentation by global image thresholding. It is followed by a neuron tracing 

algorithm in which just two parameters out of nine are optimized, and concluded with a full nine-

dimensional parameter search [38, 59]. In all examples, 0.5α =  is chosen for pure MDL-balanced 

optimization.  

Example #1: This example is merely intended to illustrate the methodology in a trivial and 

readily-understood context – global intensity thresholding [60]. A global intensity threshold τ is applied 

to images containing tube-like structures, and the goal is to find the optimal value τ̂  that yields the 

optimal segmentationM̂ . For objects brighter than the background, the segmentation function is given 

by: 

( )( ) ( ), .C

if
f

otherwise
τ⎧ ∈ ≥

= ⎨ ∈⎩

x x
x ξ

x
M I

I
M

 

For 8-bit grayscale images, ( ) [ ]0,255∈xI , the global intensity threshold [ ]0,255ξ τ= ∈  is a 

one-dimensional parameter vector in the parameter space 1Ω∈ . Here, the representation used for M  

is the set of all foreground pixels, and k simply becomes the cardinality of this set.  

Fig. 3 shows the results of applying the proposed methodology to this case. The value of the 

relative representational inefficiency coefficient was empirically estimated as 12.1w = . Panel (a) shows 

an image of neuronal dendrites captured by fluorescent microscopy. The vesselness measure [ ]1,4 ( )xV  is 

displayed in Panel (b). Panel (c) is a plot of the objective function q versus the threshold value τ . The 

optimal segmentation M̂  is shown in Panel (d). Panels (e & f) illustrate the idea of re-using the relative 
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representational inefficiency coefficient w  across applications. Panel (e) shows an image of a human 

retina imaged by a fundus camera [61] that was optimally segmented using the same value of w . We note 

that the value of w depends mostly on the manner in which the segmentation M  is represented. 

Example #2: In this example, we show the use of the proposed methodology to choose the 

optimal parameters ξ̂  for an automated neuron tracing algorithm [38, 59] (algorithm summary in 

Appendix). Parameter settings for this algorithm are denoted: 

( )min max maxshift rotateg L L n n M s ρ ν=ξ . 

They are summarized in Table II, along with their default values. Note that the traces are not merged for 

illustrative purposes since the segments are merged after tracing, i.e., as a post-processing step in the 

tracing software.  

A different representation is appropriate for M  in this case, compared to Example #1. It 

consists of all centerline points plus the estimated width value at each centerline point. As a simple-

minded first approximation, we choose k  as the number of centerline points. The value of w  was 

empirically estimated to be 3.1, following the procedure used in Example #1. Note that the representation 

for ( ):1000:1R̂RSq ξ  here is relatively more efficient (storage wise) compared to using the pixel array in 

Example #1, hence here we have a w  value that is closer to the ideal 1w = . 

An exhaustive search result for just two parameters, contrast threshold multiplier ρ  in the range 

[ ]1,20  and maximum allowed stopping violations ν  in the range [ ]1,10 , with other parameters at default 

values, is shown in Fig. 4, using vesselness measures [ ]2,4 ( )xV . Panel (a) shows the input image which 

contains fluorescently-labeled neurites imaged using a multi-photon microscope [62]. Panel (b) shows the 

computed vesselness values [ ]2,4 ( )xV . Panel (c) displays the entire optimization objective function q  

versus ρ  and ν . Panels (d through g) show the corresponding segmentation M  using ρ  and ν  values 

as pointed in panel (c). Since only two parameters are being searched here, it is feasible to search 
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exhaustively. These two parameters are related directly to the stopping criteria of the tracing algorithm 

and are chosen to best exemplify the effect of the stopping criteria on trace conciseness and coverage.  

Example #3: This example shows the search in the full nine-dimensional parameter space of the 

tracing algorithm, using both exhaustive search and RRS. Since we are still using the same representation 

for M  as in Example #2, all of the following sub-examples use the relative representational inefficiency 

coefficient 3.1w = .  

Fig. 5 shows an image of a neuron captured using fluorescence microscopy in Panel (a). The 

global least optimal segmentation obtained using an exhaustive search of 236,250 parameter 

combinations is shown in Panel (b). Panel (c) shows the corresponding globally optimal segmentation. 

We will show in the next few sub-examples that this can be approximated closely using RRS limited to 

just 1,000 parameter combinations, denoted :1000
ˆ

RRSM  .  

Fig. 6, Panel (a), displays a neuron image acquired using fluorescence microscopy. Panel (b) 

shows the traces using the default settings defaultξ  of the tracing algorithm. Panel (c) shows the worst-case 

RRS-optimal segmentation :1000
ˆ

RRSM . The improvement in terms of the quality measure q , using 

[ ]1,8 ( )xV , with respect to the default settings is on average 25% for 10 RRS runs (worst-case: 23%). 

Fig. 7, Panel (a), shows segments of the fluorescently-labeled neuronal dendrite grown on a 

topographically modified semiconductor surface, imaged using a widefield microscope. Panel (b) shows 

the global optimal segmentation M̂ obtained using the exhaustive search of the parameter space Ω , 

using [ ]1,5 ( )xV . Panel (c) shows the worst-case RRS-optimal segmentation :1000
ˆ

RRSM  out of 50 RRS runs 

which is within 3% of the global minimum value  (globally, [ ]27,431,  72,253q ∈ ). Panel (d) displays 

the RRS performance for those 50 runs, highlighting the best case and worst case results together with 

the average performance. 

Given that we are indeed seeing improvements in the q  values in the previous sub-examples 
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compared to default parameter settings defaultξ , one may ask what if we were to obtain a parameter set 

:1000:
ˆ

RRS kξ  that yields the RRS-optimal segmentation of the thk  image kI , and use it with the rest of the 

images. This may be desired if the images are captured under similar imaging conditions and 

computational resources are limited to obtain optimal segmentation for each image in the image set. We 

perform this experiment using an image set of 29 fluorescently-labeled neuron images, and the results are 

displayed in Fig. 8. The first bar shows optimization metric q  values when defaultξ  is used, denoted 

( )d̂efaultq ξ  . The second shows q  values when the optimal parameter set is obtained for each individual 

image k  in the image set { }29

1k k =
I , denoted ( ):1000:R̂RS kq ξ , with improvements on average 19 ± 5 %. The 

third contains the q  values when the optimal parameter set for image 1k =  is used for each image in the 

image set, denoted ( ):1000:1R̂RSq ξ , yielding improvements for all images that averages at 10 ± 4 %.  

VI. CONCLUSIONS AND DISCUSSION  

We have demonstrated the practicality of automatically tuning complex segmentation algorithms, 

using automatic segmentation assessment and global optimization, guided by the MDL principle. The 

proposed approach can greatly simplify the external interface of segmentation software packages, enable 

adaptation across large image batches from bioassays, and reduce the need for expensive technical 

support. The proposed methodology is fully automatic and self-contained, and free of user interactions 

such as in reinforcement-learning segmentation systems [63]. The core idea of trading off segmentation 

conciseness and segmentation coverage is extensible to other applications and other geometrical models. 

The optional parameter α  allows a user to bias the tradeoff. The use of a relative representational 

inefficiency coefficient w  allows the framework to be used with practical, non-minimal, segmentation 

description formats.  

The modularity of the proposed framework allows insertion of alternative segmentation 

algorithms and/or global optimization algorithms, as long as the interfaces between modules are 
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maintained [64]. Algorithms for segmenting other key biological objects types such as blobs [65, 66] 

would require matching quality measures.  

Despite high variability in biological images, there exists an assuring level of similarity between 

images taken in a single experiment/bioassay under similar imaging conditions. If computational 

resources are limited, we can perform the automated parameter selection step for a single representative 

image from the image set (or perhaps, a modest subset) and use the obtained parameter set for the rest of 

the images. This yields a better operating point for the segmentation algorithm compared to application-

independent default values. This is superior to trial-and-error hand-tuning of the parameters for all 

images which does not even guarantee that the result is approaching the optimal one.  

In future research, we plan to investigate information-theoretic approaches to modeling and 

adaptively estimating the relative representational inefficiency coefficient ( w ).  

In summary, the proposed framework can redefine the term “automated” in “automated image 

analysis” systems, by allowing segmentation software to configure themselves optimally and objectively 

across application domains.  

 

APPENDIX: A BRIEF DESCRIPTION OF THE EXPLORATORY TRACING ALGORITHM 

The tracing algorithm [38, 59] models tube-like biological structures as piecewise-linear 

generalized cylinder segments (Fig. 9). To begin tracing, seed points are found by searching for local 

maxima along rectangular grids g  pixels apart and are validated using the same generalized cylinder 

model. 

Then, at each tracing iteration j , four boundary points { }, , ,j j j j
L R T Bb b b b  (only{ },j j

L Rb b   in 2-D) 

corresponding to the left, right, top, and bottom tube boundaries are each found using directional 

correlation kernels called templates. The center point jc  is simply defined as the center of these 

boundary points. Each template consists of linearly stacked 1-D edge-detector kernels of the form 
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( )1, 2,0, 2, 1 T− − + +  anchored at the image point jb  along a particular direction ju . The edge-strengths 

from each 1-D edge detector kernel r  are averaged through the entire template length l L∈ , using 

median statistics [67] for robustness. The set [ ]min max,L L L= contains all template lengths. The 

correlation between the templates and the image is called the “template response”, denoted R , as below:  

( ) ( ){ }{ }1,2,...,
arg max, ,j j j j

t ll L
medianR L r t

=∈
= +b u b u . 

 Each boundary point correspond to the maximal response template parameters { }, ,j j jlb u : 

{( , , ) | , 1,.., , , }2

arg max( , , ) ( , , )j j j

j Ml m m l L
l R L

⊥= + = ∈ ∈
=

b u b c u u U
b u b u , 

where U is the set of unit vectors along directions in the neighborhood of ju . The user parameter M is 

the radius of the widest expected vasculature. Each template is elongated, shifted from jc , and rotated 

about two axes 0 1
j jH H  and 0 1

j jV V  to find the corresponding boundary points. To save computation, the 

template is only shifted in a neighborhood shiftn  of previously calculated width at iteration 1j −  and 

rotated in a neighborhood rotaten  around previously calculated tracing direction 1j−u . The next center 

point 1j+c  is estimated by scaling ju  with the adaptive step-size js . The same boundary-finding process 

is repeated until a stopping criterion containing a contrast-based threshold multiplier ρ  is met ν  

consecutive times. The interested reader is referred to [38, 59] for details of the algorithm. 
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LIST OF TABLES 

Table I.  Indicates the relationship between the eigenvalues of the Hessian matrix with common 

geometrical models in biological cell and tissue-level imagery [26]. For dark objects on bright 

backgrounds, the signs are reversed. In 2-D, plate-like structures can not be detected. The first two 

eigenvalues 1λ  and 2λ  are used in 2-D. All three eigenvalues are used in 3-D.  

Table II.  The components of the parameter vector 9∈ξ  , their respective ranges, default values, and 

constraints on their values for the tracing algorithm. 

LIST OF FIGURES 

Fig. 1.  Illustrates the traditional and the proposed self-optimizing image segmentation approaches. (a) 

Traditionally, a parameter settings vector ∈Ωξ  is set empirically and may need readjustments for each 

input image I . (b) In the proposed framework, a global optimization algorithm efficiently explores the 

parameter space Ω  driven by a segmentation quality assessment value. The user optionally specifies a 

single universal parameter to override the conciseness-coverage tradeoff.  

Fig. 2.  The realign and shrink iterative exploitation process in RRS, shown for a 2-D parameter space. 

(a) If a more promising sample 2ξ  is found during random sampling, the current sample space 1S  

centered at the current sample 1ξ  is realigned (moved) to the sample space 2S . (b) Otherwise, the 

parameter space is shrunk to 3S  . 

Fig. 3.  Trivial automatic thresholding example illustrating the proposed methodology across two 

different applications. (a) Image of a fluorescently labeled neuron captured by a widefield microscope. 

(b) The multi-scale vesselness measure [ ]1,4 ( )xV . (c) Plot of the objective function q  against the 

threshold τ  value, with the optimal threshold value ˆ 28τ = . The pixel-label array representation for 

M with a relative representational inefficiency 12.1w = . (d) The optimal segmentation M̂  (using τ̂ ). 
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Panels (e & f) show a human retinal vasculature image and the corresponding optimal segmentation, 

using the same representation for M , hence 12.1w = . 

Fig. 4.  An exhaustive search varying just two parameters, [ ]1,20ρ ∈   and [ ]1,10ν ∈ , with others fixed at 

default values, using vesselness measures [ ]2,4 ( )xV . (a) Image of fluorescently-labeled neurites. (b) Multi-

scale vesselness [ ]2,4 ( )xV . (c) The optimization landscape. Panels (d through g) show the corresponding 

segmentations M  in green color using ρ  and ν  values as pointed in panel (c). Other parameters are 

left unchanged at their default values (see Table II). 

Fig. 5.  Displays the global optimal and least optimal segmentations using exhaustive search in nine-

dimensional parameter space. (a) Image of a neuron captured using fluorescence microscopy. (b) The 

global least optimal segmentation. (c) The global optimal segmentation. 

Fig. 6.  Illustrates the worst-case improvement over default settings. (a) A fluorescently-labeled neuron 

image. (b) Segmentation using the default settings. (c) Optimal segmentation with 1000 RRS iterations.  

Fig. 7.  A 9-dimensional parameter search using the RRS algorithm. (a) Fluorescently-labeled neuronal 

dendrite imaged using a widefield microscope. (b) Globally optimal segmentation M̂  obtained by 

exhaustive search of the parameter space, using [ ]1,5 ( )xV . (c) The worst-case RRS-optimal 

segmentation :1000
ˆ

RRSM  out of 50 RRS runs that is within 3% of the global minimum value. (d) RRS 

performance in 50 runs highlighting the best and worst cases along with the average performance.  

Fig. 8.  Summary of automatic parameter selection performance on a batch of 29 images from the same 

neurobiological study. The dark bars show the quality of the default settings (higher values are worse). 

The blank bars indicate the results of tuning each of the images individually using 1000 RRS iterations. 

The shaded bars indicate the estimating the optimal parameter set for the first image using 1000 

iterations, and reusing them for the rest of the batch.  

Fig. 9.  Illustrates the iterative procedure for tracing generalized cylinders. Starting with initial seeds, the 

algorithm estimates the next location based on a robust estimate of the local boundary of the cylinder.  
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TABLE I  

Geometrical Model G  1λ  2λ  3λ  

tube-like 0≈  0  0  
blob-like 0  0  0  
plate-like 0≈  0≈  0  

 

 

 
TABLE II 

Parameter Range Default Value Constraint on Values 

grid spacing g  10 – 30 15 divisible by 5 
minimum template length minL  8 – 20  10 min maxL L≤  
maximum template length maxL  8 –30 18 min maxL L≤  
relative shift distance shiftn  2 –10 2 2shiftn M≤  
directional degree of freedom rotaten  3 –7 7 divisible by 2 
maximum shift distance  M  5 –40 30 2 shiftM n≥  
maximum step size maxs  3 –20 8 max mins L≤  
contrast threshold multiplier ρ  1 –10 3 none 
maximum allowed stopping violations ν  1 –10 1 none 
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