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Abstract

This paper presents BANANAS, a connectionless framework for enabling explicit, multipath routing in the Inter-

net. BANANAS uses the idea of a globally known path identifier, known asPathID to achieve source1 specified,

explicit, multipath routing in a partially upgraded network. We show that BANANAS allows introduction of so-

phisticated explicit and multipath routing capabilities in the context of connectionless routing protocols (e.g. OSPF,

IS-IS, BGP etc.). BANANAS provides various alternatives for managing space, speed and computational complex-

ity. The BANANAS framework has been implemented in SSFNet simulator and Linux kernel using Click Router

for the forwarding plane and Zebra for the control plane. Results from complexity analysis, SSFNet simulations

and Linux/Zebra implementation at Utah’s Emulab testbed have been used to evaluate and illustrate the BANANAS

framework.

I. I NTRODUCTION

Today’s Internet routing protocols like OSPF and BGP were designed to provide one primary end-to-end service,

“best effort reachability.” These protocols realize the “best-effort” concept by offering a single-path to destina-

tion. However, the Internet topology has an intrinsic multiplicity of paths. Hosts have multiple potential network

interfaces and both enterprise and ISP Autonomous Systems (ASes) are multi-homed [1], [2], [3].

It is interesting to ponder on two questions:

a) Why is path multiplicity a valuable architectural feature?

b) Why has the intrinsic path multiplicity in the Internet not been exploited?

The answer to the first question is that multi-path transmission can be fundamentally more efficient than the

current single-path paradigm. Just like packet switching is fundamentally more efficient than circuit switching

because it offers the potential to leverage both spatial and temporal multiplexing gains at a single link (see [4],

Chapter 1, 2), a network offers one more dimension where spatio-temporal multiplexing gains may be obtained,

different paths. Packet switching does not waste unused capacity if user demand is available at a single link;

similarly, with path multiplicity available to end-to-end flows, unused capacity in paths will not be wasted if user

demand is available. Using the proposed BANANAS framework, such multiple paths may be leveraged at different

levels in the networking stack - legacy OSPF or BGP networks, overlay networks, peer-to-peer networks (e.g.

dynamically instantiated overlays using a peer-to-peer lookup infrastructure to support video-conferencing) and

last-mile multi-hop fixed-wireless networks.

The answer to the second question is clearlynot the lack of algorithms and protocols. There have been several

proposals for multipath route-computation [5], [6], [7], [8], Internet signaling architectures [9], [10], [11], [12],

[13], novel overlay routing methods [14], [15] and transport-level approaches for multi-homed hosts [16], [17].

The fact that these developments have not triggered widespread deployment suggests that the core problem is an

architectural one. We believe that the Internet lacks an evolutionary framework that admits incremental deployment

of path multiplicity, while providing sufficient flexibility in terms of architectural function-placement and complex-

ity management. This paper proposes to fill that void with a framework called “BANANAS”. Recent work [18] has

1source refers to the first BANANAS upgraded router in the data path and not necessarily the source host
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showed that with minor modifications, current Internet architecture may be evolvable. It is interesting to note that

BANANAS architecture meets some of the basic requirements discussed in [18] such as evolutionary deployment,

compatible with existing Internet protocols (OSPF, BGP etc.), not requiring prohibitive states at upgraded routers

and providing flexible configuration and deployment options.

At the highest level, BANANAS proposes a simple extension of Internet operation to admit and leverage end-to-

end path-multiplicity (PM). In this model, source-hosts initiate one or more end-to-end “flows” and map flows to

local network interfaces. The “network” provides one or more end-to-end paths through the independent upgrades

of a subsetof network nodes, possibly situated in multiple administrative domains. A subset of these upgraded

nodes (e.g. selected edge-nodes) may also map “flows” to available “paths”2. Observe that today’s single-path

model is a special case of this PM-model. The PM model also allows a subset of source-hosts and routers to be

independently upgraded within the scope of usual administrative boundaries. Upgraded node may “see” only a

subset of available paths within appropriate administrative boundaries. This high-level model is abest-effort path

multiplicity model, clearly different from IPv4/IPv6 connectionless loose-source-routing model [19], [20] and from

end-to-end signaled source-route models used in ATM networks (e.g. PNNI [21]) or MPLS networks [22].

BANANAS provides a set of concepts and building blocks to realize this high-level PM model. A core abstract

idea in BANANAS is that a path can be efficiently encoded as a short hash (called the “PathID”) of a sequence

of globally-known identifiers (e.g. router IDs, link interface IDs, AS numbers etc.). This concept has some very

important advantages. First, a hash-based data-plane encoding is more efficient than IPv4/IPv6’s loose-source-

routing encoding [19], [20] that is an uncompressed string of IP addresses. Second, since the PathID is a function

of globally-known quantities, it inherits their global significance, i.e., it can be computed and interpreted within the

same scope of visibility. This “global” scope may refer to a single routing domain if router/link IDs are involved;

or may refer to the universe of BGP-4 routers if AS numbers are used. The global PathID semantics allow any

upgraded multipath capable (MPC) router to autonomously compute the PathID without any changes to legacy

single-path capable nodes. It also removes the need for an explicit out-of-band signaling protocol as a path-setup

mechanism. Note that one purpose of signaling in ATM and MPLS is to map global identifiers (IP addresses,

path specifications) tolocally assigned identifiers i.e. labels. The global PathID semantics allow the mapping of

BANANAS in an em incremental manner toconnectionlessInternet routing protocols (e.g. OSPF, BGP-4).

BANANAS can also be used for connectionless traffic engineering in the ISPs or enterprise networks. Traffic

Engineering (TE) deals with the task of mapping traffic flows to the paths in an existing physical topology to meet

the network and user performance objectives. BANANAS provides several advantages over existing TE approaches

including providing network operators more control over the traffic routing, no excess control traffic overhead on

changes in traffic demands, compatibility with existing protocols e.g. OSPF, BGP, incremental deployment and

flexibility in managing overheads. We discuss these in more detail in the following paragraphs.

A desirable traffic engineering solution must provide network operators a precise control over the traffic flows

2E.g. Packets from TCP connections would be mapped single “path” to avoid out-of-order packets
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within their routing domains. This enables them to provide new services by appropriately managing the traffic.

BANANAS provides explicit routing control to network operators.

A commonconnectionlessintra-domain TE uses aparametric approachwhere the routing algorithm only pro-

vides a single shortest path between any node pair, but the link weights are optimized to achieve TE objectives.

If multiple equal cost paths are found, Equal Cost Multi Path (ECMP) splits traffic equally among next-hops of

multiple equal cost paths. In the parametric approach the problem of mapping traffic to paths iscoupled with the

problem of route calculation. The parametric approach will hence lead to a route change for any desired change

in traffic mapping (or a change in the traffic demand matrix). This would lead to control traffic overhead (LSA

re-advertisement) and computational overhead (recomputation of shortest paths) for every change in link weight.

BANANAS allows decoupling of traffic splitting from route calculation. Therefore, a change in traffic demand

matrix does not lead to extra computational or control overhead in BANANAS.

In contrast, Multi Protocol Label Switching (MPLS) is an example of aconnection-orientedor signaledTE

approach. MPLS allows explicit setup of label switched paths (LSPs), and arbitrary flexibility in mapping traffic

to the available LSPs. Unlike parametric approach, MPLS decouples the traffic mapping problem from route

calculation. However, due to the requirement of signaling, a fully-upgraded network is required. BANANAS also

decouples the traffic mapping and route calculation while using a connectionless approach. This allows BANANAS

to be easily mapped to legacy routing protocols such as OSPF, BGP. Moreover, BANANAS can be incrementally

deployed in the Internet.

In addition to the above, BANANAS allows considerable flexibility in terms of architectural function placement

and complexity management. These aspects of BANANAS are crucial for tailoring the proposed building blocks

and establishing the appropriate incentives for adoption by vendors and ISPs. For example, the BANANAS allows

considerable flexibility in the choice of multipath route-computation algorithms and the choice of hash functions for

encoding PathID. An efficient index based scheme has been designed allowing fast, collision-free forwarding, low

space and computation overhead in core routers while moving complexity to network edge routers. The tradeoff is

a higher, possibly variable length per-packet overhead. The proposed BANANAS realizations have been evaluated

using integrated OSPF/BGP simulations and Linux/Zebra implementations on Utah’s Emulab testbed.

Note that the focus of this paper is to present the BANANAS architectural framework for enabling explicit,

multipath routing in the Internet. This paper does not address the problems related to performance improvements,

advantages and applications of PM model. Moreover, traffic mapping/splitting problem is not a focus of this paper.

The rest of the paper is organized as follows. Section II presents the BANANAS framework including the

PathID concept, packet forwarding, route computation and analysis of overheads for both canonical BANANAS

configuration and the index-based scheme in a partially upgraded network. Section III summarizes the intra-domain

routing extensions for link-state protocols, OSPF and IS-IS. Section IV develops the inter-domain ideas of BA-

NANAS in the context of BGP-4. Section V presents both simulation and Linux-based implementation results

to illustrate the architectural features of BANANAS. Section VI surveys the related work while comparing and

contrasting it with BANANAS. Finally, summary and concluding remarks are presented in Section VII.
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II. T HE BANANASFRAMEWORK

This section presents various components of the BANANAS framework. Section II-A introduces the concept and

definition of “globally” known path identifier orPathID. Section II-B describes the packet forwarding whereas

Section II-C discusses path computation in BANANAS under partial upgrade assumption. Section II-D discusses

various overheads and tradeoffs associated with BANANAS.

A. Path Identifier: PathID

Consider a network modeled as a graphG = (N , E) whereN is the set of vertices or nodes and E is the

set of edges or links in the network. LetN denote the number of nodes in the network, i.e. the cardinality of

the setN . For each link(i, j) ∈ E, let li,j denote a globally known identifier for the link. Letni denote a

globally known identifier for nodei ∈ N . Consider a pathPi,j from nodei to nodej, which passes through

nodesi, 1, 2, ..., m − 1, j. This path can be represented as a sequence of globally-known node and link identifiers

[ni, li,1, n1, l1,2, n2, ..., lm−1,j , nj ]. The path sequence can be compactly represented by ahashof its elements.

A path identifier (or, “PathID” in short) is defined as a hash of theabove sequence or any non-null subsequence

derived from it. Figure 1 illustrates the concept of node identifier, link identifier and “PathID”.

Fig. 1. Path and PathID Concepts

A desirable hash is compact, fast to compute and has a low collision probability (i.e. high uniqueness probability).

A hash collision occurs when two distinct inputs into a hash function produce identical outputs. There is a tradeoff

in using a long, complex, low-collision probability hash e.g. MD5 and an easy to compute, simple high collision

probability hash e.g. XOR.

A sequence of globally known link interface IDs, router IDs (in OSPF or IS-IS) or AS numbers (in BGP) along

the path can be used to generate the underlyingpath sequence. Link weights are globally known link attributes

in OSPF/IS-IS networks but is not recommended as link identifiers in computing PathIDs. The path sequence

generated by using link weights as link identifers may be non-unique itself. Moreover, if an ISP uses dynamic link

weights to implement traffic engineering or adaptive routing, the PathIDs will change frequently. On the other hand
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router IDs and link interface IDs are unique identifiers. Locally meaningful link IDs computed using a globally

known scheme can also be used to compute a globally known PathID. Other interesting hash schemes such as

reversible hash or bloom filters can be used for PathID computation. These lead to different realizations of the

BANANAS framework.

In the canonical form, PathID can be a hash function such as MD5 or CRC designed to avoid PathID collisions.

With canonical hash function used to compute PathID, a table lookup and exact PathID match is required at the

intermediate routers to find the next hop information. If a reversible hash used to compute PathID, intermedi-

ate routers can derive the next-hop information from the PathID field in the packet header. This will reduce the

computational and space complexity at core routers. This was the motivation in designing the index-based PathID

encoding scheme described in Section II-A.2.

Hash schemes can also be designed using Bloom Filter [46] to efficiently encode the PathID. In this case, a set

membership query can be used to find the next-hop information at intermediate routers. While the bloom filter

may lead to false positives, a scheme can be designed to minimize the collision probability using bloom filters.

Moreover, the collision occurs only when the next hop router is also a next-hop neighbor of the associated node.

1) Canonical Scheme:PathID encoding:The canonical hash function choice in BANANAS is a 128-bit MD5

hash followed by a 32-bit CRC of the 128 bit MD5 hash (resulting in a final 32-bit hash value). We use the notation

(MD5 + CRC32) hash to represent the above two-step hashing process. Alternatively, 32-bits of the 128-bit MD5

hash could also have been used. This hash value is used in conjunction with the destination address (j); leading to a

two-tuple hash [j, PathID]. Since the hash value is used in conjunction with the destination address, the probability

of collision is reduced substantially. In particular, hash collision will be effective only if PathIDs to same destination

collide.

Assuming a 32-bit MD5+CRC32 is used as the hash function. For the ease of analysis we assume a random bit-

string as input and all the232 outputs to be equally likely. Letk denote the number of paths to a given destinationj.

Thek random input sequences are distinct, collision occurs ifk draws out of232 leads to a collision. The probability

of collision is1 − (232)!
232k (232−k)!

. Note that in practical situation, a router may keep, say, 5-10 paths to any given

destination. Evaluating the above expression fork = 10 gives a collision probability of1.0477−8. The BANANAS

forwards a packet on the default shortest path if the PathID match leads to more than one exact match. Note that

using the PathID in conjunction with the destination IP address substantially reduces the collision probability.

2) Index-based Scheme: PathID Encoding:The goal is to design a scheme that derives the next-hop information

from the PathID field itself and does not need a forwarding table lookup to forward the packet. In this scheme core

routers need not compute multiple paths and store them into their forwarding tables.

The idea is to generate globally known link identifiers that can be computed locally. An upgraded node orders

its link interface IDs (or alternatively neighbor node IDs)and represents each link by its index in this ordering (see

Figure 2). This link ID, i.e. index, can now be efficiently encoded. For example, a router with 15 interfaces will

need 4-bit link indices. In general, the link or interface IDs of a node may belocally hashed using a globally-known

hash function. Since every node knows the global hash function and it operates on globally-known link IDs (e.g.
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IP addresses of interfaces) each node can independently compute the hashes of any other node. A path can now be

Fig. 2. Explanation of Index-Based Encoding Scheme

specified as a concatenation of such link-indices (e.g. Figure 2 shows PathID, in binary, of a path via nodes 9-10-6

). This PathID encoding is guaranteed to be unique (unlike the earlier MD5+CRC32 encoding which had a very

small collision probability).

The concatenation operation used here is an example of areversibleor perfect hash, i.e., the local hash (i.e.

next-hop information) can be extracted from the overall PathID without needing a per-path table entry. The extra

state needed at interior nodes is a small; only a table mapping link indices to link-IDs is needed. For example, at

a router with 15 interfaces, a 15 entry index-table is needed irrespective of network size. No other control-plane

computation or state-complexity is required at interior nodes. Since the interior nodes can forward to any neighbor

now, a large number of network paths may be supported. Edge-nodes can compute paths using heterogeneous

algorithms, and use a simpler validation algorithm (see Section II-C.2).

B. Packet Forwarding

This section describes the forwarding table structure and forwarding algorithm for various PathID encoding

schemes in BANANAS. Section II-B.1 describes the forwarding corresponding to our canonical choice of hash

function described in Section II-A. Section II-B.2 develops an alternative forwarding algorithm (for OSPF/IS-IS)

when the reversible hash PathID encoding described in Section II-A.2 is used. Note that this scheme does not

require a large forwarding table at interior nodes.

Figure 3 shows a partially upgraded network. Nodes A, C and D are multipath capable (MPC). Assume that node

A is the originating node for a packet destined to node F. The shortest path from intermediate node B to node F is

B-D-F and path A-B-C-F is not available for forwarding because node B is a non-upgraded node and the next-hop

of default shortest path of B is not C. However, paths such as A-B-D-C-F, A-D-E-F, A-D-C-E-F etc. are available. If

the path A-B-D-E-F is chosen, then the PathID of an incoming packet will be Hash(A-B-D-E-F). A sets the PathID
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field to Hash(D-E-F), i.e. the hash of the path suffix from the next MPC router to destination. Node B forwards the

packet on its shortest-path (i.e. to D). Node D sets the PathID to zero, because there is no MPC router on the path

to F.
            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Fig. 3. Multi-Path Forwarding with Partial Upgrades

1) Canonical Scheme:IP forwarding tables essentially contain two-tuple entries of the form[destination pre-

fix, outgoing interface]. Packet forwarding is based on a longest-prefix-match lookup to obtain the next-hop

information. At BANANAS upgraded routers employing canonical hash for PathID encoding, we propose to use

four-tuple entries of the form[destination prefix, incoming PathID, outgoing interface, outgoing PathID]. The

“incoming PathID” field represents the hash of the explicit path from the current router to the destination prefix.

The “outgoing PathID” field is the hash of the corresponding path suffix from thenext upgraded routerto the

destination (See Section II-A for definition of ).

An upgraded router first matches the destination IP address using the longest prefix match, followed by anexact

matchof the PathID for that destination. If matched, the incoming PathID in the packet is replaced by the outgoing

PathID, and the packet is sent to the outgoing interface. If an exact match is not found (i.e. errant hash value in

packet), then the hash value in the packet is set to zero, and the packet is sent on the default path (i.e. shortest

path in OSPF/IS-IS or default policy route in BGP-4). The hash value may also be set to zero if the next-hop is the

destination itself, or there are no upgraded routers in the path specified by the incoming PathID. A non-upgraded

router simply ignores the PathID field and forwards the packet on the shortest path.

The global PathIDs may be computed at each router with minor modifications to OSPF LSAs (See Section III).

2) Index-Based Scheme: Packet Forwarding:Upgraded interior routers maintain an index table that maps the

interface index to the link interface IP address. On receiving a packet, an upgraded interior router extracts the

interface index of the outgoing interface (next-hop) from the PathID field in the packet header and uses the interface

index table to forward the packet on the appropriate link (see Figure 4).

Figure 4 shows a packet being sent from node S to node 7 along the path S-6-2-4-3-7, the PathID at various points
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and various interface indices. Only nodes S, 6 and 4 are upgraded. Node S has complete map of the network from

the link-state database and knows that node 6 has two interfaces and the next-hop index at node 6 is 2, encoded

using two-bits. Note that the interface indexing starts from 1 because PathID of zero still refers to the default

(shortest) path. Likewise, the index at node 4 for this path is 3, encoded using three bits. The PathID of the packet

sent from node S is0...011102 = 14, indicating an index (102 = 2 for node 6 and0112 = 3 for node 4). Node

6 has an index table with 2 entries mapping the link indices to the interface IP addresses. On receiving a packet

with PathID in the routing header, it extracts the last two bits and then looks up its index table. The PathID is also

right-shifted by two bits in this operation so that the next upgraded router can extract its index from the last bits of

the PathID. Similarly, node 4 will extract three bits from the PathID and right shifts it by the same number before

forwarding it. The remaining PathID will now be zero. The non-upgraded routers merely forward packets along

the default shortest paths, oblivious of the PathID field.

Fig. 4. Forwarding with the Index-based PathID encoding scheme (Note: “0b” indicates binary encoding)

C. Path Computation

In this section we discuss various path computation schemes that can be used in a partially upgraded BANANAS

network. The BANANAS framework not only supports upgrades of a subset of nodes, but also allows heterogeneity

in multipath computation algorithms used at different upgraded routers.

In link-state protocols each router has a complete map of the network in the form of link-state database. We

propose to first annotate this “map” at an upgraded node with the knowledge of other upgraded nodes (we defer the

discussion of how this is achieved in case of OSPF/IS-IS and BGP to sections III and IV). In Figure 3, upgraded

node A will know that nodes C and D are upgraded and vice versa.

In this section, consider a single flat, link-state routing domain. We do not consider extension of BANANAS
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to distance-vector routing algorithms (e.g. RIP). The extension of BANANAS to multi-area OSPF domains is

discussed in Section III. Using the link-state database (“map”) and knowledge of upgraded routers, every router

can locally compute available network paths.

The BANANAS framework allows an upgraded router to compute and store all or avalid subset of available paths

under partial upgrade constraints. The subset of available loop-free paths can be computed using any multipath

computation algorithm available in literature, for example k-shortest-paths, all k-hop paths, k-disjoint paths (see [5]

and references within), DFS with constrained depth ([7] uses a depth-constraint of 1-hop) etc. The only constraint

is that the algorithm should also compute the shortest (default) path. This constraint arises because BANANAS

router also sees packets without a PathID (the packets originating from non-BANANAS upgraded routers) or with a

PathID that does not match its forwarding table. In these cases, the packet gets forwarded along the default shortest

path. Note that even if the packet has already traversed the next hop of the shortest path, there will not be any

loops because the next hop router will now forward the packet along the shortest path. Any multipath computation

algorithm can be adapted for the constraint that there is a known subset of BANANAS upgraded routers.

1) Canonical Scheme: Path Computation:The simplest path computation algorithm is to compute all avail-

able paths under partial upgrades. The paths can be computed by performing a depth-first-search (DFS) [25] that

traverses every neighbor of upgraded nodes and the shortest-path neighbor at non-upgraded nodes. The shortest

path next-hops of non-upgraded nodes can be found by performing multiple Dijkstra’s or an all-shortest paths algo-

rithm e.g. Floyd-Warshall [25]. This results in a table containing next-hops for all paths to a destination under the

constraint of a known subset of MPC nodes. We refer to this strategy as DFS under partial upgrade constraints or

DFS-PU for shorthand. This simple approach is expensive in speed, computational and space complexity. Number

of available paths increases exponentially with the number of MPC routers.

However, if different routers compute and store different sets of paths and the canonical PathID encoding scheme

is used, it is possible that the path computed by one upgraded router may not be supported by another upgraded

downstream router. A path is defined to beinvalid if forwarding support for the path does not exist at some

downstream router along the path.

To solve the above problem, we propose adistributed validation algorithmthat ensures validity of paths. The

main idea behind the validation algorithm is that a path is valid (i.e. forwarding for a path exists) if all its path

suffixes are valid. This suggests a mathematical induction based approach. All one-hop paths are always valid

because they represent a direct link. A two-hop path is valid if its one-hop pathsuffixis valid.

The proposed algorithm (see Algorithm 1) has two phases. In the first phase a node computes the paths using

the chosen algorithm. For example, let us assume that nodei uses aki-shortest-path algorithm. Theki paths

computed to each destination are input into a map data structure that is ordered by hop-count. In phase 2, the

validation phase, the node needs to know the path computation algorithm and parameters used by other upgraded

nodes. In our example, nodei needs to know thekj parameter associated with each upgraded nodej. With this

knowledge, it can compute thekj paths for nodej and input it into the hop-count ordered map data-structure (lines

2-5 in Algorithm 1). At non-upgraded nodes,kj is 1 (lines 6-9 in Algorithm 1). Essentially we have computed all
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Algorithm 1 Algorithm for validating paths at a router in a partially upgraded network
1: LetNU andU denote the set of all non-upgraded and upgraded nodes respectively

2: for all u ∈ U do

3: newPaths← Compute paths usingu’s advertised algorithm

4: RoutingMap.append(newPaths)

5: end for

6: for all n ∈ NU do

7: newPaths← Compute shortest path using Dijkstra’s algorithm

8: RoutingMap.append(newPaths)

9: end for

10: All 1-hop paths arevalid

11: Initialize suffixLength← 2

12: while suffixLength< maxHopsdo

13: for all path∈ RoutingMapdo

14: if hop count ofpath≥ suffixLengththen

15: temppair.hopcount← suffixLength-1;

16: temppair.PathString← lastsuffixLengthnodes inpath;

17: if RoutingMap.find(temppair) == FALSEthen

18: deletepath

19: end if

20: end if

21: end for

22: suffixLength++;

23: end while

potentiallyavailablepaths in phase 1.

Phase 2 operates similar to mathematical induction. All one-hop paths in the map are declared as valid. For each

2-hop path, the algorithm simply searches for the 1-hop path suffix in the just-validated set. If a match is not found,

the path is invalid and is discarded. If the path (i.e. the corresponding PathID entry) exists in the forwarding table,

it is removed. In this process, validating an m-hop path entry implies looking up its (m-1)-hop path suffix in the

just-validated set of (m-1)-hop paths and finding a match (the variable temppair and the lines 16,17 in Algorithm

1 are used to find a suffix match in the RoutingMap structure). By mathematical induction, when the entire map

has been linearly traversed, the remaining paths are valid.

The computational complexity of this approach can be estimated as follows. In a N-node network withu up-

graded routers, the complexity of first phase is givenuC(k) + (N − u)C(1) where,C(k) denotes the complexity

of computing k-shortest paths,C(1) denotes the complexity of Dijkstra’s algorithm. The total number of paths,

T , computed at the end of first phase is equal to(N − 1)((N − u) +
∑i=u

i=1 ki). The complexity of the validation

phase isO(T log(T )h̄) where,̄h is the average hop count for the paths. The log(T) term arises due to searching for

a suffix in theMap (see Algorithm 1, line 18). The validation algorithm may be optimized or be eliminated for
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special cases, e.g. if all nodes are upgraded and use the same value of k.

In summary, Algorithm 1 is a general 2-phase validation procedure that can be applied to validate paths computed

usinganydeterministic path computation algorithm at MPC routers that also computes the default shortest path.

2) Index-based Scheme: Path Computation:In this scheme, “source” (or edge routers) can independently use

any multipath computation algorithm to find a subset of available paths, similar to the discussion in Section II-C.

The only information needed is the knowledge of which routers in the network are upgraded (using the MPC-bit in

LSAs).

Algorithm 2 Algorithm for validating paths in the index-based Scheme
1: LetN denote the set of nodes in a network andNU denote the set of non-upgraded nodes

2: Compute multiple paths using desired multipath computation algorithm

3: LetP(dst) denote the set of paths to destinationdst

4: for n ∈ NU do

5: Compute Dijkstra

6: end for

7: for dst ∈ N do

8: Compute the desired paths to destinationdst using any of k-shortest paths, k-disjoint paths, all paths upto k-hops etc.

9: for path ∈ P(dst) do

10: for n ∈ NU do

11: if path.find(n)==TRUE then

12: // nextHopSP is the next-hop in the shortest path fromn to dst

13: // nextHop(path) denotes the next-hop ofn in thepath

14: if nextHop(path) ! = nextHopSPthen

15: deletepath

16: end if

17: end if

18: end for

19: end for

20: end for

Path validation is only necessary to impose the constraint that non-upgraded nodes can forward packets only on

their default shortest paths. Algorithm 2 shows the pseudo-code of a generic validation algorithm for edge routers.

Only those paths are valid, where the next-hop of the non-upgraded routers corresponds to their shortest path next-

hop. Again, the validation algorithm consists of two phases. First phase deals with the computation of shortest paths

for non-upgraded nodes (lines 4-6 in Algorithm 2) and computation of multiple paths using any desired multipath

computation algorithm. In second phase, the paths are checked for passing through non-upgraded nodes. If a

path passes through a non-upgraded node, the next-hop must be same as the next-hop in the pre-computed shortest

path. A path isinvalid if this condition is not met (lines 14-16). In a N-node network withu upgraded routers,

the complexity of first phase is givenC(k) + (N − u)C(1) where,C(k) denotes the complexity of computing

k paths (assuming the upgraded router keepsk paths),C(1) denotes the complexity of Dijkstra’s single-shortest-
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path algorithm. The complexity of the second phase of the validation algorithm isO(k × (N − 1) × (N − u)),

wherek is the maximum number of paths for each destination to be stored in the forwarding table. Note that the

validation phase in the index-based path encoding scheme is simpler compared to the validation phase in Algorithm

1. This is because the upgraded routers can forward packets to any of their interfaces. Recall that in Algorithm

1, the validation phase also needed to ensure that the downstreamupgradednodes of a path would indeed provide

forwarding for that path (i.e. have a forwarding table entry for that path).

D. Comments on Overheads

In this section we analyze various overheads associated with enabling explicit, multipath routing using BA-

NANAS.

BANANAS requires a per-packet PathID field in the packet header. In the canonical scheme, a 32-bit PathID

hash is included in every packet. A hash-based data-plane encoding is more efficient than IPv4/IPv6’s loose-source-

routing encoding [19], [20] that is an uncompressed string of IP addresses. Moreover, 32-bit per packet PathID

overhead is not substantial when compared to 128-bit IP addresses in IPv6. For enabling BANANAS end-to-end

in the Internet across multiple ASes, we propose fields i-PathID, e-PathID and address stack (discussed in Sections

III and IV-C).

In the index-based scheme, the computational and space complexity at the core routers is traded off for increased

per packet overhead. For a reasonable maximum bit-budget in the packet header (e.g. 128 bits), and an average of

15 interfaces per router, up to 32-hop paths can be encoded with this technique. In [26], authors have found that the

average number of hops to reach a destination in the Internet is 19. The limitation of 32-hops is not too restrictive

as it applies only within a single area or a domain. The PathID is re-initialized by the first upgraded router of an

area after crossing any area or domain boundary.

Note that depending on the choice of hash function, PathID collision may occur. Note that in BANANAS, since

forwarding is done using longest prefix destination IP address match followed an exact PathID match, a collision

occurs only when multiple paths to the same destination have the same PathID. As opposed to forwarding based

on exact PathID match, this scheme reduces the collision probability by O(N2), whereN is the number of nodes

in the network. The canonical scheme uses a combination of low-collision probability MD5 and CRC hash, thus

reducing the chances of collision even further. An analysis of the collision probability for the canonical scheme was

presented in Section II-A. In the index-based scheme, PathID is a string of globally known unique indices. Thus,

under stable conditions there is no probability collision in the index-based scheme.

Today OSPF uses a single, shortest path routing with equal cost multipath. The Dijkstra’s shortest path algorithm

is used to compute shortest paths from a router to all other routers in the area. For enabling multipath routing,

a multipath computation algorithm must be used. Depending on the multipath computation algorithm, a higher

overhead is incurred. In the canonical scheme, all the routers supporting BANANAS must compute multiple paths

and validate them. In case of k-shortest paths, the complexity of path computation and validation algorithms for the

canonical scheme is discussed in Section II-C.1. In the index-based scheme, core routers do not need to compute
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multiple paths, only edge/source routers need to compute and validate multipaths. However, the complexity of

the validation algorithm is substantially reduced as a BANANAS upgraded router supporting index-based scheme

can forward an incoming packet on all possible interfaces. The complexity of the validation algorithm for the

index-based scheme was discussed in Section II-C.1.

Note that in any multipath routing scheme a memory overhead will be incurred depending on number of extra

path information in the forwarding tables of a router. This is true for the BANANAS canonical scheme. However,

the index-based scheme does not require all routers to store additional entries in the forwarding tables. Only the

edge routers are required to keep additional entries. However, a index-table of the O(number of outgoing interfaces)

is required for the packet forwarding.

To summarize the impact of index-based scheme in terms of function placement and complexity management, the

index-based scheme uses per-hopPathID processinginstead of a table-driven per-hopPathID swappingstrategy.

Only edge routers need to compute the multipaths and their PathIDs using a simplified validation procedure. The

memory overhead requirements at the core routers are also greatly reduced (O(number of interfaces) as compared

to O(number of nodes)).

Moreover, the scheme is only applicable to link-state protocols, where the neighbor relationships do not change

often. Specifically, the index-based scheme isnot applicable to path-vector based protocols like BGP-4, or mobile

ad-hoc networks where neighbor relationships change rapidly. The fundamental tradeoff in BANANAS (given our

canonical choice of PathID hashing method) is a per-packet overhead, route-computation and space complexity

incurred at upgraded routers to achieve multiple path routing while avoiding signaling.

III. BANANAS E XTENSIONSFOR INTRA-DOMAIN PROTOCOLS

In this section, we summarize the extensions to OSPF/IS-IS to support the BANANAS framework. A 32-bit

PathID field is required in the packet header, that can be implemented as a newrouting option, calledi-PathID (in

the context of intra-domain routing, PathID actually refers to i-PathID). The route computation algorithm (Dijk-

stra’s algorithm) at upgraded routers must be extended to compute multiple paths (e.g. DFS under partial upgrade

constraints (DFS-PU), k-shortest paths [5] etc), and a validation algorithm (Algorithm 1). The upgraded nodes

must compute the shortest path as the default path. Incoming packets with erroneous PathIDs are forwarded on

the shortest paths and the PathID field set to zero. The intra-domain forwarding tables at upgraded routers would

have tuples(destination prefix, incoming PathID, outgoing interface (next-hop), outgoing PathID). As indicated in

Figure 5, one bit in the OSPF Link State Advertisements (LSAs) [27] must be used to indicate that the router is

multipath capable (MPC). In the Linux/Zebra based implementation as well as in the SSFNet simulations, we have

used the eighth bit in theLSA optionsfield of the router-LSA as the MPC bit.

Also, if we allow different upgraded routers to compute paths using different algorithms, we need some bits to

indicate the choice of route computation algorithm along with its parameters (E.g. the value of k in k-shortest paths

algorithm). In our Zebra-based implementation, we have assumed that upgraded nodes implement the k-shortest-
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Fig. 5. Proposed Modifications to OSPF Link State Advertisements (LSAs)

path algorithm with different values of k. Therefore, we leverage the currently unused 8-bits after the router type

field in the LSA to indicate the value of k.

For the alternative index-based path encoding scheme, the concatenation of indices is done from the lower-

order-bits to the high-order-bits. Each router simply shifts the PathID to the right by the number of bits needed

to encode its interface index. This allows upgradedinterior routers to extract the next-hop index from the lowest-

order-bits without knowing its position within the path, i.e. without the knowledge of how many upgraded nodes

are on the path. The upgraded interior routers only need to set the MPC bit in their LSA and need not advertise

the route computation algorithm. Each upgraded router must maintain an ordered list of its own interfaces and

the corresponding index. The upgradededgerouters can use any multipath algorithm to compute multiple paths.

However, they need to validate the paths using the validation algorithm (Algorithm 2). All upgraded routers must

always compute the default shortest paths to all destinations. This is necessary in order to forward packets with no

PathID option, zero or erroneous PathID.

A. Forwarding Across Multiple Areas

Large OSPF and IS-IS networks support hierarchical routing with up to two levels of hierarchy. Our approach

is to view each area as a flat routing domain for the purpose of multipath computation. Multiple paths are found

locally within areas, and crossing areas are view as crossing to a new multipath routing domain, i.e. we re-use the

i-PathID field. For example, if a source needs to send a packet outside an area, it chooses one of the multipaths

to the area border router (ABR). Then, the ABR may choose among the several multipaths within area 0 to other

ABRs. The i-PathID field is re-initialized by the first ABR at the area-boundary.
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IV. BANANASEXTENSIONS TOBGP

A. Motivation and Goals

BGP-4 [28] is the inter-domain routing protocol in the Internet. BGP uses a path vector and policy routing

approach to announce a subset of actively used paths to its neighbors. Load-balancing and traffic engineering in

BGP are becoming important as operators attempt to deploy services like virtual private networks (VPNs), and

optimize on complex peering agreements [1], [29], [30], [31]. Enterprises are also increasingly multi-homed and

are increasingly active in managing their inbound and outbound traffic [1], [32].

While BANANAS is not designed to address multitude of configuration, stability and load-balancing problems

[33], [30], [34] of BGP, it does provide a set of building blocks to enable fine-grained BGP traffic engineering both

within and across domains. In particular, BANANAS introduces two new capabilities:explicit exitforwarding and

explicit AS-PATHforwarding. We examine these aspects further in the following sections.

B. Explicit-Exit Forwarding

The idea of explicit-exit routing is quite simple. The overall objective is to define a traffic aggregate and then

map it to a chosen exit router (ASBR). Traffic aggregates may be chosen at per-packet, per-flow or per-prefix

granularities by the upgraded EBGP or IBGP routers, i.e., ISPs can define fine-grained bundles of outbound traffic.

Unlike LOCAL PREF, the explicit exit capability can map traffic for the same destination prefix to multiple exits

(based upon the autonomous decisions at upgraded IBGP nodes).

The explicit exit mechanism works as follows. An upgraded IBGP router chooses an arbitrary exit AS border

router (ASBR) for a given traffic aggregate (e.g. a flow or all traffic to a destination prefix). It then “pushes” the

destination address into a“address stack”field, and replaces the destination address with the exit ASBR address

(adjusting the checksum appropriately). Now, intermediate routers forward the packet to the exit-ASBR to which it

is addressed. The exit-ASBR then simply “pops” the address from the address-stack field back into the destination

address field (and adjusts the checksum) before forwarding it along to the next AS.

The upgraded IBGP node would hence have table entries of the form:[Dest-Prefix Exit-ASBR Next-Hop-to-

Exit-ASBR] and [Dest-Prefix Default-Next-Hop]. The second tuple is the regular IBGP-defined default policy

route for the destination prefix: this forwarding entry is used for all traffic for which this IBGP router does not

decide the exit router. The first 3-tuple is applied only to the traffic aggregates for which this IBGP router chooses

an explicit exit. This kind of operation is important to avoid conflicting exit routing decisions by upgraded IBGP

routers.

Observe that onlya subset of IBGP routers and exit ASBRs (eBGP) routers need to be upgraded. All BGP

routers synchronize on their default policy routes as usual [28]. In addition, the upgraded exit ASBRs should also

synchronize with the upgraded IBGP routers so that they know which exits are available for any given prefix.

The explicit-exit mechanisms proposed are similar in spirit to the label-stacking (multi-level tunnelling) ideas

in MPLS[22]. A key difference is that BANANAS proposes only a single-level address stack, whereas MPLS can
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have multiple levels in its label-stack. Note that the explicit exit routing is a special case of explicit path routing

introduced in earlier sections. The PathID “hash” in this case is simply the exit ASBR IP address. This address

stacking procedure operates in the fast processing path at all routers (both upgraded and non-upgraded), unlike IP

loose-source-routing that defaults to the slow-processing path because it is an IP option.

C. Explicit AS-PATH Forwarding

The goal of explicit AS-PATH forwarding is to provide a distributed mechanism to send packets along an arbi-

trary, but validated AS-PATH. The idea is similar to the explicit path routing introduced for OSPF/IS-IS, except

that we now refer to explicit AS-PATHs rather than a sequence of contiguous routers and links. In particular, we

propose a separate hash field called external-PathID or e-PathID in packets for this function. The e-PathID is the

hash of the desired AS-PATH, i.e., hash of the sequence of AS numbers.

The e-PathID hash is processed as follows. First, in an upgraded AS, assume that at least the entry and exit

AS border routers (ASBRs) are upgraded to support the explicit AS-PATH function. Assume that a border router

(called the entry ASBR) receives a packet with a non-zero, valid e-PathID. The incoming e-PathID is used by the

entry ASBR to determine an appropriate exit ASBR. The packet is then explicitly sent to this exit ASBR using the

mechanisms described in the earlier section, i.e. address-stacking. Indeed, once the address is stacked, the i-PathID

may also be explicitly chosen to indicate a specific route to that exit ASBR. Note that the e-PathID isnot swapped

at the entry ASBR. The outgoing e-PathID (for the AS-PATH suffix) replaces the incoming e-PathID only at the

exitASBR. This convention is required because the autonomous system is an atomic entity (similar to a node) as far

as the e-PathID is concerned. However, the AS physically breaks up into an entry- and exit-ASBR (similar to input

and output interfaces of a node). If we imagine that the abstract PathID swapping happens at the output interface,

that corresponds to our convention of swapping the e-PathID at the exit ASBR. Observe, that we have required only

EBGP routers to be aware of the multi-AS-PATH feature, and do not require upgrades in selected IBGP routers

(unlike the explicit exit case discussed earlier).

To illustrate the explicit AS-PATH feature, we consider the AS-graph topology in Figure 6, and assume that we

would like to send traffic from AS1 to AS5, i.e. to the IP prefix 0.0.0.48 along AS-PATH AS1-AS2-AS3-AS5,

represented as (1 2 3 5). The AS-PATHs available are AS1-AS2-AS5, AS1-AS2-AS4-AS3-AS5, AS1-AS2-AS3-

AS5. The explicit path (1 2 3 5) is chosen at router 1; the suffix AS-PATH is (2 3 5) whose hash is placed in the

e-PathID field in the outgoing IP packet. The next-hop is an entry router in AS2. An exact match of prefix and

e-PathID results in the packet being forwarded to the AS3. The e-PathID will be swapped only at the exit ASBR

(i.e. Router 2 in AS2). A similar sequence of events occurs in AS3 involving entry ASBR (router 1) and exit ASBR

(router 3) before the packet is forwarded to AS5. The outgoing e-PathID from AS3 will be set to 0 because AS5 is

the destination AS.

In spite of these apparent reductions in upgrade complexity, BGP’s path-vector nature poses a more important

problem. Specifically, a new AS-PATH is unknown to an upstream AS unless the intervening AS explicitly ad-

vertises it (after internal synchronization). In other words, even if ISPs were interested in AS-PATH multiplicity,
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Fig. 6. Topology for illustrating explicit AS-PATH forwarding

increased control traffic is necessary to advertise the existence of multiple AS-PATHs to neighbor AS’es. Recall

that such excess control traffic was not required in link-state algorithms (we merely piggybacked LSAs with min-

imal information). On the other hand, the path-vector nature of BGP-4 also implies that no path computation is

necessary once the multiple AS-PATHs have been received and filtered for acceptance.

We recognize that this increased control traffic requirement poses a significant disincentive for ISPs against

adopting multi-AS-PATH capabilities en masse. Given the scalability and instability issues with adding control

traffic, we expect that ISPs may choose to advertise only a small set of multiple AS-PATHs to their neighbor AS’es.

For example, some AS’es may collaborate to allow forwarding along multiple paths to certain destination prefixes

and advertise this as a non-transitive attribute to certain AS’es only.

D. BANANAS Extensions to BGP-4

In summary, we propose two capabilities in the context of inter-domain routing:explicit exit routing and explicit

AS-PATH routing. For the former, we propose a 32-bit “address stack” field in the routing header into which

the destination IP address will be“pushed”. The destination field in the IP header is overwritten with the exit

ASBR’s IP address. The Exit ASBR will simply“pop” the destination address back from the ”address stack” to

the destination IP address. This address stacking procedure (similar to MPLS) operates in the fast processing path

unlike the IP loose source routing option. Moreover, it allows flexibility for only a subset of BGP routers to be

upgraded to support such explicit exit choice.

For explicit AS-PATH forwarding we propose a new 32-bit field in the packet routing header called the external

PathID or e-PathID. This field stores a hash of the sequence of ASNs along the desired explicit AS-PATH. ISPs

may choose to only advertise a small set of multiple AS-PATHs to their selected neighbor AS’es. In a multi AS-
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PATH capable AS, only the entry ASBRs and exit ASBRs (i.e. only the EBGP routers) need to be upgraded and

synchronized on the available multiple AS paths. The incoming ePathID hash is swapped with the outgoing AS-

PATH suffix hash only at the exit AS border router. The forwarding from the entry ASBR to the exit ASBR uses

the explicit exit mechanisms described above. Multiple paths between the entry and exit ASBRs are possible using

the i-PathID mechanism described earlier for intra-domain routing.

V. I MPLEMENTATION AND SIMULATION RESULTS

In this section, we illustrate the working of the proposed framework. We have implemented the BANANAS

framework schemes in the Linux kernel: we use MIT’s Click Modular Router package [35] (data-plane) and GNU

Zebra routing sofware version 0.92a [36] (control-plane). These implementations are tested on Utah’s Emulab

testbed [37] to emulate sizable topologies running real implementation code. In particular, we test three cases:

a) when an upgraded router keeps all available paths (as computed by the DFS-PU strategy), b) when upgraded

nodes compute k-shortest paths, with heterogeneous values of k at different nodes, and c) the index-based scheme

to illustrate architectural flexibility.

We use SSFNet [38] for larger integrated BGP/OSPF simulations. These SSFNet simulations illustrate the frame-

work in larger network topologies that integrate both OSPF and BGP BANANAS functionalities. Note that in this

section, we have intentionally preferred simplicity in terms of topology/test-case choices. We have performed a

larger set of SSFNet simulations and Emulab runs in more complex scenarios, all of which support our assertions.

These results will be reported in a detailed technical report.

A. Linux Implementation Results

Figure 7 shows the topology of a simple validation experiment conducted on Utah’s Emulab [37] testbed with

the Linux Zebra version 0.92a of OSPF (i.e. control-plane) upgraded with our BANANAS building blocks. The

forwarding plane was implemented in Linux using MIT’s Click Modular Router package [35]. Note that this is a

partially upgraded network: only nodes 1 and 2 (the dark colored nodes) are upgraded in this configuration. Figure

7 also indicates the IP addresses of various router interfaces and the link weights. The router ID is statically defined

to be the smallest interface IP address.

1) All Paths with Partial Upgrades (DFS-PU Algorithm):Table I illustrates a partial forwarding table computed

at node 1 (IP address 192.168.1.1) for destination 3 (192.186.3.3). Note that the path string shown in Table I is only

for the sake of illustration and is not stored in the actual routing table. The PathIDs are the (MD5 + CRC-32) hashes

of the router IDs (i.e. IP addresses of nodes) on the path. For example, the PathID 2084819824 corresponds to a

hash of the set of router IDs{192.168.1.1, 192.168.1.2, 192.168.6.6, 192.168.39.9, 192.168.3.3}. The outgoing

path ID is the hash of the suffix path formed after omitting 192.168.1.1. If the path goes through other nodes which

are not upgraded (e.g. 1-4-3), the outgoing path ID is the hash of the suffix path starting from the next upgraded

router on the path. In the case of the path 1-4-3, both nodes 4 and 3 are not upgraded, so the suffix path ID is zero.
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Fig. 7. Experimental Topology on Utah Emulab using Linux Zebra/Click Platforms (Note: only dark colored nodes are multi-path capable)

Outgoing I/f Path Incoming PathID Outgoing PathID

192.168.1.1 1-2-6-9-3 2084819824 664104731

192.168.3.1 1-3 599270449 0

192.168.4.1 1-4-3 4183108560 0

192.168.5.1 1-5-4-3 1365378675 0

TABLE I

PARTIAL ROUTING TABLE AT 192.168.1.1FOR DESTINATION 192.186.3.3

2) k-Shortest Paths with Partial Upgrades:In this section we illustrate, using the Linux implementation, the

case when the upgraded routers compute upto k-shortest paths, and different upgraded routers using different values

of k.

Consider the 10-node topology shown in Figure 7. This topology was setup in the Emulab network. We assume

that the routers 192.168.1.1 and 192.168.1.2 are upgraded with k equal to 3 and 2 respectively. The results are

presented to verify the correctness of the “validation phase” (Algorithm 2). Tables II, III show respectively part

of the routing tables at 198.168.1.1 for destinations 198.168.6.6 and 198.168.8.8 respectively. Tables IV, V show

the corresponding entries at router 198.168.2.2. For destination 198.168.6.6 the router 198.168.1.1 finds 3 paths,

all of which are valid as two paths have next-hop 198.168.2.2 and router 198.168.2.2 keeps 2 shortest paths. For

destination 198.168.8.8, the router 198.168.1.1 computes 3-paths, 1-2-8, 1-2-6-7-8, 1-2-7-8. The path 1-2-7-8 is

invalidated in the “validation phase” as router 198.168.2.2 only keeps 2 paths (2-8, 2-6-7-8). Note that thePath

string is shown in Tables II-V for the purpose of explanation.

B. Evaluation of Index-based Path Encoding Scheme

The alternative index-based PathID encoding scheme was implemented in the Linux kernel (MIT’s Click Router

platform) and simulated in SSFNet. We present our simulation results in this section on a sizeable topology that

corresponds to the old MCI topology of 1995 [39].
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Path Incoming PathID Next-hop Outgoing PathID

1-2-6 1989316858 192.168.1.2 3491782861

1-2-7-6 656924081 192.168.1.2 3645081405

1-3-9-6 534784006 192.168.3.3 0

TABLE II

PART OF ROUTING TABLE AT 192.168.1.1FOR DESTINATION 192.186.6.6

Path Incoming PathID Next-hop Outgoing PathID

1-2-8 3654096761 192.168.1.2 1973392862

1-2-7-6-8 1777786090 192.168.1.2 2123671348

TABLE III

PART OF ROUTING TABLE AT 192.168.1.1FOR DESTINATION 192.186.8.8

In this configuration, only nodes 4, 6, 7, 9, 10 are upgraded. The source node in this simulation is node 6.

Observe that node 6 is the only node that computes the k-shortest-paths (k = 5) for all destinations and runs the

validation algorithm (Algorithm 2). All other upgraded nodes merely keep an index table as described in Section II-

A.2). Table VI shows a part of the forwarding table at node 6 (only those paths for destination node 7), and the

i-PathIDs using index-based encodings. The node 6 may choose any one of these paths for a packet to node 7. We

have verified that the progression of i-PathIDs through the network follows the description given in Section II-B.2.

C. Integrated OSPF/BGP SSFNet Simulation

In this section we use SSFNet simulation results to illustrate the integrated operation of proposed framework in

the Internet. This example demonstrates both the intra-domain (OSPF) and inter-domain (BGP-4) operation of the

framework with explicit AS-PATH as well as explicit exit forwarding.

Figure 9 shows the topology used for the results presented in this section. The topology has eight (8) autonomous

Path Incoming PathID Next-hop Outgoing PathID

2-6 1973392862 0.0.0.0 1973392862

2-7-6 2123671348 192.168.7.7 2123671348

TABLE IV

PART OF ROUTING TABLE AT 192.168.2.2FOR DESTINATION 192.186.6.6

Path Incoming PathID Next-hop Outgoing PathID

2-8 3491782861 0.0.0.0 0

2-6-7-8 3645081405 192.168.6.6 0

TABLE V

PART OF ROUTING TABLE AT 192.168.2.2FOR DESTINATION 192.186.8.8
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Fig. 8. Old MCI Topology: Used for Testing the Index-Based Scheme (Only Nodes 4, 6, 7, 9, 10 are upgraded)

Path Next-Hop i-PathID

6-2-4-3-7 2 0b01110

6-10-9-17-16-11-7 10 0b00110001

6-10-14-11-7 10 0b00101

6-10-9-4-3-7 10 0b01110110001

TABLE VI

PATHS AT NODE 6 FOR DESTINATION NODE7 (NOTE: 0B INDICATES BINARY ENCODING)

Forwarding Table of AS1 at Router 1

Dest NextHop In e-PathID AS-PATH Out e-PathID Exit ASBR

0.57/28 2.93/32 2025862315 2-4-8 3535826417 0.91/32

0.57/28 2.93/32 4160716901 2-5-6-7-8 1248156781 0.91/32

0.57/28 2.93/32 669121903 2-5-6-4-8 2630971039 0.91/32

TABLE VII

INTEGRATED OSPF/BGP SIMULATION : FORWARDING TABLE OF THE BORDERROUTER IN AS1 (NOTE: 0.57/28REFERS TOIP

ADDRESS0.0.0.57/28ETC)

systems (AS’es). Four of these AS’es, namely AS1, AS2, AS5 and AS6, have been upgraded to support explicit

AS-PATH forwarding. Even within these upgraded autonomous systems, only asubsetof routers are upgraded to

support the explicit AS-PATH and explicit exit routing as described in Sections IV-C and IV-B. The upgraded

routers have been marked with a “U” in Figure 9. A blow-up of the internal topology of AS2 is shown in Figure 10;
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Fig. 9. Topology used for integrated SSFNet simulation

Forwarding Table of AS2 at Router 5

Dest NextHop In e-PathID ASPATH Out e-PathID Exit ASBR

0.57/28 2.97/32 3535826417 2-4-8 3535826417 2.107/32

0.57/28 2.113/32 3535826417 2-4-8 3535826417 2.107/32

0.57/28 2.97/32 1248156781 2-5-6-7-8 1248156781 2.24/32

0.57/28 2.113/32 1248156781 2-5-6-7-8 1248156781 2.24/32

TABLE VIII

INTEGRATED OSPF/BGP SIMULATION : FORWARDING TABLE ROUTER 5 IN AS2 (SEE FIGURE 10)

the upgraded routers are again indicated with “U”

Consider forwarding of a packet from AS1 to AS8 (see Figure 9). Given the constraints that only a partial set

of AS’es are upgraded, the following AS-PATHs may be used from AS1 to reach AS8: AS2-AS4-AS8, AS2-AS5-

AS6-AS7-AS8 and AS2-AS5-AS6-AS4-AS8. These AS-PATHs and their corresponding e-PathIDs are indicated

in Table VII, which is a part of the routing table at the AS border router in AS1. Note that the AS-PATH AS2-AS4-

AS6-AS7-AS8 is not available because AS4 is not upgraded, and uses a default AS-PATH of AS4-AS8. Also in

this simulation, we assumed that the upgraded routers do not do any further filtering, i.e., they re-advertise all their

available AS-PATHs to their neighboring AS’es.

In our example simulation, the border router of AS1 chooses the AS-PATH AS2-AS4-AS8, which corresponds

to the e-PathID of 3535826417 (see the first row of Table VII). When the packet arrives at router 5 of AS2 (the

entry ASBR), its header looks like Figure 11(A). This entry ASBR (i.e. router 5) of AS2 examines the incoming
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Fig. 10. Blow-up of AS2’s Internal Topology in the Integrated OSPF/BGP Simulation (Figure 9)

Destination Path i-PathID

0.0.2.107/32 5-4-3-2 17

0.0.2.107/32 5-1-4-3-2 18

0.0.2.107/32 5-4-11-7-2 1669

0.0.2.107/32 5-4-8-7-2 201

0.0.2.24/32 5-4-11-10-15-14 69

0.0.2.24/32 5-4-8-7-6-14 169

0.0.2.24/32 5-4-8-16-15-14 105

0.0.2.24/32 5-1-4-8-16-15-14 106

0.0.2.24/32 5-4-11-9-10-15-14 101

0.0.2.24/32 5-1-4-11-9-10-15-14 102

TABLE IX

FORWARDING TABLE AT ROUTER 5 IN AS2 (FIGURE 10): K SHORTESTPATHS (K = 7)

e-PathID to find the exit ASBR to be node 2 with IP address 0.0.2.107 (see first row of Table VIII). Note that itdoes

not swap the e-PathID field, because this will be done at the exit ASBR. To emphasize this point, observe that the

outgoing e-PathID column in Table VIII is the same as the incoming e-PathID for the destination prefix 0.0.0.57/28.

The entry ASBR (router 5) now “pushes” the destination IP address (i.e. 0.0.0.57) into the address stack field

and replaces it with the exit ASBR IP address. The entry ASBR also chooses a path within the AS to the exit

ASBR. Table IX shows the intra-domain paths available to reach exit ASBR (router 2). In this simulation, we have

integrated the index-based PathID encoding scheme as well as the k-shortest path route computation scheme (k=7)

with the OSPF protocol running in AS2. In particular, the path 5-4-11-7-2 within the AS is chosen that corresponds
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Dest IP Add EPathID IPathID

1248156781 1669
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Fig. 11. Diagram Showing How e-PathID, i-PathID and Destination Address Change in the Integrated OSPF/BGP Simulation

to a i-PathID of 1669 (see the third row of Table IX). The header fields of the packet at this stage are shown in

Figure 11(B).

The packet proceeds on the explicit intra-domain path (as described in earlier sections) to reach the exit router

2 with an i-PathID value of 0. At this router, the destination address (0.0.0.57) is “popped” back from the address

stack. The e-PathID is also replaced with the outgoing e-PathID of 1895667324 (see Figure 11(C)). Now the

packet is sent to AS4, which is not upgraded, but sends the packet on its default policy AS-PATH, i.e., directly to

AS8. In summary, we have shown how a distributed set of upgraded and non-upgraded nodes, with explicit paths

independently selected within upgraded AS’es can honor an explicit AS-PATH request of the source AS.

VI. RELATED WORK

This high-level model is abest-effort path multiplicitymodel, clearly different from IPv4/IPv6 connectionless

loose-source-routing model [19], [20] and from end-to-end signaled source-route models used in ATM networks

(e.g. PNNI [21]) or MPLS networks [22].

Most related work for multipath routing have been done in the context of intra-domain protocols. OSPF, the

most common intra-domain routing protocol used in the Internet today is based on single shortest path with equal

splitting between next-hops of equal cost paths. Lorenz et al [40] show that OSPF routing performance could be

improved byO(N) if traffic-matrix aware explicit source-based multipath routing is used (e.g. MPLS-based [41],

[42]).

Protocol extensions to support multipath routing (both in RIP and OSPF) have been studied by Narvaez et al [7],

Chen et al [6] and Vutukury et al [8]. In [7], authors propose to find loop-free multipaths only by concatenating the

shortest paths of their neighbors with their link to the neighbors. This approach essentially uses a depth first search

with a depth of 1, whereas we allow arbitrary depth in our DFS-PU algorithm. Chen et al and Vutukury et al [6],
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[8] propose more general multipath computations, but their schemes require the co-operation and upgrade ofall

the routers in the network. Chen et al present a general concept of suffix-matched path identifier to allow multipath

computation using distributed computation, but they uselocal labelsto realize the path like in ATM networks [21]

or MPLS [22]. Therefore, they require a signaling protocol to map a global path specification to locally assigned

labels at each node.

The proposed BANANAS framework allows source-based multipath routing using a “PathID”. The use of a

globally significant path hashallows multipath capabilitieswithout signaling(i.e. in a connectionless manner)

even in apartially upgradednetwork. The signaling requirement for source-routing is seen in protocols like ATM

networks, MPLS networks [22] and NIMROD [12] routing (a link-state approach to inter-domain routing). IPv4

[19] and IPv6 [20], [13] provide a variable-length loose-source-routing option that may be considered “data-plane”

signaling. But IPv4/v6 uses a uncompressed string of IP addresses in contrast to our efficient PathID encoding

schemes.

MPLS has gained popularity in large ISPs, many ISPs prefer using OSPF/IS-IS to enable multipath and traffic

engineering capabilities. This is due to the widespread deployment and operational experience available with

OSPF/IS-IS. BANANAS extends the OSPF/IS-IS to allow such capabilities even in partially upgraded networks.

The index-based scheme offers significant reduction of state complexity in comparison to MPLS label tables. The

computation complexity incurred in BANANAS can also be further optimized using incremental k-shortest path

algorithms similar to those suggested for OSPF’s Dijkstra algorithm [43], [44].

In LIRA [11], Stoica et al briefly propose a forwarding scheme which they suggest could replace MPLS. A

path is encoded as the XOR of router IDs along the path, and is processed along the path using a series of XOR

operations. The work in LIRA is a special case of the BANANAS framework. In particular, the authors do not

consider the larger architectural issues of partial upgrades, route-computation, state-computation tradeoffs, inter-

domain operation etc. The focus in their paper was also different: a framework for service differentiation.

VII. SUMMARY AND CONCLUDING REMARKS

The key contributions in this paper can be summarized as follows.

a. Identification of abstract multipath architectural concepts (global PathID semantics, efficient path hashing)

that are crucial to avoiding the need for signaling and allowing incremental network upgrades in connectionless

routing protocols.

b. Canonical multipath and explicit path realizations in the context of legacy routing protocols: OSPF, BGP-4.

c. Demonstration of significant architectural flexibility: alternative PathID encodings, alternative route-computation

algorithms (DFS-PU,ki-shortest paths), movement of complexity to edges, division of functions between data-

plane and control-plane, development of distributed validation algorithms etc.

d. Linux implementation results and integrated OSPF/BGP simulation results to validate various options

These building blocks can be used in two broad ways. First, in the context of traffic engineering within a partially

upgraded legacy network. An operator may want to emulate signaled capabilities in a connectionless network (e.g.
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see [42], [40]) or might desire fine-grained traffic management control hard to extract from parameter tweaking

(e.g. see [31], [30], [32], [33]). The building blocks may be mixed and matched in a limited number of ways. For

example, one could select a MD5+CRC32 encoding for BGP-4 (i.e. e-PathIDs) and a index-based encoding for

OSPF (i-PathID). Obviously, a common encoding must be chosen across ISPs for the explicit AS-PATH case.

Second, and perhaps more important, the BANANAS framework building blocks could form the long-term basis

for a best-effort end-to-end path multiplicity model. Through the independent partial upgrades of nodes in different

autonomous systems, end-systems can have a growingexpectationof multiple end-to-end paths. We strongly

believe that such a mereexpectationof end-to-end path multiplicity will trigger substantial application innovation.

VIII. A CKNOWLEDGEMENTS

The project was supported in part by DARPA Contract F30602-00-2-0537, NSF ITR Grant # 0313095 and grants

from Intel Corp. and AT&T Corp..

REFERENCES

[1] G. Huston, “Commentary on inter-domain routing in the internet,” RFC 3221, December 2001.

[2] N. Spring, R. Mahajan, D. Wetherall, “Measuring ISP Topologies with Rocketfuel,”SIGCOMM 2002, Pittsburg PA, August 2002.

[3] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, W. Willinger, Network Topology Generators – Structural vs. Degree-Based,

Proceedings of the ACM SIGCOMM, August 2002.

[4] Keshav, S.,An Engineering Approach to Computer Networking, Addison-Wesley, 1997.

[5] D. Eppstein, “Finding the k shortest Paths,” Proceedings of 35th IEEE Symposium on Foundations on Computer Science (FOCS), pp.

154-165, 1994.

[6] J. Chen, P.Druschel, D.Subramanian, “An Efficient Multipath Forwarding Method,” inINFOCOM’98, March, 1998.

[7] P. Narvaez, K. Y. Siu, “Efficient Algorithms for Multi-Path Link State Routing,”ISCOM’99, Kaohsiung, Taiwan, 1999.

[8] S. Vutukury and J.J. Garcia-Luna-Aceves, “ A Simple Approximation to Minimum-Delay Routing,”SIGCOMM ’99, September, 1999.

[9] D. O. Awduche, L. Berger, D. Gan, T. Li, G. Swallow, V. Srinivasan, “RSVP-TE: Extensions to RSVP for LSP Tunnels,”IETF RFC 3209,

December 2001.

[10] L. Andersson, P. Doolan, N. Feldman, A. Fredette, B. Thomas, “Label Distribution Protocol Specification,”IETF RFC 3036, January

2001.

[11] I. Stoica, H. Zhang, “LIRA: An Approach for Service Differentiation in the Internet,” inProceedings of NOSSDAV’98, Cambridge,

England, July 1998, pp. 115-128.

[12] I. Castineyra, N. Chiappa, M. Steenstrup, “The Nimrod Routing Architecture,” IETF RFC 1992, August 1996.

[13] M. O’Dell, “GSE – an alternate addressing architecture for IPv6,” Expired Internet Draft, 1997.

[14] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, R. Morris, “Resilient Overlay Networks,” inProceedings of 18th ACM Symposium on

Operating Systems Principles, Banff, Canada, October 2001.

[15] S. Savage et al, “Detour: A Case for Informed Internet Routing and Transport,”IEEE Micro, volume 19, no. 1, January 1999.

[16] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, V. Paxson, “Stream Control

Transmission Protocol,”IETF RFC 2960, October 2000.

[17] H-Y. Hsieh, R. Sivakumar, “A Transport Layer Approach for Achieving Aggregate Bandwidths on Multi-homed Mobile Hosts,”Proceed-

ings of ACM Mobicom 2002, Atlanta, GA, September 2002.

[18] S. Ratnasamy, S. Shenker and S. McCanne, “Towards an Evolvable Internet Architecture,” In Proceedings of SIGCOMM 2005, Philadel-

phia, PA 2005.

[19] DARPA INTERNET PROGRAM, “Internet Protocol,”IETF RFC 791, September 1981.

[20] S. Deering, R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification,”IETF RFC 1883, 1995.

December 20, 2005 DRAFT



28

[21] U. Black, “ATM, Volume I: Foundation for Broadband Networks,”,Prentice Hall, 2nd Edition, 1999.

[22] E. Rosen et al, “Multiprotocol Label Switching Architecture,”IETF RFC 3031, January 2001.

[23] L. Peterson, T. Anderson, D. Culler, T. Roscoe, “A Blueprint for Introducing Disruptive Technology into the Internet,” inProceedings of

the First ACM Workshop on Hot Topics in Networks (HotNets-I), Princeton, NJ, October 2002.

[24] W. Xu, S. S. Hemami, “Efficient Partitioning of Unequal Error Protected MPEG Video Streams for Multiple Channel Transmission,” in

IEEE International Conf. on Image Processing, Rochester, NY, Sept 2002.

[25] T. H. Cormen et. al. “Introduction to Algorithms,”The MIT Press, McGraw Hill Book Company,Second Edition, 2001.

[26] Rka Albert, Hawoong Jeong, Albert-Lszl Barabsi, “Diameter of the World-Wide Web,” inNATURE, VOL 401,9, SEPTEMBER 1999.

[27] J. Moy, “OSPF Version 2,”IETF RFC 2328, April 1998.

[28] J. W. Stewart, “BGP-4 Inter-Domain Routing in the Internet,”Addison Wesley, 1999.

[29] W. Norton, “Internet Service Providers and Peering,” White Paper, 2002.

[30] T. Griffin, G. Wilfong, ”Analysis of the MED oscillation problem in BGP,”Proceedings of ICNP 2002, Paris, France, November 2002.

[31] N. Feamster, J. Borkenhagen, and J. Rexford “Controlling the impact of BGP policy changes on IP traffic,”AT&T Research Technical

Report 011106-02, November 2001.

[32] S. Hares et al, “Smart Routing Technologies,”NANOG Panel, Toronto, June 2002. http://www.nanog.org/mtg-0206/smart.html

[33] R. Mahajan, D. Wetherall, T. Anderson, “Understanding BGP Misconfiguration,”In Proceedings of ACM SIGCOMM, 2002.

[34] T. Griffin, G. Wilfong, “On the Correctness of IBGP Configuration,”Proceedings of ACM SIGCOMM 2002, Pittsburg PA, 2002.

[35] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The Click modular router,”ACM Transactions on Computer Systems,

Vol. 18, No. 3, August 2000, pages 263-297.

[36] GNU Zebra Open-Source Routing Software, http://www.zebra.org/

[37] J. Lepreau, “The Utah Emulab Network Testbed,” http://www.emulab.net/

[38] Scalable Simulation Framework (SSF) Network Models, available fromhttp://www.ssfnet.org.

[39] Q. Ma and P. Steenkiste, “On Path Selection for Traffic with Bandwidth Guarantees,”Proceedings of IEEE International Conference on

Network Protocols (ICNP), Atlanta, GA, October 1997.

[40] D. H. Lorenz, A. Orda, D. Raz, Y. Shavitt, “How good can IP routing be?”, DIMACS Technical Report 2001-17, May 2001.

[41] D. Awduche, “MPLS and traffic engineering in IP networks,”IEEE Communications Magazine, Vol. 37, No. 12, pp. 42-47, 1999.

[42] A. Elwalid, C. Jin and I. Widjaja, “MATE: MPLS Adaptive Traffic Engineering,”In Proceedings of INFOCOM’01, April 2001.

[43] G. Ramalingam, and T. Reps, “An incremental algorithm for a generalization of the shortest-path problem,”Journal of Algorithms,Vol.21,

1996.

[44] P. Narvaez, K.Y. Siu and H.Y. Tzeng, “New Dynamic Algorithms for Shortest Path Tree Computation,”IEEE Transactions on Networking,

Vol. 8, No. 6, Dec. 2000.

[45] H. Tahilramani Kaur, S. Kalyanaraman, A. Weiss, S. Kanwar, A. Gandhi, “BANANAS: An Evolutionary Framework for Explicit and

Multipath Routing in the Internet,” Presented atSIGCOMM Future Directions on Network Architectures (FDNA) Workshop,Karlsruhe,

Germany, August 2003.

[46] A. Broder and M. Mitzenmacher, “Network Applications of Bloom Filters: A Survey,”Internet Mathematics, Vol. 1, No. 4, pp. 485-509.

December 20, 2005 DRAFT


