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Abstract—

Today the Internet offers a single path between end-systems even
though it intrinsically has a large multiplicity of paths. This
paper proposes an evolutionary architectural framework “BA-
NANAS” aimed at simplifying the introduction of multipath
routing in the Internet. The framework starts with the obser-
vation that a path can be encoded as a short hash (“PathID”)
of a sequence of globally known identifiers. The PathID there-
fore has global significance (unlike MPLS or ATM labels). This
property allows multipath capable nodes toautonomously com-
pute PathIDs in a partially upgraded network without requiring
an explicit signaling protocol for path setup. We show that this
framework allows the introduction of sophisticated explicit rout-
ing and multipath capabilities within the context of widely de-
ployed connectionless routing protocols (e.g. OSPF, IS-IS, BGP)
or overlay networks. We establish these characteristics through
the development of PathID encoding and route-computation
schemes. The BANANAS framework also allows considerable
flexibility in terms of architectural function placement and com-
plexity management. To illustrate this feature, we develop an ef-
ficient variable-length hashing scheme that moves control-plane
complexity and state overheads to network edges, allowing a very
simple interior node design. All the schemes have been evaluated
using both sizable SSFNet simulations and Linux/Zebra imple-
mentation evaluated on Utah’s Emulab testbed facility.

I. I NTRODUCTION

Today’s Internet routing protocols like OSPF and BGP were
designed to provide one primary end-to-end service: “best
effort reachability.” These protocols realize the “best-effort”
concept by offering a single-path to destination subnets. Our
work is motivated by the fact that the notion of “best-effort”
does not rule out the incorporation of end-to-end path multi-
plicity at the routing level. Indeed the Internet topology has
an intrinsic multiplicity of paths: hosts have multiple poten-
tial network interfaces and autonomous systems (both enter-
prises and ISPs of various sizes) are multi-homed [1], [2],
[3], [4]. It is interesting to ponder:why have we not signif-
icantly exploited this intrinsic path multiplicity in the Internet
? The answer to this question is clearlynot the lack of algo-
rithms and protocols. Indeed there have been several propos-
als for multipath route-computation [5], [6], [7], [8], Internet
signaling architectures [9], [10], [11], [12], [13], novel over-
lay routing methods [14], [15] and transport-level approaches

[16], [17]. The fact that these developments have not trig-
gered widespread deployment suggests that the core problem
is an architectural one1. The Internet lacks an evolutionary
framework that admits incremental deployment of path multi-
plicity, while providing sufficient flexibility in terms of archi-
tectural function-placement and management of complexity.
This paper proposes to fill that void with a framework called
“BANANAS” 2.

At the highest level, BANANAS proposes a simple extension
of Internet operation to admit and leverage end-to-end path-
multiplicity (PM). In this model, source-hosts initiate one or
more end-to-end “flows” and map flows to local network in-
terfaces. The “network” provides one or more end-to-end
paths through the independent upgrades of asubsetof network
nodes, possibly situated in multiple administrative domains.
A subset of these upgraded nodes (e.g. selected edge-nodes)
may also map “flows” to available “paths”3. Source-hosts
may arbitrarily map “packets” to “flows.” Observe that today’s
single-path model is a special case of this PM-model. The
PM model also allows a subset of source-hosts and routers to
be independently upgraded within the scope of usual admin-
istrative boundaries. Upgraded node may “see” only a sub-
set of available paths within appropriate administrative bound-
aries. This high-level model is abest-effort path multiplicity
model, clearly different from IPv4/IPv6 connectionless loose-
source-routing model [18], [19] and from end-to-end signaled
source-route models used in ATM networks (e.g. PNNI [20])
or MPLS networks [21].

BANANAS provides a set of concepts and building blocks to
realize this high-level PM model. A core abstract idea in BA-
NANAS is that a path can be efficiently encoded as a short
hash (called the “PathID”) of a sequence of globally-known
identifiers (e.g. router IDs, link interface IDs, link weights,
AS numbers etc.). This concept has some very important ad-
vantages. First, a hash-based data-plane encoding is more ef-
ficient than IPv4/IPv6’s loose-source-routing encoding [18],

�Another key problem involves incentives; but incentives depend upon at-
tributes of the underlying architectural framework.
�BANANAS is not an acronymn! It is adapted from the car racing comedy

movie titleHerbie goes Bananas
�Eg: Packets from TCP connections would be mapped single “path” to

avoid out-of-order packets
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[19] that is an uncompressed string of IP addresses. Second,
since the PathID is a function of globally-known quantities, it
inherits their global significance, i.e., it can be computed and
interpreted within the same scope of visibility. This “global”
scope may refer to a single routing domain if router/link IDs
are involved; or may refer to the universe of BGP-4 routers
if AS numbers are used. The global PathID semantics allows
any upgraded multipath capable (MPC) node to autonomously
compute the PathID without any changes in legacy single-path
capable nodes. It also removes the need for an explicit out-of-
band signaling protocol as a path-setup mechanism. Note that
one purpose of signaling in ATM and MPLS is to map global
IDs (global addresses, path specifications) tolocally assigned
IDs (labels). The global PathID semantics allow the mapping
of BANANAS in an incrementalmanner toconnectionlessIn-
ternet routing protocols (e.g. OSPF, BGP-4).

In addition, the BANANAS framework allows considerable
flexibility in terms of architectural function placement and
complexity management. These intangible aspects are cru-
cial for tailoring the proposed building blocks and establishing
the appropriate incentives for adoption by vendors and ISPs.
For example, the framework allows considerable flexibility in
the choice of multipath route-computation algorithms. It also
provides a distributed validation procedure to ensure the valid-
ity of computed PathIDs, i.e. to check if forwarding exists in
all downstream routers for the PathIDs. As another example
of architectural flexibility, we propose an efficient variable-
length hash realization of the abstract framework: this scheme
moves control-plane complexity and state overheads to net-
work edges, allowing a very simple interior node design. The
proposed scheme realizations are evaluated using integrated
OSPF/BGP simulations in sizable topologies and Linux/Zebra
implementation run on Utah’s Emulab emulation testbed facil-
ity.

The BANANAS framework is not just restricted to legacy
OSPF or BGP networks. It can be applied to exciting new
contexts such as overlay networks, peer-to-peer networks (e.g.
dynamically instantiated overlays using a peer-to-peer lookup
infrastructure to support video-conferencing) and last-mile
multi-hop fixed-wireless networks. We are currently initiat-
ing the deployment of the BANANAS framework on the Plan-
etLab infrastructure [22] as an public experimental wide-area
network overlay service. We are also building a medium-sized
multi-hop 802.11 community wireless network on which this
framework will be deployed. We believe that the mereex-
pectationof multiple end-to-end paths will trigger application
innovation in areas such as bandwidth aggregation [17], re-
silience [14], [15], [23] and security strategies (e.g. protecting
data integrity using multipaths).

The rest of the paper is organized as follows. Section II devel-
ops the abstract framework and concepts. Section III explores
the architectural flexibility in BANANAS by considering an

alternate index-based PathID encoding. Section IV summa-
rizes the intra-domain routing extensions for link-state proto-
cols, OSPF and IS-IS. Section V develops the inter-domain
ideas of BANANAS in the context of BGP-4. Section VI
presents both simulation and linux-based implementation re-
sults to illustrate the architectural features of BANANAS. Re-
lated work is surveyed in Section VII, followed by summary
and concluding remarks in Section VIII.

II. T HE BANANAS FRAMEWORK

A. PathID: Abstract Concept

Consider a network modeled as a graphG � �V�E� where
V is the set of vertices or nodes and E is the set of edges
or links in the network. LetN denote the number of nodes
in the network, i.e. the cardinality of the setV . Each
link �i� j� � E has an identifier associated with it, denoted
by li�j . Each nodei also has an identifier denoted byni.
Consider a pathPi�j from nodei to nodej, which passes
through nodesi� �� �� ����m � �� j. This path can be repre-
sented as a sequence of globally-known node and link iden-
tifiers �ni� li��� n�� l���� n�� ���� lm���j � nj �. This path sequence
can be compactly represented by ahashof its elements. A
path identifier (or, in short “PathID”) is defined as a hash of the
above sequence or any non-null subsequencederived from it.
Observe that the IP destination address (j), the uncompressed
IPv4/v6 loose-source-routes [18], [19], the XOR of router IDs
proposed in LIRA [11], or a hash of the subsequence of link
weights are all examples of valid PathIDs, obviously with dif-
fering characteristics. Therefore the particular subsequence
and PathID encoding function chosen is crucial in determin-
ing the utility of the PathID. These abstract concepts are illus-
trated in Figure 1.

            

Fig. 1. Path and PathID Concepts

A desirable hash is compact, easy to compute and has a low
collision probability (i.e. high uniqueness probability). This
demands ahash functionthat offers low collision probabilities.
A simple hash of the path sequence may be obtained by using
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the sum or XOR function (suggested in LIRA [11]). While
these are simple and fast, it may lead to non-unique PathIDs.
Our canonical hash function choice is a 128-bit MD5 hash
followed by a 32-bit CRC of the 128 bit MD5 hash (resulting
in a final 32-bit hash value). We use the notation (MD5 +
CRC32) hash to represent the above two-step hashing process.
This value is used in conjunction with the destination address
(j) available anyway in IP packets, leading to a two-tuple hash:
[j, PathID]4. The collision probability now depends only on
the number of paths to any given destination prefix, and the
nature of the path subsequence on which the MD5+CRC32
function is applied. Assuming a random bit-string and all the
��� outputs to be equally likely, the probability for collision
for k paths can be approximated byk

���
, which is adequately

small for our purposes.

For the underlyingpath sequence, we could use a sequence of
well-known link interface IDs, router IDs and link weights (in
OSPF or IS-IS) on the path. However, link-weights are usu-
ally non-unique, chosen from a narrow range and may be dy-
namic (to implement traffic engineering/ traffic-sensitive rout-
ing), whereas router IDs and link interface IDs are unique
identifiers. Our canonical choice is the subsequence of all
node IDs on the path (generalizes to a sequence of AS num-
bers in BGP-4). Section III develops an alternative hash func-
tion that is a concatenation of well-known link ID indices at
nodes.

B. Packet Forwarding

This section describes the forwarding table structure and for-
warding algorithm corresponding to our canonical choice of
hash function and path subsequence made in Section II-A.
Section III develops an alternative forwarding algorithm (for
OSPF/IS-IS) that does not require a large forwarding table at
interior nodes.

IP forwarding tables essentially contain two-tuple entries of
the form[destination prefix, outgoing interface]. A longest-
prefix-match lookup procedure is employed. At upgraded
routers we propose to use four-tuple entries of the form[des-
tination prefix, incoming PathID, outgoing interface, out-
going PathID]. The “incoming PathID” field represents the
hash of the explicit path from the current router to the desti-
nation prefix. The “outgoing PathID” field is the hash of the
corresponding path suffix from thenext upgraded routerto the
destination.

An upgraded router first matches the destination IP address
using the longest prefix match, followed by anexact match
of the PathID for that destination. If matched, the incoming
PathID in the packet is replaced by the outgoing PathID, and
the packet is sent to the outgoing interface. If an exact match is

�We will continue to refer to the second tuple value as the PathID for con-
venience.

not found (i.e. errant hash value in packet), then the hash value
in the packet is set to zero, and the packet is sent on the default
path (i.e. shortest path in OSPF/IS-IS or default policy route
in BGP-4). The hash value may also be set to zero if the next-
hop is the destination itself, or there are no upgraded routers
in the path specified by the incoming PathID. A non-upgraded
router simply ignores the PathID field and forwards the packet
on the shortest path. Observe that this procedure is ahybrid
of IP longest prefix match and label swapping used in MPLS
(or ATM) networks. A key difference is our use of globally
known PathIDs instead of locally meaningful MPLS labels.
The global PathIDs may be computed at each router with mi-
nor modifications to OSPF LSAs (See Section IV), avoiding
an explicit out-of-band signaling protocol.
            

Fig. 2. Multi-Path Forwarding with Partial Upgrades

Figure 2 shows a partially upgraded network. Nodes A, C and
D are multipath capable (MPC). Assume that node A is the
originating node for a packet destined to node F. The shortest
path from intermediate node B to node F is B-D-F and path A-
B-C-F is not available for forwarding because node B is a non-
upgraded node. However, paths such as A-B-D-C-F, A-D-E-F,
A-D-C-E-F etc are available. If the path A-B-D-E-F is chosen,
then the PathID of an incoming packet will be Hash(A-B-D-
E-F). A sets the PathID field to Hash(D-E-F), i.e. the hash of
the path suffix from the next MPC router to destination. Node
B forwards the packet on its shortest-path (i.e. to D). Node D
sets the PathID to zero, because there is no MPC router on the
path to F.

C. Path and PathID Computation

The BANANAS framework not only supports upgrades of
a subset of nodes, but also allows heterogeneity in mul-
tipath computation algorithms used at different upgraded
routers. The fundamental tradeoff in link-state protocols
(given our canonical choice of PathID hashing method) is
route-computation and space complexity incurred at upgraded
routers to avoid signaling.

In link-state protocols each router has a complete map of the
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network in the form of link-state database. We propose to first
annotate this “map” at an upgraded node with the knowledge
of other upgraded nodes. In Figure 2, upgraded node A will
know that nodes C and D are upgraded and vice versa. We
propose that upgraded multi-path capable (MPC) nodes set a
bit (a.k.a. MPC-bit) in their link state advertisements (LSAs)
to inform other upgraded nodes. Non-upgraded routers are
oblivious to this bit and ignore it.

Using the link-state database (“map”) and knowledge of up-
graded routers, every router can locally compute available net-
work paths. The simplest model that admits the largest num-
ber of paths is where each upgraded router can forward to any
neighbor. The paths can be computed as follows. Perform a
Floyd-Warshall [24] (all-pairs shortest path) to identify next-
hops to destinations at non-upgraded nodes. Perform a depth-
first-search (DFS) [24] that traverses every neighbor of up-
graded nodes and the shortest-path neighbor at non-upgraded
nodes. This results in a table containing next-hops for all paths
to a destination under the constraint of a known subset of MPC
nodes. We refer to this strategy as DFS under partial upgrade
constraints or DFS-PU for shorthand. This simple approach is
obviously expensive in both computational and storage terms,
especially as the number of MPC nodes grows.

The BANANAS framework allows an upgraded router to com-
pute and store only avalid subset of available pathsunder
partial constraints. Indeed, we can choose from a wide variety
of multipath computation algorithms available in the litera-
ture, for example k-shortest-paths, all k-hop paths, k-disjoint
paths (see [5] and references within), DFS with constrained
depth ([7] uses a depth-constraint of 1-hop) etc. The only con-
straint is that the algorithm should also compute the shortest
(default) path. These algorithms may be adapted for the MPC
constraint, i.e. there is a known subset of upgraded nodes.

However, there is a second, more subtle problem: if different
routers compute and store different sets of paths, it is possi-
ble that the path computed by one upgraded node may not be
supported by another upgraded or non-upgraded node that lies
downstream on this path. We term such paths as“invalid” ,
i.e., forwarding support for the path does not exist at some
downstream node.

To solve the above problem, we propose adistributed vali-
dation algorithmthat ensures validity of chosen paths. The
main idea behind the validation algorithm is that a path is valid
(i.e. forwarding for a path exists) if all its path suffixes are
valid. This suggests a mathematical induction style algorithm
approach. We know that all one-hop paths are always valid
because they represents a direct link. A two-hop path is valid
if its one-hop pathsuffixis valid.

The proposed algorithm (see Algorithm 1) has two phases. In
the first phase a node computes the paths using the chosen
algorithm. For example, let us assume that node i uses aki-
shortest-path algorithm. Theki paths computed to each desti-

nation are input into a map data structure [25] that is ordered
by hop-count. The node may start using these paths (in its for-
warding table) with the understanding that some of them may
be invalidated in phase 2. To prepare for phase 2, the node also
needs to know the path computation algorithm and parameters
used by other upgraded nodes. In our example, node i needs
to know thekj parameter associated with each upgraded node
j. With this knowledge, it can compute thekj paths for node
j and input it into the hop-count ordered map data-structure
(lines 2-5 in Algorithm 1) . At non-upgraded nodes,kj is 1
(lines 6-9 in Algorithm 1). Essentially we have computed all
potentiallyavailablepaths in phase 1.

Phase 2 operates similar to mathematical induction: All one-
hop paths in the map are declared as valid. For each 2-hop
path, the algorithm simply searches for the 1-hop path suffix
in the just-validated set. If a match is not found, the path is
invalid and is discarded. If the path (i.e. the corresponding
PathID entry) exists in the forwarding table, it is removed. In
this process, validating an m-hop path entry implies looking
up its (m-1)-hop path suffix in the just-validated set of (m-
1)-hop paths and finding a match (the variable temppair and
the lines 16,17 in Algorithm 1 are used to find a suffix match
in the RoutingMap structure). By mathematical induction,
when the entire map has been linearly traversed, the remaining
paths are valid.

The computational complexity of this approach can be es-
timated as follows. In a N-node network withu upgraded
routers, the complexity of first phase is givenuC�k� � �N �
u�C��� where,C�k� denotes the complexity of computing k-
shortest paths,C��� denotes the complexity of Dijkstra’s al-
gorithm. The total number of paths,T , computed at the end
of first phase is equal to�N � ����N � u� �

Pi�u

i�� ki�. The
complexity of the validation phase isO�T log�T �	h� where,	h
is the average hop count for the paths. The log(T) term arises
due to searching for a suffix in theMap (see Algorithm 1, line
18). The validation algorithm may be optimized or be elimi-
nated for special cases: e.g. if all nodes are upgraded and use
the same value of k.

In summary, Algorithm 1 is a general 2-phase validation pro-
cedure that can be applied to validate paths computed using
anydeterministic path computation algorithm at MPC routers
that also computes the default shortest path.

III. A RCHITECTURAL FLEXIBILITY IN BANANAS

A general concern with the canonical description so far is the
increase in complexity at upgraded nodes (both edge and core
nodes). An interesting question is whether we can use an alter-
native hashing method that leads to overall complexity reduc-
tion and a more attractive division of functions between the
edge and core, and between data-plane and control-plane. To
demonstrate the affirmative answer, we develop a newindex-
based encoding schemethat moves complexity to network
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Algorithm 1 Algorithm for validating paths at a router in a
partially upgraded network

1: LetNU andU denote the set of all non-upgraded and upgraded
nodes respectively

2: for all u � U do
3: newPaths� Compute paths usingu’s advertised algorithm
4: RoutingMap.append(newPaths)
5: end for
6: for all n � NU do
7: newPaths�Compute shortest path using Dijkstra’s algorithm
8: RoutingMap.append(newPaths)
9: end for

10: All 1-hop paths arevalid
11: Initialize suffixLength� 2
12: while suffixLength� maxHopsdo
13: for all path� RoutingMap do
14: if hop count ofpath� suffixLengththen
15: temp pair.hopcount� suffixLength-1;
16: temp pair.PathString� lastsuffixLengthnodes inpath;
17: if RoutingMap.find(temppair) == FALSEthen
18: deletepath
19: end if
20: end if
21: end for
22: suffixLength++;
23: end while

edges, and simplifies core node operations. The tradeoff is to
use a variable-length PathID encoding instead of the canonical
32-bit fixed length encoding. Also the scheme is only appli-
cable to link-state protocols, where the neighbor relationships
do not change often. Specifically, the index-based scheme is
not applicable to path-vector based protocols like BGP-4, or
mobile ad-hoc networks where neighbor relationships change
rapidly.

A. Index-based Scheme: PathID Encoding

3

2

4

1

IP Address Index
128.12.25.2
128.12.25.3
128.12.25.4
128.12.25.5

1
2
3
4

Fig. 3. Example of How Interfaces are Indexed

To motivate the scheme, consider an example. An upgraded
node orders its link interface IDs and represents each link by
its index in this ordering (see Figure 3). The new link ID (i.e.
index) can now be efficiently encoded. For example, a router
with 15 interfaces will need 4-bit link indices. In general, the
link or interface IDs of a node may belocally hashed using
a globally-known hash function. Since every node knows the

global hash function and it operates on globally-known link
IDs (e.g. IP addresses of interfaces) each node can indepen-
dently compute the hashes of any other node and hence avoid
signaling.

Node 6’s Interface Index
Node 10’s Interface Index
Node 9’s Interface Index

001 |  100 |   01 0b

Fig. 4. Explanation of the Index-Based Encoding

A path can now be specified as a concatenation of such link-
indices (see Figure 4). Moreover, this PathID encoding is
guaranteed to be unique (unlike the earlier MD5+CRC32 en-
coding which had a very small residual non-uniqueness prob-
ability). For a reasonable maximum bit-budget in the packet
header (e.g. 128 bits), and an average of 15 interfaces per
router, up to 32-hop paths can be encoded with this technique.
The limitation of 32-hops is not too restrictive (in [26], authors
find that the average number of hops to reach a destination in
the Internet is 19); it applies only within a single area or a do-
main. The PathID is re-initialized by the first upgraded router
after crossing any area or domain boundary. The concatena-
tion operation used here is an example of areversibleor per-
fect hash, i.e., the local hash (i.e. next-hop information) can
be extracted from the overall PathID without needing a per-
path table entry. The state needed at interior nodes is a small;
only a table mapping link indices to link-IDs is needed. For
example, at a router with 15 interfaces, a 15 entry index-table
is needed irrespective of network size. No other control-plane
computation or state-complexity is required at interior nodes.
Since the interior nodes can forward to any neighbor now, a
large number of network paths may be supported. Edge-nodes
can compute paths using heterogeneous algorithms, and use a
simpler validation algorithm (see Section III-C).

To summarize the impact in terms of function placement and
complexity management, the index-based scheme uses Per-
hop PathID processingin the data-plane instead of a table-
driven per-hopPathID swappingstrategy. Only edge routers
need to compute the multipaths and their PathIDs using a sim-
plified validation procedure.

B. Index-Based Scheme: Packet Forwarding

Upgraded interior routers maintain an index table that maps
the interface index to the link interface IP address. On receiv-
ing a packet, an upgraded interior router extracts the interface
index of the outgoing interface (next-hop) from the PathID
field in the packet header and uses the interface index table to
forward the packet on the appropriate link (see Figure 5).

Figure 6 shows a packet being sent from node S to node 7
along the path S-6-2-4-3-7, the PathID at various points and
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IPathID
0b10

1. Mask IPathID with7 

2. Shift IPathID by 3 bits to right 
3. Get the interface IP−address with index 3.
4. Forward packet

34

1

IPathID
0b10011

Fig. 5. Index-Based Forwarding At An Upgraded Router

various interface indices. Only nodes S, 6 and 4 are upgraded.
Node S has complete map of the network from the link-state
database and knows that node 6 has two interfaces and the
next-hop index at node 6 is 2, encoded using two-bits. Note
that the interface indexing starts from 1 because PathID of zero
still refers to the default (shortest) path. Likewise, the index at
node 4 for this path is 3, encoded using three bits. The PathID
of the packet sent from node S is
���
���
� = 14, indicat-
ing an index (�
� � � for node 6 and
��� � � for node 4).
Node 6 has an index table with 2 entries mapping the link in-
dices to the interface IP addresses. On receiving a packet with
PathID in the routing header, it extracts the last two bits and
then looks up its index table. The PathID is also right-shifted
by two bits in this operation so that the next upgraded router
can extract its index from the last bits of the PathID. Similarly,
node 4 will extract three bits from the PathID and right shifts
it by the same number before forwarding it. The remaining
PathID will now be zero. The non-upgraded routers merely
forward packets along the default shortest paths, oblivious of
the PathID field.

6 2

437

0b011 | 10
I−PathID:
0b011

I−PathID:

I−PathID :
0b011

5

1
2

3

4

21

I−PathID:
0b0

I−PathID:
0b0

S

Fig. 6. Forwarding With the Index-based PathID Encoding Scheme (Note:
“0b” indicates binary encoding)

C. Index-based Scheme: Path Computation

In this scheme “source” (or edge routers) can independently
use any multipath computation algorithm to find a subset of
available paths, similar to the discussion in Section II-C. The
only information needed is the knowledge of which routers
in the network are upgraded (available with the MPC-bit in
LSAs).

Path validation is only necessary to impose the constraint that
non-upgraded nodes can forward packets only on their de-
fault shortest paths. Algorithm 2 shows the pseudo-code of
a generic validation algorithm for edge routers. The idea is
very simple: validate only those paths where the next-hop
of the non-upgraded routers corresponds to the shortest path
next-hop in those nodes. Again the validation algorithm con-
sists of two phases. First phase deals with the computation
of shortest paths for non-upgraded nodes (lines 4-6 in Al-
gorithm 2) and computation of multiple paths using any de-
sired multipath computation algorithm. In second phase, the
paths are checked for passing through non-upgraded nodes.
If a path passes through a non-upgraded node, the next-hop
must be same as the next-hop in the pre-computed shortest
path. A path isinvalid if this condition is not met (lines 14-
16). In a N-node network withu upgraded routers, the com-
plexity of first phase is givenC�k� � �N � u�C��� where,
C�k� denotes the complexity of computingk paths (assum-
ing the upgraded router keepsk paths),C��� denotes the
complexity of Dijkstra’s single-shortest-path algorithm. The
complexity of the second phase of the validation algorithm is
O�k � �N � �� � �N � u��, wherek is the maximum num-
ber of paths for each destination to be stored in the forwarding
table. Note that the validation phase in the index-based path
encoding scheme is simpler compared to the validation phase
in Algorithm 1. This is because the upgraded routers can for-
ward packets to any of their interfaces. Recall that in Algo-
rithm 1, the validation phase also needed to ensure that the
downstreamupgradednodes of a path would indeed provide
forwarding for that path (i.e. have a forwarding table entry for
that path).

IV. BANANAS E XTENSIONSFOR INTRA-DOMAIN

PROTOCOLS

In this section, we summarize the extensions to OSPF/IS-IS
to support the BANANAS framework. A 32-bit PathID field
is required in the packet header, that can be implemented as a
new routing option, calledi-PathID5. The route computation
algorithm (Dijkstra’s algorithm) at upgraded routers must be
extended to compute multiple paths (e.g. DFS under partial
upgrade constraints (DFS-PU), k-shortest paths [5] etc), and a
validation algorithm (Algorithm 1). The upgraded nodes must

�From here on, we use the words PathID and i-PathID interchangeably in
the context of intra-domain routing
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Algorithm 2 Algorithm for validating paths in new Scheme
1: LetN denote the set of nodes in a network andNU denote the

set of non-upgraded nodes
2: Compute multiple paths using desired multipath computation al-

gorithm
3: LetP(dst) denote the set of paths to destinationdst
4: for n � NU do
5: Compute Dijkstra
6: end for
7: for dst � N do
8: Compute the desired paths to destinationdst using any of k-

shortest paths, k-disjoint paths, all paths upto k-hops etc.
9: for path � P�dst� do

10: for n � NU do
11: if path.find(n)==TRUEthen
12: // nextHopSP is the next-hop in the shortest path from

n to dst
13: // nextHop(path) denotes the next-hop ofn in thepath
14: if nextHop(path) � � nextHopSPthen
15: deletepath
16: end if
17: end if
18: end for
19: end for
20: end for

            

Fig. 7. Proposed Modifications to OSPF Link State Advertisements (LSAs)

compute the shortest path as the default path. Incoming pack-
ets with erroneous PathIDs are forwarded on the shortest paths
and the PathID field set to zero. The intra-domain forwarding
tables at upgraded routers would have tuples(destination pre-
fix, incoming PathID, outgoing interface (next-hop), outgoing
PathID). As indicated in Figure 7, one bit in the OSPF Link
State Advertisements (LSAs) [27] must be used to indicate
that the router is multipath capable (MPC). In the Linux/Zebra
based implementation as well as in the SSFNet simulations,
we have used the eighth bit in theLSA optionsfield of the
router-LSA as the MPC bit.

Also, if we allow different upgraded routers to compute paths
using different algorithms, we need some bits to indicate the

choice of route computation algorithm along with its parame-
ters (E.g. the value of k in k-shortest paths algorithm). In our
Zebra-based implementation, we have assumed that upgraded
nodes implement the k-shortest-path algorithm with different
values of k. Therefore, we leverage the currently unused 8-bits
after the router type field in the LSA to indicate the value of k.

For the alternative index-based path encoding scheme, the
concatenation of indices is done from the lower-order-bits to
the high-order-bits. Each router simply shifts the PathID to
the right by the number of bits needed to encode its inter-
face index. This allows upgradedinterior routers to extract
the next-hop index from the lowest-order-bits without know-
ing its position within the path, i.e. without the knowledge of
how many upgraded nodes are on the path. The upgraded inte-
rior routers only need to set the MPC bit in their LSA and need
not advertise the route computation algorithm. Each upgraded
router must maintain an ordered list of its own interfaces and
the corresponding index. For example, a router with 15 in-
terfaces needs 4 bits to store the index, i.e., the size of the
index table is just 540 bits (15 x (32 bits + 4 bits)). The up-
gradededgerouters can use any multipath algorithm to com-
pute multiple paths. However, they need to validate the paths
using the validation algorithm (Algorithm 2). Like today’s
non-upgraded routers, upgraded routers must always compute
the default shortest paths to all destinations. This is neces-
sary in order to forward packets with no PathID option, zero
or erroneous PathID.

A. Forwarding Across Multiple Areas

Large OSPF and IS-IS networks support hierarchical routing
with up to two levels of hierarchy. Our approach is to view
each area as a flat routing domain for the purpose of multipath
computation. Multiple paths are found locally within areas,
and crossing areas are view as crossing to a new multipath
routing domain, i.e. we re-use the i-PathID field. For example,
if a source needs to send a packet outside an area, it chooses
one of the multipaths to the area border router (ABR). Then,
the ABR may choose among the several multipaths within area
0 to other ABRs. The i-PathID field is re-initialized by the first
ABR at the area-boundary.

V. BANANAS EXTENSIONS TOBGP

A. Motivation and Goals

BGP-4 [28] isthe inter-domain routing protocol in the Inter-
net. BGP uses a path vector and policy routing approach to an-
nounce a subset of actively used paths to its neighbors. Load-
balancing and traffic engineering in BGP are becoming impor-
tant as operators attempt to deploy services like virtual private
networks (VPNs), and optimize on complex peering agree-
ments [1], [29], [30], [31]. Enterprises are also increasingly



8

multi-homed and are increasingly active in managing their in-
bound and outbound traffic [1], [32].

BGP-4 designers have provided a number of parametric
“hooks” [28] (e.g. MED, LOCALPREF, AS-PATH, com-
munity attributes etc) to “tweak” BGP to achieve such traf-
fic management goals. However, the parameter setting pro-
cess today is largely manual, error prone and is likely to get
harder as the protocol is overloaded to serve more functions
[33], [30], [34].

While BANANAS is not designed to address this vast multi-
tude of problems, it does provide a set of building blocks to
enable fine-grained BGP traffic engineering both within and
across domains. Fine-grained policy routing has been a moti-
vating factor for some overlay networks [14].

In particular, BANANAS introduces two new capabilities:
explicit exit forwarding andexplicit AS-PATHforwarding.
Explicit-exit forwardingrefers to the capability where traffic
aggregates can be explicitly mapped to AS exits (i.e. specific
border routers).Explicit AS-PATH forwardingis similar to the
explicit path routing introduced for OSPF/IS-IS, except that
we now refer to explicit AS-PATHs rather than a sequence of
contiguous routers and links. We examine these aspects fur-
ther in the following sections.

B. Explicit-Exit Forwarding

The idea of explicit-exit routing is quite simple. The over-
all objective is to define a traffic aggregate and then map it to
a chosen exit router (ASBR). Traffic aggregates may be cho-
sen at per-packet, per-flow or per-prefix granularities by the
upgraded EBGP or IBGP routers, i.e., ISPs can define fine-
grained bundles of outbound traffic. This explicit exit capa-
bility is superior to the LOCALPREF mechanism in BGP-4
[28]. LOCAL PREF is like a priority mechanism that maps
all traffic to a destination prefix to the same exit. The explicit
exit capability can map traffic for the same destination pre-
fix to multiple exits (based upon the autonomous decisions at
upgraded IBGP nodes).

The explicit exit mechanism works as follows. An up-
graded IBGP router chooses an arbitrary exit AS border router
(ASBR) for a given traffic aggregate (e.g. a flow or all traffic
to a destination prefix). It then “pushes” the destination ad-
dress into a“address stack”field, and replaces the destination
address with the exit ASBR address (adjusting the checksum
appropriately). Now, intermediate routers forward the packet
to the exit-ASBR to which it is addressed. The exit-ASBR
then simply “pops” the address from the address-stack field
back into the destination address field (and adjusts the check-
sum) before forwarding it along to the next AS.

The upgraded IBGP node would hence have table entries
of the form: [Dest-Prefix Exit-ASBR Next-Hop-to-Exit-
ASBR] and[Dest-Prefix Default-Next-Hop]. The second tu-

ple is the regular IBGP-defined default policy route for the
destination prefix: this forwarding entry is used for all traffic
for which this IBGP router does not decide the exit router. The
first 3-tuple is applied only to the traffic aggregates for which
this IBGP router chooses an explicit exit. This kind of opera-
tion is important to avoid conflicting exit routing decisions by
upgraded IBGP routers.

Observe that onlya subsetof IBGP routers and exit ASBRs
(eBGP) routers need to be upgraded. All BGP routers syn-
chronize on their default policy routes as usual [28]. In addi-
tion, the upgraded exit ASBRs should also synchronize with
the upgraded IBGP routers so that they know which exits are
available for any given prefix. This additional synchronization
between upgraded nodes can be accomplished as a simple ex-
tension to current full-mesh IBGP operation.

The explicit-exit mechanisms proposed are similar in spirit to
the label-stacking (multi-level tunneling) ideas in MPLS[21].
A key difference is that BANANAS proposes only a single-
level address stack, whereas MPLS can have multiple levels
in its label-stack. Also the “labels” used in BANANAS are
global identifiers (IP addresses) whereas MPLS uses locally
meaningful labels. Another interpretation of the explicit exit
functionality is that it is a simple and efficient connectionless
tunneling mechanism that does not require manual configura-
tion. Also, from an abstract framework perspective, the ex-
plicit exit routing is a special case of explicit path routing in-
troduced in earlier sections. The PathID “hash” in this case is
simply the exit ASBR IP address. This address stacking pro-
cedure operates in the fast processing path at all routers (both
upgraded and non-upgraded), unlike IP loose-source-routing
that defaults to the slow-processing path because it is an IP
option.

C. Explicit AS-PATH Forwarding

The goal of explicit AS-PATH forwarding is to provide a dis-
tributed mechanism to send packets along an arbitrary, but val-
idated AS-PATH. The idea is similar to the explicit path rout-
ing introduced for OSPF/IS-IS, except that we now refer to ex-
plicit AS-PATHs rather than a sequence of contiguous routers
and links. In particular, we propose a separate hash field called
external-PathID or e-PathID in packets for this function. The
e-PathID is the hash of the desired AS-PATH, i.e., hash of the
sequence of AS numbers.

The e-PathID hash is processed as follows. First, in an up-
graded AS, we assume that at least the entry and exit AS bor-
der routers (ASBRs) are upgraded to support the explicit AS-
PATH function. Assume that a border router (called the entry
ASBR) receives a packet with a non-zero, valid e-PathID. The
incoming e-PathID is used by the entry ASBR to determine
an appropriate exit ASBR. The packet is then explicitly sent
to this exit ASBR using the mechanisms described in the ear-
lier section, i.e. address-stacking. Indeed, once the address is
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stacked, the i-PathID may also be explicitly chosen to indicate
a specific route to that exit ASBR. We require however that
the e-PathID isnot swapped at the entry ASBR. The outgo-
ing e-PathID (for the AS-PATH suffix) replaces the incoming
e-PathID only at theexit ASBR. This convention is required
because the autonomous system is an atomic entity (similar
to a node) as far as the e-PathID is concerned. However, the
AS physically breaks up into an entry- and exit-ASBR (similar
to input and output interfaces of a node). If we imagine that
the abstract PathID swapping happens at the output interface,
that corresponds to our convention of swapping the e-PathID
at the exit ASBR. Observe, that we have required only EBGP
routers to be aware of the multi-AS-PATH feature, and do not
require upgrades in selected IBGP routers (unlike the explicit
exit case discussed earlier).

            

Fig. 8. Topology for illustrating explicit AS-PATH forwarding

To illustrate the explicit AS-PATH feature, we consider the
AS-graph topology in Figure 8, and assume that we would like
to send traffic from AS1 to AS5, i.e. to the IP prefix 0.0.0.48
along AS-PATH AS1-AS2-AS3-AS5, represented as (1 2 3 5).
The AS-PATHs available are AS1-AS2-AS5, AS1-AS2-AS4-
AS3-AS5, AS1-AS2-AS3-AS5. The explicit path (1 2 3 5) is
chosen at router 1; the suffix AS-PATH is (2 3 5) whose hash
is placed in the e-PathID field in the outgoing IP packet. The
next-hop is an entry router in AS2, and the packet is forwarded
to the exit router from AS2 to reach AS3. Observe that since
this AS-PATH (at Router 1 in AS 2) is learned from IBGP, the
e-PathID is left unchanged at the entry ASBR (i.e., at Router
1 in AS2). The e-PathID will be swapped only at the exit
ASBR (i.e. Router 2 in AS2). At this exit router, the exact
match of the prefix and e-PathID results in a next hop in AS3.
A similar sequence of events occurs in AS3 involving entry
ASBR (router 1) and exit ASBR (router 3) before the packet
is forwarded to AS5. The outgoing e-PathID from AS3 will
be set to 0 because AS5 is the destination AS.

In spite of these apparent reductions in upgrade complexity,

BGP’s path-vector nature poses a more important problem.
Specifically, a new AS-PATH is unknown to an upstream AS
unless the intervening AS explicitly advertises it (after internal
synchronization). In other words, even if ISPs were interested
in AS-PATH multiplicity, increased control traffic is necessary
to advertise the existence of multiple AS-PATHs to neighbor
AS’es. Recall that such excess control traffic was not required
in link-state algorithms (we merely piggybacked LSAs with
minimal information). On the other hand, the path-vector na-
ture of BGP-4 also implies that no path computation is nec-
essary once the multiple AS-PATHs have been received and
filtered for acceptance.

We recognize that this increased control traffic requirement
poses a significant disincentive for ISPs against adopting
multi-AS-PATH capabilities en masse. Given the scalabil-
ity and instability issues with adding control traffic, we ex-
pect that ISPs may choose to advertise only a small set of
multiple AS-PATHs to their neighbor AS’es. For example,
some AS’es may collaborate to allow forwarding along multi-
ple paths to certain destination prefixes and advertise this as a
non-transitive attribute to certain AS’es only.

D. BANANAS Extensions for Inter-Domain Routing (BGP-4)

In summary, we propose two capabilities in the context of
inter-domain routing:explicit exit routing and explicit AS-
PATH routing. For the former, we propose a 32-bit “address
stack” field in the routing header into which the destination
IP address will be“pushed”. The destination field in the IP
header is overwritten with the exit ASBR’s IP address. The
Exit ASBR will simply “pop” the destination address back
from the ”address stack” to the destination IP address. This
address stacking procedure (similar to MPLS) operates in the
fast processing path unlike the IP loose source routing option.
Moreover, it allows flexibility for only a subset of BGP routers
to be upgraded to support such explicit exit choice.

For explicit AS-PATH forwarding we propose a new 32-bit
field in the packet routing header called the external PathID
or e-PathID. This field stores a hash of the sequence of ASNs
along the desired explicit AS-PATH. ISPs may choose to only
advertise a small set of multiple AS-PATHs to their selected
neighbor AS’es. In a multi AS-PATH capable AS, only the
entry ASBRs and exit ASBRs (i.e. only the EBGP routers)
need to be upgraded and synchronized on the available mul-
tiple AS paths. The incoming ePathID hash is swapped with
the outgoing AS-PATH suffix hash only at the exit AS border
router. The forwarding from the entry ASBR to the exit ASBR
uses the explicit exit mechanisms described above. Multiple
paths between the entry and exit ASBRs are possible using the
i-PathID mechanism described earlier for intra-domain rout-
ing.
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VI. I MPLEMENTATION AND SIMULATION RESULTS

In this section, we illustrate the working of the proposed
framework. We have implemented the BANANAS frame-
work schemes in the Linux kernel: we use MIT’s Click Mod-
ular Router package [35] (data-plane) and GNU Zebra routing
sofware version 0.92a [36] (control-plane). These implemen-
tations are tested on Utah’s Emulab testbed [37] to emulate
sizable topologies running real implementation code. In par-
ticular, we test three cases: a) when an upgraded router keeps
all available paths (as computed by the DFS-PU strategy), b)
when upgraded nodes compute k-shortest paths, with hetero-
geneous values of k at different nodes, and c) the index-based
scheme to illustrate architectural flexibility.

We use SSFNet [38] for larger integrated BGP/OSPF simula-
tions. These SSFNet simulations illustrate the framework in
larger network topologies that integrate both OSPF and BGP
BANANAS functionalities. Note that in this section, we have
intentionally preferred simplicity in terms of topology/test-
case choices. We have performed a larger set of SSFNet sim-
ulations and Emulab runs in more complex scenarios, all of
which support our assertions. These results will be reported in
a detailed technical report.

A. Linux Implementation Results

Figure 9 shows the topology of a simple validation experi-
ment conducted on Utah’s Emulab [37] testbed with the Linux
Zebra version 0.92a of OSPF (i.e. control-plane) upgraded
with our BANANAS building blocks. The forwarding plane
was implemented in Linux using MIT’s Click Modular Router
package [35]. Note that this is a partially upgraded network:
only nodes 1 and 2 (the dark colored nodes) are upgraded in
this configuration. Figure 9 also indicates the IP addresses of
various router interfaces and the link weights. The router ID
is statically defined to be the smallest interface IP address.

All IP−addresses denoted by a.b are actually 192.168.a.b
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Fig. 9. Experimental Topology on Utah Emulab using Linux Zebra/Click
Platforms (Note: only dark colored nodes are multi-path capable)

1) All Paths with Partial Upgrades (DFS-PU Algorithm):
Table I illustrates a partial forwarding table computed at node
1 (IP address 192.168.1.1) for destination 3 (192.186.3.3).
Note that the path string shown in Table I is only for the
sake of illustration and is not stored in the actual routing ta-
ble. The PathIDs are the (MD5 + CRC-32) hashes of the
router IDs (i.e. IP addresses of nodes) on the path. For
example, the PathID 2084819824 corresponds to a hash of
the set of router IDsf192.168.1.1, 192.168.1.2, 192.168.6.6,
192.168.39.9, 192.168.3.3g. The outgoing path ID is the hash
of the suffix path formed after omitting 192.168.1.1. If the
path goes through other nodes which are not upgraded (e.g. 1-
4-3), the outgoing path ID is the hash of the suffix path starting
from the next upgraded router on the path. In the case of the
path 1-4-3, both nodes 4 and 3 are not upgraded, so the suffix
path ID is zero.

Outgoing I/f Path Incoming PathID Outgoing PathID
192.168.1.1 1-2-6-9-3 2084819824 664104731
192.168.3.1 1-3 599270449 0
192.168.4.1 1-4-3 4183108560 0
192.168.5.1 1-5-4-3 1365378675 0

TABLE I
PARTIAL ROUTING TABLE AT 192.168.1.1FOR DESTINATION

192.186.3.3

2) k-Shortest Paths with Partial Upgrades:In this section we
illustrate, using the Linux implementation, the case when the
upgraded routers compute upto k-shortest paths, and different
upgraded routers using different values ofk.

Consider the 10-node topology shown in Figure 9. This
topology was setup in the Emulab network. We assume that
the routers 192.168.1.1 and 192.168.1.2 are upgraded with
k equal to 3 and 2 respectively. The results are presented
to verify the correctness of the “validation phase” (Algo-
rithm 2). Tables II, III show respectively part of the rout-
ing tables at 198.168.1.1 for destinations 198.168.6.6 and
198.168.8.8 respectively. Tables IV, V show the correspond-
ing entries at router 198.168.2.2. For destination 198.168.6.6
the router 198.168.1.1 finds 3 paths, all of which are valid as
two paths have next-hop 198.168.2.2 and router 198.168.2.2
keeps 2 shortest paths. For destination 198.168.8.8, the router
198.168.1.1 computes 3-paths, 1-2-8, 1-2-6-7-8, 1-2-7-8. The
path 1-2-7-8 is invalidated in the “validation phase” as router
198.168.2.2 only keeps 2 paths (2-8, 2-6-7-8). Note that the
Pathstring is shown in Tables II-V for the purpose of expla-
nation.

B. Evaluation of Index-based Path Encoding Scheme

The alternative index-based PathID encoding scheme was im-
plemented in the Linux kernel (MIT’s Click Router platform)
and simulated in SSFNet. We present our simulation results in
this section on a sizeable topology that corresponds to the old
MCI topology of 1995 [39].
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Path Incoming PathID Next-hop Outgoing PathID
1-2-6 1989316858 192.168.1.2 3491782861
1-2-7-6 656924081 192.168.1.2 3645081405
1-3-9-6 534784006 192.168.3.3 0

TABLE II
PART OF ROUTING TABLE AT 192.168.1.1FOR DESTINATION

192.186.6.6

Path Incoming PathID Next-hop Outgoing PathID
1-2-8 3654096761 192.168.1.2 1973392862
1-2-7-6-8 1777786090 192.168.1.2 2123671348

TABLE III
PART OF ROUTING TABLE AT 192.168.1.1FOR DESTINATION

192.186.8.8

In this configuration, only nodes 4, 6, 7, 9, 10 are upgraded.
The source node in this simulation is node 6. Observe that
node 6 is the only node that computes the k-shortest-paths (k
= 5) for all destinations and runs the validation algorithm (Al-
gorithm 2). All other upgraded nodes merely keep an index
table as described in Section III-A). Table VI shows a part of
the forwarding table at node 6 (only those paths for destination
node 7), and the i-PathIDs using index-based encodings. The
node 6 may choose any one of these paths for a packet to node
7. We have verified that the progression of i-PathIDs through
the network follows the description given in Section III-B.

C. Integrated OSPF/BGP SSFNet Simulation

In this section we use SSFNet simulation results to illustrate
the integrated operation of proposed framework in the Inter-
net. This example demonstrates both the intra-domain (OSPF)
and inter-domain (BGP-4) operation of the framework with
explicit AS-PATH as well as explicit exit forwarding.

Figure 11 shows the topology used for the results presented in
this section. The topology has eight (8) autonomous systems
(AS’es). Four of these AS’es, namely AS1, AS2, AS5 and

Path Incoming PathID Next-hop Outgoing PathID
2-6 1973392862 0.0.0.0 1973392862
2-7-6 2123671348 192.168.7.7 2123671348

TABLE IV
PART OF ROUTING TABLE AT 192.168.2.2FOR DESTINATION

192.186.6.6

Path Incoming PathID Next-hop Outgoing PathID
2-8 3491782861 0.0.0.0 0
2-6-7-8 3645081405 192.168.6.6 0

TABLE V
PART OF ROUTING TABLE AT 192.168.2.2FOR DESTINATION

192.186.8.8
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Fig. 10. Old MCI Topology: Used for Testing the Index-Based Scheme
(Only Nodes 4, 6, 7, 9, 10 are upgraded)

Path Next-Hop i-PathID
6-2-4-3-7 2 0b01110

6-10-9-17-16-11-7 10 0b00110001
6-10-14-11-7 10 0b00101
6-10-9-4-3-7 10 0b01110110001

TABLE VI
PATHS AT NODE 6 FOR DESTINATION NODE7 (NOTE: 0B INDICATES

BINARY ENCODING)

Forwarding Table of AS1 at Router 1
Dest NextHop In e-PathID AS-PATH Out e-PathID Exit ASBR

0.57/28 2.93/32 2025862315 2-4-8 3535826417 0.91/32
0.57/28 2.93/32 4160716901 2-5-6-7-8 1248156781 0.91/32
0.57/28 2.93/32 669121903 2-5-6-4-8 2630971039 0.91/32

TABLE VII
INTEGRATEDOSPF/BGP SIMULATION : FORWARDING TABLE OF THE

BORDERROUTER IN AS1 (NOTE: 0.57/28REFERS TOIP ADDRESS

0.0.0.57/28ETC)

Forwarding Table of AS2 at Router 5
Dest NextHop In e-PathID ASPATH Out e-PathID Exit ASBR

0.57/28 2.97/32 3535826417 2-4-8 3535826417 2.107/32
0.57/28 2.113/32 3535826417 2-4-8 3535826417 2.107/32
0.57/28 2.97/32 1248156781 2-5-6-7-8 1248156781 2.24/32
0.57/28 2.113/32 1248156781 2-5-6-7-8 1248156781 2.24/32

TABLE VIII
INTEGRATED OSPF/BGP SIMULATION : FORWARDING TABLE ROUTER 5

IN AS2 (SEE FIGURE 12)

AS6, have been upgraded to support explicit AS-PATH for-
warding. Even within these upgraded autonomous systems,
only a subsetof routers are upgraded to support the explicit
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Fig. 11. Topology used for integrated SSFNet simulation
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Destination Path i-PathID
0.0.2.107/32 5-4-3-2 17
0.0.2.107/32 5-1-4-3-2 18
0.0.2.107/32 5-4-11-7-2 1669
0.0.2.107/32 5-4-8-7-2 201
0.0.2.24/32 5-4-11-10-15-14 69
0.0.2.24/32 5-4-8-7-6-14 169
0.0.2.24/32 5-4-8-16-15-14 105
0.0.2.24/32 5-1-4-8-16-15-14 106
0.0.2.24/32 5-4-11-9-10-15-14 101
0.0.2.24/32 5-1-4-11-9-10-15-14 102

TABLE IX
FORWARDING TABLE AT ROUTER 5 IN AS2 (FIGURE 12): K SHORTEST

PATHS (K = 7)

AS-PATH and explicit exit routing as described in Sections V-
C and V-B. The upgraded routers have been marked with a
“U” in Figure 11. A blow-up of the internal topology of AS2
is shown in Figure 12; the upgraded routers are again indicated
with “U”

Consider forwarding of a packet from AS1 to AS8 (see Fig-
ure 11). Given the constraints that only a partial set of AS’es
are upgraded, the following AS-PATHs may be used from AS1
to reach AS8: AS2-AS4-AS8, AS2-AS5-AS6-AS7-AS8 and
AS2-AS5-AS6-AS4-AS8. These AS-PATHs and their corre-
sponding e-PathIDs are indicated in Table VII, which is a part
of the routing table at the AS border router in AS1. Note
that the AS-PATH AS2-AS4-AS6-AS7-AS8 is not available
because AS4 is not upgraded, and uses a default AS-PATH
of AS4-AS8. Also in this simulation, we assumed that the
upgraded routers do not do any further filtering, i.e., they re-
advertise all their available AS-PATHs to their neighboring
AS’es.

In our example simulation, the border router of AS1 chooses
the AS-PATH AS2-AS4-AS8, which corresponds to the e-
PathID of 3535826417 (see the first row of Table VII). When
the packet arrives at router 5 of AS2 (the entry ASBR), its
header looks like Figure 13(A). This entry ASBR (i.e. router
5) of AS2 examines the incoming e-PathID to find the exit
ASBR to be node 2 with IP address 0.0.2.107 (see first row
of Table VIII). Note that itdoes notswap the e-PathID field,
because this will be done at the exit ASBR. To emphasize this
point, observe that the outgoing e-PathID column in Table VIII
is the same as the incoming e-PathID for the destination prefix
0.0.0.57/28.

The entry ASBR (router 5) now “pushes” the destination IP
address (i.e. 0.0.0.57) into the address stack field and re-
places it with the exit ASBR IP address. The entry ASBR
also chooses a path within the AS to the exit ASBR. Table IX
shows the intra-domain paths available to reach exit ASBR
(router 2). In this simulation, we have integrated the index-
based PathID encoding scheme as well as the k-shortest path
route computation scheme (k=7) with the OSPF protocol run-
ning in AS2. In particular, the path 5-4-11-7-2 within the AS
is chosen that corresponds to a i-PathID of 1669 (see the third
row of Table IX). The header fields of the packet at this stage
are shown in Figure 13(B).

The packet proceeds on the explicit intra-domain path (as de-
scribed in earlier sections) to reach the exit router 2 with
an i-PathID value of 0. At this router, the destination ad-
dress (0.0.0.57) is “popped” back from the address stack.
The e-PathID is also replaced with the outgoing e-PathID of
1895667324 (see Figure 13(C)). Now the packet is sent to
AS4, which is not upgraded, but sends the packet on its default
policy AS-PATH, i.e., directly to AS8. In summary, we have
shown how a distributed set of upgraded and non-upgraded
nodes, with explicit paths independently selected within up-
graded AS’es can honor an explicit AS-PATH request of the
source AS.
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Dest IP Add EPathID IPathID

1248156781 1669

At the entry router for AS2
ie router #5

At router 5@AS2 after address
is pushed on stack

At router 2@AS2 which is the exit   
 router after address is popped from
the stack

Dest IP Add EPathID IPathID

1248156781

Dest IP Add EPathID IPathID

01895667324 −

Add on Stack

Add on Stack

Add on Stack

A

B

C

0.0.0.57

0.0.0.57

0.0.0.57

0.0.2.107

Fig. 13. Diagram Showing How e-PathID, i-PathID and Destination Address
Change in the Integrated OSPF/BGP Simulation

VII. R ELATED WORK

Most related work for multipath routing have been done in
the context of intra-domain protocols. OSPF, the most com-
mon intra-domain routing protocol used in the Internet today
is based on single shortest path with equal splitting between
next-hops of equal cost paths. Lorenz et al [40] show that
OSPF routing performance could be improved byO�N� if
traffic-matrix aware explicit source-based multipath routing is
used (e.g. MPLS-based [42], [43]).

Protocol extensions to support multipath routing (both in RIP
and OSPF) have been studied by Narvaez et al [7], Chen et al
[6] and Vutukury et al [8]. In [7], authors propose to find loop-
free multipaths only by concatenating the shortest paths of
their neighbors with their link to the neighbors. This approach
essentially uses a depth first search with a depth of 1, whereas
we allow arbitrary depth in our DFS-PU algorithm. Chen et
al and Vutukury et al [6], [8] propose more general multipath
computations, but their schemes require the co-operation and
upgrade ofall the routers in the network. Chen et al present a
general concept of suffix-matched path identifier to allow mul-
tipath computation using distributed computation, but they use
local labelsto realize the path like in ATM networks [20] or
MPLS [21]. Therefore, they require a signaling protocol to
map a global path specification to locally assigned labels at
each node.

The proposed BANANAS framework allows source-based
multipath routing using a “PathID”. The use of aglobally sig-
nificant path hashallows multipath capabilitieswithout sig-
naling (i.e. in a connectionless manner) even in apartially
upgradednetwork. The signaling requirement for source-
routing is seen in protocols like ATM networks, MPLS net-
works [21] and NIMROD [12] routing (a link-state approach
to inter-domain routing). IPv4 [18] and IPv6 [19], [13] pro-
vide a variable-length loose-source-routing option that may
be considered “data-plane” signaling. But IPv4/v6 uses a un-
compressed string of IP addresses in contrast to our efficient
PathID encoding schemes.

Even though MPLS has gained popularity in some large ISPs,
a significant fraction of ISPs [44] favor using OSPF/IS-IS to
enable multipath and traffic engineering capabilities. This
is due to the widespread deployment and operational expe-
rience available with OSPF/IS-IS. Our approach extends the
OSPF/IS-IS to allow such capabilities even in partially up-
graded networks. Our index-based scheme offers significant
reduction of state complexity in comparison to MPLS label
tables. Our computations can also be further optimized using
incremental k-shortest path algorithms similar to those sug-
gested for OSPF’s Dijkstra algorithm [45], [46].

In LIRA [11], Stoica et al briefly propose a forwarding scheme
which they suggest could replace MPLS. A path is encoded as
the XOR of router IDs along the path, and is processed along
the path using a series of XOR operations. The work in LIRA
is a special case of the BANANAS framework. In particular,
the authors do not consider the larger architectural issues of
partial upgrades, route-computation, state-computation trade-
offs, inter-domain operation etc. The focus in their paper was
also different: a framework for service differentiation.

VIII. S UMMARY AND CONCLUDING REMARKS

The key contributions in this paper are:

� Identification of abstract multipath architectural concepts
(global PathID semantics, efficient path hashing) that are
crucial to avoiding the need for signaling and allowing
incremental network upgrades in connectionless routing
protocols.

� Canonical multipath and explicit path realizations in the
context of legacy routing protocols: OSPF, BGP-4.

� Demonstration of significant architectural flexibil-
ity: alternative PathID encodings, alternative route-
computation algorithms (DFS-PU,ki-shortest paths),
movement of complexity to edges, division of functions
between data-plane and control-plane, development of
distributed validation algorithms etc.

� Linux implementation results and integrated OSPF/BGP
simulation results to validate various options

These building blocks can be used in two broad ways. First,
they could be used in the context of traffic engineering within
a partially upgraded legacy network. An operator may want
to emulate signaled capabilities in a connectionless network
(e.g. see [43], [40], [41]) or might desire fine-grained traffic
management control hard to extract from parameter tweaking
(e.g. see [31], [30], [32], [33]). The building blocks may be
mixed and matched in a limited number of ways. For exam-
ple, one could select a MD5+CRC32 encoding for BGP-4 (i.e.
e-PathIDs) and a index-based encoding for OSPF (i-PathID).
Obviously, a common encoding must be chosen across ISPs
for the explicit AS-PATH case.
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Second, and perhaps more important, the BANANAS frame-
work building blocks could form the long-term basis for a
best-effort end-to-end path multiplicity model. Through the
independent partial upgrades of nodes in different autonomous
systems, end-systems can have a growingexpectationof mul-
tiple end-to-end paths. We strongly believe that such a mere
expectationof end-to-end path multiplicity will trigger sub-
stantial application innovation. To test this hypothesis, we
plan to deploy the BANANAS framework on the PlanetLab
infrastructure [22] as a public experimental wide-area network
overlay service by Fall 2003.
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