
1

An Implementation Framework for

Trajectory-Based Forwarding in Ad-Hoc Networks
Murat Yuksel, Ritesh Pradhan, Shivkumar Kalyanaraman

Rensselaer Polytechnic Institute, Troy, NY
yuksem@ecse.rpi.edu, pradhr@ecse.rpi.edu, shivkuma@ecse.rpi.edu

Abstract

Routing in ad-hoc networks is a complicated task because of many reasons. The nodes are low-memory, low-powered, and they

cannot maintain routing tables large enough for well-known routing protocols. Because of that, greedy forwarding at intermediate

nodes is desirable in ad-hoc networks. Also, for traffic engineering, multipath capabilities are important. So, it is desirable to define

routes at the source like in Source Based Routing (SBR) while performing greedy forwarding at intermediate nodes.

We investigate Trajectory-Based Routing (TBR) which was proposed as a middle-ground between SBR and greedy forwarding

techniques. In TBR, source encodes trajectory to be traversed and embeds it into each packet. Upon the arrival of each packet,

intermediate nodes decode the trajectory and employ greedy forwarding techniques such that the packet follows its trajectory as

much as possible.

In this paper, we address various issues regarding implementation of TBR. We also provide techniques to efficiently forward

packets along a trajectory defined as a parametric curve. We use the well-known Bezier parametric curve for encoding trajectories

into packets at source. Based on this trajectory encoding, we develop and evaluate various greedy forwarding algorithms.

Keywords

Ad-hoc Networks, Trajectory-Based Routing, Greedy Forwarding

I. INTRODUCTION

Ad-hoc networks have their own characteristics which lead to significant amount of research in the area. Particularly,

routing in ad-hoc networks is a complicated task because of many reasons. For example, nodes are generally low in

memory and power, and hence they cannot maintain routing tables large enough for well-known link-state or distance-

vector routing protocols. This is known as stateless routing [1], since nodes do not maintain routing tables representing

network state. Moreover, nodes are mobile which makes it harder to converge for typical proactive routing protocols.

So, because of its stateless nature, greedy forwarding (e.g. GPSR [1] and Cartesian Routing (CR) [2]) of packets at

intermediate nodes is desirable in ad-hoc networks. Also, for traffic engineering, multipath capabilities (e.g. Source

Based Routing (SBR) [3]) are desirable. However, it is not possible to employ well-known multipath routing techniques

(e.g. MPLS [4], or others [5]) in mobile networks. Niculescu and Nath [6], [7] proposed Trajectory-Based Routing

(TBR) as a middle-ground between SBR and greedy forwarding techniques. In TBR, source encodes trajectory to

traverse and embeds it into each packet. Upon the arrival of each packet, intermediate nodes employ greedy forwarding

techniques such that the packet follows its trajectory as much as possible. This way, routing becomes source-based

while there is no need for routing tables for forwarding at intermediate nodes.

Furthermore as another motivation for TBR, there is a new trend toward application-driven networking [8] where

applications can communicate with network and customize network behavior based on their own requirements. For

example, consider an image processing application which collects pictures taken at different nodes in the network and

merges them into a 3D picture of a scene. Consider the example network in Figure 1. Assume that the application is

2

Fig. 1. An example for using TBR in an application: The application collects photos of the “west of mountains”, which causes

best route to be different than traditional shortest-path routing.

running at nodes A and B, and wants to create a big picture for the west of mountains. Observe that traditional shortest-

path routing is not suitable for this type of application since the shortest path from A to B traverses nodes that are far

from the west of mountains. A more suitable routing for this application is to route such that traffic of this application

traverses nodes that are close to the trajectory defined as the west of mountains. This trajectory is also drawn as a

parametric curve in the Figure 1. So, TBR is promising for such applications, examples of which can be extended.

In [6] and [7], Niculescu and Nath described basic features of TBR along with a Local Positioning System (LPS).

Since it has a greedy forwarding mechanism, TBR needs support for positioning of wireless nodes. For the positioning

problem of TBR, various positioning systems such as GPS [9] can be used. However, GPS requires high power avail-

ability which violates conditions of low-power ad-hoc networks. As a solution to this, Nath and Niculescu proposed

LPS can be used to enable TBR’s implementation at low-power nodes without GPS support. So, in this paper, we

assumed that the nodes have a knowledge of their positions with respect to a mutually known coordinate system. This

assumption is reasonable as the use of GPS as well as other positioning tools are becoming more popular [10], [11],

[12], [13], [14], [15].

In TBR, one important issue to explore is how to efficiently forward packets along a defined parametric curve
�������

.

Niculescu and Nath experimented with simple parametric curves such as sine curve, and left the question of how to

encode various trajectories into packets as a parametric curve. In this paper, we propose an effective method of encoding

trajectories into packets at source. Given this trajectory encoding techniques at source, we present various mechanisms

to perform forwarding at intermediate nodes.

For trajectory encoding, we propose to use Bezier curves [16] which give a lot of flexibility in the greedy forwarding

of TBR while it is possible to define a broad range of curves with them. Later in Section II, we will describe details of

using Bezier curves for TBR.

The rest of paper is organized as follows: First, in Section II we describe details of Bezier curves and how to use them

for trajectory encoding in TBR. In Section III, we briefly describe ways of scaling packet header for trajectory encoding

with Bezier curves. Next in Section IV, we propose various greedy algorithms for packet forwarding in TBR with

Bezier curves. In Section V, we present ns-2 simulations of the forwarding algorithms and evaluate their performance.

Finally, in Section VI we summarize the work.

3

II. USING BEZIER CURVES FOR TBR

In this section, we will discuss the basics of Bezier curves used for TBR. Bezier curves are special types of curves

that are used in the area of graphics for representing letters in special purpose fonts. These curves are defined by a

number of points - source, destination, and some control points. Depending on the number of control points, they are

named accordingly. For instance, a Bezier curve defined by 1 control point is called as quadratic Bezier curve, while

the one which is defined by 2 control points is known as cubic Bezier curve. More details about basic calculations for

Bezier curves can be found in [17].

There are other forms of Bezier curves such as quintine Bezier curves (3 control points), but our choice of using

cubic Bezier curve was dictated by its simplicity as well as ease of computation.

A. Basics of Bezier curves

A Bezier curve
�������

is, generally, represented in its parametric form. When parameter
�����

, it represents the source

point of the curve, while
�����

represents the destination point of the curve.

A cubic Bezier curve is represented as:

� ��� ���
X

�
A
����	

B
��
�	

C
�	

X � (1)

where

X
� ����

�
����

A
� ��������� ����

B
� ��������� ����

C
� ���� �� � �� �

X � � �� � �� �
���!

Now, if we know the coordinates of the source
� � �

� � � � , destination
� �#" � � " � , and the 2 control points

� �

� �
 � and

� � �
� � � � , we can calculate constants A, B, and C as under:

C
�%$ �

X
"�&

X � �
B

�%$ �
X
 &

X
" � &

C

A
�

X � &
X � &

C
&

B

Here, X
"
, X
 , and X � are vectors similar to X containing the x and y coordinates of control point-1, control point-2,

and destination point respectively.

Thus, from (1) we can observe that as we increase the value of the parameter
�

from 0 to 1, we can traverse the Bezier

curve completely.

B. Closest Point on the Bezier Curve

Given a trajectory defined by a Bezier curve, the nodes can either be on the Bezier curve or could be near the Bezier

curve. In order to implement forwarding algorithms, for a node near the Bezier curve, we need to find where this node

corresponds on the Bezier curve. This is actually the point on the curve closest to the node.

Finding the Bezier curve point closest to a node is a non-trivial task. In the Figure 2, the node does not lie on the

Bezier curve. To calculate the point on the curve which is is nearest to the node, we draw a perpendicular on the tangent

4

Fig. 2. A node near a trajectory defined by a Bezier curve ������� .

of the curve. Now, with
� ���

) being a third order polynomial and the tangent
��� ��� �

being a second order polynomial,

we get a fifth order polynomial when we have
� ��� � � � ����� � �

. One of roots of this equation will be the point on the

Bezier curve
� ��� �

nearest to the node [18]. Roots of a fifth degree polynomial can be computed but finding roots of the

polynomial with order greater than 5 is impossible.

Given the above methodology to find the nearest point a Bezier curve, we now fix a terminology to ease writing rest

of the paper. Given a Bezier curve
�������

and a node 	�
 as shown in Figure 2, we call the value of parameter
�

at the

curve point closest to 	�
 as residual of 	�
 and represent it by
�
 . The closest curve point itself is called as residual point

of 	
 , and represented by
�����
 � . Finally, we call the distance between the node and

� ���
 � as the residual distance of 	�

and represent it by ��
 .

III. SCALING PACKET HEADER FOR MORE COMPLEX TRAJECTORIES

If we consider applications such as traversing a river or eastern face of a mountain, these applications will require

consideration of curves which could be represented by using much more number of control points than two. Such a

curve will be very difficult to encode in the packet header as then we will have to encode each and every control point

which would make the header bulky. Also, computing such a Bezier curve is extremely difficult during the time of

greedy forwarding.

One way to define long trajectories is to split the trajectory into smaller pieces which can be represented by cubic

Bezier curves (i.e. 2 control points). Before starting the actual transmission of data, the source can probe the ad-hoc

network by sending a control-plane packet which includes the whole trajectory with � control points. Upon arrival of

that probe packet, an intermediate node divides the whole trajectory into equal pieces1, and checks whether itself is

close enough (e.g. within 5m of radius) to one of those middle points. If so, that particular node identifies itself as

a Special Intermediate Node (SIN) for this source-destination pair and sends an acknowledgement to the source. The

source confirms SIN by replying to the acknowledgement (this is necessary to resolve contention for being SIN if there

are multiple candidates close to the desired middle point). After this confirmation from the source, the SIN records

the control points for the next cubic Bezier curve in the trajectory. This process will continue until all pieces of the

trajectory is captured by an SIN which keeps the control points of the next cubic Bezier curve.

In this manner, there will be �
& �

SINs, � cubic Bezier curves for a trajectory with ��� control points. After such a
�
For a Bezier curve ������� with � control points, these pieces are portions of the whole curve in between points �������! �� where #"%$'&(& � .

5

signaling protocol as described above, the source will no longer have to encode the ��� control points into data packets.

Rather, it will just need to put 2 control points for the next cubic Bezier curve on the trajectory, since the next SIN will

be putting the control points necessary for the following piece of the trajectory.

When the nodes are mobile, SINs can move from their original locations and may no longer be close to the trajectory.

One quick solution is to send send probe packets frequently throughout the data transmission. This way SINs will be

re-assigned if the previous ones got away from the trajectory.

IV. GREEDY FORWARDING ALGORITHMS FOR TBR

Given a neighborhood and a trajectory to follow for the packet, a node may follow different forwarding strategies

depending on application and user criteria. One can define various objectives for forwarding in TBR:
� Obey the trajectory: There might be cases where obeying the trajectory is critical. For example, if the trajectory is

passing through just near enemy area in a battlefield, then making sure that packets are obeying the trajectory and are not

getting to the enemy area is important. This becomes particularly important when packets include secure information

that must not reach to enemy wireless agents.
� Reach the destination node: As another criteria, if application generating the packets is sensitive loss of packets,

then one might find it more convenient to forward the packet to the destination node if it is in the neighborhood of the

forwarding node although it might be disobeying the trajectory significantly.
� Reach quickly: If the information being sent is delay sensitive and the similarity of route to trajectory is not of much

importance, then it becomes more convenient to forward the packets such that they reach to the destination as quick as

possible.

For usefulness of the forwarding strategy, the forwarding algorithm must make sure that the packet advances along

the trajectory curve. In other words, a node should not forward a packet backwards along the trajectory curve. For

example, in Figure 3-a, consider node 	 � with residual
� � . Although there are other nodes within the transmission

range of 	 � , the forwarding algorithm must forward packets to one of the gray nodes whose residuals are larger than
� � . We will call the set of nodes that have residuals larger than

� � as neighborhood2 of 	 � . Within the neighborhood,

selection of which node to forward packets next depends on various user and application objectives, some of which

were itemized above.

As another important issue, the simplicity of the forwarding algorithm is crucial for implementation purposes. Since

agents are generally low-powered in wireless networks (particularly in sensor networks), computational simplicity is an

important factor in terms of deployment.

In the following sub-sections, we develop algorithms for selection of next node within the neighborhood according

to the above-mentioned various forwarding criteria. Note that all the following forwarding algorithms assume that the

set of nodes that are composing the neighborhood is calculated. This only requires residuals to be calculated for every

single node within the transmission range. Given residuals of nodes in the transmission range, one can easily construct

the neighborhood of the current node (the node where the packet is currently residing) by simply comparing residuals

to the residual of the current node.

A. Random

A simple algorithm is to select the next node randomly from the neighborhood. This algorithm is beneficial when

computation power is of critical importance. Also, if transmission power of nodes in the network is relatively small,
�

Note that our definition of neighborhood is different from Niculescu and Nath’s definition in [7].

6

then this algorithm will perform fine since nodes will not have very large neighborhoods that may cause packets to be

forwarded far away from the trajectory. So, the Random algorithm may be useful for wireless networks with nodes

having low computational and transmission power.

B. Closest to Curve (CTC)

Another computationally simple algorithm is to select the node which is closest to the curve among the nodes in

neighborhood. This algorithm is pretty straightforward to implement. Simply, calculate residual distances of each node

in the neighborhood and select the one resulting in the smallest residual distance.

If obeying to the trajectory is important, then CTC is more useful. This algorithm is again useful for the cases

where computational power is of critical importance. However, it may result in significant errors in forwarding such as

shown in Figure 3-b. Since residual distance ��� of node 	�� is smaller than residual distances all the other nodes in the

neighborhood, 	 � forwards packet to 	 � which causes a significant violation of the trajectory.

C. Least Advancement on Curve (LAC)

One might need to traverse all the nodes that are along the trajectory curve. For example, if an information needs to

be flooded in the network, application may want its packets to traverse as much nodes as possible. A simple algorithm

is to forward to the node whose residual lies right next to the residual of the current node. Note that this algorithm is

also useful for low computation powered networks.

This means all the nodes that are within the transmission range will be traversed one after another according to the

order of their residuals. However, again, this might result in significant errors in forwarding such as in Figure 3-c.

Although 	
"

is the farthest node from the trajectory curve, 	 � forwards packets to 	
"

because
� "

is less than residuals

of all the other nodes in the neighborhood of 	 � .
D. Hybrid of CTC and LAC (CTC-LAC)

Another possibility is to combine CTC and LAC when one want traverse as many nodes as possible while trying to

obey the trajectory curve. Combining CTC and LAC can be done in various ways depending on importance of obeying

the trajectory relative to importance of traversing as many nodes as possible. We assume that obeying to the trajectory

is of more importance.

A computationally simple algorithm is as follows: First, define a tolerable residual distance
�

. Then, go through the

neighborhood and try to find a neighbor node 	
 having residual distance �
�� � . If there are multiple nodes satisfying

the condition ��
�� �
, then select the one with smallest residual

�
 . If there is no nodes satisfying the condition, then

increment
�

with a step value � � and try again until a node is selected as the next node.

E. Most Advancement on Curve (MAC)

If delay is of more importance, one might want to forward the packets to the farthest node along the curve. This is

again a simple algorithm to implement since just calculation of residuals will be enough in order to find out the farthest

node to the current node. However, MAC forwarding may cause significant violations of trajectory as shown in Figure

3-b.

Similar to CTC-LAC, it is also possible to combine CTC with MAC. However, we skip developing a hybrid algorithm

between CTC and MAC, since it is pretty similar to CTC-LAC.

7

(a) Big picture of TBR forwarding (b) Failure of CTC and MAC forwarding

(c) Failure of LAC forwarding (d) Big picture of LDC forwarding

Fig. 3. Big pictures of various TBR concepts.

F. Lowest Deviation from Curve (LDC)

When obeying the trajectory is very crucial, it is possible to select the next node such that the taken route deviates

from the trajectory as less as possible. However, this requires extra computations. We now describe how to implement

such an algorithm.

In order to obey the trajectory at most level, at a current node 	 � , the best next node 	�
 should be selected such that

the line between 	 � and 	
 must have the smallest deviation from the trajectory compared to the other lines between

	 � and any other node in 	 � ’s neighborhood. Let �
 be the area between the line 	 � - 	
 and the curve, i.e. the total

deviation of the forwarding from the trajectory. In order to minimize the average deviation from the trajectory, the next

node selection must minimize ratio of ��
 by the change in residuals
�

& � � , i.e. the deviation from trajectory per unit

length of the curve. So for node 	 � , we can write the ratio to minimize as:

�
 � �

�

& � � � �����
� � 	 �

�
	

�
� ��� � �

�
� ���
 � �

�

& � �

for all 	
 in neighborhood of 	 � . Figure 3-d shows big picture of the necessary area calculations for LDC forwarding

at node 	 � . To illustrate an example, 	 � needs to calculate �
" � � " 	 �
 	 � � , �
 � � " 	 ���

, and � � � � " 	 �
 	 �
� .

The problem is that, however, calculation of �
 requires extra computations and is not trivial. Closed-form analytical

8

(a) Case I: ����������� �
	 ���������� ��	 ������������������� � (b) Case II: ����	 ���
� ������� ��� �

Fig. 4. Calculation of area between the Bezier trajectory and the forwarding line.

expressions for �
 are very hard to obtain. Fortunately, we can approximate �
 by numerical techniques similar to the

method of Riemann sums [18] in numerical integration. For a detailed description on how to approximate �
 , please

refer to [17]

Starting from the residual
� � , we move along the curve with a fixed increase � � in the curve parameter

�
. At the

beginning we know the points:
� � �

� � � � , � ��� � � . We first calculate
����� � 	 � � � and draw the line

����� � � - ����� � 	 � ��� .
Then, we draw a line from

� ��� � 	 � � � toward the forwarding line
� � �

� � � � - � �

� �
 � parallel to the line

����� � � - � � �
� � � � .

Let
� � " � � " � be the point where our new line intersects the forwarding line

� � �
� � � � - � �

� �
 � . By using the slopes of lines
� � �

� � � � - � �

� �
 � and

����� � � - � � �
� � � � , we calculate the point

� �#" � � " � . Now, we have a trapezoid between drawn by points:
����� � � , � � �

� � � � , � ��� � 	 � � � , and
� � " � � " � . Since we know coordinates of all the four points we can calculate the area of

the trapezoid. As shown in Figures 4-a and 4-b, we, then, iterate the procedure by incrementing the residual to
� � 	 � � �

and generate a new trapezoid. This iteration continues until either the residual on the curve passes
�
 or the intersection

point on the forwarding line passes
� �

� �
 � . In other words, we make � iterations if one of the two conditions is met:
�
 � � � 	 � � 	 � � � � or

� � � � � � � � � �

� �
 � � � � ��� " � � � � " � . Depending on which condition is satisfied first, we calculate

the rest of the area �
 accordingly.

Figure 4-b shows an example of the case when the former condition is satisfied first. We simply draw a quadrilateral

between the four points:
� � � � � � � , � ��� � 	 � � ��� , �����
 � , and

� �

� �
 � . We can easily calculate area of this quadrilateral

since coordinate of all the four points are available.

Figure 4-a shows an example of the case when the former condition is satisfied first. We first calculate the triangular

area between the points:
� � �

� � � � , � ��� � 	 � � ��� , and
� �

� �
 � . Then, we keep incrementing the residual until the former

condition is satisfied. At each iteration we calculate the triangular area generated by drawing a line between
� �

� �
 �
and the new point on the curve. In other words, at iteration � 	"!

, we calculate the area of the triangle between points:
� �

� �
 � , � ��� � 	 � � 	#! & � � � ��� , and
����� � 	 � � 	$! � � � � . Finally, when the former condition is met we simply calculate

the triangular area between the points
� �

� �
 � , �����
 � , and the last point on the curve (i.e.
� ��� � 	 � � 	&% � � ��� if the

condition was met at iteration � 	'% 	��
).

The approximation to �
 is simply accumulation of the areas of the small pieces that were generated during the

procedure above. Of course, approximation will perform better when the residual increment � � is smaller.

LDC is expected to perform optimally if obeying the trajectory is the only and the most important objective in TBR.

Given the local information only, it provides the best way of selecting the next node whom packets to be forwarded. In

9

order to optimize the overall route taken by packets of a trajectory, better techniques can be developed when non-local

information is available to forwarding nodes. When computational simplicity is important one might want to use CTC

instead of LDC with the trade-off that it may cause significant errors such as the one shown in Figure 3-b. An interesting

observation is that CTC performance will be very close to LDC performance in dense networks. So, in heavily dense

networks CTC may be a better choice than LDC.

V. SIMULATIONS

Our purpose of ns-2 simulations is two-fold:
� Evaluate the forwarding algorithms developed for TBR
� Proof-of-concept for extension to longer and more complex trajectories

We particularly look at two metrics: average deviation from trajectory and average path length. Since it is not necessary

for the initial purposes above, we do not include mobility in our simulations.

A. Evaluation of the Forwarding Algorithms

We simulated the forwarding algorithms for two different trajectories: circular and zig-zag. Trajectories are shown

in Figure 5-a over a scenario with 75 nodes. We varied number of nodes in the simulation from 20 to 300. Each node is

a wireless node with an omnidirectional antenna. Transmission range of antennas is 5m in radius and the antennas are

placed 0.9m higher than XY-plane.

The wireless nodes are exchanging beacons with an interval of 10s. Each node maintains a neighbor table, each entity

of which expires if no new beacon has been received within the last 110s.

In our simulations, nodes are randomly distributed over a rectangular area 250mX500m. We picked a source-

destination pair such that source is close to the starting point of trajectory and the destination node is close to the

ending point of trajectory. The source generates CBR traffic with average packet size of 0.5KB. Total simulation time

is 1000s.

Figures 6-a and 6-b show average deviation of packets’s routes from the ideal trajectory, for the case of circular and

zig-zag trajectories respectively. We observe that LDC is outperforming the other forwarding algorithms in the case of

circular trajectory. Sometimes, CTC outperforms LDC which explains the fact that LDC is making local optimization

without considering next hop’s choice. This causes CTC to win sometimes. In both trajectories, we see that LDC and

CTC is converging to each other as density of nodes increases. However, we observe CTC failure (as explained in

Figure 3-b) in some cases such as when number of nodes is 250 in circular trajectory.

Also, LAC and MAC performs worse than the others in general, which is caused by LAC’s and MAC’s ignorance on

obeying to trajectory. As expected, CTC-LAC performs in between CTC and LAC. Nicely, we observe that Random

forwarding performs average compared to other forwarding algorithms.

Figures 6-c and 6-d show average path length traversed by packets normalized to the length of the ideal trajectory,

for the case of circular and zig-zag trajectories respectively. We can observer that, as expected, LAC performs worst

in terms of path length. MAC outperforms all the other for the circular trajectory, however it is beaten by CTC and

CTC-LAC for the zig-zag trajectory. That difference becomes more evident as density of nodes increases.

For the circular trajectory, normalized path length is approximately 1 for LDC, which also shows that LDC is the

one that obeys the trajectory most. However, for zig-zag trajectory, LDC becomes larger than 1 as density of nodes

increases. This means LDC is best for moderately populated ad-hoc networks. This discourages use of LDC for very

dense networks since its computational overhead is more for denser networks (as number of neighbors will increase

10

0

50

100

150

200

250

300

0 100 200 300 400 500 600

Y
 a

xi
s

X axis

75_Nodes_location
Circular trajectory
Zig-zag trajectory

0

50

100

150

200

250

300

0 100 200 300 400 500 600

Y
 a

xi
s

X axis

100_Nodes_location
Ctrl_pts_Zig-zag

Zig-zag trajectory

(a) Single-piece trajectories (b) Multi-piece trajectories

0

20000

40000

60000

80000

100000

40 60 80 100 120 140 160 180 200

D
ev

ia
ti

on
 (

in
 m

ts
^

2)

Total Nodes

Zig-zag_trajectory for CTC-LAC

0

0.2

0.4

0.6

0.8

1

1.2

1.4

40 60 80 100 120 140 160 180 200

N
or

m
al

iz
ed

 P
at

h
L

en
gt

h
(i

n
m

ts
)

Total Nodes

Zig-zag_trajectory for CTC-LAC

(c) Deviation from trajectory (d) Normalized average path length

Fig. 5. (a) Experimental trajectories seen in a scenario with 75 nodes. (b) The multi-piece trajectory with a single SIN and two

cubic Bezier curves. (c)-(d): CTC-LAC results for TBR on a complex trajectory.

too).

Also, Random again performs average compared to the others in terms of path length. So, an interesting finding

is that Random forwarding is good in order to achieve an average performance while avoiding a lot of computational

overhead of more complex forwarding mechanisms. For Random forwarding, probability of reaching destination was

more than 80%. For all the others, it was more than 95%.

B. More Complex Trajectories

Simulation setting is the same as the one in the previous section. We simulate CTC-LAC forwarding on a zig-zag

trajectory which is being defined by two cubic Bezier curves as shown in Figure 5-b. The data packets include only two

control points. There is an SIN, which splits the trajectory into two pieces.

Figures 5-c and 5-d show average deviation from trajectory and average path length on the zig-zag trajectory defined

by two cubic Bezier pieces. We observe that average path length normalized to the ideal trajectory length is approx-

imately 1. Also, deviation from trajectory reduces as the number of nodes increases. So, the results illustrates that

packets get forwarded properly even though they include part of the control points of the total trajectory.

11

0

200000

400000

600000

800000

1e+06

1.2e+06

0 50 100 150 200 250 300

D
ev

ia
ti

on

Total Nodes

random
CTC
LAC

CTC-LAC
MAC
LDC

0

50000

100000

150000

200000

250000

0 50 100 150 200 250 300

D
ev

ia
ti

on

Total Nodes

random
CTC
LAC

CTC-LAC
MAC
LDC

(a) Circular topology (b) Zig-zag topology

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 50 100 150 200 250 300

N
or

m
al

iz
ed

 P
at

h
L

en
gt

h

Total Nodes

random
CTC
LAC

CTC-LAC
MAC
LDC

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 50 100 150 200 250 300

N
or

m
al

iz
ed

 P
at

h
L

en
gt

h

Total Nodes

random
CTC
LAC

CTC-LAC
MAC
LDC

(c) Circular topology (d) Zig-zag topology

Fig. 6. (a)-(b): Average deviation from trajectory in simulation experiments. (c)-(d): Path length normalized to trajectory length

in simulation experiments.

VI. SUMMARY

In this paper, we studied various implementation issues of Trajectory-Based Routing(TBR) for stateless routing in

ad-hoc networks. We proposed using Bezier curves for defining trajectories in TBR. Various shapes for routes can be

defined by using Bezier curves. We particularly evaluated several forwarding algorithms based on trajectories defined

by Bezier curves.

We proposed an optimal forwarding algorithm, Least Deviation from Curve(LDC), that obeys to trajectories the

most. We ran extensive simulations in order to evaluate the forwarding algorithms. We found that LDC is good for

moderately populated ad-hoc networks. Interestingly, we also found that Random forwarding performs average while

avoiding significant computational overhead.

We also proposed an initial methodology for extending TBR with Bezier curves to longer and more complex trajecto-

ries which can be encoded by larger information. Our proposed method enables routing of data packets through complex

trajectories, while keeping the packet header size constant. Future work will include evaluation and improvement of

this method with a particular consideration given to signaling overhead.

Several issues remain to be investigated such as effect of mobility patterns, traffic patterns. Also, future work in-

cludes studying methods for increasing resilience (i.e. probabiliy of reaching to destination) for different forwarding

12

algorithms.

Finally, as another open issue, answering the question of how to route the packets to destination when the destination

and the source are mobile, which is generally the case in ad-hoc networks.

REFERENCES

[1] B. Karp and H. T. Kung, “GPSR: greedy perimeter stateless routing for wireless networks,” in Proceedings of ACM MOBICOM, 2000.

[2] G. Finn, “Routing and addressing problems in large metropolitan-scale networks,” Tech. Rep., University of Southern California, March

1987.

[3] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad-hoc wireless networks,” Mobile Computing, vol. 353, 1996.

[4] E. Rosen, A. Viswananthan, and R. Callon, “Multiprotocol label switching architecture,” IETF RFC 3031, February 2001.

[5] D. Ganesan, R. Govindhan, S. Shenker, and D. Estrin, “Highly resilient, energy efficient multipath routing in wireless sensor networks,”

Mobile Computing and Communications Review (MC2R), vol. 1, no. 2, 2002.

[6] D. Niculescu and B. Nath, “Routing on a curve,” in Proceedings of Workshop on Hot Topics in Networks (HOTNETS-I), 2002.

[7] D. Niculescu and B. Nath, “Trajectory based forwarding and its applications,” in To appear in Proceedings of ACM MOBICOM, 2003.

[8] J. Follows and D. Straeten, Application-Driven Networking: Concepts and Architecture for Policy-Based Systems, IBM Red Book, 1999.

[9] B. Parkinson et al., Global Positioning System: Theory and Application, vol. 163, Progress in Astronautics and Aeronautics, 1996.

[10] D. Niculescu and B. Nath, “Ad-hoc positioning system (aps),” in Proceedings of GLOBECOM, 2001.

[11] J. C. Navas and T. Imielinski, “Geographic addressing and routing,” in Proceedings of ACM MOBICOM, 1997.

[12] Y.-B. Ko and N. H. Vaidya, “Location-aided routing (lar) in mobile and ad-hoc networks,” in Proceedings of ACM MOBICOM, 1998.

[13] J. Li et al., “A scalable location service for geographic ad-hoc routing,” in Proceedings of ACM MOBICOM, 2000.

[14] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, “The cricket location-support system,” in Proceedings of ACM MOBICOM, 2001.

[15] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less low cost outdoor localication for very small devices,” IEEE Personal Communications

Magazine, Special Issue on Smart Spaces and Environments, October 2000.

[16] P. J. Schneider and D. H. Eberly, Geometric Tools for Computer Graphics, 2002.

[17] M. Yuksel, R. Pradhan, and S. Kalyanaraman, “Trajectory-based forwarding mechanisms for ad-hoc sensor networks,” Tech. Rep., Rensse-

laer Polytechnic Institute, http://networks.ecse.rpi.edu/˜ yuksem/bezier.pdf, 2003.

[18] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, Cambridge

University Press, 1992.

