TCP-Friendly Marking for Scalable Best-Effort Services on the
Internet

Giampiero Lo Monaco, Azeem Feroz', Shivkumar Kalyanaraman
Department of ECSE, Rensselaer Polytechnic Institute
110 Eight Street, Troy, New York, 12180
{lomong, feroza, shivkuma}@networks.ecse.rpi.edu

Abstract

This paper proposes the use of TCP-aware network-based packet marking, which in conjunction
with differential packet dropping, is a powerful way to scale the performance of buffer management
for best-effort services on the Internet. In particular, we extend the notion of “TCP-Friendly” packet
marking, proposed recently by us [6], and apply it to improve the performance of traditional best-
effort services. The TCP-aware use of deterministic packet marking at the enterprise edge allows
us to protect selected TCP packets from suffering loss, thus significantly reducing the total number
of timeouts and avoiding the resulting service degradation. In particular, we protect TCP sessions
with very small windows, disperse packet loss across a given window, and protect retransmitted
packets from encountering loss. We show baseline results which illustrate that the performance
gains are considerable (orders of magnitude) when compared to stateful packet dropping algorithms
like FRED, and even when TCP SACK implementations are employed. The scheme has been
implemented in Linux 2.2.10, and all the results are based upon experimental data.

1 Introduction

As the Internet grows, both in terms of size and heterogeneity, it becomes necessary to have traffic
management schemes that keep up with this growth by leveraging the new architectural facilities
available through IETF standards. The differentiated services (diffserv) architecture [2] is an exam-
ple of one such IETF standard that can be leveraged for scalable buffer management. The diffserv
architecture proposes two distinct components, the “edge” nodes and the “core” nodes, as part of a
diffserv domain. The edge nodes perform stateful control- and data-plane functions like policy and
traffic conditioning whereas the core nodes concentrate on stateless (or aggregate-state) hardware-
implementable data-plane functions such as forwarding, buffer management and scheduling (a.k.a.
per-hop behaviors, PHBs). The coordination of data-plane functions between the edge and the
core nodes is achieved through the DS-field in the IP header, which the edge can “mark” and the
core can read (and optionally “re-mark”). This architectural model allows us to use “marking” at
the edge nodes as a way to complement and enhance the buffer management capabilities of core
nodes. We refer to this marking as “network-based” marking (which has semantics only within the
network) to differentiate it from end-to-end ECN marking [22], (which is conveyed to end systems).

In this paper, we develop a TCP-aware proxy that performs deterministic, TCP-conscious, per-
flow marking at the edge. This component in conjunction with random, stateless, differential

! Azeem Feroz is currently with Packeteer Inc.

packet-dropping in the core can lead to substantial performance improvements. We also develop a
stateful differential dropping algorithm (FRIO) for our comparative experimental evaluation. Our
results indicate substantial improvements in both provider-metrics of best-effort performance (such
as aggregate goodput and loss rate), as well as user-perceived metrics (such as TCP timeouts and
per-flow goodput variance) [13]. More importantly, these performance gains apply both to TCP
Reno and TCP SACK, stateless and stateful core buffer management schemes, and even when the
parameters of the buffer management schemes are mistuned. Furthermore, this work is partially
deployable and can allow the network to be safely operated at higher average utilization levels without
any user-perceived degradation in service. This scheme however requires a diffserv context, but at
the same time provides positive incentives for deploying active queue management and differential
dropping schemes.

The paper is organized as follows. Section 2 surveys related work to position our scheme. Section 3
presents the concepts of TCP-Friendly marking and better best-effort services. Section 4 outlines
the key implementation ideas and section 5 presents a new stateful differential dropping scheme,
FRIO. Section 6 presents our experimental evaluation, and section 6.2 summarizes the paper.

2 Related Work

For the last decade, researchers have studied and proposed improvements to TCP/IP performance.
These improvements include changes to TCP host implementations (eg: NewReno, SACK, FACK
etc [1,7,8,9, 18, 25]), better queue management algorithms (Eg: AQM, RED, SRED, FRED, FPQ
etc [3, 10, 15, 20, 21, 14]) or schemes which require both end-system and bottleneck support (eg:
ECN, adaptive packet marking [5, 22, 24]). Packeteer’s rate control [13] is a buffer management
scheme which manipulates TCP headers and ack rates to perform explicit, transparent control of
TCP flows in certain niche deployment scenarios. Performance improvements of all these approaches
have been measured in terms of timeout avoidance, better filtering of burst loss to determine
congested periods and window reductions, optimization of retransmission, and improved fairness
across competing TCP sessions (including small, web-like and large, ftp-like sessions).

Our work was motivated by Ibanez et al’s and Sahu et al’s findings [12, 23], which showed perfor-
mance uncertainty when TCP was mapped to the “assured service” even with relatively low degrees
of connection multiplexing. This uncertainty stems from the fact that the “assured service” intro-
duces a new dimension in best-effort buffer management: differential marking and dropping of
packets which was not being leveraged properly by TCP/IP. Our work proposes components to
bridge this performance gap. Therefore, in contrast with the traditional approaches mentioned
above, this paper proposes to view the buffer management problem as two parts. The first part
uses network-based, TCP-friendly marking [6], which can work in combination with the second
part, differential dropping (eg: RIO [4]) in a diff-serv context. Note that our mechanisms are
purely network-based and transparent to the end-systems (unlike ECN [22]), though the marker
could conceivably be supported by end-systems in the future.

The end-goals of this work are similar to the schemes mentioned above (though we focus on
timeout-minimization); the deployment context is different (we require a diff-serv context). There-
fore, we view our work as being complementary and not conflicting with the efforts of the community

mentioned above. In particular, we demonstrate that our performance improvements are visible
even with TCP SACK and with stateful dropping algorithms (eg: FRED). From a deployment
perspective, our marker requires read-access to TCP headers and would typically be at the enter-
prise edge. However, our approach can potentially affect a larger scope of operation because a)
our marking ensures protection of critical packets from loss even at remote bottlenecks (unlike TCP
rate control [13]) and the marks are carried at the network or link layer headers (eg: DS-byte or
MPLS) and do not require TCP-level visibility or processing beyond the marker.

3 TCP-friendly Better Best-effort Services

The term “TCP-Friendly” has been recently used in literature [19] to characterize the behavior of
non-TCP end-to-end congestion control schemes. Our use of this term, in contrast, is to characterize
building blocks that support superior best-effort performance for TCP applications [6]. The key
question then becomes: “What building blocks aspects matter for superior TCP performance?” Tt
is well-known that timeouts are the leading source of TCP performance degradation from several
perspectives (average goodput, transfer-time and fairness/service variance). The goal of “TCP-
Friendly” building blocks therefore is to reduce the probability of timeouts. From an operational
perspective, TCP times out:

When it loses all the packets or acks corresponding to a single window (all TCP versions)

When it runs out of duplicate acks during a fast recovery phase (Reno and NewReno)

When its window is very small (< 4 MSS) and it loses even one or two packets (all TCP
versions)

When a burst of at least three closely spaced packets within a window are lost (Reno)

When retransmitted packets are lost (all TCP versions)

Active queue management schemes, such as RED and FRED[10, 15], try to address some of these
issues and hence they are “T'CP-Friendly” in the sense of our definition. However, we note that the
RED/FRED approach is to “randomize” the dropping behavior, and therefore they cannot provide
a high level of assurance that timeouts would be contained, especially during heavy loads and/or
during high degrees of TCP multiplexing. There are also end-system proposals to reduce the TCP
dupack threshold and make other TCP level implementation improvements to address this issue
[1, 8,9, 18]. We view our work as complementary to these efforts given the large deployed base of
old TCP implementations. This paper leverages the dimension of packet marking (extending our
recent work [6]) in the following ways:

e Mark packets to protect small-window (window < 4MSS) flows from packet loss.

e Mark packets to maintain maximum spacing between packets marked with “OUT” (low pri-
ority), within limits of the total number of tokens, in order to disperse the effect of aggregate
burst loss.

e Mark packets to protect retransmitted packets from encountering loss.

Of these, the idea of protecting retransmissions from loss results in a large performance improve-
ment because it affects all TCP implementations and accounts for a large fraction of retransmission
timeouts. Retransmissions are generally sent during episodes of congestion and experience a higher
average loss probability. Moreover, in several cases, retransmission loss leads to a timeout in
Reno/NewReno/SACK and hence account for a disproportionate share of total number of time-
outs. Therefore, protecting retransmissions results in remarkable reductions in number of timeouts,
especially if the window sizes are small as well. A quick look into the results illustrating this spe-
cific aspect is presented in Table 1 (using the configuration and abbreviations explained later in
section 6, Table 4).

TCP SACK TCP Reno
50 Flows 100 Flows 50 Flows 100 Flows
Total Rtrns. Total Rtrns. Total | Rtrns. Total | Rtrns.
Ploss% | Ploss% | Ploss% | Ploss% | Ploss% | Ploss% | Ploss% | Ploss%
TCPF 2.67 0 5.46 0 2.83 0 5.47 0
+RIO
TB+ 4.13 7.92 7.75 15.31 6.66 9.12 12.49 20.18
RIO
NoMark 5.25 12.08 9.01 19.32 9.63 15.23 16.47 28.84
+RED

Table 1: Effect of Retransmission Loss on Overall Loss rate

The table shows the overall loss percentage and retransmission loss percentage for 50 and 100
flows with and without our TCP-Friendly marking. The TCP-friendly marking virtually eliminates
retransmission loss in all cases (see row #1). Note that the retransmission loss rate is almost twice
that of the average packet loss rate (compare column #2 with column #1; eg: 12.08% vs 5.25%).
Also the elimination of retransmission loss has an large effect on the overall loss rate (eg: 2.67%
in row #1 vs 5.25% in row #3), which suggests that a significant fraction of total packets lost are
indeed retransmissions.

3.1 What is “Better Best-Effort” Service?

In this section we consider the meaning of better best-effort service from a (TCP) performance and
deployment perspective. Best-effort is the service commonly available on the Internet. Quantitative
per-flow guarantees for best-effort performance are generally not given to customers. However,
quantitative per-flow statistics over the population of users can be formulated for engineering
purposes. In particular, user metrics (average per-flow goodput, timeouts and coefficient of variation
of per-flow goodput) and network operator metrics (high utilization, low queue length, relatively
low loss rates) can be used to measure best-effort TCP/IP performance (for more discussion, see
[6, 13]). These two perspectives are necessary because otherwise, one could optimize user-perceived
performance (per-flow goodput, number of timeouts) with aggressive control schemes at the expense
of network stability and other well-behaved flows[13]. Similarly, one could optimize the network

operator perceived performance (high utilization, low queue length, relatively low loss rates) while
inflicting a large service variation on users. In this sense, “better best-effort” means a superior
tradeoff between these multiple metrics, or an improvement in all metrics (both user and operator).
In particular, we expect our proposed schemes to eliminate a large fraction of total timeout instances
seen by TCP.

Architecturally, better best-effort service requires the deployment of new components in the net-
work, or the upgrade of end-systems. Our premise is that the incremental deployment of differential
dropping and transport-aware or application-aware marking components (eg: through diff-serv [2])
can lead to such services. In this context, assuming that the network supports differential dropping
mechanisms (eg: RIO [4]) our TCP-friendly marker will provide better best-effort or enhanced
assured services [4, 12, 23] for the subset of users who deploy these markers.

4 TCP-Friendly Packet Marker

The TCP friendly packet marker implements the objectives laid out in section 3. The detailed
algorithm and a line-by-line explanation (including Linux implementation issues) are presented in
an online technical report[16]. This section outlines the key implementation issues. The marker
is expected to be implemented at the enterprise or ISP edge and operated in cooperation with an
ISP which implements differential packet dropping. This scenario is suggested because the marker
as presented here requires visibility into the TCP header for read operations only. An alternative
would be to split the marker into two pieces, one in the enterprise side and one on the ISP side.
The enterprise side piece uses the visibility of TCP headers and marks the DS-byte [2] which can
then be translated into an ISP-specific codepoint (i.e. re-marked) by the ISP-side component.

A key per-flow variable required by the marker is an approximation of the TCP window size. This
can be obtained by considering the difference between the last sequence number sent and the last
byte acknowledged (seen in the latest acknowledgement). This allows us to classify the packets
as belonging to a “tiny” flow (W < 4) or otherwise. Tiny flows get absolute priority to tokens.
The remaining tokens are fairly divided between the other flows and each flow’s share is optimally
spread between its packets. Retransmitted packets can be identified by comparing the sequence
number of the packet with the largest sequence number sent by that flow. Retransmitted packets
also get absolute priority in the token pool. Token pool mismatches, new flows etc are handled
across update intervals (which are sized at 400 ms in our experiments).

5 FRIO: A New Differential Drop Scheme

We also propose to optionally extend Flow-RED (FRED) [15] into a differential dropping scheme
called FRIO in a manner similar to how RED was extended to RIO [4]. In particular, a separate
set of parameters and queue measures are used for packets marked “IN” and for packets marked
“OUT” [4]. The original FRED algorithm [15] was developed to improve fairness for fragile (small
window or low rate) connections. FRED preferentially drops packets from a flow that has a large
number of packets buffered at the congested gateway. The implementation issues of the FRIO

algorithm are detailed in the technical report [16]. The key modifications to basic FRED we made
include:

e Use of instantaneous per-flow queue size instead of average per-flow queue size to approximate
the per-flow number of packets (avgeq) in the buffer. This improved the performance seen by
slow TCP connections.

e Calculation of average queue length exclusively on arrival of packets. The original FRED
recalculates average queue length, both on arrival and departure of packets. They argue that
the omission of the calculation during packet departure results into low link utilization due
to unnecessary packet drops. We found that the standard implementation of RED for Linux
avoided this problem by “hand-modeling” the arrival of packets (for periods of no arrivals) and
used this model in computing the average queue length, done exclusively on packet arrival.
We exploited this approach and do not recalculate average queue length on departure.

This FRIO extension is optional because our TCP-friendly marking component can achieve base-
line gains even without this extension (see section 6). Also since FRIO and RIO are fundamentally
variants of the basic RED algorithm, they inherit some of its parameter-sensitivity issues, which
may degrade performance under certain conditions [17]. However, we shall see later in this paper
that the determinism in the marking process effectively masks such parameter-sensitivities.

6 Performance Analysis and Experimentation

Bottleneck
10 Mbps

Router Router
Traffic Differential
Conditioning Dropping

Router

RTT = 200ms

DATA ACKS
— -

Figure 1: Logical Topology Used in Experimental Evaluation

Figure 1 shows the logical topology of the network used in our experiments. Note that these
experiments were conducted on o linuz-based experimental testbed, and not in simulation unlike our

earlier work [6]. We have multiple TCP flows destined to the other end of the network through a 10
Mbit/sec bottleneck. The access and egress links are 100Mbit/sec. We implement the differential
dropping algorithms at the interface of R1 connecting to R2, and the marking at the entry to
access links. We implement a delay component on the outgoing interface of the destination with
the intention of emulating a (WAN) round trip delay of 200ms. The metrics used in our work
have been carefully chosen to characterize best-effort performance, both from a user and operator
perspective [6, 13] :

e Timeouts: a proxy measure for the increase in transfer delays, and retransmission delays as
seen by the end user.

e Byte Loss Probability: a byte-level measure of the loss probability at the bottleneck.

e Average per-flow Goodput: measures the average per-flow throughput minus retransmissions
across the set of flows.

e Coefficient of Variation (CoV) of per-flow Goodput: this metric measures the “spread” of
per-flow goodputs, i.e., the (un)predictability of resulting best-effort service.

The premise of these multiple metrics is that best-effort performance looked at from the perspective
of all these metrics is very different from looking at it just from the perspective of average per-flow
goodput. We use four configurations (configA through configD) in our experiments to capture:
a) the two most commonly deployed and important TCP implementations (Reno and SACK), as
well as, b) good or mistuned setting of RED-equivalent parameters (eg: in RIO/FRIO etc). We
consider “good” RED parameters as those in which the max and min threshold are relatively far
apart [17]. Mistuned parameters are those where the thresholds are set close to each other, which
in effect defaults to a taildrop policy on a smaller buffer limit. Parameter mistuning risk is one of
the leading reasons why RED is not widely deployed today [17] and our marking scheme can help
mitigate this risk in a transparent manner. The specific RED parameters for each of these cases are
presented in Table 2. The total buffer size in these experiments is about 500 Kbytes (or approx.
500 packets).

Good RED Parameters | Mistuned RED Parameters

IN Packets | OUT Packets | IN Packets OUT Packets
Min thresh (Kbytes) 50 10 50 10
Max thresh (Kbytes) 490 200 490 30
Max p 0.005 0.25 0.005 0.25

Table 2: RED Parameters: Good and Mistuned

Based upon the above settings, the four configurations we use are shown in Table 3. Further,
if we consider combinations with dropping schemes and markers, we get a set of cases shown in
Table 4. The “old” TCP-friendly marker refers to the marker reported in [6] which does not protect
retransmissions. The token bucket and TCP-friendly markers deal with a pool of tokens refreshed
every update interval. The number of (byte) tokens per interval is 296K and the update interval is
400ms (based upon the approx 60% of the bottleneck capacity, 10 Mbps). In addition, each case
was tested with 50 and 100 simultaneous TCP flows to get a moderate level of multiplexing.

Config A | Config B | Config C | Config D
TCP Version SACK Reno SACK Reno
RED Params Good Good Mistuned | Mistuned
Table 3: Experimental Configurations
Marker Option Dropper Option Abbreviation
Case 1 TCP Friendly FRIO TCPF+FRIO
Case 2 TCP Friendly RIO TCP+RIO
Case 3 | TCP Friendly (old) RIO TCPF(O)+RIO
Case 4 Token Bucket RIO TB+RIO
Case 5 No Marker FRED NoMark+FRED
Case 6 No Marker Tail Drop NoMark+TailDrop
Case 7 No Marker RED NoMark+RED

Table 4: Marker and Dropper Choices in Each Configuration

We acknowledge that this experimental setup captures the behavior only at a canonical bottleneck
with a simple workload. We have chosen to focus on a variety of schemes (SACK, Reno, RED,
FRED, RIO, FRIO, TB, TCPF, RED parameters etc) rather than a variety of configurations and
workloads. However, we would argue that our basic observations on the effects of timeout reductions
are valid more generally, even though the particular performance gains may vary. Our earlier work
[13] has shown that factors like heterogeneous RTTs, multiple bottlenecks are not essential in
verifying basic timeout mitigation effects, even though they are important in determining issues
like unfairness (because timeout is only one of the causes of the unfairness problem). As an aside, we
have performed some preliminary experiments with short flows (eg: Web-like) and see substantial
performance gains there as well. We do not report them for reasons of space and because they
represent an incomplete set.

6.1 Experiments Results

We choose to present our results as tables to allow selective row-by-row or column-by-column
comparison, and to avoid graphs with too many curves. The following abbreviations are used in
addition to the ones mentioned in Table 4: “Ploss:” (total) packet loss percentage; and “CoV:”
coefficient of variation of per-flow goodput. Table entries which are referenced in the text are
bold-faced.

6.1.1 Configuration A: SACK 4+ Good RED parameters

Table 5 shows significant improvements achieved by the TCP-Friendly marker across all metrics.
On the case of 100 flows (column 1) we see a reduction of timeouts from 911 (TB+RIO case) to
41 (TCP+FRIO case), a factor of 22 improvement. In the 50 flows case, timeouts are virtually

eliminated; a reduction from 491 to 2 timeouts. These results show that SACK by itself does not
eliminate timeout behavior (eg: row #7, column # 1 has 1322 timeouts), and that the TCP-Friendly
marker provides performance improvement even with TCP SACK.

100 flows 50 flows

Time- | Ploss Average CoV | Time- | Ploss Average CoV

-outs | (%) | Goodput(kB/s) -outs | (%) | Goodput(kB/s)
TCPF+ 41 4.0 11.421 0.06 2 2.14 22.236 0.03
FRIO
TCPF+ 120 | 5.46 10.575 0.12 9 2.67 20.742 0.04
RIO
TCPF(O) | 390 6.38 10.020 0.2 49 3.27 19.514 0.09
+RIO
TB+RIO | 911 | 7.75 9.705 0.33 | 253 | 4.13 18.892 0.12
NoMark+ | 1030 | 8.02 9.460 0.22 | 323 4.76 18.370 0.10
FRED
NoMark+ | 1140 | 8.43 8.970 0.24 | 415 5.01 17.232 0.12
TailDrop
NoMark+ | 1322 | 9.01 9.015 0.38 | 491 | 5.25 17.865 0.17
RED

Table 5: Results for Config A:TCP SACK + Good RED parameters

The performance improvement is also seen in metrics other than timeouts. Observe a reduction
of 30-50% in the packet loss rate (Ploss%) with the TCP-friendly marker. For example, in column
#2, Ploss% reduces from 9% in the last row to 4% in the first row. The average per-flow goodput
is always higher by about 10-15% when using our scheme; eg: in column #3, with 100 flows, the
average per-flow goodput increases from 9kB/s to 11.4kB/s. The coefficient of variation (CoV
or spread) is also better (eg: column #4, 0.06 vs 0.38), though this CoV analysis is incomplete
in general because factors such as RTT and multiple bottlenecks have a non-trivial effect. Also
note that the relative performance improvement in the first 4 columns (100 flows’ case) in order-of-
magnitude terms is similar to that seen in the last four columns (50 flows’ case), i.e., an indication
of scalability performance gains using our scheme.

Though the use of FRIO provides better results than RIO, the relative improvement achieved
by TCP-Friendly marker with RIO itself is substantial. For example, compare results in row #2
(TCPF+RIO) with later rows; eg: 120 timeouts vs 911 timeouts. This means that, even though
we propose and study FRIO, we are not necessarily advocating complex per-flow schemes at the
interior bottlenecks. In other words, the combination of per-flow, deterministic marking at the edge
with stateless, random, differential dropping is a powerful one by itself. As an aside, note that this
table also validates aspects noted in other papers including;:

e The performance improvement using FRED compared to RED[15]. Compare row #5 (No-
Mark+FRED) with row #7 (NoMark+RED); eg: 1030 timeouts with FRED vs 1322 timeouts
with RED.

e The good performance of tail-drop compared to RED under reasonably high degrees of multi-

plexing [17]. Compare row #6 (NoMark+TailDrop) with row #7 (NoMark+RED); eg: 1140
timeouts in TailDrop vs 1322 timeouts in RED.

e Ibanez et al’s and Sahu et al’s [12, 23] observations on the fact that assured services with simple
token bucket marking does not lead to considerable performance improvement. Compare row
#4 (TB+RIO) with later rows; eg: 911 timeouts with token bucket which is a marginal
improvement over 1140 timeouts achieved with NoMark and TailDrop.

e Our earlier simulation work illustrating the performance benifits of the old TCP-friendly
marker which just focussed on small window flows [6]. Compare row #3 (TCP(O)+RIO)
with later rows;Eg: 390 timeouts achieved with the old marker is a good improvement over
911 timeouts achieved with token bucket marker.

6.1.2 Configuration B: Reno and Good RED Parameters

100 flows 50 flows

Time- | Ploss Average CoV | Time- | Ploss Average CoV

-outs | (%) | Goodput(kB/s) -outs | (%) | Goodput(kB/s)
TCPF+ 62 4.33 11.391 0.07 8 2.49 22.079 0.03
FRIO
TCPF+ 176 | 5.47 10.472 0.14 16 2.83 20.635 0.04
RIO
TCPF(O) | 578 9.24 9.992 0.22 | 129 4.78 19.034 0.14
+RIO
TB+RIO | 1127 | 12.49 9.660 0.31 | 350 | 6.66 18.486 0.19
NoMark+ | 1209 | 13.97 9.235 0.24 | 398 7.13 18.125 0.17
FRED
NoMark+ | 1293 | 14.63 8.528 0.26 | 435 8.08 17.004 0.22
TailDrop
NoMark+ | 1405 | 16.47 8.807 0.37 | 610 | 9.63 17.319 0.25
RED

Table 6: Results for Config B: Reno and Good RED Parameters

Table 6 reiterates the basic performance benifits noted in the earlier section with TCP Reno
instead of TCP SACK. We see the number of timeouts go from 1127 (row #4) down to 62 (row
#1) for 100 flows and from 610 to 8 for 50 flows. This represents orders-of-magnitude gain in
the total number of timeouts, clearly decoupling the benefits of our marker to the use of either
Reno or SACK. The other metrics show similar relative performance gains across the board. As
an aside note that the absolute magnitudes of the Reno metrics are not as good as that of the

corresponding SACK metrics presented in the previous table, reaffirming the general performance
benifits of SACK.

100 flows 50 flows

Time- | Ploss Average CoV | Time- | Ploss Average CoV

-outs | (%) | Goodput(kB/s) -outs | (%) | Goodput(kB/s)
TCPF+ 92 5.02 10.854 0.07 7 2.79 21.687 0.05
FRIO
TCPF+ 152 6.17 10.168 0.13 10 3.63 20.104 0.06
RIO
TCPF(O) | 529 8.34 9.815 0.25 78 4.65 18.914 0.13
+RIO
TB+RIO | 1200 | 9.16 9.092 0.4 320 5.71 17.277 0.22
NoMark+ | 1315 | 9.45 8.873 0.29 | 412 6.02 17.010 0.15
FRED
NoMark+ | 1518 | 10.12 8.024 0.34 518 6.61 16.291 0.18
TailDrop
NoMark+ | 1864 | 10.75 8.316 0.45 | 689 7.03 16.825 0.25
RED

Table 7: Results for Config C: SACK and Mistuned RED Parameters

6.1.3 Configuration C: SACK and Mistuned RED Parameters

Table 7 presents results with mistuned RED (or RED-equivalent parameters). In comparison with
Table 5, note that every timeout observation almost doubles (eg: row #1, column #1 shows 92
timeouts in table 7 vs 41 timeouts in table 5) validating the negative effect of parameter mistuning.
However, the relative performance benifits in terms of all the metrics of TCP-friendly marking
are clearly preserved. Compare the first two rows with later rows in tables 5 and 7; eg: we
see 92 or 152 timeouts with TCPF marker (rows #1-2, column #1) vs 1200+ timeouts without
the TCPF marker (rows #4-7, column#1). In other words, the orders-of-magnitude performance
gains especially in timeouts due to TCP-friendly marking overshadow the factor-of-2 performance
degradation due to RED parameter mistuning. This provides some positive incentive to deploying
AQM-based differential dropping schemes.

6.1.4 Configuration D: Reno and Mistuned RED Parameters

Table 8 replicates the results of configuration C (mistuned parameters) with TCP Reno instead
of TCP SACK. The observations regarding relative performance and compensation of mistuning
effects made in the last section hold in this case too. Since TCP Reno is the dominant deployed
protocol and since parameter mistuning is a common occurence, this experiment is more in tune
with reality. As an aside, note that the loss rates during persistent congestion with Tail drop or
RED (last two rows) can be as large as 17-20% even with moderate levels of flow multiplexing (100
flows).

100 flows 50 flows

Time- | Ploss Average CoV | Time- | Ploss Average CoV

-outs | (%) | Goodput(kB/s) -outs | (%) | Goodput(kB/s)
TCPF+ 130 | 6.33 10.668 0.08 13 3.43 21.315 0.05
FRIO
TCPF+ 239 6.97 10.214 0.15 19 4.01 20.168 0.06
RIO
TCPF(O) 715 11.62 9892 0.28 175 6.04 18.231 0.18
+RIO
TB+RIO | 1410 | 13.98 8.954 0.43 | 413 7.8 17.112 0.33
NoMark+ | 1586 | 14.78 8.345 0.38 | 512 8.32 16.993 0.22
FRED
NoMark+ | 1794 | 17.11 7.810 0.41 646 9.55 15.212 0.27
TailDrop
NoMark+ | 2163 | 20.58 8.046 0.5 844 11.2 16.152 0.35
RED

Table 8: Results for Config D: Reno and Mistuned RED Parameters

6.2 Summary

Our goal in this paper is to leverage the tools provided by diff-serv: packet marking and differ-
ential dropping. TCP-friendly marking is an interesting and powerful alternative especially due
to its capability to deterministically protect small window flows and retransmitted packets. The
methodology of leveraging the marking and preferential dropping capabilities is clear: provision
enough tokens, deterministically identify the packets which, when dropped, can disproportionately
affect user performance and protect them, and then randomize or spread the remaining tokens over
the rest of the packets. This type of application-aware or transport-aware marking can be done
by the end systems or by edge proxy devices. In the particular case of TCP, we have observed the
following benifits:

e Reductions of upto two orders of magnitude in the number of timeouts.
e Consistently larger average data goodput (10-15%) for all TCP flows.
e 30-50% reduction in the total loss probability across all instances of implementation.

e Considerable improvements to the predictability (variance) of best-effort service. Service
variance of course depends upon factors such as heterogeneous RT'Ts and multiple bottlenecks.

e Masking of the negative performance effects of RED parameter misconfiguration.
e Improvements irrespective of TCP implementation (TCP Reno or TCP SACK).
e Relative improvements equal or better w.r.t. the number of TCP flows (100 flows vs 50 flows).

e All stateful and TCP-aware activity can be done at the (enterprise) edge and not in the core.

e Can be incrementally deployed on a customer-by-customer basis, provided bottlenecks are
upgraded to support differential dropping.

e Could be applied to peering points and international links (major congestion points) on the
longer term to alleviate the effects of packet loss on TCP-flows.

In general, this work is complementary with other edge-to-edge work [11] and end-to-end work
(mentioned in section 2) to attain superior and scalable traffic management. The approach is con-
sistent with the philosophy of complexity moving to edges; the marker at this point is best deployed
at the enterprise-edge. The reduction in timeouts can also be used as the basis of differentiated
TCP services offered by ISPs offered on private networks (on a single ISP or limited multi-ISP
networks which support differential dropping). As mentioned earlier, this approach masks pa-
rameter sensitivities of RED and provides an incentive to deploy differential dropping and active
queue management techniques at key congestion points (eg: peering points, international links,
access links etc). Finally, we would like to re-emphasize that these findings are experimental and
not-simulation based. The open linux-source code will be available soon on our web-site.

References

[1] M. Allman, H. Balakrishnan and S. Floyd, “Enhancing TCP’s Loss Recovery Using Early
Duplicate Acknowledgment Response,” Internet draft, draft-allman-tcp-lossrec-00.txt, June
2000. http://www.aciri.org/floyd /papers.html

[2] S. Blake et al., “An Architecture for Differentiated Services,” Internet RFC 2475, December
1998.

[3] B.Braden et al, “Recommendations on Queue Management and Congestion Avoidance in the
Internet,” IETF Internet RFC 2309, April 1998. http://www.aciri.org/floyd /papers.html

[4] D. Clark and W. Fang, “Explicit Allocation of Best-Effort Packet Delivery Service,”
IEEE/ACM Transactions on Networking, Vol. 6, N. J, pp. 3862-373, August 1998.
http://www.cs.princeton.edu/ wfang/Research/expected-cap.ps

[5] W. Feng, D. Kandlur, D. Saha, K. Shin, “Adaptive Packet Marking for Maintaining End-to-end
Throughput in a Differentiated Services Internet,” IEEE/ACM Transactions on Networking,
No. 5, pp. 685-697, April 1999.

[6] A. Feroz, S. Kalyanaraman and A. Kumar, “A TCP-Friendly Traffic Marker for IP Differen-
tiated Services,” TwQo0S’2000, Pittsburgh, June 2000.

[7] K. Fall and S. Floyd, “Comparison of Tahoe, Reno and Sack TCP,” Computer Communication
Review, July 1996. ftp://ftp.ee.lbl.gov/papers/sacks_v2.ps.Z

[8] S. Floyd, “A Report on Some Recent Developments in TCP Congestion Control,” In submis-
sion, June 2000. http://www.aciri.org/floyd /papers.html

[9] S. Floyd and T. Henderson, “The NewReno modification to TCP’s fast recovery algorithm,”
Internet RFC 2582, April 1999.

[10]

[11]

[12]

[15]

[16]

S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoid-
ance,” IEEE/ACM Transactions on Networking, Vol. 1, N. 4, pp. 397-413, August 1993.
http://www.aciri.org/floyd /papers/red /red.html

D. Harrison and S. Kalyanaraman, “Edge-to-edge traffic control for the Internet,” Technical re-
port, January 2000. http://www.ecse.rpi.edu/Homepages/shivkuma/research/papers-rpi.htm

J. Ibanez, K. Nichols et al., “Preliminary simulation evaluation of an assured
service,” Internet Draft, draft-ibanez-diffserv-assured-eval-00.txt, August 1998.
http://ecwww.eurecom.fr/ ibanez/internet_draft.html

S. Karandikar, S. Kalyanaraman, P. Bagal and B. Packer, “TCP rate control,” Computer Com-
munication Review, V.30, N. 1, January 2000. http://www.ecse.rpi.edu/Homepages/shivkuma

V. Kumar, T.V. Lakshman, D. Stiliadis, “Beyond Best Effort: Router Architectures for the
differentiated services of tomorrow’s Internet,” IEFE Communications Magazine, Vol. 36, No.
5, May 1998, pp. 152-164.

D. Lin and R. Morris, “Dynamics of random early detection,” Proceedings of SIGCOMM’97,
1997. http://www.pdos.lcs.mit.edu/ rtm/papers/fred.ps

G. Lo Monaco, “TCP-Friendly building blocks implementation: Validation of a new
approach to better best-effort service on the Internet,” Technical Report, RPI 2000.
http://www.ecse.rpi.edu/Homepages/shivkuma/research /papers-rpi.htm

M. May, “Reasons mnot to deploy RED,” Proc. of the IEEE/IFIP In-
ternational Workshop on Quality of Service, IWQo0S’99, June 1999.
http://wwwsop.inria.fr /rodeo/personnel/mmay /may_red.html

M. Mathis, J. Mahdavi, S. Floyd and A. Romanow, “TCP Selective Acknowledgment Options,”
Internet RFC 2018, October 1996.

M. Mathis and J. Mahdavi, “Forward Acknowledgement: Refining TCP Congestion Control,”
SIGCOMM 96, August 1996

R. Morris, “Scalable TCP Congestion Control,” I[IFEEE INFOCOM 2000, Tel Aviv.
http://www.pdos.lcs.mit.edu/%7Ertm/

T.J. Ott, T.V. Lakshman, L. Wong, “SRED: Stabilized RED,” INFOCOM’99, April 1999.

K.K.Ramakrishnan, and S. Floyd, “A Proposal to add Explicit Congestion No-
tification (ECN) to IP,” [ETF Internet FExperimental RFC 2481, January 1999.
http://www.aciri.org/floyd /papers.html

S. Sahu et al, “On Achievable Service Differentiation with Token Bucket Mark-
ing for TCP,” Proc. ACM SIGMETRICS’00, Santa Clara, CA, June 2000.
ftp://gaia.cs.umass.edu/pub/Sahu99-tcp-tb.ps.gz

N. Seddigh, B. Nandy, P.Pieda, “Bandwidth Assurance Issues for TCP Flows in a Differentiated
Services Network,” IEEE Globecom, December 1999.

W. Stevens, “T'CP slow start, congestion avoidance, fast retransmit and fast recovery algo-
rithms,” Internet RFC 2001, January 1997.

