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Abstract— Existing Internet protocols rely on cooperative
behavior of end users. We present a control-theoretic algorithm
to counteract uncooperativeusers which change their congestion
control schemes to gain larger bandwidth. This algorithm
rectifies uncooperative users; that is, forces them to comply
with their fair share, by adjusting the prices fed back to them.
It is to be implemented at the edge of the network (e.g. by
ISPs), and can be used with any congestion notification policy
deployed by the network. Our design achieves a separation of
time-scales between the network congestion feedback loop and
the price-adjustment loop, thus recovering the fair allocation
of bandwidth upon a fast transient phase.

I. I NTRODUCTION

In a network which does not differentiate among users,
the equilibrium rate for any user is primarily determined by
the congestion control being used [1]. With new software
advancements, however, “uncooperative” users can change
their congestion control schemes to gain more than their
fair share of bandwidth, at the cost of cooperative users.
This uncooperative behavior can lead to TCP unfriendliness,
congestion collapse [2], [3] and, to a traffic-based denial-of-
service to cooperative users [4], [5]. Detecting uncooperative
users, and “rectifying” their flow rates to comply with
cooperative rates, is thus an important emerging problem in
network management.

Among rectification mechanisms proposed in the liter-
ature, the majority are “router-based” that is, they mod-
ify the router algorithm to detect and limit uncooperative
flows, e.g. Active Queue Management (AQM) schemes or
scheduling disciplines. In [2] and [3], the authors study
AQM schemes, and investigate the effect of uncooperative
flows on network throughput and loss rates. Flow Random
Early Drop (FRED), a modified RED scheme, is proposed
in [6] to detect uncooperative users, and to limit their rates
by increasing their packet drop probabilities. In [7], the
authors combine the BLUE queue management algorithm
with a Bloom filter to detect and rate-limit uncooperative
flows. Several other rate-based schemes are surveyed in
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[8]. Scheduling schemes, such as ack-spacing, have been
suggested to manage uncooperative flows in [9].

More recently,edge-basedprice-adjustment mechanisms
have been proposed in [10] and [11], which manage unco-
operative flows only at edge routers. A significant advantage
of this approach is that it does not require core network
upgrades and can be implemented without performing per
flow management at routers. By estimating each flow’s
incoming rate and using it to label flow’s packet, the Core-
Stateless Fair Queueing (CSFQ) algorithm in [10] computes
the forwarding probability from link fair rate estimation.
However, this design only applies to networks in which all
nodes implement Fair Queueing. In [11], the authors manage
uncooperative flows by mapping their utility function to a
specified target network behavior at the edge. This study,
however needs to estimate the utility function to achieve
this edge-based price adjustment, and is thus restricted to
a specific form of TCP.

In this paper, we develop an edge-based price-adjustment
algorithm using tools from singular perturbations theory [18],
[19, Chapter 11]. Rather than address a specific protocol,
we develop our design within the optimization framework
of Kelly [1], [12], [13], [14], [15], which is applicable
to diverse types of networks, and encompasses numerous
protocols such as TCP Reno, TCP Vegas, FAST [16], [17]
etc. Our algorithm recovers the cooperative share of band-
width prescribed in Kelly’s framework, with a new feedback
loop implemented at the edge router, and, hence, referred to
as the “edge supervisor”. It detects uncooperative users by
comparing their sending rates with “audit” rates calculated
according to an ideal, cooperative, model, and increases their
price feedback. Although in this design edge supervisor does
perform per flow management by this price adjustment loop,
core nodes, which are in general more complex than edge
nodes, do not perform per flow management, and therefore
the implementation complexity is significantly reduced.

We design the price adjustment loop to evolve in a faster
time-scale than the existing price feedback loop from the
links, because, then, uncooperative flows are rectified during
a fast transient phase, after which stability and convergence
properties of the desired cooperative network model is re-



covered. Indeed, using singular perturbations tools [18],[19,
Chapter 11], we prove that the fast and slow feedback loops,
when combined, ensure convergence of the sending rates to
their cooperative values. The type of convergence established
is “semi-global” [19], which means that any desired region
of attraction can be achieved by increasing the feedback gain
of the price-adjustment loop.

The paper is organized as follows: Section II overviews
Kelly’s primal and dual flow control algorithms. Section III
studies the primal algorithm and presents our price adjust-
ment design for uncooperative users. Section IV extends this
design to the dual algorithm. In Section V, we implement
our price adjustment algorithms in NS-2 and evaluate their
performance for various single and multi-bottleneck topolo-
gies, for both marking and dropping congestion notification
policies. In particular, we show that given a standard net-
work behavior like TCP-Friendliness, our algorithm forces
uncooperative users to comply with their fair-share of the
bandwidth. Conclusions are given in Section VI.

Notation: We denote byR+ = (0,∞), and, byRN
+ vectors

whose entries are inR+. Given a functionf (x), its positive
projection is defined as

(f (x))
+

x :=

{
f (x) if x > 0, or x = 0 andf (x) ≥ 0

0 if x = 0 andf (x) < 0.

If x andf (x) are vectors, then(f (x))
+

x is interpreted in the
component-wise sense.

II. OVERVIEW OF KELLY ’ S PRIMAL AND DUAL FLOW

CONTROL ALGORITHMS

In Kelly’s framework [1], network flows are modeled as
the interconnection of users and communication links as
shown in Figure 1.

Fig. 1. Network flow control model.

Packets from each user (with sending ratexi) are routed
through the links with the aggregate link rate

y = Rfx (1)

where Rf is the forward routing matrix. Each linkj has
a fixed capacitycj , and based on its congestion and queue
size, a link price,pj is computed:

pj = hj (yj) , j = 1, · · · , L. (2)

The link price information is then sent back to each source
with the aggregate source price,

q = Rbp. (3)

where Rb = RT
f , since the links only feed back price

information to the users that utilize them.
Kelly formulated the flow control as the combination of a

static optimization and a dynamic stabilization problem. The
static optimization problem computes the desired equilibrium
by maximizing the sum of the source utility functions
Ui (xi), while complying with capacity constraints in the
links:

max
x≥0

N∑

i=1

Ui (xi) subject to Rx
︸︷︷︸

y

≤ c. (4)

The dynamic problem is to design the source rate update
law based on the aggregate price, and the link price update
law based on the aggregate rate, to guarantee stability of the
equilibrium. For this problem, Kelly introduced two dynamic
algorithms: ThePrimal Algorithm consists of a first order
source update law, and a static penalty function for the link
to keep the aggregate rate below its capacity:

ẋi = κi (U ′
i (xi) − qi) , pj = hj (yj) . (5)

The penalty functionshl (yl) are designed to enforce the link
capacity constraintsyl ≤ cl, l = 1, · · · , L, i.e., to keep the
aggregate rateyl below its capacitycl.

TheDual Algorithmconsists of a static source update and
a first order dynamic price update:

xi = U ′−1

i (qi) , ṗj = γj (yj − cj)
+

pj
. (6)

From (6), the unique equilibrium for the dual control law is
obtained from the equations

q∗i = U ′
i (x∗

i ) , i = 1, · · · , N (7)

p∗l

{
= 0 if y∗

l ≤ cl

≥ 0 if y∗
l = cl

l = 1, · · · , L, (8)

which as shown in [1], correspond to the solution of the
optimization problem (4), in whichpl’s play the role of
Lagrange multipliers for the capacity constraints. For the
primal control law (5), the equilibrium obtained from

q∗i = U ′
i (x∗

i ) , i = 1, · · · , N (9)

p∗l = hl (y
∗
l ) l = 1, · · · , L, (10)

approximates the optimality condition (7)-(8) with the help
of the penalty functionshl (yl). The stability of these two
algorithms and their extensions has been established in [12],
[13], [20], [21], [22], [14], [15], [17], [23].



III. U NCOOPERATIVE USERS INKELLY ’ S PRIMAL

ALGORITHM

We now assume that some users, which we call “unco-
operative”, use more aggressive utility functions to increase
their share of bandwidth; that is, instead ofUi (xi) in (5),
they implementŨi (xi):

ẋi = κi

(

Ũ ′
i (xi) − q̃i

)

. (11)

To rectify these uncooperative users, we propose that the
supervisor at the edge of the network (e.g., internet service
providers) adjust the price feedback from its nominal value
qi to q̃i. An ideal design of̃qi would be

q̃i = qi + Ũ ′
i (xi) − U ′

i (xi) , (12)

which replaces̃U ′
i (xi) in (11) with the cooperativeU ′

i (xi).
However, this design is not implementable becauseŨi (xi)
is not known to the supervisor. Instead, in our design, we
obtain an estimate of̃Ui (x) with the help of the cooperative
reference model:

˙̂xi = κi (U ′
i (xi) − qi) , x̂i (0) = xi (0) . (13)

The x̂i thus calculated differs fromxi by ei := x̂i − xi,
which, from (11)-(13), is governed by

ėi = κi

(

q̃i − qi − Ũ ′
i (xi) + U ′

i (xi)
)

. (14)

This means that, if we design the price adjustment to be

q̃i = qi − ρiei, (15)

with a sufficiently high gainρi > 0, then the variable
ei evolves in a faster time scale thanxi, and reaches the
quasi-steady stateρiei ≈ −Ũ ′

i (xi) + U ′
i (xi). Thus, after a

fast transient, our design (13), (15) approximates the non-
implementable scheme (12). For cooperative users, where
Ũi (xi) = Ui (xi), (13) and (15) yield̃qi = qi, which means
that no price adjustment is applied.

Fig. 2. Price adjustment for uncooperative users in Kelly’s primal
algorithm.

The algorithm (13), (15) is depicted with a block diagram
in Figure 2. In Theorem 1 below, we use tools from singular-
perturbations theory [18], [19] to prove that it achieves
asymptotic stability of the cooperative valuex∗ in (9)-(10):

Theorem 1: Consider the network (1)-(3), where some
users implement the uncooperative algorithm (11), rather
than (5). SupposeUi (xi) : R+ → R are increasing and
sufficiently smooth functions,Ui

′′ (xi) < 0 ∀xi ∈ R+,
and Ui (xi) → −∞ and Ũi (xi) → −∞ as xi → 0 for
i = 1, · · · , N . Then, the price adjustment algorithm (13),
(15) ensures that, for any compact setΩ ⊂ RN

+ of initial
conditionsx (0), there existsρ∗i > 0 such that, ifρi > ρ∗i ,
thenx (t) and x̂ (t) remain bounded, andx (t) converges to
the cooperative valuex∗ in (9)-(10).

The assumptions of Theorem 1 on the utility functions
Ui (xi) are standard in the literature [1], [14], [24]. In
particular, the assumptionUi (xi) → −∞ asxi → 0 ensures
thatRN

+ is positively-invariant, i.e., ifx is initially in RN
+ , it

will remain in RN
+ for all t ≥ 0. It is satisfied by commonly

used utility functions such asUi (xi) = −ai

xi
(variant of

TCP Reno) andUi (xi) = ai log xi (TCP Vegas) [14]. For

others, such asUi (xi) =
√

2

τi
tan−1

(
τixi√

2

)

(TCP Reno), we
can modify Theorem 1 and prove stability by using positive
projection functions as in [15]. It is reasonable to make the
same assumptions for̃U ′

i (·) as for U ′
i (·), because cheating

users would typically change the parameters of the nominal
utility functions, such asai in TCP Vegas above. However,
this assumption excludes some traditional unresponsive flows
referred to as UDP or CBR, in which, users send data at a
constant rate without acknowledging any feedback from the
network. 2

Proof: To represent the algorithm (11), (13) and (15) in the
standard singularly perturbed form [18], [19], we let

ωi := ρiei (16)

εi =
1

ρi

(17)

and obtain:

ẋi = κi

(

Ũ ′
i (xi) − qi + ωi

)

. (18)

εiω̇i = −κi

(

ωi + Ũ ′
i (xi) − U ′

i (xi)
)

. (19)

An inspection of (18) and (19) shows that the equilibrium
for xi is same as the cooperativex∗

i in (9)-(10), and the
equilibrium for ωi is

ω∗
i = −Ũ ′

i (x∗
i ) + U ′

i (x∗
i ) . (20)

To shift this equilibrium to 0, we define

̟i := ωi + Ũ ′
i (xi) − U ′

i (xi) (21)

and rewrite (18)- (19) as

ẋ = K
(
U ′ (x) − RT h (Rx) + ̟

)

ε ˙̟ =−K



̟ − ε
∂
(

Ũ ′ (x)−U ′ (x)
)

∂x

(
U ′ (x)−RT h (Rx)+̟

)





(22)



where we use the vector notationx =
[

x1 x2 · · · xN

]T
, ̟ =

[
̟1 ̟2 · · · ̟N

]T
.

K = diag{κi} and ε = diag{εi} are diagonal matrixes of
the source controller gainsκi > 0 andεi > 0, i = 1, · · · , N ,
and U ′ (x) ∈ RN is a vector whoseith component is the
derivativeU ′

i (xi) of the utility function Ui (xi). Likewise,
h (y) ∈ RL and Ũ ′ (x) ∈ RN consist of the penalty
functionshl (yl) and uncooperative utility functions̃U ′

i (xi).
To prove asymptotic stability of(x,̟) = (x∗, 0) we use

the Lyapunov function

V =
N∑

i=1

(− (Ui (xi) − Ui (x∗
i )) + q∗i (xi − x∗

i ))

+

L∑

l=1

(
∫ yl

y∗

l

(hl (σ) − hl (y
∗
l )) dσ

)

+
1

2
̟T K−1̟

(23)

which is positive definite and radially unbounded inRN
+ , and

yields the derivative

V̇ ≤− f1 (x)
T

Kf1 (x) − ̟T ε−1̟

+ ̟T
∂
(

Ũ ′ (x) − U ′ (x)
)

∂x
̟ + ̟T f2 (x) ,

(24)

where
f1 (x) := U ′ (x) − RT h (Rx) , (25)

f2 (x) :=
∂
(

Ũ ′ (x) − U ′ (x)
)

∂x
((
U ′ (x)−RT h (Rx)

)
+K

(
−U ′ (x)+RT h (Rx)

))
.

(26)

We show in Lemma 1 below that, on any compact set of
(x,̟) that includes(x∗, 0), we can chooseε small enough
to ensureV̇ is negative definite. The conclusion of Theorem
1 follows from this lemma because, from̂x (0) = x (0), we
haveω (0) = 0 and, thus̟ (0) = −Ũ ′ (x (0)) + U ′ (x (0)),
which means that for any setΩ as in the statement of the
theorem, we can find a corresponding region of attraction
in (x,̟) coordinates, which does not depend onε. Since
V is also independent ofε, we can select a level set ofV
that encompasses this region of attraction, and designε from
Lemma 1 to rendeṙV negative definite in this level set.2
Lemma 1: Let the assumptions of Theorem 1 hold, and let
f1 (x) and f2 (x) be defined as in (25)-(26). Then, for any
compact setΛ of (x,̟) that includes(x∗, 0), there exists
ε∗ > 0 such that ifεi ∈ (0, ε∗] for all i = 1, · · · , N , then
V̇ (x) given in (24) is negative definite onΛ.
Proof: We first claim that there exists a constantδ > 0 such
that, for any compact setΛ of (x,̟) that includes(x∗, 0),

f1 (x)
T

Kf1 (x) ≥ δ ‖x − x∗‖2
. (27)

To prove this we show that the Hessian off1 (x)
T

Kf1 (x)
is positive definite atx∗. To this end, we note that

fT
1 (x)Kf1 (x) =

N∑

i=1

κif
i
1 (x)

2

and use the chain rule for the second derivative of the
function κi

(
f i
1 (·)

)2
:

∂2

(

κi

(
f i
1 (x)

)2
)

∂x2

∣
∣
∣
∣
∣
∣
x=x∗

= 2κif
i
1 (x∗)

∂2
(
f i
1 (x)

)

∂x2

∣
∣
∣
∣
∣
x=x∗

+2κi

(

∂
(
f i
1 (x)

)

∂x

)T (

∂
(
f i
1 (x)

)

∂x

)
∣
∣
∣
∣
∣
∣
x=x∗

.

Becausef i
1 (x∗) = 0 and because

∂f1

∂x
(x∗) = U ′′ (x∗) − RT ∂h

∂ (Rx)

∣
∣
∣
∣
x=x∗

R ≤ U ′′ (x∗) < 0

we conclude

∂2

(

f1 (x)
T

Kf1 (x)
)

∂x2

∣
∣
∣
∣
∣
∣
x=x∗

= 2

N∑

i=1

κi

(

∂
(
f i
1 (x)

)

∂x

)T (

∂
(
f i
1 (x)

)

∂x

)
∣
∣
∣
∣
∣
∣
x=x∗

= 2

(
∂f1

∂x

∣
∣
∣
∣
x=x∗

)T

K

(
∂f1

∂x

∣
∣
∣
∣
x=x∗

)

> 0

which proves (27).
Next, we apply Young’s Inequality [25] to the term

̟T f2 (x) in the right hand side of (24):

̟T f2 (x) ≤ 1

λ
‖̟‖2

+
λ

4
‖f2 (x)‖2

, λ > 0,

and get

V̇ ≤− ̟T



ε−1 −
∂
(

Ũ ′ (x) − U ′ (x)
)

∂x
− 1

λ
IN×N



̟

− δ

(

‖x − x∗‖2 − λ

4δ
‖f2 (x)‖2

)

.

Becausef2 (x) is zero at zero and continuously differen-
tiable, we can selectλ andε∗ such that, for allx ∈ Λ,

λ

4
‖f2 (x)‖2 ≤ 1

2
‖x − x∗‖2

1

2ε∗
IN×N −

∂
(

Ũ ′ (x) − U ′ (x)
)

∂x
− 1

λ
IN×N ≥ 0

and obtain

V̇ ≤ − 1

2ε∗
̟T ̟ − δ

2
‖x − x∗‖2

,

for any εi ∈ (0, ε∗], which concludes the proof. 2

In Theorem 1 we require that the edge supervisor setx̂ (0)
equal tox (0). However, it is not difficult to show that the
proof holds true for small errors between̂x (0) and x (0).
In implementation it may also be necessary to know how
large the gainρi must be selected. While, in principle, such



a value can be obtained from the calculation ofρ∗i in the
proof, this value may be conservative, and depends on the
class of utility functionsŨi (·) employed by uncooperative
users. A more practical value can be obtained by monitoring
whether the uncooperative rates persists and by increasing
the gainρi accordingly. A further discussion on the choice
of this gain is given in Section VI.C.

IV. PRICE ADJUSTMENT FORKELLY ’ S DUAL ALGORITHM

We next study Kelly’s dual algorithm where uncooperative
users implement, instead of (6),

xi = Ũ ′−1

i (q̃i) . (28)

We assumẽU ′−1

i (s) ≥ U ′−1

i (s), ∀s ≥ 0, which means that
the uncooperative sending rate is larger than the cooperative
rate. To counteract such uncooperative users, the supervisor
must replace the nominal price feedbackqi with

q̃i = Ũ ′
i ◦ U ′−1

i (qi) , (29)

which, when substituted in (28), results in the cooperative
rate (6). Because a direct solution of (29) would require the
knowledge ofŨ ′

i (·), which is not available to the supervisor,
we propose the dynamic algorithm

q̃i = qi + ωi, (30)

ω̇i = ρi

(
xi − U ′−1

i (qi)
)
, ωi (0) = 0, ρi > 0, (31)

depicted in Figure 3. The equilibrium of (31) is achieved
when

xi = U ′−1

i (qi) , (32)

which indeed coincides with the cooperative rate (6). We
achieve asymptotic stability of this equilibrium, again, by
designing the adaptation gainρi to be sufficiently high:

Fig. 3. Price adjustment for uncooperative users in Kelly’s dual algorithm.

Theorem 2: Consider the network (1)-(3), (6) and (28),
where Ui (xi) and Ũi (xi) are as in Theorem 1, and
Ũ ′−1

i (s) ≥ U ′−1

i (s), ∀s ∈ R+. Then, the price adjustment
algorithm (28), (31), ensures that, for any compact setΩ ⊂
RN

+ of initial conditionsp (0), there existsρ∗i > 0 such that,
if ρi > ρ∗i , thenp (t), x (t) and q̃ (t) remain bounded, and
x (t) andp (t) converge to the cooperative valuesx∗ andp∗

in (7)-(8).
The proof of Theorem 2 is similar to that of Theorem 1

and, is omitted due to space limitations.

V. I MPLEMENTATION AND SIMULATIONS

We have implemented the uncooperative framework pre-
sented in this paper in the Network Simulator (NS-2).
While we have studied both dynamic (Section III) and static
(Section IV) users, in simulations we implement the method
of Section III because of the prevalence of TCP, which is
dynamic and can be modeled as in (11) (see [1]). We added
an edge-based supervisor, which adjusts the price feedback
according to (15). The implementation of this feedback
adjustment depends upon the congestion notification policy
deployed in the network. In our simulations we present the
results with scenarios where marking (ECN) and dropping
are used as congestion notification policies.

The framework presented in this paper is independent of
the buffer management policy deployed in the network; that
is, it works with any Active Queue Management scheme
as well as with simple Drop Tail queueing. We note that,
unlike the static link assumption in Section III, AQM and
Drop-Tail in simulations make use of queue length and,
hence, are dynamic algorithms. An extension of the proof of
dynamic-source dynamic-link algorithms would be possible,
but lengthy. The stability properties observed in simulations
are indeed consistent with those predicted by Theorem 1.

We present simulation results for both single and multi-
bottleneck topologies, depicted in Figure V a) and b). All the
access links are configured to have a capacity equal to four
times that of bottleneck links. The bottleneck links capacity
and delay is fixed at 0.8Mbps and 20ms respectively unless
specifically stated. For all simulations reported in this paper,
the simulation time is 150 seconds, and rate (or throughput)
measurements are taken every 0.5 seconds. Each router has a
buffer equal to one bandwidth delay product. In setups where
the bottleneck routers have Random Early Drop (RED) buffer
management policy deployed, the corresponding maximum
and minimum threshold are set at0.8×B and0.3×B where
B is the total buffer length; the queue weight was set to 0.002
and the maximum dropping probability to 0.1.

In the multi-bottleneck topology in Figure V b), the flow
between source S1 and destination D1 traverses both the
bottleneck links, and henceforth in this paper is referred to
as along flow. The two flows between the source destination
pairs [S2-D2] and [S3-D3] go over only one bottleneck link
and, therefore, are referred to asshort flows.

We refer to flows, which under same operating conditions,
get more rate than TCP as selfish flows. This definition
is also often commonly referred to as TCP-Friendliness.



Fig. 4. Topologies used in simulations.

Since almost 90% of the traffic carried on the Internet
uses TCP, we chose TCP-Friendliness as our definition of
conformant flows. In this paper all transport protocols are
rate based. Thus, all TCP-Friendly schemes use equation
based rate control scheme (TCP Friendly Rate Control -
TFRC) presented in [26] and all selfish schemes are variants
of TFRC which have conservative decrease algorithms, i.e.
upon congestion they decrease more slowly than TCP. We
would like to refer the reader to [11] for ways to generate
selfish flows. In this paper we have also assumed that all
the flows are persistent flows, i.e. they have infinite data
to transfer. However, we will also present the results for the
scenarios where we have both persistent and short web traffic
competing for bandwidth.

We evaluate our algorithm for both single and multi-
bottleneck topologies, with various degree of flow mul-
tiplexing. We also test its robustness in the presence of
mice like web traffic and reverse path congestion. Figure
5 shows the results where RED is deployed on the routers.
In the simulation, two flows compete for bandwidth in a
single bottleneck scenario. Among these flows, the first
is TCP-Friendly withU(x) = −1/x, while the other is
uncooperative with the utility functionU(x) = −1/

√
x.

If both competing flows were TCP-Friendly, they would
have shared the bandwidth equitably. However, Figure 5 a)
shows that the uncooperative flow grabs a larger share of
the bandwidth. With our edge-based algorithm, in Figure 5
b) the two flows share the bottleneck bandwidth equitably.
Simulations with other uncooperative utility functions inthis
scenario, not presented here, yield similar results.

In the multi-bottleneck topology shown in Figure V b),
the TCP-Friendly long-flow, competes for bandwidth against
the two uncooperative short-flows. Figure 6 a) shows the
result corresponding to the cooperative setup where both the
long and short flows use TCP-Friendly rate control scheme.
Figure 6 b) shows the result for the setup where we replace
the TCP-Friendly short flows with uncooperative rate control

schemes with utility functionU(x) = −1/
√

x. We see that,
the uncooperative flows get an unfair share of the bandwidth
and almost force a traffic volume based denial of service
attack. When we employ our edge-based supervisor, with
ρ = 2.5 × 10−5, we recover the ideal bandwidth sharing
of bottleneck links, as shown in Figure 6 a). The value
of ρ is comparatively large, because dropping or marking
probability is less than 1 and so is the price adjustmentρ×e.

A. Higher Flow Multiplexing with Background Traffic and
Reverse Path Congestion

To further present the efficiency and the robustness of our
scheme we increase the number of competing flows, and
add HTTP sources to the persistent flows and also short
TCP-Friendly flows to the reverse paths. The capacity of
the bottleneck links is set to 8Mbps and that of access links
to 80Mbps. The bottleneck buffer is set to one bandwidth
delay product.

Figure 7 shows the results for the scenario where 5 TFRC
flows compete for bandwidth against selfish flows. On each
bottleneck there were 5 selfish short flows. To these persistent
flows, we added short web transfers which occupied 10%
of the bottleneck bandwidth. Further, we also setup flows
on the reverse path. Specifically, on each bottleneck in the
reverse path there were 5 flows competing for bandwidth and
thus creating congestion on the reverse path. Figure 7 shows
the throughput of one flow from each group: TFRC Long
flows, selfish short flows from Group 1 which go over the
first bottleneck only; and, finally, the selfish short flows from
Group 2 which go over the last bottleneck only.

Figure 7 a) shows the ideal sharing of the bottleneck when
the short flows are also TCP-Friendly. Figure 7 b) shows that
in the absence of any policing the uncooperative flows get
more share of the bandwidth at the expense of TFRC flows.
With our rectification algorithm (ρ as 2.5 × 10−5) the fair
share of the TFRC flows is restored; see Figure 7 c).

B. Effect of Gainρ on Rectification of Selfish Users

The performance of our edge-based rectification algorithm
depends on the gainρ in equation (15). As detailed below,
simulation studies indicate that too small or too large values
of this ρ may deteriorate the performance. Indeed, Theorem
1 disallows small values ofρ because, otherwise, the desired
two-time-scale behavior is not achieved. Although Theorem
1 allows arbitrarily large values forρ, in practice, such high-
gain leads to saturation of dropping or marking schemes, not
considered in Theorem 1.

Consider the multi-bottleneck setup shown in Figure V b).
In Figure 6 we presented simulations withρ = 2.5 × 10−5.
In Figure 8 we compare this result withρ = 10−4 (Figure 8
b)) and withρ = 10−5 (Figure 8 c)).

We note that a high value ofρ may result in “over-
penalization”, and uncooperative flows may receive even
less than their fair share. Similarly, with a very small value
of ρ the selfish users are not sufficiently penalized and
they continue to get more share of the bottleneck link(s) at
the expense of cooperative users. However, for intermediate
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Fig. 5. Single-Bottleneck Topology: Equitable sharing of bandwidth enforced by the edge supervisor.
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Fig. 6. Multi-Bottleneck scenario where (a) shows the idealbandwidth sharing (b) shows the aggravated unfair sharing in the presence of uncooperative
flows and (c) shows the rectification of uncooperative flows with our edge supervisor.
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Fig. 7. Higher flow multiplexing with background traffic and reverse path congestion in a multi-bottleneck setup.
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Fig. 8. Effect of gainρ on the steady state rates of uncooperative and TFRC flows withour edge supervisor.

values, such asρ = 2.5×10−5 in Figure 8 a), we recover the
ideal shares for the uncooperative and the cooperative users.

For all the results reported in this paper we have found
that the ideal range ofρ lies between the interval10−4 to
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Fig. 9. ECN Enabled Network

10−5. We also extensively evaluated the edge-based recti-
fication model for different value of selfishness, i.e. users
chose different values ofU(x), and found observation onρ
consistent with those reported above.

C. ECN Enabled Network

We conclude this section with the results where the RED
scheme is configured to mark the packets (instead of drop-
ping them). Figure 9 a) shows the ideal bandwidth sharing
while Figure 9 b) shows that in the presence of uncooperative
flows the resulting bandwidth sharing is unfair. When we
introduced the edge-based supervisor, withρ = 10−4, the
bandwidth is shared fairly.

VI. CONCLUSIONS

We have presented a price adjustment algorithm for both
Kelly’s primal and dual network flow control models, and
tested it on the Network Simulator. This algorithm is to be
implemented at the edge of the network and, thus, does not
require costly hardware upgrades in the entire network. It
is independent of congestion notification policy deployed
by the network, and thus, can be used with any Active
Queue Management scheme, as well as Drop Tail queueing.
Although a suitable range for the gainρ in our algorithm
was determined by simulations, a judicious choice of this
gain deserves further investigation. An on-line adaptation for
ρ may be possible, and is currently being investigated by the
authors.

REFERENCES

[1] F. Kelly, A. Maulloo, and D. Tan. Rate control in communication
networks: shadow prices, proportional fairness and stability, Journal
of the Operational Research Society, vol. 49, pp. 237–252, 1998.

[2] A. Akella, S. Seshan, R. Karp, S. Shenker and C. Papadimitriou.
Selfish Behavior and stability of the Internet: A Game Theoretic
Analysis of TCP.Proceedings of ACM Sigcomm, Aug 2002.

[3] S. Floyd and K. Fall. Promoting the Use of End-to-end Congestion
Control in the Internet.IEEE/ACM Transactions on Networking,
7(4):458-472, 1999.

[4] A. Kuzmanovic and E. Knightly. Low-Rate TCP-Targeted Denial of
Service Attacks (The Shrew vs. the Mice and Elephants).Proceedings
of ACM SIGCOMM, Aug 2003.

[5] S. Gorinsky, S. Jain, H. Vin and Y. Zhang. Robustness to Inflated
Subscription in Multicast Congestion Control.Proceedings of ACM
SIGCOMM, Aug 2003.

[6] D. Lin and R. Morris. Dynamics of Random Early Detection,Pro-
ceedings of ACM SIGCOMM, Augutst, 1997.

[7] W. Feng et. al. Stochastic Fair Blue: A Queue Management Algorithm
for Enforcing Fairness.Proceedings of INFOCOM, April 2001.

[8] R. Mahajan and S. Floyd. Controlling High-Bandwidth Flows at the
Congested Routers. In ICNP 2001.

[9] Packeteer Inc. http://www.packeteer.com .
[10] I. Stoica, S. Shenker and Hui Zhang.Core-Stateless Fair Queueing: A

Scalable Architecture to Approximate Fair Bandwidth Allocations in
High Speed Networks.SIGCOMM’98.

[11] K. Chandrayana and S. Kalyanaraman. Uncooperative Congestion
Control. Proceddings of ACM SIGMETRICS 2004.

[12] S. Low and D. Lapsley, Optimization flow control - I: basicalgorithm
and convergence,IEEE/ACM Transaction on Networking, vol. 7, no.
6, pp. 861-874, 1999.

[13] S. Kunniyur and R. Srikant. End-to-end congestion control: Utility
functions, random losses and ecn marks,Proceedings of INFOCOM
2000, Tel-Aviv, Israel, Mar. 2000.

[14] S.H. Low, F. Paganini and J.C. Doyle. Internet congestion control.
IEEE Control Systems Magazine, 22(1):28-43, 2002

[15] J. Wen and M. Arcak, A unifying passivity framework for network
flow control, IEEE Transactions on Automatic Control,vol. 49, no. 2,
pp. 162–174, 2004.

[16] L. Brakmo, S. O’Malley, and L. Peterson. TCP Vegas: New techniques
for congestion detection and avoidance.Proceedings of the SIGCOMM
1994.

[17] C. Jin, D. X. Wei and S. Low. FAST TCP: motivation, architecture,
algorithms, performance.Proceedings of IEEE INFOCOM 2004.

[18] P. Kokotovíc, H.K. Khalil and J. O’Reilly, Singular Perturbation
Methods in Control: Analysis and Design, Academic Press, 1986

[19] H.K. Khalil. Nonlinear Systems. Prentice Hall, Englewood Cliffs, NJ,
third edition, 2002.

[20] F. Paganini, J. Doyle, and S. Low, Scalable laws for stable network
congestion control,Proceedings of 2001 Conference on Decision and
Control, Orlando, FL, Dec. 2001, pp. 185-190.

[21] F. Paganini, A global stability result in network flow control, Systems
and Control Letters,vol. 46, pp. 165-172, 2002.

[22] S. Deb and R. Srikant, Global stability of congestion controllers for
the Internet, University of Illinois, Urbana, IL, InternalReport, Feb.
2002.

[23] X. Fan, M. Arcak, and J. T. Wen.Lp stability and delay robustness
of network flow control.Proceedings. of 2003 Conf. on Decision and
Control, Maui, Hawaii, December 2003.

[24] R. Srikant. The Mathematics of Internet Congestion Control.
Birkhauser, 2004.

[25] G. H. Hardy, J. E. Littlewood and G. Polya. Inequalities. Cambridge
University Press, second edition, 1988.

[26] S. Floyd, M. Handley, J. Padhye and J. Widmer. Equation-Based
Congestion Control for Unicast Applications.Proceedings of ACM
SIGCOMM 2000, Stockholm, Sweden, August 2000.


