Feedback Consolidation Algorithms for ABR
Point-to-Multipoint Connections in ATM Networks

Sonia Fahmy, Raj Jain, Rohit Goyal, Bobby Vandalore, and Shivkumar Kalyanaraman
The Ohio State University
E-mail: {fahmy,jain}@cis.ohio-state.edu
Sastri Kota
Lockheed Martin Telecommunications
Pradeep Samudra
Samsung Telecom America, Inc.

Abstract: ABR traffic management for point-to-multipoint
connections controls the source rate to the minimum rate
supported by all the branches of the multicast tree. A num-
ber of algorithms have been developed for extending ABR
congestion avoidance algorithms to perform feedback con-
solidation at the branch points. This paper discusses vari-
ous design options and implementation alternatives for the
consolidation algorithms, and proposes a number of new al-
gorithms. The performance of the proposed algorithms and
the previous algorithms is compared under a variety of condi-
tions. Results indicate that the algorithms we propose elim-
inate the consolidation noise (caused if the feedback is re-
turned before all branches respond), while exhibiting a fast
transient response.

Keywords: ATM networks, ABR service category, traffic
management, congestion control, multipoint communication

1 Introduction

ABR flow control requires the sources to send at the rate
specified by the network in feedback (resource management)
cells. For point-to-multipoint connections, feedback consoli-
dation at the branch points becomes necessary. The opera-
tion of feedback consolidation can be explained by figure 1.
The consolidation operation avoids the feedback implosion
problem, where the number of backward resource manage-
ment (BRM) cells received by the source is proportional to
the number of leaves in the multicast tree. In addition, the
allowed rate of the source should not fluctuate due to the
varying feedback received from different leaves.

SR
1 \ﬁﬁk

=FRM ”:data

Figure 1: Point-to-multipoint connections

I=BRM

0-7803-4383-2/98/$10.00 © 1998 IEEE.

In point-to-point ABR connections, the source transmits at
the minimum rate that can be supported by all the switches
on the path from the source to the destination [5]. The natu-
ral extension of this strategy for point-to-multipoint connec-
tions is controlling the source to the minimum rate that can
be supported by the switches on the paths from the source
to all of the leaves in the multicast tree. The minimum rate
is the technique most compatible with typical data require-
ments: no data should be lost, and the network can take
whatever time needed for data delivery.

A number of consolidation algorithms have been proposed in
[1,7,8,9]. Several design and implementation considerations
come into play when developing a consolidation algorithm.
The oscillations and transient response of the algorithm are
important. The algorithm must also be scalable to very large
multicast trees. The implementation complexity, feedback
delay, and the overhead of the backward RM cells should not
increase with the increase of the number of levels or leaves
of the multicast tree.

In this paper, we propose a set of consolidation algorithms
that aim at providing a fast transient response, while elim-
inating consolidation noise. We examine the performance
of the proposed algorithms, and compare it to the previous
ones in complexity, transient response; consolidation noise,
and scalability. The remainder of the paper is organized
as follows. The next two sections provide an overview of
the ABR flow control mechanism, and a summary of the
previous work on point-to-multipoint ABR flow control. A
discussion of the various design and implementation issues
involved is then presented, followed by a description of the
specific underlying switch scheme employed. An explanation
and pseudocode of the previously proposed consolidation al-
gorithms, as well as the new ones we propose, is presented
next. All the algorithms are then simulated and analyzed
under a variety of configurations. The paper concludes with
a discussion of the tradeoffs among the algorithms.

1004

2 ABR Flow Control

The available bit rate (ABR) service for data traffic in ATM
networks periodically indicates to sources the rate at which
they should be transmitting. The switches monitor their
load and compute the available bandwidth, dividing it fairly
among active flows. The feedback from the switches to the
sources is sent in resource management (RM) cells which are
generated by the sources and turned around by the destina-
tions.

The RM cells contain the source current cell rate (CCR), in
addition to fields that can be used by the switches to provide
feedback to the sources. These fields are: explicit rate (ER),
the congestion indication (CI) flag, and no increase (NI) flag.
The ER field indicates the rate that the network can support
at this particular instant. Initially, the ER field is set to a
value no greater than the peak cell rate (PCR), and the CI
and NI flags are clear. Each switch on the path reduces the
ER field to the maximum rate it can support, and sets CI or
NI if necessary [5].

A component c; is said to be downstream of another compo-
nent ¢; in a certain connection if ¢; is on the path from ¢;
to the destination. In this case, ¢; is said to be upstream of
¢j- RM cells flowing from the source to the destination are
called forward RM cells (FRMs) while those returning from
the destination to the source are called backward RM cells
(BRMs). When a source receives a BRM, it computes its
allowed cell rate (ACR) using its current ACR, the CI and
NI flags, and the ER field of the RM cell.

3 Related Work

A simple point-to-multipoint ABR algorithm was proposed
in [8). In this algorithm, a register MER (minimum ex-
plicit rate), maintains the minimum feedback indicated by
the BRM cells received from the branches. Whenever an
FRM cell is received, it is multicast to all branches, and a
BRM is returned with the MER value as the explicit rate.
MER is then reset.

This algorithm suffers from the “consolidation noise” prob-
lem when a BRM generated by a branch point does not con-
solidate feedback from all tree branches [6]. In fact, if a BRM
generated by the branch point does not accumulate feedback
from any branch, the feedback can be given as the peak cell
rate (if that branch point itself is not overloaded). In [9, 7]
some solutions to this problem are proposed.

To reduce the complexity of the scheme, [7] also proposes to
forward one of the BRM cells returned by the leaves, instead

of turning around the FRM cells of the source. Another
alternative would be to pass back the BRM cell only when

BRM cells from all branches have been received after the last
feedback. This idea is also used in [1], but the BRM cell that
is allowed to pass back to the source is the last BRM cell to
be received with a certain sequence number.

1005

4 Design Issues

As previously mentioned, there are several ways to imple- .
ment the consolidation algorithm at branch points. Each
method offers a tradeoff in complexity, scalability, overhead,
transient response, and consolidation noise. The tradeoffs
can be summarized as follows:

[A] Which component generates the BRM cells (e, turns
around the FRM cells)? Should the branch point, or should
the destination, perform this operation?

[B] Should the branch point wait for feedback from all
the branches before passing the BRM cell upstream? Al-
though this eliminates the consolidation noise, it incurs ad-
ditional complexity, and increases the transient response of
the scheme, especially after idle or low rate periods.

[C] How can the ratio of FRM cells generated by the source
to BRM cells returned to the source be controlled?

[D] How can the ratio of BRM cells in the network to the
source-generated FRM cells be controlled?

[E] How does the branch point operate when the it is also a
switch and queuing point? The coupling of the switch and
branch point functions must be considered. When should
the actual rate computation algorithm be invoked?

[F] How can the scheme be scalable? Some algorithms wait
for an FRM cell to be received to send feedback. Will the
feedback delay grow with the number of branches?

[G] How is accounting performed at the branch point? Con-
solidation algorithms use registers to store values such as the
minimum rate given by branches in the current iteration, and
flags to indicate whether an RM cell has been received since
the last one was sent. Some values, such as the minimum
explicit rate, should not be stored per output port.

[H) How are non-responsive branches handled? If the consol-
idation scheme waits for feedback from all the branches be-
fore sending a BRM to the source, an algorithm must be de-
veloped to determine when a branch becomes non-responsive
and handle this case. Such mechanisms will be the subject
of a future study.

5 The ERICA Algorithm

The ERICA algorithm is used in our simulations to calcu-
late the explicit rate (ER) feedback in RM cells based on the
load at each port. In this section, we only present the basic
features of the algorithm. For a more complete explanation
of the algorithm, refer to [2]!. The point-to-multipoint algo-
rithms are presented in the next two sections.

ERICA aims at fair and efficient allocation of the available
bandwidth to all contending sources. The ERICA scheme
periodically monitors the load on each link and determines
a load factor, z, the available capacity, and the number of
currently active connections (V(Cs). The load factor, z, is an
indicator of the congestion level of the link. The optimal op-

L All our papers and ATM Forum contributions are available through
http://www.cis.ohio-state.edu/ ~ jain/

erating point is at an overload value of one. The load factor
is calculated as the ratio of the measured input rate at the
port to the target capacity of the output link:

z+-ABR Input Rate/ABR Capacity
where

ABR Capacity+Target Utilization x Link Bandwidth —
VBR Usage — CBR Usage.
Target utilization is a parameter set to a fraction (close to,
but less than 100%).

The switch calculates the quantity:

VCShare«~CCR/ =
If all VCs change their rate to their VCShare values then,
in the next cycle, the switch would experience unit overload
(z=1).

The fair share of each VC, FairShare, is also computed as

follows:
FairShare«+~ABR Capacity/Number of Active VCs

A combination of the two quantities FairShare and
VCShare is used to rapidly reach optimal operation as fol-
lows:

ER Calculated<+ Max (FairShare, VCShare, Maximum ER

in previous interval)

Several enhancements to this algorithm avoid transient over-
loads, and take the queuing delay into consideration when
assessing the available capacity. Averaging the measured
quantities further improves the performance. These enhance-
ments are described in [2].

6 Consolidation Algorithms

This section describes some previously proposed consolida-
tion algorithms, while the next section proposes a number
of new algorithms. In the algorithms presented, ERICA (as
explained in the previous section) is employed immediately
before sending a BRM on the link. This ensures that the
most recent feedback information is sent. The algorithms
at the branch point operate as explained in the following
subsections.

6.1 Algorithm 1

This algorithm is a modified version of the algorithm in [§].
The main idea of the algorithm is that BRM cells are re-
turned from the branch point when FRM cells are received,
and contain the minimum of the values indicated by the
BRM cells received from the branches after the last BRM
cell was sent. FRM cells are duplicated and multicast to all
branches at the branch point.

A register, MER, and two flags, MCI and MNI, are main-
tained for each multipoint VC. The variables store the min-
imum of the explicit rate (ER), congestion indication (CI)
and no increase (NI) indicated in the BRM cells which were
received after the last BRM cell was sent. MER is initialized
to the peak cell rate, while CI and NI are initialized to zero.
Three temporary variables: MXER, MXCI, and MXNI are
also used when an FRM cell is received (their values do not
persist across invocations of the algorithm). They store the

1006

ER, CI and NI from the FRM cell. The algorithm operates
as follows.

Upon the receipt of an FRM cell:

1. Multicast FRM cell to all participating branches

2. Let MXER = ER from FRM cell, MXCI = CI from
FRM cell, MXNI = NI from FRM cell

3. Return a BRM with ER = MER, CI = MCI, NI = MNI
to the source

4. Let MER = MXER, MCI = MXCI, MNI = MXNI

Upon the receipt of a BRM cell:
1. Let MER = min (MER, ER from BRM cell), MCI =
MCI OR CI from BRM cell, MNI = MNI OR NI from BRM

cell
2. Discard the BRM cell

When a BRM is about to be scheduled:
Let ER = min (ER, ER calculated by ERICA for all
branches)

6.2 Algorithm 2

This algorithm is a modified version of the second algorithm
in [7]. The only change from Algorithm 1 (as described
above) is ensuring that at least one BRM cell has been re-
ceived from a branch before turning around an FRM. For this
purpose, a boolean flag, AtLeastOneBRM (initially zero), is
set to true when a BRM cell is received from a branch, and
reset when a BRM is sent by the branch point. As before,
MER, MCI, MNI, and here, AtLeastOneBRM, are stored for
each multipoint VC, and MXER, MXCI, MXNI are tempo-
rary variables.

Upon the receipt of an FRM cell:
1. Multicast FRM cell to all participating branches
2. IF AtLeastOneBRM THEN
A. Let MXER = ER from FRM cell, MXCI = CI from
FRM cell, MXNI = NI from FRM cell
B. Return a BRM with ER = MER, CI = MCI, NI =
MNI to the source
C. Let MER = MXER, MCI = MXCI, MNI = MXNI .
D. Let AtLeastOneBRM = 0

Upon the receipt of a BRM cell:

1. Let AtLeastOneBRM =1

2. Let MER = min (MER, ER from BRM cell), MCI =
MCI OR CI from BRM cell, MNI = MNI OR NI from BRM
cell

3. Discard the BRM cell

When a BRM is about to be scheduled:
Let ER = min (ER, ER calculated by ERICA for all

branches)

6.3 Algorithm 3

This is a modified version of the third algorithm in [7]. The
main idea here is that the branch point does not turn around
the FRMs, but the BRM that is received from a branch im-
mediately after an FRM has been received by the branch
point is passed back to the source, carrying the minimum
values. A boolean flag, AtLeastOneFRM, indicates that an

v

FRM cell has been received by the branch point after the
last BRM cell was passed to the source. Again, MER, MCI,
MNI, and AtLeastOneFRM are stored per multipoint VC.

Upon the receipt of an FRM cell:
1. Multicast FRM cell to all participating branches
2. Let AtLeastOneFRM =1

Upon the receipt of a BRM cell:

1. Let MER = min (MER, ER from BRM cell), MCI =
MCI OR CI from BRM cell, MNI = MNI OR NI from BRM
cell

2. IF AtLeastOneFRM THEN

A. Pass the BRM with ER = MER, CI = MCI, NI =
MNI to the source

B. Let MER = PCR, MCI = 0, MNI =0

C. Let AtLeastOneFRM = 0

ELSE Discard the BRM cell

When a BRM is about to be scheduled:
Let ER = min (ER, ER calculated by ERICA for all
branches)

6.4 Algorithm 4

A variation of this algorithm was presented in [7] as algo-
rithm 4, and another variation using sequence numbers in
RM cells was proposed in [1]. The main idea here is that
a BRM is passed to the source only when BRM cells have
been received from all branches. To count the number of
branches from which BRM cells were received at the branch
point (after the last BRM cell was passed by the branch
point), a counter, NumberOfBRMsReceived is incremented
the first time a BRM cell is received from each branch (Num-
berOfBRMsReceived is initialized to zero). As before, the
MER, MCI, MNI, and NumberOfBRMsReceived registers
are maintained per multipoint VC. The value of the Num-
berOfBRMsReceived counter is compared to the value of an-
other counter, NumberOfBranches, every time a BRM cell is
received by the branch point. If the value of NumberOf-
BRMsReceived is equal to NumberOfBranches, the BRM
cell is passed back to the source, carrying the values of the
MER, MCI and MNI registers. [NumberOfBranches stores
the number of branches of the point-to-multipoint VC at this
branch point. It is also stored for each VC, and initialized
during connection setup. In addition, if leaf initiated join
is allowed (as in UNI 4.0), NumberOfBranches must be up-
dated every time a branch is added to a branch point.]

A fiag, BRMReceived, is needed for each branch to indicate
whether a BRM cell has been received from this particular
branch, after the last BRM cell was passed. The flag is stored
for each output port and not for each VC, since it is needed
for each branch. Note that a timeout mechanism must be
implemented to ensure that BRM cell flow is not stopped in
the case of non-responsive branches.

Upon the receipt of an FRM cell:
Multicast FRM cell to all participating branches

Upon the receipt of a BRM cell from branch i:
1. IF NOT BRMReceived; THEN

A. Let BRMReceived; = 1
B. Let NumberOfBRMsReceived = NumberOfBRMsRe-
ceived + 1
2. Let MER = min (MER, ER from BRM cell), MCI =
MCI OR CI from BRM cell, MNI = MNI OR NI from BRM
cell
3. IF NumberOfBRMsReceived is equal to NumberOf-
Branches THEN
A. Pass the BRM with ER = MER, CI = MCI, NI =
MNI to the source
B. Let MER = PCR, MCI = 0, MNI = 0
C. Let NumberOfBRMsReceived = 0
D. Let BRMReceived = 0 FOR all branches
ELSE Discard the BRM cell

‘When a BRM is about to be scheduled:
Let ER = min (ER, ER calculated by ERICA for all
branches)

7 New Algorithms

The main problem with algorithm 4 described in the previous
section is its slow transient response. Even when excessive
overload has been detected, the algorithm has to wait for
feedback from (possibly distant) leaves before indicating the
overload information to the source. By that time, the source
might have transmitted a large number of cells (which would
be dropped due to buffer overflow), leading to performance
degradation. This situation is especially problematic when
the source has been idle for some time, and then suddenly
sends a burst, so there are no RM cells initially in the net-
work.

The main idea behind the algorithms presented next is that
the slow transient response problem should be avoided when
an overload situation has been detected. In this case, there
is no need to wait for feedback from all the branches, and the
overload should be immediately indicated to the source. In
cases of underload indication from a branch, it is better to
wait for feedback from all branches, since other branches may
be overloaded. This is somewhat similar to the idea behind
the backward explicit congestion notification (BECN) cells
sent by the switches.

Overload is detected when the feedback to be indicated is
much less than the last feedback returned by the branch
point (the “much less” condition can be tested using a mul-
tiplicative factor). An alternative method would be to com-
pare the feedback to be indicated to the current cell rate
(CCR) or ACR of the VC. Although this may be better be-
cause it accounts for upstream bottlenecks, and prevents the
transmission of unnecessary BRM cells in such cases, the
CCR information may be stale due to the delay from the
source to the branch point (it may also be much larger when
the source becomes idle or becomes a low rate source after

the last FRM was sent), and a large number of BRMs may
be sent in such cases. The last feedback indicated by the

branch point is a more current value. The minimum of the
CCR and last feedback given can be used in the comparison,
but this involves some additional complexity, and may slow

1007

down the overload response when the CCR happens to have
been small, but is currently large.

Note that when a BRM cell is returned due to overload de-
tection before feedback has been received from all branches,
the counters and the register values are not reset.

7.1 Fast Overload Indication (Algorithm 5)
In this algorithm, the LastER register maintains the last
explicit rate value returned by the branch point (LastER is
initialized to the initial cell rate (ICR) of the connection).
LastER is stored per multipoint VC.

Two temporary variables: SendBRM and Reset are used.
SendBRM is set only if a BRM cell is to be passed to the
source by the branch point. Reset is false only if a BRM
cell is being used to indicate overload conditions, and hence
the register values should not be reset. FRMminusBRM is
only used for accounting purposes, and will not exist in a
real implementation.

Upon the receipt of an FRM cell:
1. Multicast FRM cell to all participating branches
2. Let FRMminusBRM = FRMminusBRM + 1

Upon the receipt of a BRM cell from branch i:
1. Let SendBRM = 0
2. Let Reset = 1
3. IF NOT BRMReceived; THEN
A. Let BRMReceived; = 1
B. Let NumberOfBRMsReceived = NumberOfBRMsRe-
ceived + 1
4. Let MER = min (MER, ER from BRM cell), MCI =
MCI OR CI from BRM cell, MNI = MNI OR NI from BRM
cell
5. IF MER << LastER THEN (* overload is detected *)
A. IF NumberOfBRMsReceived < NumberOfBranches
THEN
1. Let Reset =0
B. Let SendBRM = 1
ELSE IF NumberOfBRMsReceived is equal to Num-
berOfBranches THEN
A. Let SendBRM =1
6. IF SendBRM THEN
A. Pass the BRM with ER = MER, CI = MCI, NI =
MNI to the source
B. IF Reset THEN
1. Let MER = PCR, MCI = 0, MNI =0
2. Let NumberOfBRMsReceived = 0
3. Let BRMReceived = 0 FOR all branches
C. Let FRMminusBRM = FRMminusBRM — 1
ELSE Discard the BRM cell

When a BRM is about to be scheduled:

1. Let ER = min (ER, ER calculated by ERICA for all
branches)

2. Let LastER = ER

7.2 RM Ratio Control (Algorithm 6)
The previous algorithm may increase the BRM cell over-
head, since the ratio of source-generated FRM cells to BRM

cells received by the source can be more than one. To avoid
this problem, we introduce the register SkipIncrease which is
maintained for each multipoint VC (and initialized to zero).
SkipIncrease is incremented whenever a BRM cell is sent be-
fore feedback from all the branches has been received. When
feedback from all leaves indicates underload, and the value
of the SkipIncrease register is more than zero, this particular
feedback can be ignored and SkipIncrease is decremented.
Note that the value of the SkipIncrease counter will not
increase to large values, since the congestion avoidance al-
gorithm (such as ERICA) arrives at the optimal allocation
within few iterations, and the rate allocations cannot con-
tinue decreasing indefinitely. Our analysis and simulations
have shown that the counter never exceeds small values and
quickly stabilizes at zero. A maximum value can also be
enforced by the algorithm.

Upon the receipt of an FRM cell:

1. Multicast FRM cell to all participating branches
2. Let FRMminusBRM = FRMminusBRM + 1

Upon the receipt of a BRM cell from branch i:
1. Let SendBRM = 0
2. Let Reset = 1
3. IF NOT BRMReceived; THEN
A. Let BRMReceived; = 1
B. Let NumberOfBRMsReceived = NumberOfBRMsRe-
ceived + 1
4. Let MER = min (MER, ER from BRM cell}), MCI =
MCI OR CI from BRM cell, MNI = MNI OR NI from BRM
cell
5. IF MER, > LastER AND SkipIncrease > 0 AND Num-
berOfBRMsReceived is equal to NumberOfBranches THEN
A. Let SkipIncrease = SkipIncrease — 1
B. Let NumberOfBRMsReceived = 0
C. Let BRMReceived = 0 FOR all branches
ELSE IF MER << LastER THEN
A. IF NumberOfBRMsReceived < NumberOfBranches
THEN
1. Let SkipIncrease = Skiplncrease + 1
2. Let Reset = 0
B. Let SendBRM = 1
ELSE IF NumberOfBRMsReceived is equal to NumberOf-
Branches THEN
A. Let SendBRM =1
6. IF SendBRM THEN
A. Pass the BRM with ER = MER, CI = MCI, NI =
MNI to the source
B. IF Reset THEN
1. Let MER = PCR, MCI = 0, MNI = 0
2. Let NumberOfBRMsReceived = 0
3. Let BRMReceived = 0 FOR all branches
C. Let FRMminusBRM = FRMminusBRM - 1
ELSE Discard the BRM cell

When a BRM is about to be scheduled:

1. Let ER = min (ER, ER calculated by ERICA for all
branches)

2. Let LastER = ER

1008

7.3 Immediate Rate Calculation (Algo-
rithm 7)

The previously discussed algorithms can offer very fast con-
gestion relief when an overload is detected in a branch of the
multicast tree. However, they do not account for the poten-
tial overload situation at the branch point itself, since if the
branch point is a switch, the ERICA algorithm is only per-
formed when the BRM cell is about to be scheduled on the
link. In cases when the branch point is itself a switch and a
queuing point, the immediate rate calculation option invokes
ERICA whenever a BRM is received, and not just when a
BRM is being sent. Hence overload at the branch point can
be detected and indicated according to the fast overload indi-
cation option as previously described. This option, however,
may involve some additional complexity.

The algorithm presented next is the same as Algorithm 6
in the previous subsection, except for the addition of the
ERICA invocation (italicized below).

Upon the receipt of an FRM cell:
1. Multicast FRM cell to all participating branches
2. Let FRMminusBRM = FRMminusBRM + 1

Upon the receipt of a BRM cell from branch i:
1. Let SendBRM = 0
2. Let Reset =1
3. IF NOT BRMReceived; THEN
A. Let BRMReceived; = 1
B. Let NumberOfBRMsReceived = NumberOfBRMsRe-
ceived + 1
4. Let MER = min (MER, ER from BRM cell), MCI =
MCI OR CI from BRM cell, MNI = MNI OR NI from BRM
cell
5. Let MER = min (MER, minimum ER calculated by ER-
ICA for all branches)
6. IF MER > LastER AND SkipIncrease > 0 AND Num-
berOfBRMsReceived is equal to NumberOfBranches THEN
A. Let SkipIncrease = SkipIncrease — 1
B. Let NumberOfBRMsReceived = 0
C. Let BRMReceived = 0 FOR all branches
ELSE IF MER << LastER THEN
A. IF NumberOfBRMsReceived < NumberOfBranches
THEN
1. Let SkipIncrease = SkipIncrease + 1
2. Let Reset = 0
B. Let SendBRM =1
ELSE IF NumberOfBRMsReceived is equal to NumberOf-
Branches THEN
A. Let SendBRM =1
7. IF SendBRM THEN
A. Pass the BRM with ER = MER, CI = MCI, NI =
MNI to the source
B. IF Reset THEN
1. Let MER = PCR, MCI =0, MNI = 0
2. Let NumberOfBRMsReceived = 0
3. Let BRMReceived = 0 FOR all branches
C. Let FRMminusBRM = FRMminusBRM — 1
ELSE Discard the BRM cell

When a BRM is about to be scheduled:

1. Let ER = min (ER, ER calculated by ERICA for all
branches)

2. Let LastER = ER

8 Performance Analysis

This section provides a performance comparison among all
the consolidation algorithms, in a variety of configurations
with bursty and non-bursty traffic, with and without variable
bit rate (VBR) background, and with various link lengths,
bottleneck locations, and number of leaves. A large number
of other configurations was also tested (see [3, 4] for some
of the configurations), but only a sample of the results is
shown here. In particular, configurations with a large num-
ber of leaves at varying distances in the multicast tree were
simulated, and the results were consistent.

8.1 Parameter Settings
Throughout our experiments, the following parameter values
are used:

[1] All links have a bandwidth of 155.52 Mbps
(149.76 Mbps when SONET overhead is accounted for).

[2] All point-to-multipoint traffic flows from the root to
the leaves of the tree. No traffic flows from the leaves to the
root, except for RM cells. The same applies for point-to-
point connections.

[3] All sources are deterministic, i.e., their start/stop times
and their transmission rates are known. The bursty traffic
sources send data in bursts, where each burst starts after a
small request has been received from the client. VBR sources
are on for 20 ms and off for 20 ms.

[4] The source parameter rate increase factor (RIF) is set
to one, to allow immediate use of the full explicit rate in-
dicated in the returning RM cells at the source. Initial cell
rate (ICR) is also set to a high value (almost peak cell rate).
These factors are set to such high values to simulate a worst
case load situation.

[5] The source parameter transient buffer exposure (TBE)
is set to large values to prevent rate decreases due to the
triggering of the source open-loop congestion control mech-
anism. This was done to isolate the rate reductions due to
the switch congestion control from the rate reductions due
to TBE.

[6] The switch target utilization parameter was set at 90%.
The switch measurement interval was set to the minimum of
the time to receive 100 cells and 1 ms.

8.2 Simulation Results

CR

Swl Sw2 dSwl

@/ 1000 Kem
1000 Kon 1000 Ken @ i

Figure 2: WAN parking lot configuration with bursty, infinite
and VBR connections

IS

1009

This section discusses the performance of the seven consol-
idation algorithms by comparing them in a set of configu-
rations. First, the performance of the seven different algo-
rithms was tested in a situation where there is both variable
capacity and variable demand. These situations offer the
toughest challenge for rate allocation algorithms [4]. The
first configuration simulated is shown in figure 2. The source
indicated by W is a bursty source, I is a persistent (infinite)
source, while V is a VBR source. Note that the high initial
cell rate (ICR) and rate increase factor (RIF) [5] values are
the reason for the unusually large queues seen for all algo-
rithms.

The source ACR graphs (not shown here) for algorithms 1,
2, and 3 indicate many fluctuations and inaccurate (around
140 Mbps) feedback given in the initial 150 ms. This leads
to large queues (>5000 cells with every VBR burst). Al-
gorithm 4 gives more accurate feedback, but the feedback
is given after around 50 ms, which results in initially large
queues (since ICR is large). Algorithms 5 and 6 produce
identical results to algorithm 4, since the bottleneck link is
attached to the branch point. Algorithm 7, on the other
hand, exhibits a very fast transient response, and gives rela-
tively accurate feedback to both sources. The initial queues
caused by high ICR, as well as the queues with every VBR
burst are much smaller). Hence, it offers the best perfor-
mance since it combines the benefits of algorithm 4 with a

fast transient response.
CS? sk [|

8 -
Sl wl Sw2 e Sw3 Swi

Figure 3: Chain configuration

The chain configuration, illustrated in figure 3 consists of a
point-to-multipoint connection where one of the links on the
route to the farthest leaf is the bottleneck link. Also the link
lengths increase by an order of magnitude in each of the last
two hops.

As seen in figures 4 through 10, this configuration is an ideal
configuration for illustrating the consolidation noise problem.
The problem is severe for algorithms 1, 2 and 3 (especially
3) (see figures 4 through 6), and leads to rate oscillations,

instability, unbounded queues and unfairness against source
S4 whose rate remains at half of the bandwidth, while the

rate of S1 continues to oscillate around a mean of about
103 Mbps. Although using a scheme such as ERICA+ leads
to stability and bounded queues in this case, the persistent
rate oscillations result in unacceptable performance and un-
fairness (the problem can be mitigated by using small RIF
values, but this slows down rate increases). Algorithms 4, 5
and 6 (figures 7 through 9) avoid the noise completely, but
suffer from a slow transient response. The rate of the source
S1 only drops after around 60 ms, and by that time, large

1010

WAN Chain: ACRs

ACR for $1 ——
160 + ACK for 54 -

ACRs

200 300 500 660
Time in milliseconds

Figure 4: Results for a Chain configuration [Algorithm 1]

e ot
1R i

‘WAN Chain: ACRs

-

ACRfor 51 —
160 [ACR for §4 -~

ACRs

[100 200 300
Time in milliseconds

Figure 5: Results for a Chain configuration [Algorithm 2]

WAN Chain: ACRs
186 T T — T

ACR for S1 ~——
160 ACR for S¢ -

ACRs

L] 100 200 300 400 500 600
Time in milliseconds

Figure 6: Results for a Chain configuration [Algorithm 3]

e L0,

WAN Chain: ACRs
180 T T —

ACR for §1 — |
ACR for $4 ~-—-

4

ACRs

0 L L —

o 100 200 300 400 500 600
Time in milliseconds

Figure 7: Results for a Chain configuration [Algorithm 4]

pRE—

15000 X0

WAN Chain: ACRs

ACR for ST —
ACR for 54

ACRs

. .
100 200 300 400 500 600
Time in milliseconds

Figure 8: Results for a Chain configuration [Algorithm 5]

||||| ot 000

WAN Chain: ACRs

ACR for §1 -——
ACR for 54 1

ACRs

100 200 300 400 500 600
Time in milliseconds

Figure 9: Results for a Chain configuration [Algorithm 6]

queues have built up at the switches). Algorithm 7 yields
optimal performance in this case, since the rate of the source
S1 immediately drops to its optimal value, as soon as the
overload is detected.

Observe that algorithms 5 and 6 also yield near optimal per-
formance (like algorithm 7) if the destination dS3 was fur-
ther than dS1, as in the configuration in figure 11. Here, the
chain configuration is modified such that the bottleneck link
is closer to the branch point at switch Sw2 than another leaf,
namely dS3.

In this case (figure is not shown here), algorithm 4 wastes a
long time waiting for feedback from dS3, while it has already
received the bottleneck feedback from Sw3. Algorithms 5, 6,
and 7 send the feedback as soon as the overload situation
is indicated by the BRM cell coming from switch Sw3, and

WAN Chain: ACRs

ACR for 81 — |
ACR for 84 ——

ACRs

I

100 200 300 400 500 600
Time in milliseconds

Figure 10: Results for a Chain configuration [Algorithm 7)

1011

y

500 Ken
3000 Km

o

50Km

2000 Km

Swl Sw2 Swl Swd

@_

50 Km

50 K
ds2

Figure 11: Modified chain configuration

do not needlessly wait for the BRM from dS3. Hence, the 3
new algorithms perform near optimally since the rate of the
source S1 goes to the optimal value after only around 20 ms
for algorithms 5 and 6, and less than 10 ms for algorithm
7. The maximum queue length is also much smaller than
for algorithm 4 (> 16000 cells): for algorithms 5 and 6, it is
around 7000 cells, and for algorithm 7, it is only 3500 cells.

We observed a similar, but more pronounced, behavior when
we simulated configurations with a larger number of leaves at
varying distances and at varying levels of the multicast tree.
The situation was much worse in those cases with algorithms
1, 2, and 3, which had much more severe noise problems.
Algorithm 4 had an eztremely slow transient response, while
algorithms 5, 6, and especially 7 quickly reached the optimal
values, and the queues at the switches were small.

9 Comparison of the Algorithms

This section summarizes the conclusions from the compar-
ison of the various algorithms. All the algorithms preserve
the fairness and efficiency of the point-to-point congestion
avoidance algorithm employed. We compare the space and
time complexity, transient response, consolidation noise, al-
gorithm overhead and scalability, and discuss the interoper-
ability of various algorithms.

9.1 Implementation Complexity

Algorithms 1 and 2 are complex to implement because the
branch point has to turn around the RM cells. This is
somewhat similar to the Virtual Source/Virtual Destination
(VS/VD) concept. Most studies argue that turning around
RM cells has a high implementation complexity.

Algorithm 3 is definitely the simplest algorithm to im-
plement, since it does not turn around RM cells, and it
keeps minimal per-VC accounting information. Algorithm
4 is more complex since it has to maintain the number of
branches and the number of branches from which BRMs have
been received, and compare those numbers. In addition, it
has to maintain a bit for each output port to denote whether
a BRM cell has been received from this branch, and some
timeout-related values.

Algorithms 5 and 6 are slightly more complex since they may

also store the last ER sent by the branch point. Alterna-
tively, they can use the CCR of the source, which is already

stored and used by most congestion avoidance algorithms (it
is used in the ERICA algorithm which we have employed in
this study). Hence, the additional complexity mainly stems

from the comparison of the MER value to the last ER sent or
the CCR value, and maintaining the SkipIncrease counter.
The additional comparison and integer register do not incur
much overhead.

Algorithm 7 is somewhat more complex than algorithms 5
and 6, since it invokes the ERICA algorithm for all the
branches whenever a BRM cell is received by the branch
point, and not only when a BRM cell is to be sent.

9.2 Transient Response

Algorithm 1 exhibits a very fast transient response. Algo-
rithms 2 and 3 also have a reasonable transient response,
since, even if there are no RM cells in the network, the feed-
back is quickly returned on the first BRM arrival.

Algorithm 4 has a slow transient response, since it waits for
feedback from all the leaves before sending BRMs. This is
especially severe in cases when there are few or no RM cells
already in the network, such as during startup periods and
for bursty sources. Therefore feedback can be delayed up to
a function of the longest round trip times of the leaves. Algo-
rithms 5, 6 and 7 tackle this problem for overload situations.
The transient response of the schemes is very fast when an
overload is detected downstream (for algorithms 5 and 6),
or at this branch and downstream (for algorithm 7). In such
cases, the transient response of the scheme is reasonably fast,
and potential cell loss and retransmissions are alleviated.

9.3 Consolidation Noise

Algorithms 1, 2, and 3 suffer from severe consolidation noise
problems. In particular, algorithms 1 and 3 suffer from un-
acceptable consolidation noise in some cases (recall figures 4
and 6). Algorithm 2 somewhat alleviates these problems,
since BRMs are not sent if no feedback has been received
from any of the downstream components. However, it still

exhibits considerable noise.

Algorithms 4, 5, 6, and 7 eliminate this problem by waiting
for feedback from all branches. Although algorithms 5, 6,
and 7 do not wait for feedback from all leaves in cases of over-
load, this does not introduce noise, since the RM cells that
are sent faster than the usual cells carry overload informa-
tion, which would have been conveyed by the next minimum
value anyway.

9.4 Scalability Issues

Algorithms should be scalable in the sense that their over-
head and feedback delay should not grow with the growth of
the number of branch points or levels of the multicast tree.

9.4.1 RM cell overhead

The number of FRM cells generated by the source and the
number of BRM cells received by the source should be ap-
proximately the same. Algorithm 1 generates a BRM cell
at the branch point for every FRM cell it receives, thereby
guaranteeing that the BRM to FRM ratio remains one. Al-
gorithms 2 and 3 maintain a BRM to FRM ratio of less than
or equal to 1 as follows. Algorithm 2 generates a BRM for
an FRM only if a BRM has been received from a leaf since
the last BRM was sent by the branch point. Algorithm 3

allows a BRM to pass to the source only if an FRM cell has
been received by the branch point after the last BRM cell
was forwarded. Therefore both algorithms maintain a ratio
that is less than or equal to one (actually, it is strictly less
than one for algorithm 2, since the first FRM cell will never
be turned).

Algorithm 4 also maintains a ratio of less than or equal to
one, since one BRM cell is returned when BRM cells have
been received from all branches. Algorithm 5 does not guar-
antee that the ratio remains at 1, since RM cells carry-
ing overload indication are allowed to quickly return to the
source. Algorithms 6 and 7 fix this problem by maintain-
ing a counter that is incremented for every extra RM cell
passed, and then decremented (and the BRM cell discarded)
in cases of RM cells carrying underload information, if the
counter exceeds zero. Hence, over the long run, the ratio is
maintained at one. The counter cannot increase indefinitely,
since the rates cannot decrease indefinitely. In all cases we
have examined, the counter value was always small, because
ERICA quickly converged.

In addition to the BRM to FRM ratio at the source, the
number of BRM cells generated in the network per source-
generated FRM cell should be controlled. In algorithms 1
and 2, the switch turns around the FRM cells and produces
BRM cells, but the same FRM cells are multicast to other
branch points and to the leaves, and these also turn around
the FRMs. Hence, the number of BRMs in the network
can grow with the increase of the number of branch points.
This is undesirable. Algorithms 3, 4, 5, 6, and 7 solve this
problem, since switches do not turn around the FRM cells.

9.4.2 Sensitivity to the maximum number of branch

points on a path (levels of the tree)
Algorithm 1 waits for an FRM cell to arrive before it can send
the feedback information it has consolidated from the BRM
cells. This has to be done at every branch point, leading
to a delay that increases with the number of levels of the
multicast tree. Algorithm 2 suffers from the same drawback,
since the algorithm also sends a BRM cell at the branch point
when an FRM cell is received.

Algorithm 3 is less sensitive to the number of levels of the
multicast tree. The BRM cell is passed to the source only
if an FRM cell has been received since the last BRM cell
was sent by the branch point. However, it is passed without
additional delay.

Algorithms 4, 5, 6, and 7 are slightly sensitive to the multi-
cast tree levels since BRM cells from all branches are consol-
idated at every branch point. However, the delay (the time
between the transmission of the FRM cell at the source until
the source receives the corresponding BRM cell) is mainly
dependent on the round trip times from the source to the
leaves at that particular time. The round trip times to the
leaves can vary with time, dependent on the queuing delay
of the switches on the path of the multicast tree. More than
one leaf can have an effect on that delay since BRM cells
arrive asynchronously at the branch points.

1012

Table 1: Comparison of consolidation algorithms

Algorithm 1 2 3 4 5 6 7
Complexity High High Low Medium >Medium >Medium >>Medium
Transient Fast for Fast for Very fast
Response Fast Medium Medium Slow overload overload for overload
Noise High Medium High Low Low Low Low
BRM:FRM at Root 1 <1 <1 <1 may be>1 lim =1 lim =1
Branch point sensitivity High High Low Medium >Medium Medium Medium

9.5 Interoperability Issues

The various consolidation algorithms should be able to inter-
operate with each other if no one algorithm is standardized.
It seems that all the algorithms can interoperate smoothly
with each other, but the performance of a network with dif-
ferent algorithms at the different branch points, and point-
to-multipoint VCs that branch at several branch points with
different algorithms, will need further study if a consolida-
tion algorithm is not standardized. This will be one of the
areas of our future research work.

10 Conclusions

Table 1 shows a summary of the results of the comparison
between the consolidation algorithms. In terms of complex-
ity, algorithm 3 is clearly the simplest. Algorithms 1 and
2 are simple, except that the RM turn around operation
is expensive. Algorithm 4 introduces additional complexity
to algorithm 3, since it maintains per-branch variables and
performs comparisons. Algorithm 5 introduces a little more
complexity to 4; algorithm 6 introduces a little more to 5;
and algorithm 7 introduces some more to 6, but most of the
increments are of little complexity.

The transient response of algorithm 1 is fast, but can be er-
roneous. Algorithms 2 and 3 offer medium response, while
algorithm 4 is clearly slow. Algorithms 5, 6, and especially 7,
have a fast response when overload is detected. Consolida-
tion noise is a problem with algorithms 1, 2, and 3, especially
1 and 3. The other algorithms overcome this problem.

As for RM cell overhead, the ratio of BRM cells received by
the source to FRM cells sent by the source is maintained
at unity by algorithm 1. It is less than one for algorithm 2
(at least the first FRM is not returned), and is less than or
equal to one for algorithms 3 and 4. Algorithm 5 introduces
additional BRM cells in case of overload, while algorithms 6
and 7 ensure the ratio is one over the long run (lim in the
table means the limit as time goes to infinity).

Finally, the sensitivity of algorithms 1 and 2 to the number
of branch points and the levels of the multicast tree is high
due to the additional delay waiting for an FRM cell at each
branch point, and the additional BRM cells that are turned
around at each level. Algorithms 3 to 7 (especially algorithm
3) are somewhat less sensitive to this.

The comparison clearly indicates that algorithms 1 and 2

suffer from problems. Algorithm 3 is good, except for the
consolidation noise problems which lead to unacceptable per-
formance as seen in figure 6. Algorithm 4 provides reason-
able performance, but has a slow transient response, which
is overcome by the algorithms we proposed (5, 6 and 7). Al-
gorithm 4 and the new algorithms are slightly more complex
than algorithm 3, but this can be well worth the performance
benefits gained, especially with algorithm 7. Algorithm 7
avoids congestion, while eliminating the consolidation noise
problem.

References

[1] Y-Z Cho and M-Y Lee. An efficient rate-based algorithm
for point-to-multipoint ABR service. IEEE GLOBE-
COM, November 1997.

[2] R. Jain et al. ERICA switch algorithm: A complete de-
scription. ATM Forum 96-1172; August 1996.

[3] S. Fahmy et al. Feedback consolidation algorithms for
ABR point-to-multipoint connections. ATM Forum 97-
0615, July 1997.

S. Fahmy et al. Performance analysis of ABR point-to-
multipoint connections for bursty and non-bursty traffic
with and without VBR background. ATM Forum 97-
0422, April 1997.

The ATM Forum. The ATM forum
fic management specification version
ftp:/ /ftp.atmforum.com/pub/approved-specs/af-tm-
0056.000.ps, April 1996.

[4]

traf-
4.0.

D. Hunt. Open issues for ABR. point-to-multipoint con-
nections. ATM Forum 95-1034, August 1995.

W. Ren, K-Y Siu, and H. Suzuki. On the performance of
congestion control algorithms for multicast ABR service
in ATM. In Proceedings of IEEE ATM’96 Workshop, San
Francisco, August 1996.

L. Roberts. Rate based algorithm for point to multipoint
ABR service. ATM Forum 94-0772R1, November 1994.

[9] K-Y Siu and H-Y Tzeng. Congestion control for multicast
service in ATM networks. In Proceedings of the IEEE
GLOBECOM, volume 1, pages 310-314, 1995.

[8]

1013

