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Abstract

The Internet today offers primarily a best-effort service. Research and technology

development efforts are currently underway to allow provisioning of better than best-

effort Quality of Service (QoS) assurances. In this article, we develop a spot pricing

framework for intra- domain expected bandwidth contracts with loss based QoS

guarantees. The framework builds on a nonlinear pricing scheme for cost recovery

from earlier work. A utility based options pricing approach is developed to account

for the uncertainties in delivering loss guarantees. Application of options pricing

techniques in Internet services provides a mechanism for fair risk sharing between

the provider and the customer, and may be extended to price other uncertainties in

QoS guarantees.
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1 INTRODUCTION

The Internet today mostly provides a best-effort service. Significant improvements in the

network technology over the past few years is enabling Internet Service Providers (ISPs) to

incorporate better Quality of Service (QoS ) assurances for the traffic within their network

domains. One way to achieve better QoS in a network domain is to overprovision bandwidth

in the network. However, overprovisioning may not always be an available choice. For exam-

ple, currently bandwidth capacity in wireless networks and many access networks continues

to be relatively limited [1] [2]. In the long run, overprovisioning across the board as a facili-

tator for QoS assurances will be an inefficient solution with practical limitations as increase

in demand for bandwidth services is made possible by the growth of broadband access and

metro area networks. Moreover, high costs of network deployment and management imply

that providers have strong disutility for poor utilization of network resources.

In this article, we develop a spot pricing framework for intra-domain expected bandwidth

assured service with loss rate guarantees for enterprise customers. This lays the foundation

for a pricing framework for end-to-end, as well as more complex QoS guaranteed bandwidth

services for enterprise customers. The framework develops upon a nonlinear pricing model

from earlier work [3], and incorporates a risk component in pricing. The focus of this paper is

on pricing of risk. In the Internet, the QoS delivered to a customer may deviate from contract

specifications, because the QoS experienced by each individual customer is affected by usage

of the network resources by other customers, over which the provider does not have complete

control. We develop a framework to assign a price to the risk of providing loss-based QoS
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assurance using options-based evaluation techniques. The framework is implementable on

the DiffServ architecture, and can be overlayed on schemes which are capable of providing

intra-domain assured services, such as, Distributed Dynamic Capacity Contracting [4].

The article proceeds as follows. Section 2 provides a brief review of state-of-the-art for band-

width pricing and relevant work in options pricing, as well as advancements for supporting

QoS towards the realization of assured bandwidth provision. In Section 3, we discuss the

two-component approach to pricing QoS guaranteed services. Section 4 focusses on network

modeling of the option-based pricing approach for pricing the risk in loss-based QoS assured

services. Finally, discussion of simulation results and prospects for future research are given

in Sections 5 and 6, respectively.

2 LITERATURE REVIEW AND BACKGROUND

2.1 Technology to Support Quality of Service

In the Internet, due to a packet-switching implementation, in contrast with a leased line

or a circuit-switching one, traffic is not perfectly isolated due to the nature of scheduling

mechanisms employed. Close monitoring and traffic engineering mechanisms are needed to

effect delivery of the desired QoS [5].

QoS deployment in multi-domain, IP-based inter-networks has been an elusive goal partly

due to complex deployment issues [6]. Therefore, from an architectural standpoint, contem-

porary QoS research has recognized the need to simplify and de-couple building blocks to

promote implementation and inter-network deployment. The IntServ [7] de-coupled end-to-

end support from network support for QoS. RSVP [8] de-coupled inter-network signaling

from routing. IntServ is not scalable because of the complexity and overheads caused by per

flow control and data-plane functions in the entire network. The DiffServ services [9][10] and

core-stateless fair queuing (CSFQ) [11] further simplified core architecture and moved data-
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plane complexity to the “edges,” and allowed a range of control-plane options [12][13][8].

More recently, overlay networks [14][15] have also been proposed as alternatives for end-

to-end QoS delivery mechanism that may overcome the QoS problems at peering points

in DiffServ or CSFQ. Therefore, concepts are being developed to address the challenge of

provisioning QoS assurances at various levels, management of packets, configuration of in-

ternetworks, and service delivery modes to customers; pilot studies are in progress that test

these concepts [16].

2.2 Related Work in Pricing

Internet pricing has been an active research area in the past decade. Various pricing schemes

have been studied and proposed in literature. Interested readers are referred to survey studies

[17][18][19] for more comprehensive discussions of literature on Internet pricing.

Pricing schemes can be classified as being static or dynamic based on whether prices change

with the state of the network. Static pricing, including some class dependent pricing schemes

[20] as well as the traditional flat rate or time-of-the-day pricing [21], does not react to the

congestion state of the network, and therefore is not an efficient mechanism for leveraging

network resources. On the other hand, dynamic pricing schemes such as Smart Market [22],

Proportional Fair Pricing Schemes [23], Priority Pricing [24], take into account the state

of the network. Dynamic pricing schemes have been shown to be useful in formulating the

provider’s pricing decisions when the provider and customers act to maximize their own

benefits [23], or identifying the value of services to customers [22]. A comparative study of

different dynamic pricing schemes can be found in [25]. Dynamic pricing schemes proposed

thus far are in general computationally expensive and may raise scalability concern, as price

decisions are made online, and prices are computed very frequently over time.

QoS considerations have received ever increasing attention in the various pricing approaches

proposed. Recently, there have been a few studies on pricing of DiffServ type services, both
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within a provider’s domain [26][27][28][29][31][32] and for end-to-end services [28][33][34].

Li et al. [28] propose a hierarchical pricing scheme in DiffServ with end-to-end admission

control, which uses congestion pricing within each provider’s domain. However, such con-

gestion prices are more geared to support network management tasks, such as regulating

traffic customers send into the network or admission control, and are not necessarily the

monetary prices a provider will charge customers. O’Donnell and Sethu [29] propose to price

packets according to network resources each packet consumes as well as the opportunity

cost it produces to other customers in terms of queuing delays. This pricing scheme is com-

plex, as it requires scheduling information and price computation for each packet at every

network node. Savagaonkar et al. [32] develop online pricing schemes where customers’ de-

mand is modeled as being driven by an underlying traffic-state process. As described earlier,

complexity is also an issue for such dynamic pricing schemes, due to the complicated price

updating algorithms and the need for frequent online price determinations.

To address the complexity issue in pricing, we study pricing between the provider and cus-

tomers on a coarser timescale, i.e. pricing for service contracts. In this sense, our work is

closer to SLA-based pricing [26][27][31][34]. Courcoubetis et al. [26] use an approximation to

expected bandwidth as a proxy to usage of network resources, and set prices to maximize

customers’ utility of throughput rate. In Bouras et al. [31], prices are also selected to maxi-

mize customers’ utility, while utility is a function of delay as well as bandwidth, and prices

are decomposed into two parts accounting for buffer and bandwidth, respectively. Fulp et

al. [27] seek a simultaneous solution of provision and pricing, and develop a time-of-the-day,

class-dependent pricing scheme that maximizes the provider’s profit. The Cumulus Pricing

Scheme (CPS) [34] is a long-term contract with feedback mechanisms to control network

usage. These pricing schemes are designed for SLAs of relatively long durations. We consider

implementable pricing of service contracts of shorter terms ranging from minutes to hours,

for better utilization of network resources. The price of a contract consists of two compo-

nents for cost recovery and QoS, respectively. Our work builds on a nonlinear pricing model
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proposed in an earlier work [3] for cost recovery, and develops it by incorporating a QoS

related component in pricing. Unlike many pricing schemes to maximize customers’ welfare

in terms of utility [26][31], customer’s welfare is measured by consumer surplus, a concept

related to utility but easier to compute. Consumer surplus is the difference between cus-

tomers’ willingness-to-pay for a service and the price they actually pay. Willingness-to-pay

is expressed by the observable demand characteristics of a customer-base. However, demand

estimation does not rely on specific forms of each individual customer’s utility function. This

is a less stringent requirement than an assumption that all customers in a customer-base have

the same utility. Such assumption is often imposed in utility maximization, to avoid eliciting

individual customer’s utility function.

Our work advances the research on how QoS is handled in pricing. A common approach to

handling QoS issues in pricing is to use the concept of “customer class,” where each class

is associated with certain QoS level [20][26]–[33][35]. Prices are usually determined based on

the definitions of “class.” Analysis is performed on how prices may affect resource allocation

and the actual QoS experienced by the customers due to traffic intensities. However, a precise

QoS specification itself is often missing. We study pricing of QoS from a perspective of what

prices should be charged for the QoS actually delivered to the customers, instead of a specified

QoS a provider promises to deliver. Several studies exist that adopt this perspective, but rely

heavily on per packet performance measures or routing information [29][23][30]. QoS delivery

in the packet-switching Internet has an inherently stochastic, or risky, nature [5][36][37]. It

was argued that lack of mechanisms for managing the risks in QoS delivery has contributed

to the failure of QoS assured services to thrive, despite active research and development

of standards [36]. The authors suggested insurance mechanism for risk management, and

referred to earlier proposals that addressed this issue [36]. In this article, we apply real

options concept to account for the risks in QoS delivery. While insurance relies on a third-

party to manage risks, the approach we propose seeks to achieve fair risk sharing between

the provider and the customers through an efficient pricing mechanism.
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Real options or contingent claim analysis (CCA) is a powerful tool applied in a variety of

problems in finance. Some examples of applications of real options, though far from exhaus-

tive, are investment analysis and firm behavior [38], real estate and leasing [39] and R&D

[40]. (See Lander et al. [41] for a comprehensive review of real options valuation and its

applications.) Real options techniques have recently been used to evaluate the uncertainty

in call usage in pricing optional calling plan contracts in the telephone industry [42]. It has

also been used for risk management of telecommunication network services [43]. In the real

options framework, since the underlying assets usually lack liquidity, price of the real option

is often assumed to be exogenously driven by some associated liquid assets instead, for exam-

ple, output from a potential investment [38]. Competitive equilibrium [39] and utility theory

[44] based approaches have also been proposed for valuing real options. Our pricing approach

falls into the utility-based category. In particular, we use the concept of a state price density

(SPD) for pricing. The SPD captures an economic agent’s preferences for uncertainties, and

plays a central role in the pricing framework [45]. Methodologies have also been proposed

for estimating a closely related concept of “pricing kernel” using empirical data [46].

We describe the pricing framework next, where an SPD is used for implementing options-

based pricing of the risk in providing loss-based QoS guarantee. We will demonstrate how

a provider’s SPD may be constructed, and how it is used to determine prices. The section

starts with a brief description of the overall pricing setup.

3 SPOT PRICING FRAMEWORK

Network performance can be defined in terms of a combination of its bandwidth, delay,

delay-jitter and loss properties. Based on these performance measures, QoS guarantees can

be stated in deterministic or probabilistic terms [5]. In this article, we will focus on pricing

for an expected level of bandwidth with loss rate guarantees. A minimum level of expected

bandwidth is essential to support any additional QoS assurance. Hence, the pricing frame-
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Fig. 1. Basic Pricing Setup Implemented at an Access Point

work consists of two components: (1) pricing of expected bandwidth geared towards cost

recovery, and (2) pricing of risk in additional loss-based QoS for appropriate sharing of risk.

Figure 1 shows a schematic for the basic intra-domain pricing setup implemented at an

access (edge) point of the provider’s domain. A pipe service model is used [14] for bandwidth

service contracts, where the network is modeled as a single link with certain capacity. The

provider sells service contracts to customers between the access (edge) point to a destination

within its domain (or at the edge of its domain) with certain bandwidth and loss guarantees

for certain duration (T ). Customers purchase these bandwidth contracts for simple and

immediate file transfer applications. Upon arrival, a customer announces its volume and loss

rate requirements, and is admitted when there is enough available capacity in the network to

accommodate the customer’s demanded expected bandwidth requirement (in Kbps). For each

admitted customer, the pricing model computes the two-component price of the contract,

which stays fixed for the duration the contract.

To keep the pricing model simple, only necessary input information is sought from network

management module for price calculation. Implementation details as to how traffic is deliv-

ered within the network is invisible to the pricing model. Besides loss-guaranteed contracts,

the provider also sells vanilla bandwidth contracts, as well as other QoS guaranteed contracts.

The vanilla bandwidth contracts are priced solely based on cost recovery. Admission control

is applied to all customers, regardless of the types of services they request depending on the
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available capacity in the network as well as the revenue they bring to the provider. Contracts

that bring higher profits are assigned higher priority. Between customers requesting vanilla

bandwidth versus those requesting loss-guarantees based on identical underlying bandwidth,

those requesting a loss guarantee will receive higher priority for admission to the network

due to their ability to generate higher revenue from the additional pricing component for

risk in loss assurance contracts.

Next we briefly describing the cost recovery component; a more detailed presentation is

given in Gupta et al. [3]. This is followed by a detailed description of pricing of risk, and a

discussion on combining the two price components in forming the price of a loss-guaranteed

contract.

3.1 Pricing to Recover Cost

We employ a nonlinear pricing model for recovering a provider’s costs in providing the ex-

pected bandwidth to support loss guarantees. Different customers may be willing to pay

different prices for a certain quantity of service. Nonlinear pricing takes advantage of this

heterogeneity in customers by charging each quantity of service accordingly. Nonlinear pric-

ing is particularly relevant in industries where large fixed cost is involved, as the provider

can attract customers with large demand by favorable pricing, and thus improve network

utilization and sufficiently recover the fixed cost. An optimal price schedule is determined

based on the aggregate bandwidth demand from all customers. Customers’ demand behav-

ior is described by a demand profile, N(p, q) [47], defined as the number or the fraction of

customers in a customer-base that will purchase the q-th unit at price p. The optimal price

schedule is used to dynamically generate prices for each incoming customer depending on

the demanded bandwidth and available network capacity.

The provider’s objective for pricing is to maximize customers’ welfare expressed by consumer

surplus, with the constraint of recovering its full costs, fixed as well as variable [3][47]. A
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well-known nonlinear pricing model Ramsey pricing is used, which produces an efficient tariff

design in situations where due to either regulation or competition, revenues sufficient to

only recover the provider’s total costs are achievable. Consumer surplus is used to measure

customers’ welfare, as opposed to utility, since consumer surplus is a concept related to

customer utility, but requires less stringent assumptions regarding the exact form of customer

utilities and is easier to estimate. For each unit of demand q, the optimal price schedule p∗(q)

is obtained as a solution to the following first-order condition of the optimization problem,

or the Ramsey rule [47]:

p∗(q) − c(q)

p∗(q)
=

α

η(p∗(q), q)
, (1)

where c(q) is the marginal cost for the q-th unit, and η(p(q), q) is the elasticity of the demand

profile that measures the sensitiveness of customer’ demand to price changes. The Ramsey

number α (0 ≤ α ≤ 1) indicates how much profit margin the provider can have, resulting

from competition from other providers, regulation, or both. The optimal price p∗(q) can be

considered the price that is sufficient to cover the marginal cost c(q) to provide the service,

adjusted by customer demand behavior (η(p(q), q)) and the provider’s monopoly power (α)

to charge a higher price above the marginal cost. The provider will charge higher prices if

cost increases, or if the provider will have stonger monopoly power; therefore, p∗(q) increases

with both c(q) and α. As demand is more elastic for larger q quantities, p∗(q) decreases with

q, producing prices favorable to customers of large demand.

The optimal price schedule, p∗(q), is calculated off-line and can be stored statically in a lookup

table. In order for prices to respond to the state of congestion in the network, customer’s

demand qbw is defined as the ratio of a customer’s expected bandwidth to the current available

capacity in the network. When a customer arrives, the pricing model obtains the available

capacity information from the network management module and calculates qbw according to

this definition. Using the optimal price schedule due to the nonlinear pricing structure, the

price the provider charges is the summation of marginal prices up to the customer’s demand,
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qbw, i.e., P ∗(qbw) =
qbw∑
q=0

p∗(q). Customers purchasing the same amount of nominal bandwidth

can have different demand quantities qbw’s, and therefore face different prices, depending on

how busy the network is when the customers arrive; prices are higher when the network is

more heavily loaded.

In our earlier work [3], models were developed for applying Ramsey pricing to expected

bandwidth contracts. Different characteristics of demand profiles and competitive nature of

the providers were considered, and prices were analyzed for different network scenarios. Next

we develop the framework for pricing the risk in QoS assurance.

3.2 Pricing the Risk

Provision of a loss-based QoS guaranteed service is inherently risky due to uncertainties

caused by competing traffic in the Internet. Future outcomes of a service may be in favor

of or against the provider, i.e. the provider may or may not deliver the loss based QoS as

promised. Consider a simple example of a service contract where the loss guarantee is defined

as: “The total data loss over the contract duration of 1 hour starting from 9 : 00 a. m., June

13, 2005 does not exceed 10 MB.” We say that the future outcome is in favor of the provider,

if at the end of the contract less than 10 MB of the customer’s data is lost, and that it is

against the provider otherwise.

Uncertainty in quality of service is not unique to Internet services [36]. For example, an ex-

press delivery company may not always deliver customers’ parcels intact and/or on time; and

when losses or delays occur, certain remedy mechanisms, such as money back or insurance,

are employed to compensate the customers. On the other hand, the provider needs to take

into account such uncertainty when pricing its services. In other words, prices should be set

such that the provider will be able to recuperate the possible expenses it will incur for at-

tempting to deliver the QoS, as well as the pay-offs to customers when the promised quality

of service is not delivered. In the Internet, uncertainty in QoS primarily resides in its packet
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switching implementation. Although it is technologically feasible to achieve certain “hard”

QoS guarantees, improvement in QoS comes for additional cost burden on the provider, for

example, for investment in better technologies, hardware, training, etc. When further im-

proving QoS deterministically gets too costly, the provider may be better off using economic

tools to manage risks in QoS delivery, rather than trying to eliminate them. The provider

will provide the QoS to the best of its capability as per the guarantee, and will consider the

risks and associated expenses in pricing QoS services. Customers will expect to receive the

QoS as specified in the SLA’s during most of the service time, and to be compensated when

it does not.

We use options pricing techniques to evaluate the risky nature of the service. In particular,

we consider pricing from the provider’s perspective, and evaluate the monetary “reward” for

the favorable risks to the provider, which then becomes the second component of the price of

the contract. Pricing the risk appropriately will let the risk be fairly borne by the provider

and the customer.

In our context of loss-based QoS guarantee, the underlying uncertainty that prices must

depend on is how data loss occurs in the network. The payoff of the service measures how

well the provider is performing in terms of the loss behavior with reference to the contract.

For instance, in the above example of a contract, the payoff would be zero if the total data

loss during the contract exceeds 10 MB, and would be the difference between 10 MB and

the actual data loss otherwise. The payoff structure of this contract is similar to that of a

“knock-out” type barrier option, which is an option that only pays off when the prescribed

barrier (upper limit) is not reached by an underlying quantity. Therefore, this example can

be viewed as a “knock-out” barrier option on the total data loss with an upper barrier of

10 MB. The option is priced by a hedging portfolio argument, where the price is equal to

the expectation of the payoff under a transformed risk neutral measure.

The underlying risk in loss behavior in our context is not traded, therefore is unhedgeable.
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Therefore, utility based techniques for options pricing in incomplete markets is employed. For

pricing the risk of a loss guaranteed service, we introduce the concept of state price density

(SPD), which describes in monetary terms the provider’s preference for future loss outcomes.

The SPD translates into a risk neutral measure, Q, and the price of risk is obtained by taking

the expectation of the payoff from the service under Q. If Yt is the measure to determine

the payoff at time t, the options price of the risk in the loss guaranteed service for a time

duration T is given by

V = EQ[Φ(YT )]. (2)

The function Φ(·) is created for the particular contract specification. For example, in the

above contract, at a given time t, Yt =
∫ t
0 Lτdτ , the cumulative loss up to time t, where Lτ

is the loss at time τ ; Φ(Yt) = 1{Yt<10}(10 − Yt), where the indicator function assures that

only Yt less than the 10 MB level will get rewarded. Yt may take different forms depending

on how the payoff is defined. As we consider only spot contracts for immediate use and on

timescales between minutes to hours, time discounting is not considered in pricing. Next we

further formalize the concept of an SPD as it applies in our context.

3.2.1 Definition of the Provider’s SPD

State prices assign monetary values for different states of an uncertainty to be realized in

future. More specifically, if S are all the states possible in future, state price of a state s

(s ∈ S), ps(ps ≥ 0), is defined in financial terms as the current monetary worth of 1 dollar

obtained if state s occurs in future. A state s is usually defined for certain fundamental

factor(s) that should affect prices, or by an observable value that reflects such factor(s). For

example, when pricing a financial security pegged to the market, a simple definition for s

can be whether the market goes “up”, “down” or stays the “same.” The state price ps then

reflects the present worth of the future state s to a (representative) economic agent. From its

definition, ps depends on the agent’s preferences for different future states. It also indirectly

depends on the probability of state s being realized in future; a state that is likely to happen
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tends to be valued higher.

The normalized state price for all future states, constructed by

π(s) =
ps∑
s ps

, (3)

is often referred to as the state price density (SPD). The SPD is a basic economic construct

for a (representative) economic agent, and is used to describe the agent’s preferences for

future outcomes. The basic construct of an SPD is used for pricing assets governed by the

specified sources of uncertainty. The pricing equation (2) can be viewed as an expectation

under a transformed measure defined by the SPD, termed as a risk neutral measure.

For pricing a loss guarantee, we construct an SPD to describe a representative provider’s

preferences for future loss outcomes, where states are for observable data loss in future. For

example, s can defined for total data loss or per minute loss rate, and the state space S is

then �+ or [0, 1], respectively. Data losses are taken to be the special rudimentary source of

uncertainty, which the provider would be held responsible for. The SPD also plays the role

of transforming the risks in the loss behavior into appropriate monetary values.

Without defining a specific form of the provider’s utility function of losses, we infer the

general properties of the SPD based on certain assumptions of the provider’s preference

structure and the outcomes of the loss behavior. Specifically we assume that:

• The provider would expect that losses are rare events during the contract duration, and

that the loss process will more likely take small to moderate values, although there is a

non-zero probability of extremely large losses to occur.

• The provider will not be rewarded when large losses occur.

We employ SPD functions of 2 alternate forms in the analysis of pricing model in Section 5.

(1) A monotonously decreasing SPD

A monotonously decreasing SPD function is based on an assumption of strict prefer-
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ence of the provider for smaller losses over large losses. It starts from a positive value,

i.e. q0 > 0, thus rewards zero loss level.

(2) An SPD peaking at a positive loss level

We also consider an SPD function that starts from 0, peaks at a small positive loss

level and then decays to 0. An SPD of this form is legitimate under the following

assumptions:

• The provider will not be rewarded for zero loss, as zero loss is the “regular” state

during most of the contract duration.

• The customer is insensitive to very small data losses up to a certain level.

• The provider is possibly able to accommodate more customers by allowing small losses

to an individual customer’s data.

Other forms of SPD may be constructed. For example, the provider may expect to get a

positive reward for zero loss, the reward then increases or stays at this positive value up to

a small positive loss level and then decays to 0. We focus on the above two in rest of this

article.

It should be noted that in practice, the SPD is estimated from data on an individual, or a

group of, representative provider(s)’ evaluations of different loss levels at market equilibrium.

There is abundant price data for simple bandwidth services. Price data for QoS guaranteed

services will be available when they are provided on a more practical basis. Such price

data, together with information on traffic in the network, can be used to “reverse engineer”

the providers’ preferences in a manner similar to the approach developed by Chernov [46].

Suppose we have the prices of M similarly defined service contracts, Vi, i = 1, 2, ...,M ,

together with the information of actual data losses during each contract. Rewrite equation (2)

for one time period (T = 1) using the SPD π(s) (Equation (3)) as

Vi =
∫

S
Φ(Yi)π(s)|s=Yi

ds, (4)

where Yi is appropriately defined for the i-th contract. Apply an estimated SPD function, or
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π̂(s) in the above equation, and we will get the fitted price V̂i corresponding to each Yi. The

rationale is to find the π̂(s) that will produce M fitted prices V̂i’s closest to the observed

values Vi’s. In particular, if the SPD is defined by a parametric function with parameters Θ

as π(s; Θ), the Θ̂ that produces the best fitted prices will be selected. The estimated SPD,

π̂(s) will then be used to price same or similar loss guaranteed services. In the Appendix, we

also develop an aggregation method to derive SPD’s for differently defined loss guarantees,

which reduces the need of price data for estimating SPD’s.

We have demonstrated pricing of risk from the provider’s perspective using the options-

based framework. Following similar arguments, in situations when the provider does not

deliver the loss based QoS as promised, a “penalty” oriented pricing may be developed from

the customer’s perspective. However, penalty oriented pricing would require considering the

customer’s preferences as well as the negotiation power of the two parties.

3.3 Pricing the Contract

Using the two price components described above, the price for cost recovery, P ∗
bw, and the

price of the risk in the loss assurance, V , the price of a contract is created as

Pcontract = P ∗
bw + λsV,

using an appropriate scaling factor λs. Note that V and P ∗
bw are not calculated to account for

response of customer demand to the price of risk component. The role of V is to determine

risk sharing between the provider and customer in equilibrium for the specific risk profile

of loss characteristics of the network. Therefore, role of λs is two-fold, first, it appropriately

scales price of risk to be congruous with price of cost recovery, and second, it captures the

willingness of customers to become vanilla bandwidth customers from customers of loss-

guaranteed services. We hypothesize that λs is a sufficiently small number, and discuss the

factors affecting λs, as well as the reasoning behind this hypothesis.
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We expect λs to be small since the dominant factor that determines the price of a loss

assured service contract is the cost to provide the service. The provider sells bandwidth and

the loss-based QoS guaranteed services using the same network resources. λs is essentially a

measure of differentiation between these two types of services, with a higher λs indicating a

more significant difference, and vice versa. A loss assured contract is one way for a customer

to obtain the loss assurance on top of bandwidth. Alternatively, the customer can purchase

extra bandwidth to achieve a similar net loss experienced by his data. λs is a key factor to

influence such choice by the customer, in particular, it has to be set at a moderate level to

maintain demand for loss-based QoS assured service.

Therefore, λs captures the balance between customer demand for bandwidth and the ad-

ditional QoS services, or the cross-sensitivity between them. For example, if λs increases,

demand for QoS service will decrease, and some demand for QoS service may shift to the

relatively inexpensive bandwidth service. The provider can choose λs to leverage customer

demand for bandwidth and additional QoS services, thus optimizing its profits and total

welfare of all customers. In addition, λs also reflects the value of a loss assurance, relative to

the provider’s costs in providing the loss-based QoS service. The value of the loss assurance

depends on the provider’s network characteristics. Intuitively, a riskier loss assurance, i.e.

the case when the loss assurance is more likely to be violated in the network, will relate

to a higher λs. This can be understood in situations when the provider has to pay certain

penalties for unfavorable loss outcomes.

Determining exact value for λs will require additional analysis of cross-sensitivity of the

customer-base, network characteristics, penalty structures employed, etc. These are beyond

the scope of this article. To address the main goal of the article of developing appropriate

pricing of risk for risk sharing between provider and customer, we next develop the relevant

mathematical formulations.
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Fig. 2. Customer Data Flow over Contract Duration: a. Arrival Curve; b. Data-in-Transit It

4 MODEL DEFINITION AND ASSUMPTIONS

In this section we describe the network modeling framework for applying the SPD-based

spot pricing model for intra-domain loss-assured bandwidth contracts. For modeling the

pricing of risk, customer’s traffic is modeled separately from the background traffic, as the

customer’s traffic and its interaction with the background traffic are considered the essential

predictors of the loss process. Next we describe our model for this interaction. The aggregate

background traffic is modeled as a single process, referred to as the Aggregate. An aggregate

approach is used instead of the alternative of source based model due to issues of scalability

and computational cost [48].

4.1 The Individual Traffic It

Traffic from the customer is modeled on a flow basis, described by its arrival rate and transfer

parameters, including file sizes and transfer times. Literature on data analysis of Internet

traffic describes flow arrivals to follow a time dependent Poisson process, and file sizes and

transfer times to be best represented by heavy-tailed distributions [49][50]. We model the

arrivals of files from the customer by a time-dependent Poisson process. Based on historical

data [51], we assume that 70% of the arrivals happen between 7 a. m. and 5 p. m., 20%
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between 5 p. m. and 11 p. m. and the rest 10% happen between 11 p. m. and 7 a. m.

The file arrival rates in these periods are 8.4, 5 and 1.5 per minute, respectively. Pareto

distribution are used to model the heavy-tailed distributions of files sizes and transfer times,

following the Internet traffic data analysis literature [49][52][53].

The parameters for file size distribution are set as a (shape parameter) = 1.05, b (scale parameter) =

1.2 KB. For the transfer time distribution, a = 1.2, and the scale parameter b is dependent

on the size of file being transferred; for file sizes smaller than 2.3 KB, between 2.3 KB and

20 KB, and larger than 20 KB, b takes the value of 0.01, 0.4 and 0.95 second, respectively.

In practice, these parameters for the model of customers’ data are estimated from network

data, but for simplicity same model is applied to all customers. Combining the file arrival

rates, file sizes and transfer times, an arrival curve and a service curve for the customer can

be obtained (Figure 2a). At a given time t, we define data-in-transit, It, as the difference

between the arrival curve and the service curve. It is the amount of the customer’s data in

the network, i.e. data susceptible to loss at time t (Figure 2b).

4.2 The Aggregate At

The Aggregate depicts the current state of the network. Modeling of the aggregate is intended

to capture two significant characteristics of the aggregated Internet traffic [49][53], i.e. diurnal

pattern and self-similarity.

A clear diurnal pattern is observed in the Internet traffic, which is believed to relate to human

activities starting to rise around 8–9 a. m., peaking around 3–4 p. m. and declining around

5 p. m. when a business day ends. In addition, a relatively moderate peak is observed for

weekends than during weekdays. We use a sinusoidal curve with a period (1/f) of 24 hours

and an appropriate phase (θ) to model this diurnal pattern. The amplitude (R) and the

average of the sinusoidal curve (At) for weekdays are chosen to be 5 GB and 5 GB, 3.5 GB

and 4.25 GB for weekends, respectively. These values are also calibrated for a specific network

19



Fig. 3. At: a. 24 Hours; b. 1 Hour (2 pm-3 pm)

domain and its usage characteristics.

Self-similarity in network traffic has been extensively discussed in the network literature

[49][50] for its significant influence on network performance and the consequent implications

on network modeling and implementation. A class of so-called fractional processes, including

for example, general fractional ARIMA (FARIMA) models, fractional Brownian motion, or

fractional Gaussian noise (FGN), has been widely used to generate self-similar traffic in

network simulation. We use the FGN in our model due to its simplicity of implementation

among this class of self-similar processes. The FGN is usually generated based on its power

spectrum given by

f(λ; H) = A(λ; H)[|λ|−2H−1 + B(λ; H)], (5)

for 0 < H < 1 and −π ≤ λ ≤ π, where

A(λ; H) = 2sin(πH)Γ(2H + 1)(1 − cosλ), (6)

B(λ; H) =
∞∑

k=1

[(2πk + λ)−2H−1 + (2πk − λ)−2H−1],

where H is the Hurst parameter which describes the degree of self-similarity of the process,

and 0.5 < H < 1 [54]. We use a linear approximation approach in generating the FGN

introduced by Ledesma et al. [54], which according to Ledesma et al. [54] generates FGN with

comparable accuracy as Paxon’s method, but at significantly less computational expense.
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Fig. 4. 24 Hour Variation of Lt

Therefore, at any given time t, we define the Aggregate process, At, as a sinusoidal function

imposed with an appropriately scaled FGN process, i.e.

At = Rsin(2πft + θ) + At + Zt, (7)

where R, f = 1/24 Hour−1, θ = 15 Hour are the amplitude, frequency and phase of the

sinusoidal curve, respectively, and At is the average level of the Aggregate, At, used to model

the diurnal pattern of At described above. Zt is the scaled FGN process. Different values of

the Hurst parameter, H, of the FGN was simulated in the range of 0.7− 0.95 and the result

shown here has H = 0.8 (Figure 3).

4.3 The Loss Process Lt

Data in-transit along with the state of the network are indicators of data loss. Given It

and At as described above, the loss process is then modeled as a 2-state Markov process, ‘1’

representing a state where losses happen and ‘0’ representing a loss free state, with transition

probabilities depending on It and At. It is assumed that when the network is in a highly

congested state, as indicated by a high value of At, and if there is sufficient amount of the

customer’s data in the network, the loss process will be in a loss prone state. On the other

hand, when the network is extremely under utilized, there will be zero data loss. Between

these two extremes, losses happen with some nonzero probability. It is understood that
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although errors in data transmission and network failures may cause losses, losses of this

nature are presumably not accounted for in the contract [53].

Two threshold levels, THU and THL, for the total amount of data in the network, i.e.

It + At, as well as an upper threshold, THU
It

, for It are set. Therefore, the transition matrix

Pij, (i, j = 0, 1) is given by

Pij =







1 0

1 0


 , if At + It ≤ THL;




p00 p01

p10 p11


 , if THL < At + It ≤ THU ;




0 1

0 1


 , if At + It > THU and It ≥ THU

It
,

(8)

and 0 < pij < 1 for all i, j. In our simulation, p01 = 5% and p11 = 20%, respectively. The

threshold values THU and THL are set as 1.2 and 0.5 times the peak value of the Aggregate

process given by the sinusoidal function of At (Equation (7)). It should be understood that the

parameters used in our simulation are only representative values; other time variant choices

can be easily accommodated in our framework. In practice, all the thresholds or their time

variant extensions need to be calibrated for a network domain, and perhaps reassessed when

network characteristics significantly change with time. For simplicity, it is further assumed

that when Lt is in a loss state, the customer’s data-in-transit, It, is lost, i.e. Lt = It when

Lt is in state 1.

A realization of the Lt process in a 24 hour period is given in Figure 4. Lt shows high

burstiness. As expected, losses happen more frequent when At is high; a comparison of Lt
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and the corresponding It indicates a positive correlation between Lt and large values of It.

5 SIMULATION ANALYSIS OF PRICING FOR LOSS GUARANTEED SER-

VICE

In the previous two sections, we have descried our pricing and network models of the spot

pricing framework. The models chosen for It, At processes and their interactions result in a

complex system not very amenable to analytical results. Therefore, we resort to simulation

analysis to study behaviors of the pricing framework. We simulate the options based pricing

described in Section 3.2 using a demonstrative contract, and study the price evolutions at

different times of a day, with different choices of SPD’s, as well as under different network

settings.

5.1 Pricing for Loss Guaranteed Service

The following demonstrative contract for a loss-rate guarantee is used for our simulation

analysis:

The loss rates monitored at minute intervals are less than 0.5% over the contract duration

of 1 hour.

The per minute loss rate for the tth minute from the start of the contract, lt, is obtained by

lt =

∑60
i=1 Lt,i∑60
i=1 It,i

, (9)

where It and Lt were defined in the previous section. Let Su be the upper barrier for lt

(Su = 0.5%), and N the total number of minutes within the contract duration T . The payoff

of the service measures how well the provider is performing in delivering the contract, and

is defined as
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Fig. 5. Sample SPD’s. SPD 1: exp(0.02), SPD 2: beta(1.5, 100.5), SPD 3: beta(1.5, 167.2), SPD 4:

beta(1.05, 100.95)

Yt = I(0,1)(lt)|lt − Su|, (10)

where I(0,1)(·) is an indicator function,

I(0,1)(lt) =




1, if lt < Su;

0, otherwise,

(11)

for t = 0, 1, ..., N . Following equation (2) [setting Φ(YT ) =
∫ T
0 Ytdt], the price of the contract

is given as

V = EQ{
N∑
0

[I(0,1)(lt)|lt − Su|]} (12)

where Q is the risk neutral measure resulting from the provider’s state price density.

5.2 Results and Discussion

We implement the options based pricing for the above contract at different times of a day.

Price evolutions with different choices of SPD’s under different network settings, in terms of

network capacity, the Aggregate traffic pattern, and the traffic characteristics of the customer,

are studied. A sample size of 20 was taken in computing expectations. The standard errors
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Fig. 6. Price variations with different SPDs

of prices are within 20% of the price values.

5.2.1 Prices with Different SPD’s

We select 4 sample SPD functions, π(s), for pricing; the states are defined as the possible

outcomes of per minute loss rate. An exponential distribution (µ = 0.02) is selected for

the monotonously decreasing SPD, and 3 beta distributions are used for SPD’s peaking at

different positive loss rates (0.5%, 0.3%, and 0.05%, respectively). The sample SPD’s are

shown in Figure 5. The plot only shows SPD’s up to 10% loss level, as the values of the

SPD’s are not distinguishable from 0 beyond 10% loss level due to their fast decay.

Figure 6 shows the prices for the baseline network settings as described in the previous

section using different SPD’s. The prices from the decreasing SPD (SPD 1) have significantly

different characteristics from the prices from the beta SPD’s peaking at positive losses (SPD

2 to 4). Not only are the prices from SPD 1 much higher; more importantly, prices from SPD

1 vary with a different pattern from the others. Prices from SPD 1 are lower during the day,

when the network is more heavily loaded (At higher) and losses are more likely to happen,

and higher at night when losses tend to be lower. As said earlier, losses are rare events in

the network. Since SPD 1 produces a positive price for zero losses, the price of the contract

from SPD 1 is dominated by zero losses. The contrary is true for the other SPD’s. With beta

SPD’s, the provider is not rewarded for zero loss scenario. The prices from them, therefore,
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Fig. 7. SPD Aggregation: (a) π∗(s∗) aggregated from different π(s) (b) Prices produced by π∗(s∗)

are solely determined by the occurrences of losses, which vary with a similar pattern as the

congestion state of the network (At). In this sense, SPD 1 produces performance based prices,

while SPD 2, 3 and 4 produce congestion sensitive prices.

SPD 2, 3 and 4 produce prices in a consistently increasing order. Compare Figure 6 with

Figure 5, SPD 4 rewards highest and SPD 2 rewards least for small losses. By the definition

of the payoff (Equation (12)), only loss rates smaller than Su (0.5%) affect the price of the

contract. Therefore, for this contract, an SPD that rewards more for small losses (SPD 4) is

more favorable for the provider.

Using these sample SPD’s, we simulate the SPD aggregation procedure described in the

Appendix, and obtain the SPD’s defined for two-minute loss rates, π∗(s∗), corresponding to

each π(s). The results are shown in Figure 7. In our modeling for It, there are 3 different It

patterns during a day resulting from the different arrival rates (Section 4.1). Because π∗(s∗)

depends on It, three π∗(s∗)’s were obtained for each π(s). In Figure 7 (a) only the π∗(s∗)’s

from high It are shown. For all π(s)’s, the π∗(s∗)’s from other It’s show similar patterns but

vary in their values. Comparing Figure 7 (a) with Figure 5, although the scales are different,

it is clear that the aggregated SPD’s retain the key characteristics of the original SPD’s: the

exponential π(s) produces a decreasing π∗(s∗), and the beta SPD’s produce π∗(s∗)’s peaking

at positive losses. The peaks of π∗(s∗)’s from SPD 2, 3 and 4 happen at 0.3%, 0.3% and

0.01%, respectively. Prices generated using π∗(s∗)’s are given in Figure 7 (b). The barrier S∗
u
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Fig. 8. Price variations with high threshold values THU and THL for (a) SPD1, (b) SPD2

for the two-minute loss rates was chosen to be 0.25%. Again, the price variations keep the

patterns of those from the original SPD’s (Figure 6 (a)). In addition, the prices from π∗(s∗)’s

and π(s)’s change in the same scales, indicating the consistency between the aggregated

SPD’s and the original SPD’s.

5.2.2 Prices under Different Network Settings

We simulate price evolutions under different network settings. In particular, we study how

prices would change if there were changes in the network, or in the traffic pattern of the

customer or of the Aggregate.

An increase in network capacity is simulated by increasing the thresholds THL and THU

(THL = 5.625MB, THU = 13.5MB) (Figure 8). The prices from SPD 1 (Figure 6) (a) are

consistently higher than in the baseline scenario. Prices from the beta SPD’s (Figure 6)

(b) in this scenario are always lower than in the baseline scenario, except for around noon

when the prices peak during the day. The differences between prices in this scenario and

the baseline scenario are wide when the network is moderately busy (around 9 a.m. and

6 p.m.), and negligible when the network is highly loaded (around noon) or under-utilized

(around midnight). By increasing network capacity, the provider is able to reduce losses of

the customer’s data. Consequently, the provider would expect to see price increase with a

SPD that rewards zero losses, while price decrease with beta shaped SPD’s.
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Fig. 9. Price variations with different traffic characteristics and SPDs. (a) Different Hurst parameter

(SPD 1) (b)Different Hurst parameter (SPD 2) (c) Different It characteristics (SPD 1) (d) Different

It characteristics (SPD 2)

The Hurst parameter H of the At process indicates the level of burstiness of At. As shown in

Figures 9 (a) and (b), the effect of the burstiness of At on prices is not obvious. However, the

prices for H = 0.95 has an early peak at 9 a.m.. This implies that even when the network is

only moderately loaded, the network performance may be deteriorated if At is burstier.

Changes in the customer’s traffic pattern are simulated by changing the parameters of the

file size distribution. Figures 9 (c), (d) show the price variations for 3 different file size

distributions: (1) burstier file sizes with the same average file sizes as in the baseline scenario

(a = 1.01, b = 0.25); (2) burstier file sizes with the same scale parameter (a = 1.01, b =

1.2) where the average file size is increased by 5 times. (3) for comparison with (2), same

level of burstiness as in the baseline scenario with a larger scale parameter (a = 1.05, b

= 6) where the average file size is also increased by 5 times from the baseline scenario. In

28



situation (1), although the average file sizes are the same as in the baseline scenario, the

file size distribution is flatter, and most files are small compared with the baseline scenario;

this smooths the variations of prices at different times of a day. Comparing situation (2) and

the baseline scenario, we can see that simply increasing the shape parameter of the file size

distribution does not significantly change the prices, especially for SPD 1 (Figure 9 (c)).

In situation (2), although the average file size is 5 times larger than in the baseline scenario,

it is mostly attributed to the extremely large files in the tail of the file size distribution.

However, even in the baseline scenario, these files are susceptible to large losses above the

guaranteed upper barrier of loss rate (0.5%) which will not be rewarded. Therefore, increasing

the sizes of these files, as in situation (2), will have little effect on prices. In situation (3),

the increased file sizes are more evenly distributed over all files, and prices compared with

the baseline scenario are much higher for SPD 2, 3 and 4 (Figure 9 (d)), and lower in SPD

1 (Figure 9 (c)). Therefore, prices are more sensitive to a lot of moderately large files than

to a small number of extremely huge files.

6 CONCLUSION & FUTURE WORK

We have developed a two-component spot pricing framework for intra-domain expected band-

width contracts with a loss based QoS guarantee. A nonlinear pricing scheme is used in

pricing for cost recovery. By constructing a state price density for a representative provider,

a utility based options pricing approach is developed to price the risky aspects of the loss

based QoS guarantee. We implemented the options pricing framework using a demonstrative

contract, and studied the influences of the provider’s SPD as well as network conditions on

prices. Simulation analysis indicates that depending on the choices of SPD’s, the price of

the risk in the service may be either performance based, or congestion sensitive. Changes in

network conditions such as expanded capacity, changes in characteristics of network traffic,

may affect prices through changing the probabilities of the customer’s data losses. The op-
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tions pricing approach presented here relies heavily on the provider’s SPD. We conjectured

the possible forms of the SPD, and studied price behaviors with two types of SPD’s with

different characteristics. In practice SPD estimation is possible only when sufficient price

data for QoS guaranteed service become available in the future. Furthermore, specialized

estimation techniques will be required to estimate SPD using price data.

QoS delivery in the Internet has an inherent risky nature. The options based pricing approach

is introduced to capture the risky aspects in loss based QoS assured service. The pricing

approach described here can be applied to more complicated, stochastically defined loss

assured contracts. In this article, the price is decided from the provider’s perspective. A

similar approach may also be used for penalty determination from the customer’s viewpoint.

Further research would also follow different methods by which QoS guarantees in the Internet

can be defined. The options based pricing approach may be extended to cover other aspects

of QoS, for example, delay and delay-jitter, and the price interactions when multiple QoS

guarantees are present can be investigated. Forward contracts may be developed based on

the spot pricing framework described here.

Such contracts implemented at the access and/or exchange points of different domains will al-

low the creation of end-to-end QoS service to the customers. Similar to the intra-domain case,

an end-to-end QoS service contract involves providing a certain level of expected bandwidth

and the additional QoS assurance; pricing of the end-to-end service needs to account for both

aspects. Furthermore, pricing will become an effective mechanism for different providers to

collaborate in end-to-end service delivery. However, significant additional complexity and

challenges arise in pricing end-to-end QoS guaranteed contracts. These include a need to

capture the business relationships between the different providers involved in delivering the

end-to-end service. QoS issues in end-to-end services exist not only within ISP domains, but

can also arise at exchange points where traffic crosses ISP domains. Methods utilizing intra-

domain spot pricing to facilitate creation and pricing of end-to-end QoS services requires

more research.
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A SPD Aggregation

Loss guarantees can be defined by different loss parameters and at different timescales. For

example, the provider may offer a guarantee on loss rate, or a guarantee on consecutive

losses; alternatively, the provider may offer a guarantee on loss rates observed every minute,

or observed every 5 minutes. Combinations of such guarantees are also possible. Therefore, a

desirable feature of a pricing scheme is that it provides consistent prices for loss guarantees

defined differently, i.e. the prices of a same loss process with different definitions of loss

guarantees are comparable with high probabilities.

Instead of estimating the SPD for every possible definition of loss guarantees, we develop a

method by which an SPD, π(s), s ∈ S, defined for a specific loss guarantee, can be used to

derive the SPD, π∗(s∗), s∗ ∈ S∗, for a differently defined loss guarantee. In particular, we

define π∗(s∗) as the “projection” of π(s) on to S∗,

π∗(s∗) = ES∗{g[π(s)|s∗]}, (A.1)

where g[π(s)|s∗] is a function appropriately chosen that relates π∗(s∗) to π(s) and makes

the prices they generate comparable, also π∗(s∗) is a legitimate density function. For a same

loss process, if the payoff corresponding to π(s) and π∗(s∗) are Yt and Y ∗
t , respectively, and

if Q∗ is a risk neutral measure defined by π∗(s∗), we say that π(s) and π∗(s∗) will produce

consistent prices if the price of the loss process obtained by

V ∗ = EQ∗ [
∫ T

0
Y ∗

t dt] (A.2)

is comparable with the price given by the pricing equation (2) with a high probability.

We next demonstrate the application of equation (A.1) using the following example. As-

suming π(s), s ∈ S = [0, 1], is defined for per minute loss rates, we want to consistently

derive π∗(s∗), s∗ ∈ S∗ = [0, 1], for loss rates observed every 2 minutes. In the following, all

two-minute variables are annotated with a superscript of ∗.
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To derive π∗(s∗) from π(s), we introduce the variable data-in-transit (It), the amount of a

customer’s data in the network at time t. At time t, if Lt (L∗
t ) is the amount of the customer’s

data lost in the next 1 (2) minute, then

s∗ =
L∗

t

I∗
t

, and s =
Lt

It

. (A.3)

Here s∗ is determined by the two consecutive states (s1, s2), as well as I1
t and I2

t , data-in-

transit in the 2 consecutive minutes, t and t + 1. Specifically,

s∗ = s∗(s1, s2, I1
t , I2

t ) =
I1
t s1 + I2

t s2

I1
t + I2

t

.

To reduce the dimensionality of the s∗ function, in implementation we substituted I2
t with

Î2
t , the estimate of I2

t using a forecast function h(I1
t ), i.e. Î2

t = h(I1
t ).

s∗ = s∗(s1, s2, I1
t ) =

I1
t s1 + h(I1

t )s2

I1
t + h(I1

t )
. (A.4)

Referring to equation (A.1), we first define the conditional SPD, π∗(s∗|It), the π∗(s∗) condi-

tioned on the realizations of It, and then obtain the unconditional SPD, π∗(s∗), as follows,

π∗(s∗|I1
t ) = ES1,S2{g[π(s1), π(s2)]|s∗(s1, s2; I1

t ), I1
t }, (A.5)

π∗(s∗) = EI1
t
[π∗(s∗|I1

t )] = ES1,S2,I1
t
{g[π(s1), π(s2)]|s∗(s1, s2, I1

t )}, (A.6)

where s1 ∈ S1, s2 ∈ S2, and S1 = S2 = [0, 1].

The function g(·) in equations (A.5) and (A.6) is chosen to be the normalized sum of π(s1)

and π(s2), as the value of service of each time step in S∗ comes from the values of service in

the 2 constituent minutes. Therefore,

g[π(s1), π(s2)] =
π(s1) + π(s2)

c
, (A.7)

where c is the normalization constant to make π∗(s∗) a density function,
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c =
∫

S1

∫
S2

[π(s1) + π(s2)] ds1ds2.

Therefore,

π∗(s∗|I1
t ) =

1

c′

∫
S1
{π(s1) + π[s2(s∗, s1, I1

t )]}f(s1) ds1, (A.8)

where

s2(s∗, s1, I1
t ) = (1 +

I1
t

h(I1
t )

)s∗ − I1
t

h(I1
t )

s1,

from equation (A.4), and f(s1) is the probability density function of s1 as implied equa-

tion (A.3). The coefficient c′ can be obtained by ensuring
∫

π∗(s∗|It)ds∗ = 1. Therefore, we

have the following,

c′ =
∫

S∗

∫
S1
{π(s1) + π[s2(s∗, s1, I1

t )]} f(s1)f(s∗) ds1 ds∗.

Similarly,

π∗(s∗) =
1

c′′

∫
I1
t

∫
S1
{π(s1) + π[s2(s∗, s1, I1

t )]}f(s1)f(I1
t ) dsdI1

t , (A.9)

and

c′′ =
∫

I1
t

c′f(I1
t ) dI1

t . (A.10)

Both π∗(s∗|I1
t ) and π∗(s∗) are time dependent, as is It.

We can show that π∗(s∗|I1
t ) and π∗(s∗) generate consistent prices using the pricing equation

(Equation (2)). For simplicity we only look at the price for a unit time of service, Vt, and

take the time integration out from equation (2). Note that Vt is related to It only through

π∗(s∗|It). This implies that for the same value of s∗, the payoff Y (s∗) is the same regardless

of I1
t , or time t. Rewriting equation (2) for time t and s∗, we have the price for the service

at time t + 1 using π∗(s∗) as
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Vt, uncond = EQ∗ [Yt+1(s
∗)] =

∫
S∗

yt+1(s
∗)π∗(s∗)ds∗, S∗ = S1 ⊗ S2. (A.11)

Similarly, the conditional price Vt, cond using π∗(s∗|I1
t ) is

Vt, cond =
∫

I1
t

∫
S∗

yt+1(s
∗)π∗(s∗|I1

t )f(I1
t ) ds∗dI1

t

=
∫

S∗
yt+1(s

∗) [
∫

I1
t

π∗(s|I1
t )f(I1

t ])dI1
t ] ds∗

=
∫

S∗
yt+1(s

∗)π∗(s∗)d(s∗),

which is equal to Vt, uncond. As the g(·) function (Equation (A.7)) ensures π∗(s∗|I1
t ) to be con-

sistent with π(s), this establishes that π∗(s∗) and π(s) produce consistent prices. Therefore,

by aggregation we can derive the SPD for a loss guarantee defined on a coarser timescale

from one defined on a finer timescale. Similar approaches can also be applied to obtain the

SPD for guarantees defined along different dimensions (parameters) of data losses.
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