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Abstract— Traditionally QoS capabilities have been con-
structed out of open-loop building blocks such as packet
schedulers and traffic conditioners. In this paper, we con-
sider closed-loop techniques to achieve a range of service
differentiation capabilities. Our key contribution is the
use of Accumulation-based Congestion Control (ACC) as a
data-plane building block to provide an expected minimum
rate service which is similar to Frame Relay CIR/PIR and
DiffServ assured service. A user with a minimum rate ex-
pectation can be interpreted as having a non-concave user
utility function. Unfortunately in the context of nonlinear
optimization, non-concave utility functions are analytically
difficult and often result in multiple optimal solutions. In-
stead of attempting optimization with non-concave objec-
tive functions, we demonstrate a meaningful notion of an
expected minimum rate by imposing additional constraints
on Kelly’s convex optimization formulated in [14]. Unlike
the constraint which simply requires all user allocations to
be larger than their respective expected minima, our con-
straint does not require admission control. The resulting
scheme is distributed, requires each control loop to act only
on local knowledge and still allows policy-based control over
how capacity is allocated during oversubscription. We use
ns-2 simulations and Linux implementation experiments to
demonstrate that the service performance matches theoret-
ical results. Our scheme does not require Active Queue
Management (AQM) at bottlenecks. However, with AQM,
we achieve near zero queue with high utilization.

I. INTRODUCTION

As the Internet evolves to a telecommunication in-
frastructure, its best-effort service model must be aug-
mented to support more application requirements, such
as service guarantees and service differentiation. This
paper proposes the use of closed-loop mechanisms as
a data-plane building block to provide expected mini-
mum rate and weighted rate services. Expected mini-
mum rate refers to a service that offers a minimum con-
tracted rate assurance plus a proportional fair share of
the remaining available capacity. Services based on the
expected minimum rate building block are conceptually

similar to the Frame Relay CIR/PIR service that guaran-
tees (through admission control) a Committed Informa-
tion Rate (CIR) and can burst up to a Peak Information
Rate (PIR) [10]. Expected minimum rate services are also
similar to the DiffServ assured service [4], though the lat-
ter has multiple classes and drop precedences within each
class. Both the DiffServ assured service and Frame Re-
lay CIR/PIR service are realized using open-loop build-
ing blocks [11] [29]. The weighted rate service building
block provides weighted proportional fairness. Mecha-
nisms realizing weighted proportional fairness are found
throughout the nonlinear optimization-based congestion
control literature [14] [19] [16] [21]. We demonstrate the
huge achievable range of weights and interoperation be-
tween our specific expected minimum rate and weighted
rate building blocks.

We demonstrate that allocating minimum rate expecta-
tions can be practically interpreted as translating a con-
cave objective by the rate expectations and applying ad-
ditional convex constraints. In traditional QoS, expected
minimum rate allocations are accomplished using admis-
sion control. In our framework, the closed-loop mecha-
nisms operate in a fully distributed manner without ad-
mission control, and require each control loop to act
only on local knowledge. The mechanisms allow policy-
based control over capacity allocation during oversub-
scription by setting parameters on our introduced convex
constraints.

We develop concrete service building blocks based
upon our prior work on a family of Accumulation-based
Congestion Control (ACC) schemes [30] that use the
number of buffered packets of a flow inside the network as
a congestion measure. We use the term accumulation to
denote per-flow backlog in the path to differentiate accu-
mulation from queue length or other notions of backlog.
We argue that congestion control arising from this con-
gestion measure can be superior to loss-based closed-loop
approaches [9] [24] for service differentiation purposes.
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This is because ACC schemes largely decouple the equi-
librium rate allocation from the dynamics of their control
algorithms, and thus do not require the system to become
more aggressive in terms of the size of rate or window
increase/decrease steps in order to obtain differentiation.
ACC over a network of FIFO queues inherently implies
that the network builds physical queue, and thus the range
of services is limited by buffer sizes within the network.
We overcome this constraint by introducing AQM that
communicates the virtual queueing delay incurred on a
virtual queue [17][26].

We evaluate the expected minimum rate and weighted
building blocks using ns-2 [25] simulations and Linux
kernel v2.2.18 implementation experiments. Several fun-
damental issues such as graceful service degradation (like
oversubscription, limits on accumulation), and trade-
offs (like FIFO vs. optional AQM support at bottle-
necks) are explored. It is important to note that this paper
only develops the abstract service model (albeit with ns-
2 simulation and Linux implementation validation), and
does not explore architectural issues such as functionality
placement and multi-ISP service coordination etc. How-
ever, we remark that the abstract model developed in this
paper offers the attractive potential of overlaying QoS ca-
pabilities over an existing network of logical FIFO queues
from network edges.

Figure 1 illustrates a qualitative spectrum of packet-
switched QoS capabilities ranging from best-effort ser-
vice [13] to rate/delay guaranteed service offered by
IntServ [6], including frameworks such as Stateless Core
(SCORE) [27] and DiffServ [4]. Services on the right
hand side of the diagram are more complex, offered
at finer granularity, and have increasing implementation
complexity. The left side of the spectrum implies less
quantitative services, the use of FIFO queuing, closed-
loop congestion control and potentially AQM schemes.
Our framework would be in the middle of the spectrum
emulating a subset of the DiffServ capabilities and extend-
ing the realm of services with closed-loop control, FIFO
queueing, and optional AQM. Unlike IntServ, SCORE
and DiffServ that offer per-packet assurances, our service
semantics are meaningful only in the steady state due to
the use of closed-loop control. In other words, our model
offers the lower end of the service spectrum at very low
complexity, and without the need for admission control.

This paper is organized as follows. In Section II we de-
scribe the control policy that serves as the base on which
we provide an expected minimum rate service in Section
IV and a weighted rate service in Section V. We also
briefly discuss a key issue regarding the ACC model in
general, i.e., scalability of buffer requirement and adopt

best effort stateless intserv
core

semantics
service

diffserv

expected rateweighted rate

Fig. 1. Service spectrum

a virtual queuing mechanism as a solution in Section IV-
A. We evaluate our proposal using a set of ns-2 simu-
lations in Sections IV-B and V-A. We multiplex all the
services in a complex network to show they can co-exist
together in Section VI via ns-2 simulation and Linux OS
kernel v2.2.18 implementation experiments. Section VII
concludes this paper.

II. CONTROL ALGORITHM

Define flow �’s accumulation as the sum of the queued
bits in all nodes along its path, i.e.,

����� �
��
���

������
����
���

��� (1)

where ������
����

��� ��� is flow �’s bits queued in the �th

node at time ��
����

��� ��, and �� is the propagation delay
from node � to node � � �. Note it includes only those
bits backlogged inside node buffers, not those stored on
transmission links. We consider window-based conges-
tion control in which each control loops tries to maintain
a constant target accumulation ��� for each flow � accord-
ing to

������ � �	 � ������� ��� � (2)

where �����, ��� and ����� are respectively the congestion
window size, target accumulation, and instantaneous ac-
cumulation of flow �. In addition we bound the increase
to within 1 MTU per round-trip time.

This control policy fits within a family of functions de-
scribed by the general Accumulation-based Congestion
Control (ACC) model, which we introduced in [30]. We
therein proved that functions meeting the ACC model
are globally stable, realize weighted proportional fair-
ness (with weight ��� ), and the equilibrium share is deter-
mined by the target accumulation. This allows us the free-
dom to choose a control policy within certain constraints
(see [30]). We therefore choose a control policy that in-
creases no more quickly than TCP Reno or Vegas (i.e.,
linearly), and backs off more quickly than Vegas in re-
sponse to extreme queue lengths. As argued in Section V-
B, this decoupling of setting the target steady state alloca-
tion (fairness) from designing the control policy (stability
and dynamics) allows us to avoid the major pitfalls in loss-
based service differentiation.



3

receiver

sender

... ...

Forward
OB ctrl pkt
arrives.

Forward IB
ctrl pkt arrives.
Reverse OB
ctrl pkt sent.

between OB
= num. of arrivals
accumulation est.

and IB ctrl pkts.

rtt

rtt p ftt q

Fig. 2. Monaco accumulation estimator

III. ACCUMULATION ESTIMATION

ACC control policies potentially interoperate with
any unbiased accumulation estimator operating on RTT
timescales including the accumulation estimator intro-
duced by TCP Vegas or the Monaco accumulation esti-
mator we introduced in [30]. TCP Vegas estimates accu-
mulation as 
��� 
���� �
��� 
���� where 
��� refers to
Round-Trip Propagation Delay (RTPD). This accumula-
tion estimator is sensitive to both the estimation of RTPD
and to reverse path congestion[23] [30] [5]. In particular
changes in the RTPD can lead to dramatic underutilization
or grossly unfair bandwidth allocations. The Monaco ac-
cumulation estimator eliminates these sensitivities in the
following way.

Monaco estimates accumulation at the receiver side.
It generates a pair of back-to-back control packets once
per RTT at the sender as shown in Figure 2. One con-
trol packet is sent out-of-band (OB) and the other in-
band (IB). The OB control packet skips queues in the
intermediate routers by passing through a separate dedi-
cated high priority queue. Assuming the OB queues to
be minimal as only other OB control packets share them,
such packets experience only propagation delay in the for-
ward path. The IB control packet goes along with regular
data packets and reaches the receiver after experiencing
the current queueing delay in the network. The time in-
terval between the OB and IB control packets measured at
the receiver samples the sum of the queueing delays in the
forward path. Considering a network in steady-state with
enough buffers where there is no packet loss, then by Lit-
tle’s law, the average number ��� of data packet arrivals at
the receiver after the OB control packet, but before the IB
control packet equals the average accumulation.

This comes with an extra requirement of two separate
FIFO queues inside network routers, with a high priority
queue for OB control packets and low priority queue for
IB control and data packets.

Due to the problems with the Vegas accumulation esti-
mator, we use the Monaco accumulation estimator in all

simulations and experiments in this paper.

IV. EXPECTED MINIMUM RATE SERVICE BUILDING

BLOCK

In this section we demonstrate an expected minimum
rate service building block. We aim to provide any flow a
contracted (or expected minimum) bandwidth plus a pro-
portional share of any uncontracted capacity. The ex-
pected minimum rate is achieved by keeping an appro-
priate amount of accumulation for that flow. We mean
“expected” in the sense that we can obtain a high prob-
ability of meeting the contract under the assumption that
the bandwidth allocated for the expected rate service is
only a part of the total capacity. We show theoretic result
for a general network topology based on the ACC model
and evaluate it using a set of ns-2 [25] simulations based
on Monaco.

A. Theory

Let’s consider a network of a set of links �, shared by
a set of flows � . Each link � � � has capacity ��. Flow
� � � passes a route �� consisting a subset of links, i.e.,
�� � �� � � � � traverses ��. A link � is shared by a subset
�� of flows where �� � �� � � � � traverses ��.

As we discuss in Section II, a specific rate allocation
corresponds to a particular equilibrium of the control al-
gorithm (2); And the equilibrium is decided by the target
accumulation ��. So service provisioning is mapped to the
management of steady state accumulation.

Suppose we provide flow � a bandwidth ��� which is
a sum of an contracted rate ��� (which we call expected
minimum rate hereafter) and a proportional share ���� of
the remaining network capacity 1:

��� � ��� � ����� (3)

We achieve this allocation by keeping for flow � a total
accumulation �� which also includes correspondingly two
parts: ��� for ��� and ��� for ����, i.e.,

�� � ��� � ���� (4)

According to Little’s law, we have

�� � ��� � ��	� (5)

��� � ��� � ��	� (6)

��� � ���� � ��	 (7)

where ��	 is the steady state queueing delay experienced
by flow � in the forward path.
�It will be clear very soon why we use symbols ��� and ���� instead

of �� and ��� here and why we call ���� a proportional share.
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Fig. 3. Two simultaneous nonlinear optimization problems: (a) Con-
vex constraint sets showing ��� � ��� � ����: inner one for ��� while
outer one for ��; (b) Utility functions of �� and ���.

Based on the above equations, we obtain

��� � ���
���
���

� � �� (8)

where ��� is the contracted rate known a priori, ��� can
be measured at receiver side, and �� is provided by the
Monaco accumulation estimator shown in Figure 2.

Obviously, if we keep ��� constant, then the propor-
tional share ���� is decided by network as shown by Equa-
tion (7). On the contrary, if we want to keep a constant
expected minimum rate ���, then the corresponding ���
should be set according to Equation (6). To avoid the esti-
mation of ��� (or equivalently ��	) we use Equation (8) to
estimate ��� which automatically accounts for ���.

To make the above observations more clear, we pro-
vide below a nonlinear optimization analysis. Firstly we
consider the total rate ��� . As shown in Appendix (see
also [30]), we prove that the flow rate ��� is the unique
maximum of the following nonlinear optimization prob-
lem:

��������
�
��


�� ���� (9)


������ ��
�
��
�

�� � ��� 	� � � (10)

�� � �� 	� � �

meaning that it achieves a weighted proportional fairness:

�
��


�� �
�� � ���
���

� � (11)

where �� is any feasible rate satisfying constraint (10).
Beyond the contracted rate ���, we secondly consider

the rate ����. Similarly we can prove that the flow rate ����
is the unique maximum of the sub-problem:

��������
�
��


��� ����� (12)


������ ��
�
��
�

��� � �� �
�
��
�

���� 	� � � (13)

��� � �� 	� � �

meaning it also achieves another similar fairness:

�
��


��� �
��� � ����

����
� � (14)

where ��� is any feasible rate satisfying constraint (13).
So a system providing an expected minimum rate ser-

vice actually does two nonlinear optimization problems;
but these two problems are not independent – they are si-
multaneous in that as long as one problem achieves its op-
timality, the other also achieves its optimality at the same
time. We illustrate this result in Figure 3. A more general
analysis is provided in Section 5.3 of [12] by considering
general utility functions.

There are three boundary conditions affecting if these
two optimalities can actually be realized in a practical sys-
tem:

� Oversubscription: Without admission control, the
constraint (13) might be always invalid. Or we can
not guarantee that

�
��
�

��� � ��� 	� � �	 (15)

� Accumulation limit: As we keep for each flow a
steady state accumulation, we want to put an upper-
bound �� which limits the queuing delay introduced,
namely

�� �
�
����

��� � ��� 	� � �	 (16)

� Buffer overflow: Even with the above accumulation
limit, we can not yet guarantee that each router buffer
�� is sufficiently provisioned, i.e.,

�� �
�
��
�

��� � ��� 	� � �� (17)

Apparently, if any of the boundary conditions is effec-
tive, we have more constraints in the optimization prob-
lems (9) and (12). Thus the (optimal) expected service
might not be achieved. But since the boundary conditions
are all convex, the feasible region remains convex, then
the system still has a unique equilibrium. Therefore the
closed-loop control can still be used to achieve a weighted
proportional rate allocation which can be computed from
the boundary conditions. We use simulation to illustrate
this in the next subsection. Consequently the expected
service gracefully degrades into the weighted service dis-
cussed in the Section V. Further, since we have the free-
dom to choose the accumulation limit �� in (16), this pa-
rameter could be used for policy-based control.

Now let’s look at the trade-off. Even we set an accumu-
lation limit for each flow, the steady state queuing delay
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or physical queue length might be large as the number of
multiplexed flows increases. Is it possible to provide the
requested services based on managing accumulation and,
at the same time, keep steady state queue length bounded?
We have adopted the AVQ algorithm [17] which emulates
an adaptively changing link capacity such that the steady
state queue length is sufficiently small. We compute a
Virtual queueing Delay (VD) which is defined as the ratio
of queue length divided by virtual capacity [26] and add
it into the forward in-band control packet. A nice prop-
erty of the virtual delay algorithm is that it is incremen-
tally deployable since a mixed set of FIFO and AVQ+VD
routers can work together (see Section VI). In such an
environment the Monaco accumulation estimation will be
��� � ���
�
 � � � ��� � where ���
�
 is accumulation in
those FIFO routers measured between two control packets
shown in Figure 2, � is the egress rate and ��� � is the sum
of all virtual delays at those AVQ+VD routers.

To sum up, we use the following algorithm to pro-
vide the expected minimum rate service. It includes eight
steps.

Algorithm 1 Expected Service Pseudo-code at Ingress
cwnd = the congestion window in bytes
pwnd = the congestion window in the previous RTT
ssthresh = the slow start threshold
srtt = the smoothed RTT estimation
A = the total accumulation limit
� = the target accumulation beyond the expected mini-
mum rate

(1) � = reverse ctrl pkt.accumulation;
(2) � � ���� 
 
���

��;
(3) �� � ����� 
 ��� ������ ����;
(4) ���� � ������������� �����;
(5) ���� � ����� � 
������ � �� ����;
(6) if �� � � �� �� � �� � 

� 
�
 � ����; �
(7) else �

(7.1) if ��������� �� 

� 
�
 �


� 
�
 � ����;

(7.2) ���� � �������� 
 ���� 

� 
�
 �; �
(8) rate limit = ���� 
 
���

��;

In Step 1 we read from the reverse control packet the
total accumulation � measured by the Monaco estimator.

In Step 2, we compute the departure rate � as the bits
transmitted since the last control packet divided by the
smoothed rtt 

�� .

In Step 3, we compute the accumulation �� incurred
beyond the expected minimum rate according to Equa-
tion (8). When a control loop is ramping up or during
oversubscription, the departure rate � may be less than

the expected minimum rate �� causing �� to be negative.
So we max with 0.0 to force nonnegativity.

In Step 4, we force a ���� that is within 1 MTU of
���� to be equal to ����. Our algorithm stops send-
ing when the packet at the head of the queue would cause
���� to exceed ����. Thus anything within 1 MTU of
���� should be counted as being equal to ����.

In Step 5 we set the congestion window according to
the Monaco control policy defined in Equation (2).

In Steps 6–7, we determine whether step 5 was a de-
crease or an increase step. In Step 6, we stop a slow start
by reducing 

� 
�
 to the current congestion window
size. In other words, each control loop slow starts until
congestion is first detected. In Step 7.1, we only allow


� 
�
 to increase if the number of bytes sent in the
prior RTT is within an MTU of 

� 
�
 . It also ensures
that a cwnd that decreases due to something other than
congestion (e.g., decreasing user demand), that 

� 
�
 
does not decrease, i.e., 

� 
�
 tracks the congestion
level in the network rather than the user demand. Step
7.2 bounds slow start by 

� 
�
 .

Step 8 sets the rate on the token bucket shaper.

B. Simulations

In this subsection we evaluate the expected minimum
rate building block performance using ns-2 simulations
on a single bottleneck with heterogeneous propagation de-
lays. In Section VI we provide ns-2 simulation and Linux
kernel v2.2.18 implementation experiment results for a
more complex multiple bottleneck network.

We simulate a single 100Mbps bottleneck with 4ms
propagation delay shared by 10 flows using the Monaco
scheme. We use simulation because this allows us to tem-
porarily set aside the practical limitation of finite buffer
sizes, so that we can study the range of services in the ab-
sence of loss. The topology is shown in Figure 4(a). Flow
0 has an expected minimum rate ��� while other 9 flows
request a proportional rate service (i.e., with an expected
minimum rate of 0). Each source � (� � � � �) is con-
nected to the bottleneck via a 1Gbps link with one-way
propagation delay �����ms. We performed two kinds of
simulations.

In the first set of simulations we evaluate the range of
satisfiable expected minimum rates without AQM and we
demonstrate the effects of setting the accumulation limit.
For each accumulation limit of 15KB, 30KB and 3000KB,
we run simulations each with a different expected rate ���
from 0 to 110 Mbps. All other flows have a target accumu-
lation of 3KB. With � � 
���KB, we are able to allocate
99.1Mbps (i.e., ��������

��������
) of a 100M bottleneck to a sin-

gle flow before the accumulation limit is reached. When
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Fig. 4. Expected minimum rate block in a single bottleneck: (b) Topology; (b) Throughput �� vs. expected minimum rate ��� without AQM; (c)
Throughput �� vs. expected minimum rate ��� with AVQ+VD at the bottleneck; (c) Steady state queue length vs. expected minimum rate ���
without and with AQM at the bottleneck for flow 0’s accumulation limit � set to 15KB, 30KB and 3000KB.

� � ��KB, the maximum satisfiable expected minimum
rate, ��, is ������

������
� 
���Mbps, demonstrating that the

expected minimum rate service degrades to a weighted
rate (see the next section). Similarly, �� is limited to
������
������ � ����Mbps for � � 
�KB.

The upper part of Figure 4(d) shows that the queue
length grows dramatically (note the logarithmic scale of
the vertical axis) as the expected minimum rate ��� in-
creases. This is most apparently shown by � � 
���KB
case. However in all cases, the queue growth flattens when
the accumulation limit is reached. The rapid queue growth
as the expected minimum rate approaches available ca-
pacity demonstrates the bound on achievable services as a
function of the buffer sizes in the network.

In the second set of simulation runs, we repeated the
simulations above the expected minimum rates. We added
AQM (more specifically AVQ+VD) to the bottleneck. The
range of achieved expected minimum rates is similar to
the case without AQM, as shown in Figure 4(c). How-
ever, AVQ+VD keeps the queue length at near zero in the
equilibrium, because instead of incurring physical accu-
mulation, each control incurs virtual accumulation on a
virtual queue! In fact the average queue diminishes as the
ratio of the rates increases because 1) the packets in the
fast flow are nearly evenly spaced due to rate-based pacing
and therefore do not incur queue, and 2) the slower flows
send so infrequently that they rarely perturb the queue.

Although not shown in the figures, the utilization for
all cases without AQM was 100% in the steady state (the

queue never drains completely), and when AQM was
used, the utilization was always within half a percent of
98%, i.e., our target utilization for AVQ+VD.

V. WEIGHTED RATE SERVICE

As stated in Section II, our control policy achieves
weighted proportional fairness. In this section we
demonstrate the range of weights achievable with and
without AVQ-VD using the control policy in Equa-
tion (2) and show that the achieved weighted rate service
range significantly outperforms the studied loss-based ap-
proaches [9] [24].

A. Simulations

In this subsection we evaluate the weighted rate service
building block’s performance using ns-2 simulations on a
single bottleneck with large enough buffer size to avoid
loss. For a network of multiple congested links shared by
flows passing through different numbers of bottlenecks we
provide ns-2 simulation and Linux kernel v2.2.18 imple-
mentation experiment results in Section VI.

We use the same single bottleneck network show in Fig-
ure 4(a) where a single 100Mbps 4ms bottleneck is shared
by 10 flows with very heterogeneous RTTs. Flow 0 has
varying weight � while other flows has unit weight (i.e,
�� � ��� � � � � � ���). We performed two sets of
simulations to evaluate the weighted service range.
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Fig. 5. Weighted service in a single bottleneck: (a) Relative throughput ratio vs. weight; (b) Bottleneck queue length vs. weight; (c) Bottleneck
utilization.

In the first simulation we evaluate the service differenti-
ation range without AQM. We did a set of simulation runs
by changing � from 1 to ��� which is three orders of mag-
nitudes larger than the weight achieved with TCP [24].
We provide theoretic reasoning for this huge difference in
the next subsection. As shown by the upper curve in Fig-
ure 5(a), for the enormously wide range of weight varia-
tion, accurate weighted sharing is achieved. This comes
with a cost; The upper curve in Figure 5(b) shows that
the steady state queue length at the bottleneck increases
linearly with weight. The curvature in the mean queue
length in Figure 5(b) is due to a y-offset for a weight 1
equal to the sum of the target accumulations (30KB). As
with the expected minimum rate building block, the large
queue incurred by service differentiation based on physi-
cal accumulation demonstrates the practical bound on ser-
vice differentiation that would be present with finite buffer
sizes.

Again, with AVQ+VD we are able to break the cou-
pling between the notion of accumulation and real queu-
ing. Figure 5(b) demonstrates AQM achieving average
queue sizes less than 1 packet and this average diminishes
as weight increases for the same reason that average queue
diminishes as expected minimum rates increase (see Sec-
tion IV-B): control loops that send rarely also rarely per-
turb the queue.

As shown in Figure 5(a), for weights below ���, AQM
achieves the desired weighted share. However, above
about ���, the control loop with the large weight obtains
less than the desired weighted share. This arises because
AQM does not allow the window size of the control loop
with the heavy weight to grow as would occur with grow-
ing physical queue length, but instead forces the window
size of each control loop with weight 1 to shrink. As
the weight of source !� increases to 491, the equilib-
rium window size of source !� shrinks to 1. By the time
the weight reaches 2691, the window sizes of all sources
!� � !� shrink to 1 packet. In order to obtain larger
weighted shares, the control loops must either send slower

or the queue must grow. As we know from Figure 5(b),
the queue does not grow above a weight of 491 or 2691.
Instead, we use rate-based pacing to halve the send rate
whenever the window size reaches 1 and negative feed-
back arrives. When positive feedback arrives we react in
the same way as before.

This handling for the regime of low rates is similar to
the exponential backoff used by TCP when a timeout oc-
curs and the immediate recovery to a rate of 1 packet per
RTT when an acknowledgement arrives. Jumping to 1
packet per RTT represents an aggressive increase that bi-
ases the weighted share in favor of the control loops with
smaller weights. This aberration occurring at high weights
might be solved through careful redesign of the increase
step used in the low rate regime.

As shown in Figure 5(c), without AQM, the utilization
is 100%. With AQM the utilization settles around 98%,
which is our target utilization for AVQ+VD.

B. Accumulation-based vs. Loss-based Approaches

Related research, such as [9] [24], has explored to ma-
nipulate packet loss rate of TCP Reno to provide simi-
lar service differentiation. In this subsection we compare
the mechanisms used by loss-based approach and this pa-
per. We argue that accumulation-based approach is in
principle better than loss-based one in that the former can
achieve both steady state objective and good dynamic per-
formance.

Crowcroft et al. implement MulTCP which makes a
TCP connection behave as � TCP Reno connections by
increasing the congestion window of the single TCP con-
nection by � packets in each RTT and, when a loss oc-
curs, decreasing it by only �����

�
[9]. Nandagopal et

al. provide a systematic analysis on how to adjust TCP
Reno congestion control increase/decrease parameters to
achieve the weighted service [24]. In both work the ser-
vice is achieved by (adaptively) changing congestion con-
trol increase/decrease parameters. This approach creates
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Fig. 6. Simulation of all services co-exist in a complex network of 3 bottlenecks: (a) Topology; (b) Throughput vs. time with rate expec-
tations; (c) Throughput vs. rime with weighted shares; (d) Accumulation vs. time for loops with rate expectations; (e) Bottleneck �� queue
length (AVQ+VD); (f) Bottleneck �� queue length (AQM).

a dilemma: it is hard to achieve both service differen-
tiation and good dynamic performance because the in-
crease/decrease parameters of the congestion control al-
gorithm decide its dynamic performance. This is the rea-
son why the short term behavior of the algorithm in [24]
suffers and a long time simulation run is needed. Further,
it’s hard to accurately measure loss rate at end hosts.

We use a quite different approach based on accumula-
tion allocation: a specific service, including the weighted
one, is achieved by relocating the equilibrium. The con-
trol algorithm’s dynamic behavior can be designed sepa-
rately as long as it fits into the general ACC model [30].
This decoupling of the steady state equilibrium and dy-
namic control algorithm provides the capability to achieve
the targeted service as well as good dynamic behavior at
the same time.

Of course, since we need to keep a steady state physical
queue (i.e., accumulation) for each flow, and �� is limited
by the physical buffer size �� shown in the constraint (17),
bottleneck buffer size limits the range of the weighted ser-
vice in practice. But this limitation is very different from
that of [24] where it results from the coupling of steady
state objective and dynamic performance.

VI. SERVICE MULTIPLEXING

In this section we provide both ns-2 simulation and
Linux implementation experiment results to demonstrate

that the expected minimum rate and weighted rate ser-
vices can co-exist dynamically with bursty web-like traffic
in a complex multiple bottleneck network including both
FIFO and AVQ+VD routers. The simulation and imple-
mentation source code will be posted on our project web
page soon.

A. Simulations

Firstly we show the simulation results for the topology
shown in Figure 6(a). We choose a topology with all equal
capacities and put all control loops with expected min-
imum rates along the multiple-bottleneck path, because
these choices simplify target rate computations. We de-
scribe this rate computation momentarily. There are 4
“long” flows passing through all bottlenecks and a set of
“cross” flows each using only one bottleneck. Every bot-
tleneck link has 100Mbps capacity and 1ms propagation
delay. The source nodes ��� �� � ��� 
� are connected to
"� with propagation delays evenly spread between 1 and
100ms (i.e., 1ms, 34ms, 67ms and 100ms, respectively).
Nodes ��� �� � ��� 
� have the same delays but are con-
nected to "� and likewise for nodes �
� �� � �
� 
� to "�.
As specified in Table I, each of the long flows has an ex-
pected minimum rate, and they start and stop sending at
different times thereby moving the system from undersub-
scribed through two degrees of oversubscription and back
to undersubscribed before a barrage of web-like flows
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TABLE I
SIMULATION PARAMETERS

flow expected � limit weight start stop
rate (����) (���) (���) time time

(0,0) 30 Mbps 60 KB 1 # ��� ��
(0,1) 35 Mbps 75 KB 1 25 s 75 s
(0,2) 50 Mbps 60 KB 1 50 s 75 s
(0,3) 10 Mbps 15 KB 1 # ��� ��
(2,0) 0 Mbps 3 # ��� ��
web 0 Mbps 1 100 s
other 0 Mbps 1 # ��� ��

start. The 500 web-like flows entering "� are evenly dis-
tributed across 25 nodes, and each of these nodes is con-
nected to "� again with propagation delays evenly spread
between 1 and 100ms. The 25 nodes generating web-like
bursty traffic to "� are similarly connected.

We use simulation due to the rather large number of
nodes in our topology. This simulation demonstrates that
the target rate allocation is well-defined and controllable
via our choice of accumulation limits �� even under over-
subscription.

To determine the target rate allocation when there is no
oversubscription, we subtract the expected minimum rates
from the capacities in each bottleneck and then compute
the weighted proportional fair share. Let $ denote the
number of bottlenecks. Let % denote the sum of the num-
ber of control loops passing through all three bottlenecks
and the number of cross-flows entering each bottleneck.
Thus, the target rate allocation becomes

���� �

���
��

���

�
& � ���� �' � � �

���

��
��� ��

�
�& �' � �� �

(18)

where & � ����
�

����� ����, (� �
�

����� ��� and
( �

�
����� (�.

If a control loop with an expected minimum rate ����
incurs its accumulation limit, we simply set its expected
minimum rate to zero and replace its weight with the con-
trol loop’s accumulation limit.

1) No Oversubscription: As specified in Table I, con-
trol loops labelled ��� �� and ��� 
� as well as all loops
that traverse a single bottleneck start at a random time
in # ��� ��. The sum of the expected minimum rates for
��� �� and ��� 
� is well below the bottleneck capacity, and
neither control loop need incur an accumulation greater
than its accumulation limit to achieve its expected min-
imum rate. Thus, as shown in Figure 6(b), both ��� ��
and ��� 
�’s expected minimum rates are satisfied and they
both obtain their respective target rates as determined by

Equation (18).
2) Accumulation-Limited: At 25s into the simulation,

control loop ��� �� begins transmitting and steers toward
an expected minimum rate of 35Mbps. The sum of the
active expected minimum rates �
�� 
�� ��� is still less
than the capacity, but for control loop ��� 
� to achieve
its expected rate would require ��� � ���. Therefore,
��� 
� becomes bounded by its accumulation limit shown
in Figure 6(d) and fails to obtain its expected minimum
rate. Notice that even though ���� and ���� are larger than
����, they are satisfied because we have a policy of giving
t them larger accumulation limits.

3) Oversubscription: At 50s, control loop ��� �� be-
gins transmitting resulting in blatant oversubscription.
Because all of the expected minimum rates are themselves
less than the capacity, we would intuitively desire to have
a subset of the expected minimum rates satisfied. Unfortu-
nately, control loop ��� ��� ��� ��� and ��� �� all have sim-
ilar accumulation limits thereby forcing all to a weighted
proportional fair share that satisfies none of the expected
minimum rates. This rate allocation is still optimal, which
could be validated according to the optimization formula-
tion (10).

We also note that none of the control loops without
an expected rate are starved. Because our system de-
grades toward weighted proportional fairness, a control
loop ��� �� without an expected rate simply receives its
weighted share according to ��� .

At 75s, ��� �� and ��� �� stop sending thereby allowing
the system to return to an equilibrium that satisfies all ex-
pected rates for active control loops.

We note here that throughout the simulation, ���
changes slowly compared to ���. This can be attributed
to the large difference in round-trip propagation delays;
��� �� has 10ms while ��� 
� has 208ms. However, de-
spite their difference in propagation delays these control
loops still converge to the appropriate target rate alloca-
tion throughout the simulation, or at least until web-like
traffic begins at 100 s, at which time the equilibrium is no
longer well-defined.

4) Web-like Traffic: At 100s, 500 web users entering
bottleneck "� and 500 web users entering bottleneck "�
begin sending and introduce substantial variation in queue
lengths, illustrated in Figures 6(e)-(f). The key result is
that despite burstiness, each control loop hovers above its
expected rate shown in right side of Figure 6(b).

We use the web models presented in [2]. We deter-
mined empirically an appropriate number of web users by
turning off all sources except web users. We then tuned
the number of web users to consume approximately 10%
capacity. Of course, due to burstiness loads are sometimes
much higher than 10%.
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Fig. 7. Implementation of all services co-exist in a network of 2 bottlenecks: (a) Topology; (b) Throughput vs. time.

Control loop ��� 
� does not appear to adjust much in
response to bursty web flows. We attribute this to ��� 
�’s
much longer propagation delay and therefore slower adap-
tation.

5) Coexisting Bottleneck Mechanisms: AQM and No
AQM: As shown in the topology Figure 6(a), bottle-
neck "� uses AVQ+VD while others use FIFO without
AQM. Figures 6(e)-(f) readily demonstrate the benefits of
AQM. The bottleneck "� experiences equilibrium queue
lengths near zero independent of the changing rate alloca-
tions and, when web traffic starts, the queues still remain
substantially lower than the bottleneck "�.

6) Weighted Sharing: Control loop ��� �� sends with
weight 3 throughout the experiment. For comparison we
show its neighboring control loop ��� �� with weight 1.
Because these loops traverse the same path, we expect
��� �� to obtain roughly three times the throughput of
��� �� regardless of the changing rate expectations or the
presence of web-like flows. Figure 6(c) reveals that this
happens. Furthermore, Figure 6(c) shows that as the load
from expected minimum rates changes, each control loop
steers toward the new rate allocation corresponding to pro-
portional fairness for the capacity not allocated to satisfied
expected minimum rates.

B. Implementation Experiments

Besides ns-2 simulations, we also implement Monaco
in Linux kernel v2.2.18 [28] based on the Click config-
urable router [15]. We did a set of implementation exper-
iments based on our Monaco implementation using the
Utah Emulab [18]. We show one result here for a 2 bottle-
neck network shown in Figure 7(a) with 1Mbps link band-
width and 20ms delay. There are 4 long flows which pass
all bottlenecks and 2 short flows each using one bottle-
neck. Long flow 1 asks for an expected rate of 0.2Mbps.
Long flow 2 requests a weighted service with weight 5.
All other flows have weight 1. Long flow 2 is an on-off
flow with a period of 20s. We did the experiment for 60s.
As depicted in Figure 7(b), each flow gets its targeted rate.

VII. SUMMARY

In this paper we propose to use a closed-loop conges-
tion control mechanism to provide quality of services,
based on our prior work of an accumulation-based con-
gestion control model which uses accumulation, buffered
packets of a flow inside network routers as a measure
to detect and control network congestion. We design
two concrete services: the expected minimum rate and
weighted rate services. By applying a nonlinear optimiza-
tion analysis, we show that accumulation could be ap-
propriately manipulated to provide each specific service.
We use a set of simulations to evaluate the service per-
formance under different topologies and conditions. We
demonstrate that the expected minimum rate and weighted
rate services can be provided in a network with dynamic
demands, under the conditions of oversubscription and
buffer limits. We implement the scheme in Linux OS ker-
nel v2.2.18 based on the Click modular router and validate
simulation results using the Utah Emulab and an internal
testbed.

This paper focuses on the data-plane building block for
service provisioning. The related control plane functions
and architectural issues, such as the mapping of the ACC
model in an edge-to-edge manner to provide cross-ISP
services, represent our ongoing research.
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APPENDIX

We provide here the background theory to better un-
derstand Sections IV and V for the readers’ convenience.
Please refer to [30] for a complete description.

Consider the network defined in Section IV-A. Let’s
firstly analyze from queuing system perspective [22].
After the system approaches a steady state, at any link
� the queue length �� ��

�
��
�

����, or equivalently the
queuing delay �	� �� ������, could be non-zero only
if the capacity �� is fully utilized by the sharing flows
of the aggregate rate

�
��
�

��, where �� is the rate of
flow �. This suggests either �� � � (i.e., �	� � �) or�

��
�
�� � ��. We use window-based flow control, in

which a window �� bits of flow � could be stored either
in node buffers as accumulation �� ��

�
����

���� or
on transmission links as �� � 
��� �, where 
��� � is the
round trip propagation delay of flow �. Observing that
�� � �� � 
���, we summarize to get the following

Proposition 1: If we use accumulation �� as a steer-
ing parameter to control flow �’s congestion window size
��, then at the steady state (achievable by the control
algorithm in Section II) we have, 	� � ��	� � � :
(a) �� � �� � �� � 
��� � � �� � �� �

�
����

�	�;
(b) �	� � ��� �

�
��
�

��� � �;
(c)
�

��
�
�� � ��;

(d) �	� 
 �;
(e) �� � �.

Alternatively, network resource allocation can also be
modelled as a nonlinear optimization problem [14] [19]
[16]. The network tries to maximize the sum of all flows’
utility functions

�
��
 #�����, in which flow �’s utility

function #����� is a measure of its happiness when it
sends at a rate of �� � �, subject to a set of capacity
constraints

�
��
�

�� � �� at all links. Using Lagrange
multiplier method, we construct a Lagrange function
�� )�� )� � �

�
��
 #����� �

�
��� �� � ��� �

�
��
�

���.
If #����� is defined as #����� � 
� ����, where 
� � �
is a weight, then because of the strict concavity of the
objective function constrained by a convex set, we apply
the Karush-Kuhn-Tucker condition [3] to obtain

Proposition 2: The nonlinear programming problem

��������
�
��



� ���� (19)
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������ ��
�
��
�

�� � ��� 	� � �

�� � �� 	� � �

has a unique global maximum and )� is the maximum if
and only if, 	� � ��	� � � :
(a) *�� )�� )� ��*)� � � � 
� � �� �

�
����

��;
(b) �� � ��� �

�
��
�

��� � �;
(c)
�

��
�
�� � ��;

(d) �� 
 �;
(e) �� � �.

Now let’s compare the above two propositions. If re-
placing 
� with ��, �� with �	�, we find that Proposition 2
is turned into Proposition 1, and vice versa. This obser-
vation indicates that, by using accumulation as a steering
parameter to control flow rates, the network is actually
doing a nonlinear optimization in which flow �’s utility
function is

#����� � �� ����� (20)

It turns out that the weight 
� is instantiated by accumula-
tion �� which has a clear physical meaning and could be
manipulated to provide a set of quality of services.

Besides, the Lagrange multiplier �� is a measure of con-
gestion, or price explored in [19], at link �. In particular,
the queuing delay �	� is an instance of such price. The
more severe the congestion at link �, the higher the price
��, the larger the queuing delay �	�. If there is no con-
gestion at that link, then there is no queuing delay, i.e.,
�	� � �, the price �� is also 0. In a FIFO router, the La-
grange multiplier �	� � ����� is provided by a physical
FIFO queuing process where �� is fixed and we have no
freedom to control ��. Similar to AVQ [17], we can also
provide the same Lagrange multiplier �	� using an active
queue management algorithm such that �	� � �����

�
� and

��� is bounded if we change the virtual capacity ��� accord-
ingly. In this case we call �	� virtual delay.


