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Abstract— Several congestionpricing proposalshave beenmade in the
last decade. Usually, however, thoseproposalsstudied optimal strategies
and did not focuson implementation issues.Our main contribution in this
paper is to addressimplementation issuesfor congestion-sensitive pricing
over a single domain of the differentiated-services (diff-serv) architecture
of the Internet. We proposea new congestion-sensitive pricing framework
Distributed Dynamic Capacity Contracting (Distributed-DCC), which is
able to provide a range of fairness(e.g. max-min, proportional) in rate
allocation by using pricing as a tool. Within the Distributed-DCC frame-
work, wedeveloptwo pricing schemesbasedon the manner of usingpricing
to control congestion:Pricing for CongestionControl (PFCC) and Pricing
over CongestionControl (POCC). PFCC usespricing dir ectly for control-
ling congestion,whilst POCC usesan underlying edge-to-edgecongestion
control mechanismby overlaying pricing on top of it.

Keywords— Network Pricing, Congestion Pricing, Quality-of-Service,
Fairness,CongestionControl, Differentiated-Services

I . INTRODUCTION

Implementationof congestionpricing still remainsa chal-
lenge, althoughseveral proposalshave beenmade,e.g. [1],
[2], [3]. Amongmany others,two majorimplementationobsta-
clescanbedefined:needfor timelyfeedback to usersaboutthe
price, determinationof congestioninformation in an efficient,
low-overheadmanner.

Thefirst problem,timely feedback,is relatively very hardto
achieve in a wide areanetwork suchasthe Internet. In [4], the
authorsshowed that usersdo needfeedbackaboutcharging of
thenetwork service(suchascurrentpriceandpredictionof ser-
vice quality in nearfuture). However, in our recentwork [5],
we illustratedthatcongestioncontrol throughpricing cannotbe
achieved if price changesareperformedat a time-scalelarger
thanroughly40round-trip-times(RTTs). Thismeansthatin or-
derto achievecongestioncontrolthroughpricing,serviceprices
must be updatedvery frequently(i.e. 2-3 secondssinceRTT
is expressedin termsof millisecondsfor mostcasesin the In-
ternet). We believe that the problemof timely feedbackcan
besolvedby placingintelligent intermediaries(i.e. softwareor
hardwareagents)betweenusersandserviceproviders. In this
paperwe do not focuson this particularissueandleave devel-
opmentof suchintelligentagentsfor futureresearch.

The secondproblem, congestioninformation, is also very
hardto do in a way thatdoesnot needa majorupgradeat net-
work routers. However, in diff-serv [6], it is possibleto deter-
mine congestioninformationvia a goodingress-egresscoordi-
nation.So,thisflexible environmentof diff-servmotivatedusto
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developa pricingschemeon it.
In our previouswork [7], we presenteda simplecongestion-

sensitive pricing framework, Dynamic Capacity Contracting
(DCC), for a single diff-serv domain(seeSectionIII). DCC
treatseachedgerouter as a stationof a serviceprovider or a
stationof coordinatingsetof serviceproviders. Users(i.e. in-
dividualsor otherserviceproviders)make short-termcontracts
with thestationsfor network service.During thecontracts,the
stationreceivescongestioninformationaboutthenetwork core
at a time-scalesmallerthancontracts.The station,then,uses
that congestioninformation to updatethe serviceprice at the
beginning of eachcontract. Several pricing “schemes”canbe
implementedin thatframework.

DCCassumedthatall theproviderstationsadvertisethesame
pricevaluefor thecontracts,which is very costly to implement
over a wide areanetwork. This is simply becausethe price
valuecannotbecommunicatedto all stationsat thebeginningof
eachcontract.In this paper, we relaxthis assumptionby letting
the stationsto calculatethe priceslocally andadvertisediffer-
ent pricesthanthe otherstations. We call this new versionof
DCC asDistributed-DCC. We introducewaysof managingthe
overall coordinationof the stationsfor the commonpurposes
of fairnessandstability. We thendeveloptwo pricing schemes
basedon the way of approachingcongestioncontrol problem:
Pricing for CongestionControl (PFCC),Pricing over Conges-
tion Control (POCC).While PFCCtries to control congestion
directly by pricing, POCCoverlayspricing on top of an exist-
ing edge-to-edgecongestioncontrol mechanism.We illustrate
stability of theschemesby simulationexperiments.We address
fairnessproblemsrelatedto pricing, andshow that PFCCcan
achievemax-minandproportionalfairnessby tuninga parame-
ter, calledasfairnesscoefficient.

The rest of the paperis organizedas follows: In the next
section,we positionour work andbriefly survey relevantwork
in the area. In SectionIII, we revise overall characteristicsof
DCC.In SectionIV, wedevelopasimplemodelfor userbehav-
ior andmake optimizationanalysisthat is basisto our frame-
work, Distributed-DCC.Then,in SectionV we describeprop-
ertiesof Distributed-DCCframework, and investigatevarious
issues(suchas price calculation,fairness,scalability) regard-
ing it. Next, in SectionVI, we develop two pricing schemes
(PFCCandPOCC)basedon methodof usingpricing to control
congestion.In SectionVII, we make experimentalcomparative
evaluationof PFCCandPOCC.We finalizewith summaryand
discussions.
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I I . RELATED WORK

Therehasbeenseveralpricing proposals,which canbeclas-
sifiedin many ways:staticvs. dynamic, per-packetchargingvs.
per-contract charging, andcharging prior to servicevs. poste-
rior to service.

Althoughthereareopponentsto dynamicpricing in thearea
(e.g.[8], [9], [10]), mostof theproposalshavebeenfor dynamic
pricing (specificallycongestionpricing)of networks.Examples
of dynamicpricing proposalsareMacKie-MasonandVarian’s
SmartMarket [1], Guptaet al.’s Priority Pricing [11], Kelly et
al.’sProportionalFair Pricing(PFP)[12], Semretetal.’sMarket
Pricing[13], [3], andWangandSchulzrinne’sResourceNegoti-
ationandPricing(RNAP) [14], [2]. Odlyzko’sParisMetroPric-
ing (PMP)[15] is anexampleof staticpricingproposal.Clark’s
ExpectedCapacity[16] andCocchietal.’sEdgePricing[17] al-
low bothstaticanddynamicpricing. In termsof charginggranu-
larity, SmartMarket,Priority Pricing,PFPandEdgePricingem-
ploy per-packet charging,whilst RNAP andExpectedCapacity
do not employ per-packetcharging.

SmartMarket is basedprimarily on imposingper-packetcon-
gestionprices. SinceSmartMarket performspricing on per-
packet basis,it operateson thefinestpossiblepricing granular-
ity. This makesSmartMarket capableof makingidealconges-
tion pricing. However, SmartMarket is not deployablebecause
of its per-packet granularity (i.e. excessive overhead)and its
many requirementsfrom routers(e.g. requiresall routersto be
updated).In [18], we studiedSmartMarket anddifficulties of
its implementationin moredetail.

While SmartMarket holdsoneextremein termsof granular-
ity, ExpectedCapacityholdsthe otherextreme. ExpectedCa-
pacityproposesto uselong-termcontracts,whichcangivemore
clearperformanceexpectation,for statisticalcapacityallocation
andpricing. Pricesareupdatedat the beginning of eachlong-
termcontract,which incorporateslittle dynamismto prices.

Our work, Distributed-DCC, is a middle-groundbetween
Smart Market and ExpectedCapacity in terms of granular-
ity. Distributed-DCCperformscongestionpricingat short-term
contracts,whichallowsmoredynamismin priceswhile keeping
pricingoverheadsmall.

Anotherclosework to oursis RNAP, which alsomainly fo-
cusedon implementationissuesof congestionpricing on diff-
serv. AlthoughRNAP providesa completepicturefor incorpo-
ration of admissioncontrol and congestionpricing, it hasex-
cessive implementationoverheadsinceit requiresall network
routersto participatein determinationof congestionprices.This
requiresupgradesto all routerssimilarto thecaseof SmartMar-
ket. We believe that pricing schemesthat requireupgradesto
all routerswill eventuallyfail in implementationphase.This is
becauseof thefactthattheInternetroutersareownedby differ-
ent entitieswho mayor maynot bewilling to cooperatein the
processof routerupgrades.Our work solves this problemby
requiringupgradesonly atedgeroutersratherthanatall routers.

I I I . DYNAMIC CAPACITY CONTRACTING (DCC)

DCC modelsa short-termcontractfor a giventraffic classas
afunctionof priceperunit traffic volume

���
, maximumvolume�����	�

(maximumnumberof bytesthat canbe sentduring the

Fig. 1. DCCframework ondiff-servarchitecture.

contract)andthetermof thecontract
 (lengthof thecontract):�������������������� ����� �!�"���!� 
$# (1)

Figure1 illustratesthebig pictureof DCC framework. Cus-
tomerscanonly accessnetwork coreby makingcontractswith
theproviderstationsplacedat theedgerouters.Accessto avail-
ablecontractscanbedonein differentways,whatwe call edge
strategy. Two basicedgestrategiesare“bidding” (many users
bids for anavailablecontract)or “contracting” (usersnegotiate
with the provider for an availablecontract). So, edgestrategy
is the decision-makingmechanismto identify which customer
getsanavailablecontractat theproviderstation.

Stationscan perfectly advertise congestion-basedprices if
they have actualinformationaboutthe congestionlevel in the
network core. This congestioninformationcancomefrom the
interior routersor from theegressedgeroutersdependingonthe
congestion-detectionmechanismbeingused.DCCassumesthat
the congestiondetectionmechanismis ableto give congestion
information in time scales(i.e. observation intervals) smaller
thancontracts.

In summary, DCC framework hasbeendesignedto usepric-
ing and dynamiccapacitycontractingas a new dimensionin
managingcongestion,as well as to achieve simple economic
goals.Thekey benefitsof DCC are:% acongestion-sensitivepricingframework employableondiff-
servarchitecture% doesnot requireper-packet accounting(worksat granularity
of contracts)% doesnotrequireupgradesor softwaresupportanywherein the
network excepttheedges

IV. USER ADAPTATION

In this sectionwe presenta simpleoptimizationanalysisthat
is basis to Distributed-DCC.One important characteristicof
congestion-sensitive pricing is that the price must be oscillat-
ing aroundan optimum price, &(' , to guaranteeboth conges-
tion controlandhigh utilization of network resources.We now
derive a formula for & ' by explicitly modelingcustomerutili-
ties. We modelcustomer) ’s utility with the well-known func-
tion *(+ �-, # �/. +10 �32��4, # 1 [12], [19], [20], [21], where

,
is the

allocatedbandwidthto thecustomerand
. + is customer) ’s sen-

sitivity to bandwidth.Then,suppose& + is thepriceadvertisedto5
WangandSchulzrinneintroducedamorecomplex versionof thisfunctionin

[14].
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a particularuser) . Theuser) will maximizehis/hersurplus,6 + ,
by makingsurethathe/shecontractsfor

, + ��. +87 & + , i.e. :9;:�<�>= 6?+ � 9;:�<�3=A@ *B+ �-, +�#�C , +D&�+FE
G 6�+G , + � . +, + CH& + �JI

, + � . +& +
Assumingthat the customersobey this above procedure,the

provider of the network servicecannow figure out what price
to advertiseto eachuserby maximizingthesocialwelfare K �
6MLON , where N is theprovider revenue.Let P �-, # �RQS,

bea
linearfunctionandbethecostof providing

,
amountof capacity

to auser, where
Q

is apositiveconstant.Thenthesocialwelfare,K , will be:

K � TU +WV�X Y *(+ �-, +8#�C , +D&�+�L , +D&�+�CZP �-, +8#8[
K �\TU +DV�X *(+ �4, +�#�C QS, +

We maximize K with the condition that ] + , + �^�
, where�

is the total available capacity. Notice that to maximize K
all theavailablecapacitymustbeallocatedto theusersbecause
we assumestrictly increasingutility functions(i.e. 0 �32(�-, # ) for
them.

By applyingLagrange-MultiplierMethod[22], we first con-
vert K to thefollowing:

K`_ba � TU +DVcX *(+ �-, +8#�C Q�, +(Led �fTU +WV�X , +gC � #
We can get the following systemof equationsby equating

partialderivativeof K to zerofor eachunknown variable:

a�h �\TU +WV�X , +?C �i�JI
a �kj � .ml,nl C Q Lod ��I �qp �srutWt �

(2)

After solving systemof equations2, we get the solutionas
follows:

d ��Q C ] T+WV�X . +�,Slv� . l
] T+WV�X . + � �wp �irxtDt �

(3)

This resultshows thatwelfaremaximizationof thedescribed
systemcanbedoneonly by allocatingcapacityto theuserspro-
portionalto their bandwidthsensitivity,

. + , relative to total sen-
sitivity to bandwidth.So,any user ) shouldbegivena capacity
of , + � . +] T+DVcX . + �

Sincewe showed that the userwill contractfor
. +87 & + when

advertiseda priceof & + , thentheoptimumprice for provider to
advertise(i.e. &(' ) canbecalculatedasfollows:. +& + � . +] T+WV�X . + �

& ' � &B+ � ] T+DVcX . +�
This meansthat theprovider shouldadvertisethesameprice

to all users.However, noticethat this abovestudyassumedtwo
majorthings:% thecostfor provisioningcapacityperunit bandwidthto each
useris thesame% all usershave the sametype of utility function, i.e. * �-, # �. 0 �32��4, #
Sinceoptimality is not our single goal in pricing, we do not
focusonaddressingtheaboveassumptions.Studyof how much
optimalitycanbeachievedby Distributed-DCCis left for future
work.

Wecanalsointerpretuser’sbudget, y�+ , ashis/hersensitivityto
bandwidth,

. + , sincea userwho is moresensitive to bandwidth
is expectedto sparemorebudgetfor the network service. So,
we will use“budget” insteadof “sensitivity to bandwidth” for
the restof the paper. Assumingthat the customershasa total
budgetof z � ] + y + for network serviceperunit time andthe
network hasa capacityof

�
per unit time, we canrewrite the

optimumpriceasfollows:

& ' � z � (4)

V. DISTRIBUTED-DCC: THE FRAMEWORK

Distributed-DCCis specificallydesignedfor diff-servarchi-
tecture,becausethe edgerouterscanperformcomplex opera-
tions which is essentialto several requirementsfor implemen-
tation of congestionpricing. In Distributed-DCCframework,
eachedgerouter is treatedas a stationof the provider. Each
stationadvertiseslocally computedpriceswith informationre-
ceived from otherstations.The main framework basicallyde-
scribeshow to preserve coordinationamongthe stationssuch
that stability and fairnessof the overall network is preserved.
A Logical Pricing Server(LPS) plays a crucial role in terms
of functioningof theDistributed-DCCframework. Figure2 il-
lustratesbasicfunctions(which will bebetterunderstoodin the
following sub-sections)of LPSin theframework.

The contractingtakes placebetweenthe customersand the
ingressstations.So,eachingressstationkeepsa”current” price
valuefor eachedge-to-edgeflow andadvertisesthatpricevalue,&�+ l , to customersof theflow from ingress) to egress

p
.

A. How to Calculate& + l ?

So, how do we calculatethe price-per-flow, &�+ l ? The in-
gressesmake estimationof budgetfor eachedge-to-edgeflow
passingthroughthemselves. Let {y + l be the currentlyestimated
budgetfrom ingress) to egress

p
. The ingressessendtheir es-

timatedbudgetsto the correspondingegresses(i.e. {y	+ l is sent
from ingress) to egress

p
) at a deterministictime-scale.At the

otherside,the egressesreceive budgetestimationsfrom all the
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Fig. 2. Major functionsof LPS.

ingresses,andalso they make estimationof capacityfor each
particularflow, {� + l . In otherwords,egress

p
calculates{� + l and

is informed about {y�+ l by ingress ) . The egress
p
, then, pe-

nalizesor favors flow ) to
p

by updatingits budgetvalue, i.e.y + l �|��� {y + l �k} & �x����~A�>�F�3���M� # where
} & ������~A�3�F�>���M�

are
the otherparametersthat areusedfor decidingwhetherto pe-
nalizeor favor theflow. For example,if theflow ) to

p
is pass-

ing throughmorecongestedareasthantheotherflows, thenthe
egress

p
canpenalizethisflow by reducingits budgetestimation{y�+ l .

At anothertime-scale, theegresseskeepsendinginformation
to LPS (which canbe placedto oneof the egressesor canbe
implementedin a fully distributed manner, seeSectionV-E).
More specifically, theegress

p
sendsthefollowing information

to LPS:
1. the updatedbudgetestimationsof all flows passingthrough
itself, i.e. y�+ l for ) ��rutWt �

and )f�� p
where

�
is thenumberof

edgerouters
2. theestimatedcapacities(pleasereferto SectionV-C for more
aboutcapacityestimation)of all flowspassingthroughitself, i.e.{� + l for ) �srutWt �

and )"�� p
where

�
is thenumberof edgerouters

LPS receives information from egressesand calculatesal-
lowed capacity

� + l for eachedge-to-edgeflow. Calculationof� + l valuesis acomplicatedtaskwhichdependsonupdatedbud-
getestimationof eachflow (i.e. y	+ l ). In general,theflowsshould
get capacityof the samebottleneckin proportionto their bud-
gets. We will later definea genericalgorithm to do capacity
allocationtask. LPS, then,sendsthe following informationto
ingress) :
1. thetotalestimatednetwork capacity

�
(i.e.

��� ] + ] l {� + l )
2. the allowed capacitiesto each edge-to-edgeflow starting
from ingress ) , i.e.

� + l for
p ��rxtDt �

and
p �� ) where

�
is

thenumberof edgerouters
Now, theingress) cancalculatepricefor eachflow asfollows:

&�+ l�� {y�+ l� + l

Also, theingress) canusethetotal estimatednetwork capacity�
in calculatingthe

���"���
contractparameterdefinedin Equa-

tion 1. Admissioncontroltechniquescanbeusedto identify the
bestvaluefor

� �"���
. We usea simplemethodwhich doesnot

put any restrictionon
� �"���

, i.e.
� ���	� ����� 
 where 
 is the

contractlength.
Onecanclaim: “Why notuse

� + l for calculating
� �"���

?” This
will preventflows to sendmorethanavailablecapacity. How-
ever, it will not allow flows to competefor thecapacity, which
will not give opportunityto the flows with higherbudgetthan
the others.By allowing flows to contractfor morethantheal-
lowed, we canleave the sharingof the total availablecapacity
to the flows themselves. In this way, the flows will sharethe
capacitybasedon their budgets,i.e. willingnessto pay.

B. BudgetEstimationat Ingresses

Theingressstationsperformverytrivial operationto estimate
budgetsof eachflow, {y�+ l . Theingress) basicallyknows its cur-
rent price for eachflow, &B+ l . Whenit receivesa packet it just
needsto determinewhich egressstationthepacket is going to.
Giventhat theingressstationhastheaddressesof all theegress
stations(this is a realisticassumption)of thesamediff-servdo-
main,it canfind out which egressthepacket is goingto. So,by
monitoringthepacketstransmittedfor eachflow, theingresscan
estimatethebudgetof eachflow. Let

, + l bethetotal numberof
packetstransmittedfor flow ) to

p
in unit time, thenthebudget

estimatefor theflow ) to
p

is {y�+ l���, + l &�+ l .
C. CapacityEstimationat Egresses

The crucial propertyof capacityestimationin Distributed-
DCC is that, it can be madecongestion-based.With a sim-
ple mechanism(suchasmarkingof packetsat interior routers
whencongested),it is possibleto detectcongestionat theegress
station. So, for a particularedge-to-edgetraffic flow, onecan
make the capacityestimationcongestion-sensitive by decreas-
ing theestimationwhencongestionisdetectedandby increasing
whencongestionis not detectedfor thatflow. In thissense,sev-
eral capacityestimationalgorithmscanbe used,e.g. Additive
IncreaseAdditive Decrease(AIAD), Additive IncreaseMulti-
plicative Decrease(AIMD). We will provide a full description
of suchanalgorithmlaterin SectionVI-A.

D. Fairness

Fairnessof a pricing schemeis indirectly equivalentto fair-
nessof rateallocationschemes.A pricing schemedetermines
and advertisesthe pricesto the users,then the userscontract
for network capacityaccordingto their budgets.So, a pricing
schemeallocatesnetwork capacityindirectly.

Assumingthat usershave a utility function of form * �-, # �. 0 �32��4, # , in SectionIV, we provided a simpleproof that the
provider shouldadvertisea priceof & � z 7 � , where z is the
total budgetof theusersand

�
is thenetwork capacity, in order

to maximizesocialwelfare. This will causeusersto sharethe
network capacityin proportionto their budgets.However, fair-
nessissuesarenot that simple. We examinethe issuesregard-
ing fairnessin two main cases.We now first determinethese
two casesand thenprovide solutionswithin Distributed-DCC
framework.
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D.1 Cases

1. Single-bottleneck case: The pricing protocolshouldcharge
thesamepriceto theusersof thesamebottleneck.In this way,
amongthe customersusingthe samebottleneck,the oneswho
have morewillingnessto pay will be given moreratethanthe
others. The intuition behindthis reasoningis that the cost of
providing capacityto eachcustomeris the same. The simple
proof in SectionIV alsoshows thatchargingall usersequallyis
optimalin sucha case.
2. Multi-bottleneck case: The pricing protocol shouldcharge
moreto thecustomerswho causemorecosts(e.g. congestion)
to the provider. This will make surethat the revenuewill be
higherwhile beingfairer to thecustomers.So,otherthanpro-
portionality to customerbudgets,we alsowant to allocateless
rateto thecustomerswhoseflowsarepassingthroughmorebot-
tlenecksthantheothercustomers.
For multi-bottlenecknetworks,two maintypesof fairnesshave
beendefined:max-minfairness[19], proportionalfairness[12].
We now study proportionalfairnessand max-min fairnessin
termsof socialwelfaremaximizationwith acanonicalexample.
Considera multi-bottlenecknetwork in which thereis a long
flow that is crossedby

�
parallel flows. An exampleof such

a network is shown in Figure4-b. Supposeall the bottlenecks
areequivalentin capacity,

�
. Intuitively, whateverthelongflow

gets,all the parallelflows will get the restof the capacity. Let,!�
bethecapacitygivento thelong flow and

, X bethecapacity
givento oneof theparallelflows. Supposethattheutility of the
long flow is * � �4, � # ��. � 0 �32��4, � # andthe utility of oneof the
parallelflows is *?X �-, X># ��. Xk0 �32��4, X	# . Notice that

.��
and

. X
are the sensitivity of the flows to capacity(also interpretedas
flow’s budget,seeSectionIV). Sincethe long flow is passing
through

�
bottlenecks,cost of providing capacityto the long

flow is
�

timesmorethancostof providing capacityto oneof
the parallel flows. So, let cost of providing

, X to one of the
parallelflows be PHX �-, X># �/Q�, X , andlet the costof providing, �

to thelongflow be P � �4, � # ���gQ�, �
. Within thiscontext, the

socialwelfare, K , andits Lagrangianwill be:

K �J. � 0 �32(�-, � #�L ��. X 0 �32(�-, X #cC �gQS, � C �gQ�, X
K�_�a ��. � 0 �32(�-, � #�L ��. X 0 �32��4, X #	C �gQ�, � C �gQ�, X Ld �-, � L , X C � #
After solvingtheabove Lagrangian,we get thefollowing solu-
tionsfor

,!�
and

, X to maximize K :

,��$� .����. � L ��. X
, X � ��. X �.�� L ��. X

Fromtheaboveresult,wemake two observations:% First, if both the long flow and a parallel flow have equal
bandwidthsensitivity, i.e.

. � ��. X , then the optimal alloca-
tion will be

, � �|� 7 �4� L r # and
, X �|��� 7 �4� L r # . This is

the proportional fair case.So,proportionalfairnessis optimal
only whenall theflowshaveequalbandwidthsensitivity. As an-
otherinterpretation,it is optimalonly if all theflowshaveequal
budget.

% Second,if the long flow is sensitive to bandwidth
�

times
morethana parallelflow, i.e.

. � ����. X , thentheoptimalallo-
cationwill be

,!���R, X ��� 7�� . This is themax-minfair case.
So,max-minfairnessis optimalonly whenthelongflow’sutility
is sensitive to bandwidthin proportionto the costof providing
capacityto it. In otherwords,by interpretingbandwidthsen-
sitivity asthe flow’s budget,max-min fairnessis optimal only
whenthe long flow hasbudgetin proportionto thecostof pro-
viding capacityto it.

Observationssimilarto abovehavebeenmadein thearea,e.g.
[12], [23].

D.2 Solutionswithin Distributed-DCC

In order to achieve the objectives mentionedin the previ-
ous section,the pricing protocol shouldcharge the customers
equally in a single-bottlenecktopology, while it shouldcharge
themdifferentlyin amulti-bottlenecktopology. Thismeansthat
thepricing framework mustgive theability to chargesomecus-
tomersequallywhile theability to chargesomeothercustomers
differently.

To achievethefairnessobjectivesin Distributed-DCC,we in-
troducenew parametersfor tuning rateallocationto flows. In
orderto penalizeflow ) to

p
, the egress

p
canreduce{y + l while

updatingtheflow’s estimatedbudget.It usesthefollowing for-
mulato do so:

y�+ l$����� {y�+ l � �S�4� # ���m� � � + T # � {y + l� � + T L �-� + l��4� #�C � � + T # � �
where

� + l��4� # is the congestioncost causedby the flow ) to
p
,� � + T is theminimumpossiblecongestioncostfor theflow, and�

is fairnesscoefficient. Insteadof {y + l , theegress
p

now sendsy�+ l to LPS.
�

canbe0 at minimum.Whenit is greaterthan0, it
meansthatDistributed-DCCis employing proportionalfairness
in its rateallocation.Whenit is 0, Distributed-DCCis employ-
ing max-minfairness.So, usinglarger

�
valuesyield to more

proportionalfairnessin therateallocationof Distributed-DCC.
Assumingthateachbottleneckhasthe sameamountof con-

gestionandalsoassumethatthey havethesamecapacity. Then,
in order to calculate

� + l �4� # and
� � + T , we can directly usethe

numberof bottleneckstheflow ) to
p

is passingthrough.In such
a case,

� � + T will be 1 and
� + l��4� # shouldbe numberof bottle-

necksthe flow is passingthrough. If the interior nodesincre-
mentaheaderfield of thepacketsat thetimeof congestion,then
at theegressstationwe canestimatethenumberof bottlenecks
the flow is passingthrough. To do that estimation,the egress
stationdoesthefollowing at time interval

�
for flow ) to

p
:

� + l��4� # ��� {� + l �-� # � � + l �4� C r #�� {� + l �4� #� + l �4� C r #�C�� � � �����!�3��. ) �3� (5)

where {� + l �4� # is the highestnumberof bottlenecksthat flow
passedthroughin timeinterval

�
, � �

is apre-definedvalue.Re-
alize that theheaderfield of thepacketsarebeingincremented
only if they arepassingthrougha congestedbottleneck. It is
possiblethat someof the bottlenecksarenot congestedwhen
a particularpacket is passingthroughthem. For example,the
headerfield of thepacketmaybeincrementedonly threetimes,
althoughit actuallypassedthroughsix bottlenecks.So,it is nec-
essaryto biastheestimationto thelargestnumberof bottlenecks
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thepacketsof thatflow havepassedrecently. Also asanotheris-
sue,IP routingcausesrouteof theflows to changedynamically.
To considerthedynamicbehavior of theroutes,it is alsoneces-
saryto decrease

� + l when
� + l��-� C r # � {� + l��-� # . So, if the route

of the flow haschanged,then after sometime (dependingon
how largethe � �

is) thevalueof
� + l will decreaseto theactual

numberof bottleneckstheflow is passingthrough.

E. Scalability

Distributed-DCCoperateson per edge-to-edgeflow basis.
There are mainly two issuesregarding scalability: LPS, the
numberof flows. First of all, the flows arenot per-connection
basis,i.e. all thetraffic goingfrom edgerouter ) to

p
is counted

asonly oneflow. This actuallyrelievesthescalabilityproblem
for operationsthat happenon per-flow basis. The numberof
flows in thesystemwill be

���-� C r # where
�

is thenumberof
edgeroutersin the diff-servdomain. So, indeed,scalabilityof
theflows is not a problemfor thecurrentInternetsincenumber
of edgeroutersfor a singlediff-servdomainis very small. If it
becomesso large in future, thenaggregationtechniquescanbe
usedto overcomethis scalabilityissue,of course,by sacrificing
someoptimality.

Scalability of LPS can be donetwo ways. First idea is to
implementLPSin a fully distributedmanner. Theedgestations
exchangeinformationwith eachother(similar to link-staterout-
ing). Basically, eachstationwill sendtotal of

� C r
messages,

eachof which headedto otherstations. So, this will increase
theoverheadon thenetwork becauseof theextra messages,i.e.
the complexity will increasefrom   �4� # to   �4�?¡ # in termsof
numberof messages.

Alternatively, LPS can be divided into multiple local LPSs
which synchronizeamongthemselvesto maintainconsistency.
This way the complexity of numberof messageswill reduce.
However, this will beat acostof someoptimalityagain.

Sincetheseabove-definedscalingtechniquesarevery well-
known, wedo not focuson detaileddescriptionof them.

VI . DISTRIBUTED-DCC: PRICING SCHEMES

Oneof themainpurposesfor congestionpricing is to control
congestionby makingthe pricescongestion-sensitive. Several
studies(e.g. [12], [24]) showed that congestion-sensitive pric-
ing leadsto stability. Within Distributed-DCCframework, we
now describetwo pricing schemeswhich are mainly inspired
of different approachesto the problemof congestioncontrol.
Pricing for CongestionControl (PFCC)usespricingdirectly for
the purposeof congestioncontrol,while Pricing over Conges-
tion Control (POCC)usesan underlyingedge-to-edgeconges-
tion controlmechanismto imposetightercontroloncongestion.
Figure3 illustratesthebig pictureof thetwo approaches.In the
following sub-sections,we will describeand investigatethese
two approacheswithin Distributed-DCCframework.

A. PFCC

A.1 CapacityEstimationandCongestionDetection

In order to make congestiondetectionat the egressstation,
we assumethattheinterior routersmarkthepacketswhentheir

queuepassesa threshold. When an egressstationreceives a
markedpacket, it treatsit asacongestionindication.2

Giventheabovecongestiondetectionmechanism,egresssta-
tionsmakeacongestion-basedestimationof thecapacityfor the
flows passingthrough themselves. Rememberthat estimated
capacity, {� + l , for eachflow is sentto LPS in Distributed-DCC
framework. Egressstationsdividetimeinto deterministicobser-
vation intervalsand identify eachobservation interval ascon-
gestedor non-congested. Basically, an observation interval is
congestedif a congestionindication was received during that
observationinterval. At theendof eachobservationinterval, the
egressesupdatetheestimatedcapacity. Then,egress

p
calculates

the estimatedcapacityfor flow ) to
p

at the endof observation
interval

�
asfollows:

{� + l �4� # � � ¢ �m£ + l �4� # � �	���(2����>�F� G
{� + l �-� C r #?LO� {� � �?���

-
�	���(2S���>�F� G

where¢ is in (0,1),
£ + lx�-� # is themeasuredoutputrateof flow ) top

duringobservationinterval
�
, and � {� is apre-definedincrease

parameter. This algorithm is a variant of well-known AIMD
andis introducedin [25]. Also, noticethat the above capacity
estimationalgorithmis congestion-basedas it is necessaryfor
the congestion-sensitivity of Distributed-DCCframework (see
SectionV-C). So, egressesmake capacityestimationfor each
flow accordingto the above algorithm,andsend {� + l��4� # as the
currentestimatedcapacityfor flow ) to

p
.

As a refinementto the scheme,the valueof the � {� should
decreasewhenthenumberof activeflowsincreases.Thereason
is that, at LPS, the total estimatednetwork capacity

�
is the

accumulationof {� + l s sentfrom egressesfor eachflow. So, for
example,let therebe 3 flows that are outputtingsometraffic.
Eachof thecorrespondingegresseswill basicallyincreasetheir{� + l sby � {� whentherewasnocongestionfor thatflow atthelast
interval. However, whenthoseindividual {� + l s areaccumulated
atLPS,theoverallnetwork capacityestimation,

�
, will increase

by ¤ � � {� . Thisbasicallyshowsthatthefidelity of controlwill be
dependenton thetotal numberof active flows. Hence,in order
to achieve the samelevel of control fidelity, the � {� parameter
that is beingusedlocally at eachegressmustbe reducedwhen
moreflowsgetactive.

Let ¥ be the bestvaluefor � {� parameterwhenthereis only
oneflow thatis outputtingtraffic. Thenthegeneralformulawill
be � {�"� ¥ 7�¦
where¦ is thenumberof currentlyactiveflows. In Distributed-
DCCframework,wecancalculate¦ . Theegressescountaflow
as”active” if

£ + l§��I
. They, then,convey thenumberof active

flows to LPS,which later on informs thembackwith the total
numberof active flows, ¦ , in thenetwork. This is anoptional
refinementto the capacityestimationcapabilityof PFCC.We
will usethis refinementin our simulationexperimentslater in
SectionVII.¨

Notice that this is only one particular way of detecting congestion.
Distributed-DCCdoesnot necessarilyneedthe interior routersto mark pack-
ets,aslong asotherwaysof detectingcongestionareavailable.
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(a) (b)
Fig. 3. (a)PFCC:Pricingwith nounderlyingedge-to-edgecongestioncontrol. (b) POCC:Pricingoveredge-to-edgecongestioncontrol.

A.2 CapacityAllocation to Edge-to-EdgeFlows

LPSis supposedtoallocatethetotalestimatednetwork capac-
ity

�
to edge-to-edgeflows in suchaway thattheflowspassing

throughthesamebottleneckshouldsharethebottleneckcapac-
ity in proportionto their budgets,andalsotheflows thatarenot
competingwith otherflows shouldget all the availablecapac-
ity on their route. The complicatedissueis to do this without
knowledgeof the topologyfor network core. We now propose
a simpleandgenericalgorithmto performthis centralizedrate
allocationwithin Distributed-DCCframework.

First, at LPS, we introducea new information about each
edge-to-edgeflow

� + l . A flow
� + l is congested, if egress

p
has

beenreceiving congestionindicationsfrom that flow recently
(we will laterdefinewhat“recent” is). Egress

p
knowswhether

eachflow
� + l wascongestedin the last observation interval or

not (pleaseseetheprevioussection).To determineif
� + l is cur-

rently congestedor not,define
Q + l �4� # ategress

p
asfollows:

Q + l��-� # � � r � � + l was
�k���(2����>�F� G

in observation
� C rI � � + l was

�?���
-
�	���(2S���k�F� G

in observation
� C r

To determinewhether
� + l is congestedor not at LPS,egress

p
sendsthe currentvalueof

Q + l alongwith theotherinformation
(i.e. y�+ l and {� + l ) to LPS. Of course,this is donefor all flows
simultaneously.

At LPS, let P�+ l be the maintainedparameterin orderto de-
termine whether

� + l is congestedor not. If P�+ l©�ªI
, LPS

determines
� + l ascongested.If not, it determines

� + l asnon-
congested. LPS regularly receives messagesfrom egresses.
Let’s call the time interval betweenthesemessagesasLPSin-
terval. At everyLPSinterval

�
, LPSupdatesP«+ l asfollows:

P + l �-� # � � {Q � Q + l �4� # �sr
P + l �4� C r #�C r � Q + l �4� # ��I (6)

where {Q is a positive integer. Notice that {Q parameterdefines
long a flow canstayin “congested”stateafter the last conges-
tion indication. So, in otherwords, {Q definesthe time-line to
determineif a congestionindication is “recent” or not. Note
that insteadof setting P + l to {Q at every congestionindication,

several differentmethodscanbe usedfor this purpose,but we
proceedwith themethodin (6).

Giventheabove methodto determinewhethera flow is con-
gestedor not,we now describethealgorithmto allocatecapac-
ity to theflows. Let ¬ bethesetof all edge-to-edgeflows in the
diff-serv domain,and ¬� be the setof congestededge-to-edge
flows. Let

�  betheaccumulationof {� + l s where
� + lf® ¬� . Fur-

ther, let z� betheaccumulationof y�+ l s where
� + l�® ¬c . Then,

LPScalculatestheallowedcapacityfor
� + l asfollows:

� + l$���°¯ =±j²?³ �  � P + l �OI
{� + l � �������3��. ) �>�

So,acongestedflow competeswith othercongestedflowsandis
allowedacapacityin proportionto its budgetrelativeto budgets
of all congestedflows. If a flow is not congested,thenit is al-
lowedto useits own estimatedcapacity, whichwill giveenough
freedomto utilize capacityavailableto thatparticularflow. The
algorithmwill be understoodmoreclearly after the simulation
experimentsin SectionVII.

B. POCC

Theessenceof POCCis to overlaypricing on top of conges-
tion control,which is a novel approach.Assumingthat thereis
anunderlyingedge-to-edgecongestioncontrolscheme,we can
setthe parametersof thatunderlyingschemesuchthat it leads
to fairnessandbettercontrolof congestion.Thepricingscheme
on top candetermineuserincentivesandsetthe parametersof
theunderlyingedge-to-edgecongestioncontrolschemeaccord-
ingly. This way, it will be possibleto favor sometraffic flows
with higherwillingness-to-paythantheothers.Furthermore,the
pricing schemewill alsobring benefitssuchasan indirectcon-
trol on userdemandby price,which will in turn helptheunder-
lying edge-to-edgecongestioncontrol schemeto operatemore
smoothly. However the overall systemperformance(e.g. fair-
ness,utilization,throughput)will bedependentontheflexibility
of theunderlyingcongestioncontrolmechanism.

We now describea possiblePOCC schemeby overlaying
PFCC(which is a purely pricing scheme)on top of an edge-
to-edgecongestioncontrol schemeRiviera [25]. We will first
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provide a generaldescriptionof Riviera, thenoutlineproblems
revealedby overlayingPFCCover Riviera. We will complete
thedescriptionof POCCby providing solutionsto theoutlined
problems.The simulationexperimentsin SectionVII will use
this descriptionof POCC.

B.1 Edge-to-EdgeCongestionControl: Riviera

Rivieratakesadvantageof two-way communicationbetween
ingressandegressedgeroutersin a diff-servnetwork. Ingress
sendsa forward feedbackto egressin responseto feedbackfrom
egress,and egresssendsbackward feedbackto ingressin re-
sponseto feedbackfrom ingress. So, ingressandegressof a
traffic flow keepbouncingfeedbackto eachother. Ignoringloss
of datapackets,the egressof a traffic flow measuresthe accu-
mulation,

�
, causedby theflow by usingthebouncedfeedbacks

andRTT estimations.
The egressnode keepstwo thresholdparametersto detect

congestion:
~A��, ���!�������

and
~ ) � ���!�������

. For eachflow, the
egresskeepsa variablethatsayswhethertheflow is congested
or not. When

�
for a particularflow exceeds

~´��, ���n�������
, the

egressupdatesthe variableto congested. Similarly, when
�

is
lessthan

~ ) � ���!�������
, it updatesthevariableto not-congested.

It doesnot updatethe variableif
�

is in between
~A��, ���!�������

and
~ ) � ���!�����3�

. Theingressnodegetsinformedaboutthecon-
gestiondetectionby backward feedbacksandemploys AIMD-
ER (i.e. avariantof regularAIMD) to adjustthesendingrate.

In a single-bottlenecknetwork, Riviera can be tuned such
that eachflow getsweightedshareof the bottleneckcapacity.
The ingressnodesmaintainan additive increaseparameter,

�
,

and a multiplicative decreaseparameter, ¢ , for eachedge-to-
edgeflow. Theseparametersare usedin AIMD-ER. Among
the edge-to-edgeflows, by settingthe increaseparameters(

�
)

at theingressesandthethresholdparameters(
~A��, ���n�������

and~ ) � ���!�������
) at the egressesin ratio of desiredrateallocation,

it is possibleto make surethat the flows get the desiredrate
allocation. For example,assumethereare two flows 1 and 2
competingfor a bottleneck(similar to Figure4-a). If we want
flow 1 to get a capacityof

.
timesmorethanflow 2, thenthe

following conditionsmustbehold:
1.

� ¡ ��. � X
2.

~´��, ���n������� ¡ ��.J~´��, ���n������� X
3.

~ ) � ���!������� ¡ �J.J~ ) � ���n������� X
B.2 POCC:Problems

OverlayingPFCCoverRivieraraisestwo majorproblems3:
1. Parametermapping:SincePFCCwantsto allocatenetwork
capacityaccordingto the users’budgetsthat changesdynami-
cally overtime,it is arequiredability setcorrespondingparame-
tersof Rivierasuchthatit allocatesthecapacityto theuserflows
accordingto their budgets.So,this raisesneedfor a methodof
mappingPFCCparametersto the Riviera parameters.Notice
that this typeof mappingrequiresRiviera to beableto provide
parametersthat tunesthe ratebeinggiven to the edge-to-edge
flows.µ

Note that theseproblemsarenot specificto PFCCover Riviera. They are
generalproblemsfor overlayinga solelypricing schemeover anedge-to-edge
congestioncontrolmechanism.

2. Edge queues: The underlying congestioncontrol scheme
Rivierawill notalwaysallow all thetraffic admittedby thepric-
ing schemePFCC,which will causequeuesto build up at the
network edges.So,managementof theseedgequeuesis neces-
saryto overlayPFCCoverRiviera.Figures3-aand3-bcompare
the situationof the edgequeuesin the two caseswhenthereis
anunderlyingcongestioncontrolschemeandwhenthereis not.

B.3 POCC:Solutions

1. Parametermapping: For eachedge-to-edgeflow, LPS can
calculatethe capacityshareof that flow out of the total net-
work capacity. Let ¶ + l �·� + l 7 � be the fraction of network
capacitythat must be given to the flow ) to

p
. Along with� + l s, LPScanconvey ¶�+ l s to the ingressstations,andthey can

multiply the increaseparameter
� + l with ¶�+ l . Also, LPS can

send¶ + l s to theegresses,andthey canmultiply
~A��, ���!�����3� + l

and
~ ) � ���!������� + l with ¶ + l . Thissolvestheparametermapping

problemdefinedin theprevioussection.
2. Edgequeues:We now proposesolutionsto thesecondprob-
lem,i.e. managementof edgequeues.Eachingressstation) can
managetheedgequeuewith thealreadyavailableinformation:% � + l , allowedcapacityof flow ) to

p
(in packet/seconds)%w¸ + l , currentsizeof edgequeuefor flow ) to

p
(in packets)4% 
 , contractlength(in seconds)

Notice that ingressstationsget theallowedcapacitiesfor flows
from LPS,andthencalculatepricesaccordingto that informa-
tion. So,oneintuitiveway of makingsurethattheuserwill not
contractfor morethanthe amountthat the network canhandle
is to subtractnecessarycapacityto drain thealreadybuilt edge
queuefrom

� + l , andthenmake contractsaccordingly. In other
words,theingressstationre-calculatestheallowedcapacityfor
flow ) to

p
by thefollowing formula

�	¹+ l ��� + l C ¸ + l 7 
 , anduses�	¹+ l for calculatingprice,i.e. &B+ l�� {y�+ l 7 �	¹+ l .
Distributed-DCCcanalsoemploy anothertechniqueto manage
theedgequeues.RememberthatPFCCmakescapacityestima-
tion at egressesaccordingto markingof packets. Specifically,
markedpacket is countedasa congestionindicationandcapac-
ity estimationis reduced,whichin turncausespricefor thatflow
to increase.So,the ingressstationcanmarkthepacketsif size
of the edgequeueexceedsa threshold.This will indirectly re-
ducethe capacityestimation,andhencedrain the edgequeue.
Noticethat it is alsopossibleto employ this methodsimultane-
ously with the methoddescribedin the previousparagraph.In
thesimulationexperimentsof thenext sectionwe will useboth
techniquessimultaneously. We areworking on moreconserva-
tive approachesby making more pessimisticcapacityestima-
tions,in orderto managetheedgequeues.

VI I . SIMULATION EXPERIMENTS AND RESULTS

We now presentns[26] simulationexperimentsof PFCCand
POCCon single-bottleneckandmulti-bottlenecktopology. Our
goalsareto illustratefairnessandstability propertiesof thetwo
schemeswith possiblecomparisonsof two.

The single-bottlenecktopologyhasa bottlenecklink, which
is connectedto

�
edgenodesat eachsidewhere

�
is the num-

berof users.Themulti-bottlenecktopologyhas
� C r

bottleneckº
Noticethattheedgequeueat ingress» is ¼�½!¾ ]e¿3ÀÁ ½ ¼�½ ¿ .
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(a) (b)
Fig. 4. (a) Single-bottleneck(b) Multi-bottlenecknetwork for Distributed-DCCexperiments.

links, thatareconnectedto eachotherserially. Thereareagain
�

ingressand
�

egressedgenodes.Eachingressedgenodeis mu-
tually connectedto thebeginningof a bottlenecklink, andeach
egressnodeis mutually connectedto the end of a bottleneck
link. All bottlenecklinkshaveacapacityof 10Mb/sandall other
links have 15Mb/s. Propagationdelayon eachlink is 5ms,and
userssendUDPtraffic with anaveragepacketsizeof 1000B.To
easeunderstandingthe experiments,eachusersendsits traffic
to aseparateegress.For themulti-bottlenecktopology, oneuser
sendsthroughall thebottlenecks(i.e. long flow) while theoth-
erscrossthatuser’s long flow. Thequeuesat theinterior nodes
(i.e. nodesthat standat the tips of bottlenecklinks) mark the
packetswhentheir local queuesizeexceeds30 packets. In the
multi-bottlenecktopologythey incrementa headerfield instead
of just marking. Figure4-ashows a single-bottlenecktopology
with

�J� ¤ . Figure4-b shows multi-bottlenecktopologywith�Z��Â
. Thewhite nodesareedgenodesandthegraynodesare

interior nodes.Thesefiguresalsoshow thetraffic flow of users
on thetopology. Theuserflow triesto maximizeits total utility
by contractingfor y 7 & amountof capacity, where y is its budget
and& is price.Theflows’sbudgetsarerandomizedaccordingto
Normaldistribution with a givenmeanvalue. This meanvalue
is whatwe will refer to asflows’s budgetin our simulationex-
periments.

Contractingtakes placeat every 4s, observation interval is
0.8s,andLPS interval is 0.16s. Ingressessendbudgetestima-
tions to correspondingegressesat every observation interval.
LPSsendsinformationto ingressesat every LPS interval. The
parameter{Q is setto 25,whichmeansaflow is determinedto be
non-congestedat leastafter(pleaseseeSectionVI-A.2) 25LPS
intervalsequivalentto onecontractinginterval.

The parameter¥ is set to 1 packet (i.e. 1000B), the initial
valueof {� + l for eachflow

� + l is setto 0.1Mb/s, ¢ is setto 0.95,
and � �

is set to 0.0005. Also note that, in the experiments,
packet dropsarenot allowed in any network node. This is be-
causewewould like to seeperformanceof theschemesin terms
of assuredservice.

A. Experimentson Single-bottleneck Topology

We run simulationexperimentsfor PFCCandPOCCon the
single-bottlenecktopology, which is representedin Figure4-a.
In this experiment,thereare3 userswith budgetsof 10, 20, 30
respectively for users1, 2, 3. Total simulationtime is 15000s,
andatthebeginningonly theuser1 is activein thesystem.After
5000s,the user2 getsactive. Again after 5000sat simulation
time 10000,theuser3 getsactive.

For POCC,thereis an additionalcomponentin the simula-
tion: edgequeues. The edgequeuesmark the packets when
queuesize exceeds200 packets. So, in order to managethe
edgequeuesin this simulationexperiment,we simultaneously
employ thetwo techniquesdefinedin SectionVI-B.3.

In termsof results,thevolumegivento eachflow is very im-
portant. Figures5-a and6-a show the volumesgiven to each
flow in PFCCandPOCCrespectively. Justto seeamoresmooth
view, Figures5-b and6-b show thevolumesaveragedover200
contractperiods. We seethe flows aresharingthe bottleneck
capacityalmostin proportionto their budgets.Thedistortionin
volumeallocationis causedbecauseof the fact that eachflow
is sharingthebottleneckcapacityin proportionto their budgets
whenthey arecongested.Whenthey arenot congested,how-
ever, they returnbackto theirindividualcapacityestimation.We
canobserver this dynamicin Figures5-aand6-a. In compari-
sonto POCC,PFCCallocatesvolumemoresmoothlybut with
thesameproportionalityto theflows. Thenoisyvolumealloca-
tion in POCCis causedby coordinationissues(i.e. parameter
mapping,edgequeues)investigatedin SectionVI-B.2.

Figures5-c and6-c show thepricebeingadvertisedto flows
in PFCCandPOCCrespectively. As thenew usersjoin in, the
pricingschemesincreasethepricein orderto balancesupplyand
demand.Also, we canseethesamedynamicasin the volume
allocationgraphscausedby thecapacityallocationalgorithm.

Figures5-dand6-dshowsthebottleneckqueuesizein PFCC
and POCCrespectively. Notice that queuesizesmake peaks
transientlyat thetimeswhennew usersgetsactive. Otherwise,
thequeuesizeis controlledreasonablyandthesystemis stable.
In comparisonto PFCC,POCCmanagesthe bottleneckqueue
muchbetterbecauseof thetight controlenforcedby theunder-
lying edge-to-edgecongestioncontrolalgorithmRiviera.

Figuresfrom 7-a to 7-c show the sizesof edgequeuesin
POCC.We canobserve that usersget active at 5000sof inter-
vals. We observe stablebehavior but with oscillationslarger
thanthe bottleneckqueueillustratedin Figure6-d. This is be-
causeof thetightedge-to-edgecongestioncontrol,whichpushes
backlogto the edges. Also, observe that the edgequeuesare
generallymuchlower thanthe thresholdof 200 packets. This
meansthat the packets were marked at the edgequeuesvery
rarely. So, the techniqueof marking the packetsat the edges
and reducingthe estimatedcapacityindirectly was not domi-
nant in this simulation. Rather, the techniqueof reducingthe
estimatedcapacitydirectlyat theingresswasdominantin terms
of handlingof edgequeues(pleaseseeSectionVI-B.3 for full
understandingof thesetwo techniques).
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Fig. 5. Resultsof single-bottleneckexperimentfor PFCC:(a) Volumescontractedby eachflow. (b) Averageof contractedvolumesover 200contracts.(c) Price

advertisedto theflows. (d) Bottleneckqueuelength.

In PFCC,averageutilization of thebottlenecklink wasmore
than90%,andnopacketdropswereallowed.In POCC,average
utilizationof thebottlenecklink was80%.Thisis becauseof the
fact thatRiviera’s parametersaresetsuchthat it provides80%
utilizationof thenetwork. So,asweclaimedin SectionVI-B.2,
thelimitationsof theunderlyingcongestioncontrolschemealso
limits theoverall performance.We specificallysettheparame-
tersof Riviera to show this overall behavior, in reality Riviera
canprovide higherutilization giventhat the parametersareset
properly.

B. Experimentson Multi-bottleneck Topology

On a multi-bottlenecknetwork, we would like illustratetwo
propertiesfor PFCC:% Property1: provisionof variousfairnessin rateallocationby
changingthe fairnesscoefficient

�
of Distributed-DCCframe-

work (seeSectionV-D.2)% Property2: performanceof thecapacityallocationalgorithm
of PFCCin termsof adaptiveness(seeSectionVI-A.2)

SinceRiviera doesnot currently5 provide a setof parameters
for weightedallocationon multi-bottlenecktopology, we will
not runany experimentfor POCConmulti-bottlenecktopology.

In order to illustrate Property1, we run a seriesof experi-
mentsfor PFCCwith different

�
values.Rememberthat

�
is the

fairnesscoefficient of Distributed-DCC.Higher
�

valuesimply
morepenaltyto theflows thatcausemorecongestioncosts.We
usea larger versionof the topologyrepresentedin Figure4-b.
In themulti-bottlenecktopologythereare10usersand9 bottle-
necklinks. Total simulationtime is 10,000s.At thebeginning,
the userwith the long flow is active. All the otherusershave
traffic flows crossingthe long flow. After each1000s,oneof
theseotherusersgetsactive. So, as the time passesthe num-
berof bottlenecksin thesystemincreasessincenew userswith
crossingflows join in. Noticethat thenumberof bottlenecksin
thesystemis onelessthanthenumberof active userflows. We
areinterestedin thevolumegivento thelongflow, sinceit is the
onethatcausemorecongestioncoststhantheotheruserflows.

Figure8-ashows the averagevolumegiven to the long flow
versusthenumberof bottlenecksin thesystemfor differentval-Æ

It is still beingstudiedby its developers.
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Fig. 8. Resultsof PFCCexperimentsonmulti-bottlenecktopology:(a)Volumegivento thelongflow in a linearnetwork. (b) Priceadvertisedto thelongflow in a

linearnetwork. (c) Volumesgivento theflows. (d) Volumesgivento theflows averagedfor 200contracts.

uesof
�

. As expectedthe long flow getslessandlesscapacity
as

�
increases.When

�
is zero,theschemeachievesmax-min

fairness.As it increasestheschemegetscloserto proportional
fairness.Also notethat, theotheruserflows get the restof the
bottleneckcapacity, andhenceutilize thebottlenecks.

This variationin fairnessis basicallyachieved by advertise-
mentof differentpricesto theuserflows accordingto thecosts
incurredby them. Figure 8-b shows the averageprice that is
advertisedto the long flow asthe numberof bottlenecksin the
systemincreases.We can seethat the price advertisedto the
long flow increasesasthenumberof bottlenecksincreases.

Finally, to illustrateProperty2, we rananexperimenton the
topologyin Figure4-bwith smallchanges.Weincreasedcapac-
ity of thebottleneckat nodeD from 10 Mb/s to 15Mb/s.There
are four flows and threebottlenecksin the network as repre-
sentedin Figure4-b. Initially, all theflowshaveanequalbudget
of 10. Total simulationtime is 30000s.Betweentimes10000
and20000,budgetof flow 1 is temporarilyincreasedto 20. The
fairnesscoefficient

�
is setto 0. All the otherparameters(e.g.

markingthresholds,initial values)areexactly thesameasin the
single-bottleneckexperimentsof theprevioussection.

Figure8-c shows thevolumesgivento eachflow, andFigure
8-d shows thegivenvolumesaveragedover200contractingpe-
riods. Until time 10000s,flows 0, 1, and2 sharethebottleneck
capacitiesequallypresentinga max-minfair allocationbecause�

wassetto 0. However, flow 3 is gettingmorethantheothers
becauseof the extra capacityat bottlenecknodeD. This flexi-
bility is achievedby the freedomgiven individual flows by the
capacityallocationalgorithm(seeSectionVI-A.2).

Betweentimes10000and20000,flow 2 getsa stepincrease
in its allocatedvolumebecauseof the stepincreasein its bud-
get. In resultof this, flow 0 getsa stepdecreasein its volume.
Also, flows 2 and3 adaptthemselves to the new situationby
attemptingto utilize theextra capacityleftover from thereduc-
tion in flow 0’svolume.So,flow 2 and3 getsa stepdecreasein
their volumes.After time 20000,flows restoreto their original
volumeallocations,illustratingtheadaptivenessof thescheme.

VI I I . SUMMARY AND DISCUSSIONS

In this paper, we presenteda new framework, Distributed-
DCC, for congestionpricing in a singlediff-servdomain.Main
contribution of the paperis to develop an easy-to-implement
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overlaycongestionpricing architecturewhich providesflexibil-
ity in rate allocation. We investigatedfairnessissueswithin
Distributed-DCCand illustratedwaysof achieving a range of
fairnesstypes(i.e. from max-minto proportional)throughcon-
gestionpricing undercertainconditions.Thefactthat it is pos-
sibleto achievevariousfairnesstypeswithin asingleframework
is veryencouraging.

Basedon the way of approachingto the congestioncontrol
problem,wedevelopedtwo pricingschemes(PFCCandPOCC)
within the Distributed-DCCframework. As a novel approach,
distinguishingfeatureof POCCis to overlaypricing on top of
edge-to-edgecongestioncontrol. By comparative evaluation
of PFCCand POCC,we showed that POCCperformsbetter
in termsof managingcongestionin network core becauseof
the tight (low time-scale)control enforcedby the underlying
edge-to-edgecongestioncontrolmechanism.However, we also
showed that overall performance(e.g. fairness,utilization) is
dependentontheflexibility of theunderlyingedge-to-edgecon-
gestioncontrolmechanism.

Futurework shouldincludeinvestigationof issuesrelatedto
extendingDistributed-DCCon multiple diff-servdomains.An-
other future work item is to implementsoft admissioncontrol
techniquesin the framework by tuning the contractparameter�����	�

. Currently,
���"���

is setto total network capacity, which
allows individual usersto contractfor significantly larger than
the network canhandle. Several other improvementsarepos-
sible to the framework suchasbettercapacityestimationtech-
niques(seeSectionV-C), betterbudgetestimationtechniques
(seeSectionV-B), betterestimationof the parameter

� + l (see
(5)).
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