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Abstract— Several congestionpricing proposalshave beenmadein the
last decade. Usually, however, those proposalsstudied optimal strategies
and did not focuson implementation issues.Our main contribution in this
paper is to addressimplementation issuesfor congestion-sensitie pricing
over a single domain of the differ entiated-sewices (diff-serv) architecture
of the Inter net. We proposea new congestion-sensitie pricing framework
Distributed Dynamic Capacity Contracting (Distrib uted-DCC), which is
able to provide a range of fairness(e.g max-min, proportional) in rate
allocation by using pricing asa tool. Within the Distrib uted-DCC frame-
work, wedeveloptwo pricing schemesasedon the manner of using pricing
to control congestion: Pricing for CongestionControl (PFCC) and Pricing
over CongestionControl (POCC). PFCC usespricing directly for control-
ling congestion,whilst POCC usesan underlying edge-to-edgecongestion
control mechanismby overlaying pricing on top of it.

Keywords— Network Pricing, Congestion Pricing, Quality-of-Service,
Fairness,CongestionControl, Differ entiated-Sewices

|. INTRODUCTION

Implementationof congestionpricing still remainsa chal-
lenge, althoughseveral proposalshave beenmade,e.g. [1],
[2], [3]. Amongmary otherstwo majorimplementatiorobsta-
clescanbe defined:needfor timelyfeedbak to usersaboutthe
price, determinationof congestioninformationin an efficient,
low-overheadmanner

Thefirst problem,timely feedbackis relatively very hardto
achieve in awide areanetwork suchasthe Internet. In [4], the
authorsshawved that usersdo needfeedbackaboutchaging of
thenetwork service(suchascurrentprice andpredictionof ser
vice quality in nearfuture). However, in our recentwork [5],
we illustratedthat congestiorcontrol throughpricing cannotbe
achievedif price changesare performedat a time-scalelarger
thanroughly40round-trip-timegRTTs). This meanghatin or-
derto achieve congestiorcontrolthroughpricing, serviceprices
must be updatedvery frequently(i.e. 2-3 secondssinceRTT
is expressedn termsof millisecondsfor mostcasesn the In-
ternet). We believe that the problem of timely feedbackcan
be solved by placingintelligentintermediariegi.e. softwareor
hardware agents)hetweenusersand serviceproviders. In this
paperwe do not focuson this particularissueandleave devel-
opmentof suchintelligentagentdor futureresearch.

The secondproblem, congestioninformation, is also very
hardto do in a way that doesnot needa major upgradeat net-
work routers. However, in diff-serv[6], it is possibleto deter
mine congestioninformationvia a goodingress-gresscoordi-
nation.So,thisflexible ervironmentof diff-servmotivatedusto
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developa pricing schemeonit.

In our previouswork [7], we presented simple congestion-
sensitve pricing framewvork, Dynamic Capacity Contracting
(DCC), for a single diff-serv domain (seeSectionlll). DCC
treatseachedgerouter as a stationof a serviceprovider or a
stationof coordinatingsetof serviceproviders. Users(i.e. in-
dividualsor otherserviceproviders)make short-termcontracts
with the stationsfor network service.During the contractsthe
stationrecevescongestiorinformationaboutthe network core
at a time-scalesmallerthan contracts. The station,then, uses
that congestioninformation to updatethe serviceprice at the
beginning of eachcontract. Several pricing “schemes”canbe
implementedn thatframework.

DCCassumedhatall theproviderstationsadvertisethesame
price valuefor the contractswhich is very costlyto implement
over a wide areanetwork. This is simply becausehe price
valuecannotbecommunicatedo all stationsatthebeginningof
eachcontract.In this paperwe relaxthis assumptiorby letting
the stationsto calculatethe priceslocally and adwertisediffer-
ent pricesthanthe otherstations. We call this new versionof
DCC asDistributed-DCC We introducewaysof managinghe
overall coordinationof the stationsfor the commonpurposes
of fairnessandstability. We thendeveloptwo pricing schemes
basedon the way of approachingcongestioncontrol problem:
Pricing for CongestionControl (PFCC),Pricing over Conges-
tion Control (POCC).While PFCCtriesto control congestion
directly by pricing, POCCoverlayspricing on top of an exist-
ing edge-to-edgeongestioncontrol mechanism.We illustrate
stability of the schemedby simulationexperiments We address
fairnessproblemsrelatedto pricing, and shov that PFCCcan
achieze max-minandproportionalfairnessy tuninga parame-
ter, calledasfairnesscoeficient

The rest of the paperis organizedas follows: In the next
section,we positionour work andbriefly surwey relevantwork
in the area. In Sectionlll, we revise overall characteristicof
DCC.In SectionlV, we developa simplemodelfor userbeha-
ior and make optimizationanalysisthat is basisto our frame-
work, Distributed-DCC.Then,in SectionV we describeprop-
erties of Distributed-DCCframework, and investigatevarious
issues(suchas price calculation,fairness,scalability) regard-
ing it. Next, in SectionVI, we develop two pricing schemes
(PFCCandPOCC)basedn methodof usingpricing to control
congestionln SectionVIl, we make experimentalcomparatie
evaluationof PFCCandPOCC.We finalize with summaryand
discussions.



Il. RELATED WORK

Therehasbeensereral pricing proposalswhich canbe clas-
sifiedin mary ways: staticvs. dynamic per-padetchagingvs.
per-contract chaging, andchaiging prior to servicevs. poste-
rior to service.

Althoughthereareopponentdo dynamicpricing in the area
(e.g.[8], [9], [10]), mostof theproposal$rave beenfor dynamic
pricing (specificallycongestiorpricing) of networks. Examples
of dynamicpricing proposalsare MacKie-Masonand Varian's
SmartMarket [1], Guptaet al.s Priority Pricing [11], Kelly et
al’s Proportionalair Pricing (PFP)[12], Semreketal.s Market
Pricing[13], [3], andWangandSchulzrinnes ResourceéNegoti-
ationandPricing(RNAP) [14], [2]. Odlyzko’s ParisMetro Pric-
ing (PMP)[15] is anexampleof staticpricing proposal.Clark’s
ExpectedCapacity[16] andCocchietal.’s EdgePricing[17] al-
low bothstaticanddynamicpricing. In termsof chaginggranu-
larity, SmartMarket, Priority Pricing,PFPandEdgePricingem-
ploy perpaclket chaging, whilst RNAP and ExpectedCapacity
do notemploy perpacketchaging.

SmartMarketis basedprimarily onimposingperpacketcon-
gestionprices. Since SmartMarket performspricing on per
paclet basis,it operaten thefinestpossiblepricing granular
ity. This makesSmartMarket capableof makingideal conges-
tion pricing. However, SmartMarketis not deployablebecause
of its perpaclet granularity (i.e. excessve overhead)and its
mary requirementgrom routers(e.g. requiresall routersto be
updated).In [18], we studiedSmartMarket anddifficulties of
its implementatiorin moredetail.

While SmartMarket holdsoneextremein termsof granular
ity, ExpectedCapacityholdsthe otherextreme. ExpectedCa-
pacityproposeso uselong-termcontractsyhich cangive more
clearperformancexpectationfor statisticalcapacityallocation
and pricing. Pricesare updatedat the beginning of eachlong-
termcontractwhichincorporatedittle dynamismto prices.

Our work, Distributed-DCC,is a middle-groundbetween
Smart Market and ExpectedCapacityin terms of granular
ity. Distributed-DCCperformscongestiorpricing at short-term
contractswhichallows moredynamismn priceswhile keeping
pricing overheadsmall.

Anotherclosework to oursis RNAP, which alsomainly fo-
cusedon implementationissuesof congestiorpricing on diff-
serv Although RNAP providesa completepicturefor incorpo-
ration of admissioncontrol and congestionpricing, it hasex-
cessve implementationoverheadsinceit requiresall network
routersto participaten determinatiorof congestiorprices.This
requiresupgradeso all routerssimilarto thecaseof SmartMar-
ket. We believe that pricing schemeghat requireupgradeso
all routerswill eventuallyfail in implementatiorphase.This is
becaus®f thefactthatthe Internetroutersareownedby differ-
ententitieswho may or may not be willing to cooperatén the
processof routerupgrades.Our work solvesthis problemby
requiringupgrade®nly atedgeroutersratherthanatall routers.

I11. DYNAMIC CAPACITY CONTRACTING (DCC)

DCC modelsa short-termcontractfor a giventraffic classas
afunctionof price perunit traffic volume P,, maximumvolume
Vinae (Maximumnumberof bytesthat can be sentduring the
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Fig. 1. DCCframevork on diff-servarchitecture.
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Figure 1 illustratesthe big picture of DCC framework. Cus-
tomerscanonly accessietwork coreby makingcontractswith
theprovider stationsplacedatthe edgerouters.Accesgo avail-
ablecontractscanbedonein differentways,whatwe call edge
strategy. Two basicedgestratgiesare “bidding” (mary users
bidsfor anavailablecontract)or “contracting” (usersnegotiate
with the provider for an available contract). So, edgestrateyy
is the decision-makingmnechanismto identify which customer
getsanavailablecontractat the provider station.

Stationscan perfectly adwertise congestion-basegrices if
they have actualinformation aboutthe congestiorlevel in the
network core. This congestiorinformationcancomefrom the
interior routersor from the egressedgeroutersdependingnthe
congestion-detectiomechanisnibeingused.DCC assumethat
the congestiordetectionmechanisnis ableto give congestion
informationin time scales(i.e. obsenation intervals) smaller
thancontracts.

In summary DCC framework hasbeendesignedo usepric-
ing and dynamic capacity contractingas a new dimensionin
managingcongestion,as well asto achieve simple economic
goals.Thekey benefitsof DCC are:

« acongestion-sensite pricing framework employableon diff-

servarchitecture

« doesnot requireperpacket accounting(works at granularity
of contracts)

« doesnotrequireupgrade®r softwaresupportanywherein the
network excepttheedges

Contract = f(Py, Vinae, T)

IV. USER ADAPTATION

In this sectionwe present simpleoptimizationanalysisthat
is basisto Distributed-DCC.One important characteristicof
congestion-sensite pricing is that the price mustbe oscillat-
ing aroundan optimum price, p*, to guaranteeboth conges-
tion controlandhigh utilization of network resourcesWe now
derive a formula for p* by explicitly modelingcustomerutili-
ties. We modelcustomeri’s utility with the well-known func-
tion u;(z) = wilog(x) * [12], [19], [20], [21], wherez is the
allocatedbandwidthto the customeandw; is customet’s sen-
sitivity to bandwidth.Then,suppose; is thepriceadwertisedo

lwangandSchulzrinnentroduceda morecomple versionof thisfunctionin
[14].



aparticularuseri. Theuser: will maximizehis/hersurplus,S;,
by makingsurethathe/shecontractsor z; = w;/p;, i.e.:

max S; = n}vaX{uz-(mi) —zpi}

dSi _ w; _0
d.’L‘i B ZT; pi =
w;
r; = —
b;

Assumingthatthe customerbey this above procedurethe
provider of the network servicecannow figure out what price
to adwertiseto eachuserby maximizingthe socialwelfareW =
S + R, whereR is the provider revenue.Let K () = kx bea
linearfunctionandbethecostof providing x amountof capacity
to auserwherek is apositive constant Thenthesocialwelfare,
W, will be:

W = Z [wi(xi) — zips + zipi — K (25)]

W = iui(mi) — kz;
i=1

We maximize W with the conditionthat ), z; = C, where
C' is the total available capacity Notice thatto maximize W
all theavailablecapacitymustbe allocatedto the usersbecause
we assumestrictly increasingutility functions(i.e. log(x)) for
them.

By applyingLagrange-MultiplierMethod[22], we first con-
vert W to thefollowing:

n n

W=27= Zuz(xz) — kz; +)\(in -0C)

i=1 i=1

We can get the following systemof equationsby equating
partialderivative of W to zerofor eachunknaown variable:

Zy =) 2;—C=0
i=1
Zyy =2 —k4+A=0, j=Ln )

Tj

After solving systemof equations2, we get the solutionas
follows:

Zn—1 Wi
A =k - ==
C
w; .

This resultshovs thatwelfaremaximizationof the described
systemcanbedoneonly by allocatingcapacityto theuserspro-
portionalto their bandwidthsensitvity, w;, relative to total sen-
sitivity to bandwidth.So, any user: shouldbe givena capacity
of w

K3
E?:l Wi ¢

Tr; =

Sincewe shaved that the userwill contractfor w;/p; when
adwertiseda price of p;, thenthe optimumprice for providerto
adwertise(i.e. p*) canbecalculatedasfollows:

w; w;
i C
Di Z?:l w;
n
* Jp— Zi:l wz
P =Dpi C

This meanghatthe provider shouldadwertisethe sameprice
to all users.However, noticethatthis above studyassumedwo
majorthings:

« thecostfor provisioningcapacityper unit bandwidthto each
useris thesame

« all usershave the sametype of utility function,i.e. u(z)
w log(x)

Since optimality is not our single goal in pricing, we do not
focusonaddressinghe abore assumptionsStudyof how much
optimality canbeachieredby Distributed-DCCis left for future
work.

We canalsointerpretusersbudget, b;, ashis/hersensitivityto
bandwidth w;, sincea userwho is moresensitve to bandwidth
is expectedto sparemore budgetfor the network service. So,
we will use“budget”insteadof “sensitvity to bandwidth”for
the restof the paper Assumingthatthe customershasa total
budgetof B = . b; for network serviceperunit time andthe
network hasa capacityof C' per unit time, we canrewrite the
optimumprice asfollows:

p = (4)

B
c

V. DISTRIBUTED-DCC: THE FRAMEWORK

Distributed-DCCis specificallydesignedor diff-serv archi-
tecture,becauseahe edgerouterscan performcomplex opera-
tionswhich is essentiato several requirementgor implemen-
tation of congestionpricing. In Distributed-DCCframework,
eachedgerouteris treatedas a station of the provider. Each
stationadwertiseslocally computedpriceswith informationre-
ceived from other stations. The main framework basicallyde-
scribeshow to presere coordinationamongthe stationssuch
that stability and fairnessof the overall network is presered.
A Logical Pricing Server(LPS) plays a crucial role in terms
of functioningof the Distributed-DCCframework. Figure2 il-
lustrateshasicfunctions(whichwill bebetterunderstoodn the
following sub-sectionsdpf LPSin theframework.

The contractingtakes place betweenthe customersand the
ingressstations.So,eachingressstationkeepsa”current” price
valuefor eachedge-to-edgfiow andadwertiseshatpricevalue,
pij, to customer®f theflow fromingressi to egress;.

A. Howto Calculatep;; ?

So, haw do we calculatethe price-perflow, p;;? The in-
gressesnake estimationof budgetfor eachedge-to-edgdlow
passinghroughthemseles. Let b;; be the currentlyestimated
budgetfrom ingressi to egressj. Theingressesendtheir es-
timatedbudgetsto the correspondingegressesi.e. b;; is sent
from ingressi to egressj) ata deterministictime-scale.At the
otherside,the egresseseceie budgetestimationsrom all the
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ingressesand alsothey make estimationof capacityfor each
particularflow, ¢é;;. In otherwords,egress;j calculates?;; and
is informed about?)ij by ingressi. The egressj, then, pe-
nalizesor favors flow ¢ to j by updatingits budgetvalue, i.e.
bij = f(bij, < parameters >) where< parameters > are
the other parametershat are usedfor decidingwhetherto pe-
nalizeor favor the flow. For example,if theflow i to j is pass-
ing throughmorecongestedreaghanthe otherflows, thenthe
egressj canpenalizethis flow by reducingits budgetestimation
bz']'.

At anothertime-scalethe egresse&eepsendingnformation
to LPS (which canbe placedto one of the egresse®r canbe
implementedin a fully distributed manney see SectionV-E).
More specifically the egressj sendsthe following information
to LPS:

1. the updatedbudgetestimationsof all flows passingthrough
itself, i.e. b;; for ¢ = 1..n ands # j wheren is the numberof

edgerouters

2. theestimatedtapacitiegpleaseaeferto SectionV-C for more
aboutcapacityestimationf all flows passinghroughitself, i.e.

¢;; fori = 1..n andi # j wheren is thenumberof edgerouters

LPS receves information from egressesand calculatesal-

lowed capacityc;; for eachedge-to-edgdlow. Calculationof
¢;; valuesis acomplicatedaskwhich dependon updatedoud-
getestimatiorof eachflow (i.e. b;;). In generaltheflowsshould
getcapacityof the samebottleneckin proportionto their bud-
gets. We will later definea genericalgorithmto do capacity
allocationtask. LPS, then, sendsthe following informationto
ingressi:
1. thetotal estimatedhetwork capacityC' (i.e. C'= >, >~ ¢;)
2. the allowed capacitiesto each edge-to-edgdlow starting
from ingressi, i.e. ¢;; for j = 1l.n andj # i wheren is
thenumberof edgerouters

Now, theingress cancalculatepricefor eachflow asfollows:

_ by
p’LJ CZJ

Also, theingressi canusethe total estimatechetwork capacity
C in calculatingthe V,,,,, contractparametedefinedin Equa-
tion 1. Admissioncontroltechniquesanbeusedto identify the
bestvaluefor V,,,,,. We usea simple methodwhich doesnot
putary restrictionon V,, 4z, i-€. Vinee = C x T whereT is the
contractiength.

Onecanclaim: “Why notusec;; for calculatingVy,q.?" This
will preventflows to sendmorethanavailable capacity How-
ever, it will notallow flows to competefor the capacity which
will not give opportunityto the flows with higherbudgetthan
the others. By allowing flows to contractfor morethanthe al-
lowed, we canleave the sharingof the total available capacity
to the flows themseles. In this way, the flows will sharethe
capacitybasedontheir budgetsj.e. willingnessto pay.

B. Budget Estimationat Ingresses

Theingressstationgperformverytrivial operatiorto estimate
budgetsof eachflow, b;;. Theingressi basicallyknowsits cur-
rent price for eachflow, p;;. Whenit receivesa pacletit just
needsto determinewhich egressstationthe pacletis goingto.
Giventhattheingressstationhasthe addressesf all the egress
stationg(this is a realisticassumptionpf the samediff-servdo-
main, it canfind out which egressthe pacletis goingto. So, by
monitoringthe paclketstransmittedor eachflow, theingresscan
estimatethe budgetof eachflow. Let z;; bethetotal numberof
pacletstransmittedfor flow 4 to j in unit time, thenthe budget
estimatefor theflow 4 to j is b;; = x4jps;-

C. CapacityEstimationat Egresses

The crucial property of capacityestimationin Distributed-
DCC is that, it can be madecongestion-basedWith a sim-
ple mechanism(suchas marking of pacletsat interior routers
whencongested)i is possibleto detectcongestiorattheegress
station. So, for a particularedge-to-edgéraffic flow, onecan
malke the capacityestimationcongestion-sensite by decreas-
ing theestimationwhencongestions detectedndby increasing
whencongestionis not detectedor thatflow. In this sensesev-
eral capacityestimationalgorithmscanbe used,e.g. Additive
IncreaseAdditive DecreasqAIAD), Additive IncreaseMulti-
plicative Decreasd AIMD). We will provide a full description
of suchanalgorithmlaterin SectionVI-A.

D. Fairness

Fairnessof a pricing schemeis indirectly equivalentto fair-
nessof rateallocationschemes.A pricing schemedetermines
and adwertisesthe pricesto the users,thenthe userscontract
for network capacityaccordingto their budgets. So, a pricing
schemaallocatemetwork capacityindirectly.

Assumingthat usershave a utility function of form u(z) =
w log(x), in SectionlV, we provided a simple proof that the
provider shouldadvertisea priceof p = B/C, whereB is the
total budgetof theusersandC is the network capacityin order
to maximizesocialwelfare. This will causeusersto sharethe
network capacityin proportionto their budgets.However, fair-
nessissuesare not that simple. We examinethe issuesregard-
ing fairnessin two main cases. We now first determinethese
two casesandthen provide solutionswithin Distributed-DCC
framework.



D.1 Cases

1. Single-bottlenekcase: The pricing protocolshouldchage
the samepriceto the usersof the samebottleneck.In this way,
amongthe customeraisingthe samebottleneck the oneswho
have morewillingnessto pay will be given moreratethanthe
others. The intuition behindthis reasonings that the cost of
providing capacityto eachcustomeris the same. The simple
proofin SectionlV alsoshavsthatchagingall usersequallyis
optimalin suchacase.

2. Multi-bottlene& case: The pricing protocol shouldchage
moreto the customeravho causemore costs(e.g. congestion)
to the provider. This will make surethat the revenuewill be
higherwhile beingfairerto the customers.So, otherthanpro-
portionality to customerbudgets,we alsowant to allocateless
rateto thecustomersvhoseflows arepassinghroughmorebot-
tlenecksthanthe othercustomers.

For multi-bottlenecknetworks, two maintypesof fairnesshave
beendefined:max-minfairnesq19], proportionalfairnesg412].
We now study proportionalfairnessand max-min fairnessin
termsof socialwelfaremaximizationwith a canonicakxample.
Considera multi-bottlenecknetwork in which thereis a long
flow thatis crossedby n parallelflows. An exampleof such
a network is shovn in Figure4-b. Supposeall the bottlenecks
areequialentin capacity C. Intuitively, whateverthelong flow
gets,all the parallelflows will gettherestof the capacity Let
xo bethecapacitygivento thelong flow andz; bethecapacity
givento oneof the parallelflows. Supposehatthe utility of the
long flow is ug(zg) = wolog(xe) andthe utility of oneof the
parallelflows is uy (1) = wilog(z1). Notice thatwy andw;
arethe sensitvity of the flows to capacity(alsointerpretedas
flow’s budget,seeSectionlV). Sincethe long flow is passing
throughn bottlenecks,cost of providing capacityto the long
flow is n timesmorethancostof providing capacityto one of
the parallel flows. So, let costof providing z; to one of the
parallelflows be K (z1) = kxz1, andlet the costof providing
xo to thelong flow be Ky (zo) = nkxo. Within this contet, the
socialwelfare,W, andits Lagrangiarwill be:

W = wolog(zo) + nwilog(x1) — nkze — nkzy

« Second,if the long flow is sensitve to bandwidthn times
morethana parallelflow, i.e. wy = nw;, thenthe optimalallo-
cationwill bezy = z; = C/2. Thisis the max-minfair case.
So,max-minfairnesss optimalonly whenthelong flow’s utility
is sensitve to bandwidthin proportionto the costof providing
capacityto it. In otherwords, by interpretingbandwidthsen-
sitivity asthe flow’s budget,max-minfairnessis optimal only
whenthelong flow hasbudgetin proportionto the costof pro-
viding capacityto it.

Obsenationssimilarto abore havebeenmadein theareag.g.
[12], [23].

D.2 Solutionswithin Distributed-DCC

In order to achieve the objectives mentionedin the previ-
ous section, the pricing protocol shouldchage the customers
equallyin a single-bottleneckopology while it shouldchage
themdifferentlyin amulti-bottleneckopology This meanghat
thepricing framewvork mustgive the ability to chaige somecus-
tomersequallywhile theability to chagesomeothercustomers
differently.

To achieve thefairnessobjectivesin Distributed-DCC we in-
troducenew parameterdor tuning rate allocationto flows. In
orderto penalizeflow 4 to j, the egress;j canreduceb;; while
updatingthe flow’s estimatecbudget. It usesthe following for-
mulato do so:

bij = f(bij,r(t), @ Pmin) = b

(%] 1] y & FPman Fmin + (Tz'j (t) — Tmin) *

wherer;;(¢) is the congestioncost causedby the flow ¢ to j,
Tmin 1S the minimum possibleconggstiorcostfor the flow, and
o is fairnesscoeficient Insteadof b;;, the egressj now sends
bi; to LPS.a canbe0 atminimum. Whenit is greaterthan0, it
meanghatDistributed-DCCis emplgying proportionalfairness
in its rateallocation.Whenit is 0, Distributed-DCCis employ-
ing max-minfairness.So, usinglarger o valuesyield to more
proportionalfairnesdn therateallocationof Distributed-DCC.
Assumingthat eachbottleneckhasthe sameamountof con-
gestionandalsoassumehatthey have thesamecapacity Then,
in orderto calculater;; (t) andr,,;,, we candirectly usethe
numberof bottleneckgheflow i to j is passinghrough.In such

W = Z = wolog(xo) +nwilog(z1) —nkzo—nkz1+A(zo+21—-Ch case,rpmin will be 1 andr;;(¢) shouldbe numberof bottle-

After solvingthe above Lagrangianwe getthe following solu-
tionsfor 2y andz; to maximizeW:

UJOC
Tg= ————
wo + nwy
nw;C
r = —-
wo + nwy

Fromtheabove result,we make two obsenations:

« First, if boththe long flow and a parallel flow have equal
bandwidthsensitvity, i.e. wy = wy, thenthe optimal alloca-
tion will bezy = C/(n + 1) andz; = Cn/(n + 1). Thisis
the proportional fair case. So, proportionalfairnessis optimal
only whenall theflows have equalbandwidthsensitvity. Asan-
otherinterpretationijt is optimalonly if all theflows have equal
budget.

necksthe flow is passingthrough. If the interior nodesincre-

mentaheadefield of thepacletsatthetime of congestionthen

at the egressstationwe canestimatethe numberof bottlenecks
the flow is passingthrough. To do that estimation,the egress
stationdoesthefollowing attime interval ¢ for flow i to j:

Fig(t), 1ii(t—1) <7i;(t)
rij(t) = { rij(t—1) —JAr, ot]herwise ’ ®)
where 7;;(t) is the highestnumberof bottlenecksthat flow
passedhroughin timeinterval t, Ar is apre-defined/alue. Re-
alizethatthe headeffield of the pacletsarebeingincremented
only if they are passingthrougha congestedottleneck. It is
possiblethat someof the bottlenecksare not congestedvhen
a particularpaclet is passingthroughthem. For example,the
headeffield of the paclet maybeincrementednly threetimes,
althoughit actuallypassedhroughsix bottlenecksSo, it is nec-
essanyto biastheestimatiorto thelargestnumberof bottlenecks



thepacletsof thatflow have passedecently Also asanotheiis-

sue,IP routingcausesouteof theflows to changedynamically

To considerthedynamicbehaior of theroutes,it is alsoneces-
saryto decrease;; whenr;;(t — 1) > #;;(t). So,if theroute
of the flow haschangedthen after sometime (dependingon

how largethe Ar is) thevalueof r;; will decreasé¢o the actual
numberof bottleneckgheflow is passinghrough.

E. Scalability

Distributed-DCC operateson per edge-to-edgdlow basis.
There are mainly two issuesregarding scalability: LPS, the
numberof flows. First of all, the flows are not perconnection
basis,i.e. all thetraffic goingfrom edgerouter: to j is counted
asonly oneflow. This actuallyrelievesthe scalabilityproblem
for operationsthat happenon perflow basis. The numberof
flows in the systemwill ben(n — 1) wheren is the numberof
edgeroutersin the diff-servdomain. So, indeed,scalability of
theflows is nota problemfor the currentinternetsincenumber
of edgeroutersfor a singlediff-servdomainis very small. If it
becomessolargein future, thenaggreyationtechniquesanbe
usedto overcomethis scalabilityissue,of course py sacrificing
someoptimality.

Scalability of LPS can be donetwo ways. Firstideais to
implementLPSin afully distributedmanner The edgestations
exchangeanformationwith eachother(similarto link-staterout-
ing). Basically eachstationwill sendtotal of n — 1 messages,
eachof which headedo other stations. So, this will increase
the overheadon the network becausef the extra messages,e.
the compleity will increasefrom O(n) to O(n?) in termsof
numberof messages.

Alternatively, LPS can be divided into multiple local LPSs
which synchronizeamongthemselesto maintainconsisteny.
This way the compleity of numberof messagesvill reduce.
However, thiswill be ata costof someoptimality again.

Sincetheseabove-definedscalingtechniquesare very well-
known, we do notfocuson detaileddescriptionof them.

V1. DISTRIBUTED-DCC: PRICING SCHEMES

Oneof themain purposedor congestiorpricing is to control
congestiorby makingthe pricescongestion-sensite. Several
studies(e.g. [12], [24]) shaved that congestion-sensite pric-
ing leadsto stability. Within Distributed-DCCframework, we
now describetwo pricing schemeswvhich are mainly inspired
of differentapproachego the problem of congestioncontrol.
Pricing for CongestionControl (PFCC)usespricingdirectly for
the purposeof congestiorcontrol, while Pricing over Conges-
tion Control (POCC)usesan underlyingedge-to-edgeonges-
tion controlmechanisnto imposetightercontrolon congestion.
Figure3illustratesthe big pictureof thetwo approachedn the
following sub-sectionsye will describeand investigatethese
two approachewvithin Distributed-DCCframeawork.

A. PFCC
A.1 CapacityEstimationandCongestiorDetection

In orderto make congestiondetectionat the egressstation,
we assumehattheinterior routersmarkthe pacletswhentheir

gueuepasses threshold. When an egressstationreceves a
markedpaclet, it treatsit asa congestiorindication?

Giventheabove congestiordetectiormechanismegresssta-
tionsmake acongestion-baseektimationof thecapacityfor the
flows passingthroughthemseles. Rememberthat estimated
capacity ¢;;, for eachflow is sentto LPSin Distributed-DCC
framavork. Egressstationgdividetime into deterministicobser
vation intervals and identify eachobsenation interval as con-
gestedor non-congsted Basically an obsenation interval is
congestedf a congestionindication was recevved during that
obsenationinterval. At theendof eachobsenationinterval, the
egressesipdateheestimatedtapacity Then,egressj calculates
the estimatedcapacityfor flow ¢ to j atthe endof obsenation
interval t asfollows:

congested

B * pij(t),
¢, mnon-congested

¢ij(t) = { éii(t—1)+ A
whereg isin (0,1), u;;(t) is themeasuredutputrateof flow i to
j duringobsenationinterval ¢, and A¢ is apre-definedncrease
parameter This algorithmis a variant of well-known AIMD
andis introducedin [25]. Also, noticethatthe above capacity
estimationalgorithmis congestion-basedsit is necessaryor
the congestion-sensitity of Distributed-DCCframework (see
SectionV-C). So, egressesnake capacityestimationfor each
flow accordingto the above algorithm, and sendé;; (t) asthe
currentestimatedcapacityfor flow ¢ to 5.

As a refinementto the scheme the value of the A¢é should
decreasevhenthenumberof active flowsincreasesThereason
is that, at LPS, the total estimatednetwork capacityC is the
accumulatiorof ¢;;s sentfrom egressedor eachflow. So, for
example, let therebe 3 flows that are outputtingsometraffic.
Eachof the correspondinggressewill basicallyincreaseheir
¢;;sby Aé whentherewasno congestiorfor thatflow atthelast
interval. However, whenthoseindividual é;;s areaccumulated
atLPS,theoverallnetwork capacityestimationC, will increase
by 3xAé. Thisbasicallyshavsthatthefidelity of controlwill be
dependenbn the total numberof active flows. Hence,in order
to achieve the samelevel of controlfidelity, the Aé parameter
thatis beingusedlocally at eachegressmustbe reducedwhen
moreflows getactive.

Let § bethe bestvaluefor Aé parametewhenthereis only
oneflow thatis outputtingtraffic. Thenthegeneraformulawill
be

Aé=5/N

whereN is thenumberof currentlyactive flows. In Distributed-
DCC framework, we cancalculateN. Theegressesountaflow
as”active” if p;; > 0. They, then,corvey the numberof active
flows to LPS, which later on informs them backwith the total
numberof active flows, N, in the network. Thisis anoptional
refinementto the capacityestimationcapability of PFCC.We
will usethis refinementin our simulationexperimentslaterin
SectionViII.

2Notice that this is only one particular way of detecting congestion.
Distributed-DCCdoesnot necessarilyneedthe interior routersto mark pack-
ets,aslong asotherwaysof detectingcongestiorareavailable.
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A.2 CapacityAllocationto Edge-to-Edgéd-lows

LPSis supposedbo allocatethetotal estimatedetwork capac-
ity C to edge-to-edgéowsin suchaway thattheflows passing
throughthe samebottleneckshouldsharethe bottleneckcapac-
ity in proportionto their budgetsandalsothe flows thatarenot
competingwith otherflows shouldget all the available capac-
ity on their route. The complicatedissueis to do this without
knowledgeof the topologyfor network core. We now propose
a simpleandgenericalgorithmto performthis centralizedrate
allocationwithin Distributed-DCCframework.

First, at LPS, we introducea new information abouteach
edge-to-edgdélow f;;. A flow f;; is congestedif egress;j has
beenreceving congestionindicationsfrom that flow recently
(we will laterdefinewhat“recent”is). Egressj knows whether
eachflow f;; wascongestedn the last obsenationinterval or
not (pleaseseethe previoussection).To determinef f;; is cur-
rently congestedr not, definek;; (t) ategress;j asfollows:

kis(t) = { L fis wascongested in obserationt — 1
WY1 0, fij wasnon-congested in obserationt — 1

To determinewhetherf;; is congestedr not at LPS, egress;
sendsgthe currentvalueof k;; alongwith the otherinformation
(i.e. b;; andé;;) to LPS. Of course,this is donefor all flows
simultaneously

At LPS, let K;; bethe maintainedparametein orderto de-
termine whether f;; is congestedor not. If K;; > 0, LPS
determinesf;; ascongested.If not, it determinesf;; asnon-

congested. LPS regularly receves messagesrom egresses.

Let's call the time interval betweenthesemessageasLPSin-
terval. At every LPSinterval t, LPSupdatesk;; asfollows:

(4 = k. kii(t) =1
50-{ et o0 ©
wherek is a positive integer Notice that k& parametedefines
long a flow canstayin “congested’stateafterthe last conges-
tion indication. So, in otherwords, k& definesthe time-line to
determineif a congestionindicationis “recent” or not. Note
thatinsteadof setting K;; to &k at every congestiorindication,

Large queues

bui

N / uild at edges
N .
s

""""""""""""""" Smaller queue
Provider builds at interior
Station 0
Provider
Station 1

bottleneck

(b)

several differentmethodscan be usedfor this purpose but we
proceedwith themethodin (6).

Giventhe above methodto determinewhethera flow is con-
gestedor not, we now describethe algorithmto allocatecapac-
ity to theflows. Let F' bethesetof all edge-to-edgélowsin the
diff-servdomain,and F, be the setof congestededge-to-edge
flows. Let C. betheaccumulatiorof é;;swheref;; € F,. Fur
ther, let B, bethe accumulatiorof b;;s where f;; € F.. Then,
LPScalculategheallowed capacityfor f;; asfollows:

C,'jZ{

So,acongestedow competesvith othercongestedlows andis

alloweda capacityin proportionto its budgetrelative to budgets
of all congestedlows. If aflow is not congestedthenit is al-

lowedto useits own estimatedtapacity whichwill giveenough
freedomto utilize capacityavailableto thatparticularflow. The
algorithmwill be understoodnore clearly after the simulation
experimentsn SectionVII.

bij
2Ce,

B,
Cij,

Kij >0
otherwise

B. POCC

Theessencef POCCis to overlay pricing on top of conges-
tion control,whichis a novel approach Assumingthatthereis
anunderlyingedge-to-edgeongestiorcontrol schemewe can
setthe parametersf thatunderlyingschemesuchthatit leads
to fairnessandbettercontrolof congestionThepricing scheme
on top candetermineuserincentvesandsetthe parametersf
theunderlyingedge-to-edgeongestiorcontrol schemeaccord-
ingly. This way, it will be possibleto favor sometraffic flows
with higherwillingness-to-payhantheothers.Furthermorethe
pricing schemewill alsobring benefitssuchasanindirectcon-
trol on userdemandoy price,which will in turn helptheunder
lying edge-to-edgeongestioncontrol schemeto operatemore
smoothly However the overall systemperformancege.g. fair-
nessutilization, throughput)will bedependenbntheflexibility
of theunderlyingcongestiorcontrolmechanism.

We now describea possiblePOCC schemeby overlaying
PFCC (which is a purely pricing scheme)on top of an edge-
to-edgecongestioncontrol schemeRiviera [25]. We will first



provide a generaldescriptionof Riviera,thenoutline problems
revealedby overlayingPFCCover Riviera. We will complete
the descriptionof POCCby providing solutionsto the outlined
problems. The simulationexperimentsin SectionVII will use
this descriptionof POCC.

B.1 Edge-to-Edge&CongestiorControl: Riviera

Rivieratakesadvantageof two-way communicatiorbetween
ingressand egressedgeroutersin a diff-servnetwork. Ingress
sendsaforward feedbacko egressn responsé¢o feedbackrom
egress,and egresssendsbadkward feedbackto ingressin re-
sponseto feedbackfrom ingress. So, ingressand egressof a
traffic flow keepbouncingfeedbacko eachother Ignoringloss
of datapaclets,the egressof a traffic flow measureshe accu-
mulation,a, causedy the flow by usingthebouncedeedbacks
andRTT estimations.

The egressnode keepstwo thresholdparameterdo detect
congestion:max_thresh andmin_thresh. For eachflow, the
egresskeepsa variablethat sayswhetherthe flow is congested
or not. Whena for a particularflow exceedsnax_thresh, the
egressupdateghe variableto congested Similarly, whena is
lessthanmin_thresh, it updateghe variableto not-congested
It doesnot updatethe variableif a is in betweenmaz_thresh
andmin_thresh. Theingressodegetsinformedaboutthecon-
gestiondetectionby backward feedbacksand employs AIMD-
ER (i.e. avariantof regularAIMD) to adjustthe sendingrate.

In a single-bottlenecknetwork, Riviera can be tunedsuch
that eachflow getsweightedshareof the bottleneckcapacity
The ingressnodesmaintainan additive increaseparameterq,
and a multiplicative decreaseparameter 3, for eachedge-to-
edgeflow. Theseparameterare usedin AIMD-ER. Among
the edge-to-edgdlows, by settingthe increaseparameterga)
attheingressesndthethresholdparameter¢max _thresh and
min_thresh) atthe egressesn ratio of desiredrateallocation,
it is possibleto make surethat the flows get the desiredrate
allocation. For example,assumehereare two flows 1 and 2
competingfor a bottleneck(similar to Figure4-a). If we want
flow 1 to geta capacityof w timesmorethanflow 2, thenthe
following conditionsmustbe hold:

1. Qg =W 01
2. max_threshs = w maz_thresh;
3. min_threshy = w min_thresh;

B.2 POCC:Problems

OverlayingPFCCover Rivieraraisestwo major problems:

1. Parametermapping: SincePFCCwantsto allocatenetwork
capacityaccordingto the users’budgetsthat changegdynami-
cally overtime, it is arequiredability setcorrespondingarame-
tersof Rivierasuchthatit allocategshecapacityto theuserflows
accordingto their budgets.So, this raisesneedfor a methodof
mappingPFCC parametergo the Riviera parameters.Notice
thatthis type of mappingrequiresRivierato be ableto provide
parameterghat tunesthe rate being givento the edge-to-edge
flows.

3Note that theseproblemsare not specificto PFCCover Riviera. They are
generalproblemsfor overlayinga solely pricing schemeover an edge-to-edge
congestiorcontrolmechanism.

2. Edge queues: The underlying congestioncontrol scheme
Rivierawill notalwaysallow all thetraffic admittedby thepric-
ing schemePFCC,which will causequeuedo build up at the
network edges.So, managementf theseedgequeuess neces-
saryto overlayPFCCoverRiviera. Figures3-aand3-b compare
the situationof the edgequeuesn thetwo casesvhenthereis
anunderlyingcongestiorcontrolschemeandwhenthereis not.

B.3 POCC:Solutions

1. Parametermapping: For eachedge-to-edgélow, LPS can
calculatethe capacityshareof that flow out of the total net-
work capacity Let v;; = ¢;;/C be the fraction of network
capacitythat must be given to the flow ¢ to j. Along with
¢i;S, LPS cancorvey v;;s to the ingressstations,andthey can
multiply the increaseparametet;; with ~;;. Also, LPS can
sendy;;s to the egressesandthey canmultiply max_thresh;;
andmin_thresh;; with +;;. This solvesthe parametemapping
problemdefinedin the previoussection.
2. Edge queuesWe now proposesolutionsto the secondprob-
lem,i.e. managemertf edgequeuesEachingressstationi can
managedhe edgequeuewith thealreadyavailableinformation:

« ¢y, allowedcapacityof flow i to j (in paclet/seconds)

« Qij, currentsizeof edgequeucfor flow i to j (in paclets)*

« T, contractlength(in seconds)
Notice thatingressstationsgetthe allowed capacitiedor flows
from LPS, andthencalculatepricesaccordingto thatinforma-
tion. So,oneintuitive way of makingsurethatthe userwill not
contractfor morethanthe amountthat the network canhandle
is to subtractnecessargapacityto drainthe alreadybuilt edge
gueuefrom ¢;;, andthenmake contractsaccordingly In other
words,theingressstationre-calculateshe allowed capacityfor
flow i to j by thefollowing formulac;; = ¢;; — Q4;/T, anduses
c;; for calculatingprice,i.e. p;; = Eij/c;j.
Distributed-DCCcanalsoemploy anothertechniqueto manage
the edgequeuesRemembethatPFCCmakescapacityestima-
tion at egressesccordingto marking of paclets. Specifically
marked pacletis countedasa congestiorindicationandcapac-
ity estimationis reducedyhichin turncausegricefor thatflow
to increase.So, theingressstationcanmarkthe pacletsif size
of the edgequeueexceedsa threshold. This will indirectly re-
ducethe capacityestimation,and hencedrain the edgequeue.
Noticethatit is alsopossibleto employ this methodsimultane-
ously with the methoddescribedn the previous paragraph.In
the simulationexperimentsof the next sectionwe will useboth
techniquessimultaneouslyWe areworking on moreconsena-
tive approachedy making more pessimisticcapacityestima-
tions,in orderto managehe edgequeues.

VIl. SIMULATION EXPERIMENTS AND RESULTS

We now presenns[26] simulationexperimentof PFCCand
POCConsingle-bottleneclandmulti-bottlenecktopology Our
goalsareto illustratefairnessandstability propertiesof the two
schemesvith possiblecomparisonsf two.

The single-bottleneckopology hasa bottlenecklink, which
is connectedo n edgenodesat eachsidewheren is the num-
berof users.Themulti-bottleneckopologyhasn — 1 bottleneck

Ej;éi Qij-

4Noticethatthe edgequeueatingressi is Q;
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Fig. 4. (a) Single-bottleneckb) Multi-bottlenecknetwork for Distributed-DCCexperiments.

links, thatareconnectedo eachotherserially Thereareagainn
ingressandn egressedgenodes.Eachingressedgenodeis mu-
tually connectedo the beginning of a bottleneckink, andeach
egressnodeis mutually connectedo the end of a bottleneck
link. All bottlenecHKinks have acapacityof 10Mb/sandall other
links have 15Mb/s. Propagatiordelayon eachlink is 5ms,and
userssendUDP traffic with anaveragepacletsizeof 1000B.To
easeunderstandinghe experiments eachusersendsits traffic
to aseparategress.For themulti-bottleneckopology, oneuser
sendshroughall the bottleneckqi.e. long flow) while the oth-
erscrossthatusers long flow. The queuesattheinterior nodes
(i.e. nodesthat standat the tips of bottlenecklinks) mark the
pacletswhentheir local queuesize exceeds30 paclets. In the
multi-bottlenecktopologythey incrementa headeffield instead
of just marking. Figure4-a shovs a single-bottlenecltopology
with n = 3. Figure4-b shavs multi-bottlenecktopologywith
n = 4. Thewhite nodesareedgenodesandthe gray nodesare
interior nodes.Thesefiguresalsoshawv the traffic flow of users
onthetopology The userflow triesto maximizeits total utility
by contractingfor b/p amountof capacity whereb is its budget
andp is price. Theflows’s budgetsarerandomizedaccordingto
Normal distribution with a givenmeanvalue. This meanvalue
is whatwe will referto asflows’s budgetin our simulationex-
periments.

Contractingtakes placeat every 4s, obsenation interval is
0.8s,andLPSinterval is 0.16s. Ingressesendbudgetestima-
tions to correspondingegressesat every obsenation interval.
LPS sendsinformationto ingressest every LPSinterval. The
parametek is setto 25, which meansaflow is determinedo be
non-congestedtleastafter(pleaseseeSectionVI-A.2) 25LPS
intervalsequialentto onecontractingnterval.

The paramete# is setto 1 paclet (i.e. 1000B), the initial
valueof ¢;; for eachflow f;; is setto 0.1Mb/s, 5 is setto 0.95,
and Ar is setto 0.0005. Also notethat, in the experiments,
paclet dropsarenot allowed in any network node. This is be-
causeve wouldlik e to seeperformancef theschemedn terms
of assuredservice.

A. Experiment®n Single-bottlenecTopology

We run simulationexperimentsfor PFCCandPOCCon the
single-bottleneckopology which is representeih Figure4-a.
In this experimentthereare3 userswith budgetsof 10, 20, 30
respectiely for usersl, 2, 3. Total simulationtime is 15000s,
andatthebeginningonly theuserl is activein thesystem After
5000s,the user2 getsactive. Again after 5000sat simulation
time 10000,theuser3 getsactive.

For POCC,thereis an additionalcomponenin the simula-
tion: edgequeues. The edgequeuesmark the paclets when
gueuesize exceeds200 paclets. So, in orderto managethe
edgequeuesn this simulationexperiment,we simultaneously
employ thetwo techniqueslefinedin SectionVI-B.3.

In termsof results the volumegivento eachflow is very im-
portant. Figures5-a and 6-a shav the volumesgiven to each
flow in PFCCandPOCCrespectiely. Justto seeamoresmooth
view, Figures5-b and6-b shaw the volumesaveragedover 200
contractperiods. We seethe flows are sharingthe bottleneck
capacityalmostin proportionto their budgets.Thedistortionin
volumeallocationis causedecausef the fact that eachflow
is sharingthe bottleneckcapacityin proportionto their budgets
whenthey are congested.Whenthey are not congestedhow-
ever, they returnbackto theirindividual capacityestimation.We
canobsener this dynamicin Figures5-aand6-a. In compari-
sonto POCC,PFCCallocatesvolume moresmoothlybut with
the sameproportionalityto the flows. The noisyvolumealloca-
tion in POCCis causedoy coordinationissues(i.e. parameter
mapping,edgequeues)nvestigatedn SectionVI-B.2.

Figures5-c and6-c shav the price beingadvertisedto flows
in PFCCandPOCCrespectiely. As the new usersjoin in, the
pricingschemegncreasehepricein orderto balancesupplyand
demand.Also, we canseethe samedynamicasin the volume
allocationgraphscausedy the capacityallocationalgorithm.

Figures5-d and6-d shavsthebottleneckqueuesizein PFCC
and POCCrespectiely. Notice that queuesizesmake peaks
transientlyat the timeswhennew usersgetsactive. Otherwise,
the queuesizeis controlledreasonablyandthe systemis stable.
In comparisorto PFCC,POCCmanageghe bottleneckqueue
muchbetterbecausef thetight controlenforcedby the under
lying edge-to-edgeongestiorcontrolalgorithmRiviera.

Figuresfrom 7-ato 7-c show the sizesof edgequeuesin
POCC.We canobsene that usersget active at 5000sof inter-
vals. We obsene stablebehavior but with oscillationslarger
thanthe bottleneckqueueillustratedin Figure6-d. This is be-
causef thetight edge-to-edgeongestiortontrol,which pushes
backlogto the edges. Also, obsenre that the edgequeuesare
generallymuchlower thanthe thresholdof 200 paclets. This
meansthat the paclets were marked at the edgequeuesvery
rarely. So, the techniqueof markingthe paclets at the edges
and reducingthe estimatedcapacityindirectly was not domi-
nantin this simulation. Rather the techniqueof reducingthe
estimatedcapacitydirectly at theingresswasdominantin terms
of handlingof edgequeuedpleaseseeSectionVI-B.3 for full
understandingf thesetwo techniques).
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In PFCC,averageutilization of the bottleneckink wasmore
than90%,andno pacletdropswereallowed. In POCC,average
utilization of thebottlenecKink was80%. Thisis becausef the
factthatRiviera’s parametersire setsuchthatit provides80%
utilization of thenetwork. So,aswe claimedin SectionVI-B.2,
thelimitationsof theunderlyingcongestiorcontrolschemelso
limits the overall performance We specificallysetthe parame-
tersof Rivierato shaow this overall behaior, in reality Riviera
canprovide higherutilization giventhat the parametersire set

properly

B. Experiment®n Multi-bottlened Topology

On a multi-bottlenecknetwork, we would lik e illustrate two
propertiefor PFCC:

« Propertyl: provision of variousfairnessn rateallocationby
changingthe fairnesscoeficient o of Distributed-DCCframe-
work (seeSectionV-D.2)

« Property2: performancef the capacityallocationalgorithm
of PFCCin termsof adaptvenesgseeSectionVI-A.2)

SinceRiviera doesnot currently® provide a setof parameters
for weightedallocationon multi-bottlenecktopology, we will
notrunary experimentfor POCCon multi-bottleneckopology
In orderto illustrate Propertyl, we run a seriesof experi-
mentsfor PFCCwith differenta values.Remembethata is the
fairnesscoeficient of Distributed-DCC.Higher « valuesimply
morepenaltyto theflows thatcausemorecongestiorcosts.We
usea largerversionof the topologyrepresentedh Figure 4-b.
In the multi-bottlenecktopologythereare 10 usersand9 bottle-
necklinks. Total simulationtime is 10,000s.At the beginning,
the userwith thelong flow is active. All the otherusershave
traffic flows crossingthe long flow. After each1000s,0ne of
theseotherusersgetsactive. So, asthe time passeghe num-
ber of bottlenecksn the systemincreasesincenew userswith
crossingflows join in. Notice thatthe numberof bottlenecksn
the systemis onelessthanthe numberof active userflows. We
areinterestedn thevolumegivento thelongflow, sinceit is the
onethatcausemorecongestiorcoststhanthe otheruserflows.
Figure 8-ashaws the averagevolumegivento the long flow
versusghenumberof bottlenecksn the systerfor differentval-

51t is still beingstudiedby its developers.
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Fig. 8. Resultsof PFCCexperimentson multi-bottleneckopology: (a) Volumegivento thelong flow in alinearnetwork. (b) Priceadwertisedto thelongflow in a
linearnetwork. (c) Volumesgivento theflows. (d) Volumesgivento theflows averagedor 200 contracts.

uesof a. As expectedthe long flow getslessandlesscapacity
asa increasesWhena is zero,the schemeachievesmax-min
fairness.As it increaseshe schemegetscloserto proportional
fairness.Also notethat, the otheruserflows getthe restof the
bottleneckcapacity andhenceutilize the bottlenecks.

This variationin fairnessis basicallyachieved by adwertise-
mentof differentpricesto the userflows accordingto the costs
incurredby them. Figure 8-b shavs the averageprice thatis
adwertisedto the long flow asthe numberof bottlenecksn the
systemincreases.We can seethat the price adwertisedto the
long flow increasessthe numberof bottlenecksncreases.

Finally, to illustrate Property2, we ran an experimenton the
topologyin Figure4-bwith smallchangesWe increasedapac-
ity of the bottleneckatnodeD from 10 Mb/s to 15Mb/s. There
are four flows and three bottlenecksin the network as repre-
sentedn Figure4-h. Initially, all theflows have anequalbudget
of 10. Total simulationtime is 30000s. Betweentimes 10000
and20000,budgetof flow 1 is temporarilyincreasedo 20. The
fairnesscoeficient « is setto 0. All the otherparameterge.g.
markingthresholdsinitial values)areexactly the sameasin the
single-bottleneclexperimentsof the previoussection.

Figure8-c shaws the volumesgivento eachflow, andFigure
8-d shawsthe givenvolumesaveragedover 200 contractingpe-
riods. Until time 10000sflows 0, 1, and2 sharethe bottleneck
capacitieequallypresentinga max-minfair allocationbecause
«a wassetto 0. However, flow 3 is gettingmorethanthe others
becausef the extra capacityat bottlenecknodeD. This flexi-
bility is achiered by the freedomgivenindividual flows by the
capacityallocationalgorithm(seeSectionVI-A.2).

Betweentimes10000and20000,flow 2 getsa stepincrease
in its allocatedvolume becausef the stepincreasdn its bud-
get. In resultof this, flow 0 getsa stepdecreasén its volume.
Also, flows 2 and 3 adaptthemselesto the new situationby
attemptingto utilize the extra capacityleftover from the reduc-
tionin flow 0’svolume. So,flow 2 and3 getsa stepdecreasén
their volumes. After time 20000, flows restoreto their original
volumeallocationsjllustratingthe adaptvenesof thescheme.

VIII. SUMMARY AND DISCUSSIONS

In this paper we presentech new framework, Distributed-
DCC, for congestiorpricing in asinglediff-servdomain.Main
contrikution of the paperis to develop an easy-to-implement



overlay congestiomricing architecturevhich providesflexibil-
ity in rate allocation. We investigatedfairnessissueswithin
Distributed-DCCand illustrated ways of achieving a range of
fairnesstypes(i.e. from max-minto proportional)throughcon-
gestionpricing undercertainconditions. Thefactthatit is pos-
sibleto achieve variousfairnesdypeswithin asingleframewnork
is very encouraging.

Basedon the way of approachingo the congestioncontrol
problem we developedwo pricing schemegPFCCandPOCC)
within the Distributed-DCCframeavork. As a novel approach,
distinguishingfeatureof POCCis to overlay pricing on top of
edge-to-edgeongestioncontrol. By comparatie evaluation
of PFCCand POCC,we shaoved that POCC performsbetter
in termsof managingcongestionin network core becauseof
the tight (low time-scale)control enforcedby the underlying
edge-to-edgeongestiorcontrolmechanismHowever, we also
shaved that overall performance(e.g. fairness,utilization) is
dependenontheflexibility of theunderlyingedge-to-edgeon-
gestioncontrolmechanism.

Futurework shouldincludeinvestigationof issuesrelatedto
extendingDistributed-DCCon multiple diff-servdomains.An-
otherfuture work item is to implementsoft admissioncontrol
techniquesn the framawork by tuning the contractparameter
Vimaz- Currently V... is setto total network capacity which
allows individual usersto contractfor significantly larger than
the network canhandle. Several otherimprovementsare pos-
sible to the framewvork suchasbettercapacityestimationtech-
nigues(seeSectionV-C), betterbudgetestimationtechniques
(seeSectionV-B), betterestimationof the parameter-;; (see

(5)).
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