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Abstract— Recently, an end-to-end statistical quality of
service architecture using Earliest Deadline First (EDF)
schedulers was demonstrated. In this paper we examine an
important aspect of this proposal, namely, the probability
of violation of delay assurances. An approach to obtain the
violation probability is to use a worst-case characterization
of input traffic. Existing work uses a traffic profile which
is not proved to be worst-case.

We take advantage of a recent work deriving an ex-
tremal shape-controlled traffic profile. We derive the key
results required to obtain the delay violation probability
using this provably worst-case traffic profile. We then
compare the resulting expressions with existing work. This
leads to more accurate estimation of the admissible region
and end-to-end delay assurance.

I. INTRODUCTION

Assured delay services are required for a variety of
modern applications involving video and voice traffic.
To obtain end-to-end delay assurances one could adopt
specialized schedulers in the network which are aware of
delay constraints of incident flows. The Generalized Pro-
cessor Sharing [PaGa93], [PaGa94] and Earliest Dead-
line First [FeVe90] scheduling disciplines are among the
popular choices. A framework for end-to-end statistical
delay assurances using EDF schedulers was proposed by
Sivaraman and Chiussi [SiCh00].

An important aspect of the end-to-end QoS frame-
work is that of estimating the probability of delay
violation at each node of the network. One approach
to obtain a bound for the probability of delay vio-
lation is to employ Statistical Service Envelopes. Qiu
and Knightly [QiKn99] have demonstrated that using
stochastic bounding variables, the probability of delay vi-
olation for various scheduling disciplines can be bounded
using a Gaussian approximation.

An alternative approach is to estimate the the un-
finished work in the system (fluid equivalent of queue
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length) using the Benes formula as discussed Sivaraman
and Chiussi [SiCh00]. In order to obtain an approximate
evaluation of the Benes formula, we require a precise
description of the traffic characteristics. For a conser-
vative approach to network design, one would consider
the worst-case traffic descriptions (extremal traffic de-
scriptions). Previous frameworks [ElMiWe95], [SiCh00]
have employed an on-off traffic description which is
not necessarily extremal. Recent work by Kesidis and
Konstantopoulus [KeKo00] has demonstrated methods to
obtain verifiably extremal traffic descriptions.

We first obtain the extremal traffic description using
the methods in [KeKo00]. We then use this description
to derive the quantities involved in the Benes Formula.
Finally, we discuss how to utilize the results obtained and
their significance. We compare the methods employed in
the process with existing work.

The contributions of this paper are in deriving the
expressions for quantities involved in the approximate
evaluation of the Benes formula, adopting a provably
extremal traffic description for the purpose, and hence
facilitating accurate bounds for delay violation probabil-
ity in EDF schedulers.

The rest of the paper is structured as follows. In Sec-
tion III-A we discuss the Benes approach to calculating
the unfinished work in a system. We then examine an
extremal traffic description in Section IV-A and use it to
obtain improved delay bounds. The results so obtained
are compared with existing work in Section V and the
conclusions are noted in Section VI.

II. NOTATION AND ASSUMPTIONS

We briefly note the symbols used in the rest of the
paper. A source is characterized by the triple (p, ρ, σ),
where is p is the peak allowable rate, and (ρ, σ) indi-
cates the rate and bucket depth of a leaky-bucket. The
unfinished work in the system at time t is denoted by Vt

and its complementary distribution is denoted by ν(x).
The quantity C indicates the capacity of the server. b
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is such that the source traffic maximizes the probability
that a bit suffers a delay greater than b/C. It is assumed
that ρ < C < p where ρ and p indicate the shaper rate
and peak rate for the aggregate traffic.

The ith flow from the jth class is represented as (j, i).
The parameters of a flow are represented as (pj , ρj , σj).

III. MATHEMATICAL FORMULATION

As discussed earlier, the delay violation probability
can be estimated by considering the maximum unfinished
work remaining in the system. In order to compute
unfinished work, we employ the Benes formula (Sec-
tion III-A). Evaluating the formula is hard and needs
certain approximations which are briefly mentioned in
Section III-B.

A. Benes Approach

Let W (t), t ≥ 0 denote the amount of work arriving to
the system in the interval [−t, 0) and let Vt be the amount
of unfinished work in the system at time −t. Define
X(t) = W (t) − t, t ≥ 0 to be the excess work arriving
in [−t, 0). Let ν(x) be the complementary distribution
of V0, i.e., ν(x) = P{V0 > x}. Then Benes formula can
be used to obtain ν(x) as follows:

ν(x) =

∫

u>0

P{X(u) ≥ x > X(u+ du)

and Vu = 0} (1)

≤
∫

u>0

P{X(u) ≥ x > X(u+ du)} (2)

The upper bound given by Equation (2) is often both
reasonably accurate and numerically calculable. Now
the probability of delay violation can be calculated as
in [SiCh00]:

Pvio =
1

ρ
lim
x→0

ν(x) (3)

In order to evaluate Equation (3), we need a charac-
terization of the input process. Instead of using an exact
description, it is easier to obtain a worst-case description
of the traffic. We shall examine one such description in
the succeeding section.

B. Evaluating the Benes formula

In order to evaluate the Benes formula, we employ a
construction detailed by Norros et al [NoRoSi91] and,
Sivaraman and Chiussi [SiCh00]. We present here only
the notation and relevant results and refer the readers to
aforementioned papers.

Let Λt denote the arrival rate at time −t, and let
A(t) =

∫

0

−t Λt dt, (t ≥ 0) be the total amount of work
arriving in the interval [−t, 0). All sources (j, i) with

dj > t do not contribute towards Λt or A(t). Let Vt

be the work still in the system at time −t and let
X(t) = A(t) − Ct denote the excess work arriving in
[−t, 0). where C denotes the link rate. Denote φt(w, λ)
denote the joint density of A(t) and Λt:

φt(w, λ) =
d

dw
P{A(t) ≤ w,Λt = λ}

Then, it can be shown that,

ν(x) ≤
∫

u>0

∑

0≤λ<C

(C − λ)φu(x+ Cu, λ)du (4)

Using a shifted normal approximation, φt(w, λ) can be
calculated as:

φt(w, λ) =
eswφ∗t (s, λ)√

2πσt

(5)

where,

σt =
∑

1≤j≤m



lj





d2α∗
j

ds2
/α∗

j −
(

dα∗
j

ds
/α∗

j

)2


+

(kj − lj)





d2β∗j
ds2

/β∗
j −

(

dβ∗j
ds

/β∗
j

)2






(6)

The value of s in Equation (5) is obtained as a solution
to the equation:

w = −
m
∑

j=1

(

lj
dα∗

j

ds
/α∗

j + (kj − lj)
dβ∗j
ds

/β∗
j

)

The quantities α∗
j , β

∗
j are the laplace transforms of

αj(t, w) and βj(t, w) with respect to w. Further,
αj(t, w), βj(t, w), lj , kj are defined as below.

m = max{j : dj < t} (7)

l1, l2, . . . lm :
m
∑

j=1

ljpj = λ (8)

αj(t, w) =
d

dw
P{Aji(t) ≤ w

and (j, i)ON at− t} (9)

βj(t, w) =
d

dw
P{Aji(t) ≤ w

and (j, i)OFF at− t} (10)

IV. DELAY BOUNDS FOR AN EXTREMAL TRAFFIC

PROFILE

Given a worst-case traffic profile, we can derive the
quantities α∗ and β∗ so that the Benes formula can be
evaluated. We shall first present such a traffic description
in Section IV-A following the results in [KeKo00]. We
shall then employ this description to obtain the required
quantities in Section IV-B.
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Fig. 1. An Extremal Traffic Profile

A. An extremal traffic profile

Assuming the arrival process A(t) to be a stationary
non-decreasing stochastic process, and assuming the
capacity of the server to be C, we can define the queue
occupancy at time t to be:

Qt = sup
{−∞<s≤t}

{A(s, t] − C(t− s)} (11)

Then define the performance measure ψ as:

ψ(A) = P (Q0 ≥ b) (12)

ψ∗ = sup
All A

ψ(A) (13)

The value A∗ which achieves ψ∗ given in Equation (13)
represents an extremal traffic description.

Considering (p, σ, ρ) shaping (a peak rate of p and
a leaky-bucket regulator with parameters (σ, ρ)) the
authors in [KeKo00] obtain a closed form for A∗. It was
shown that such a traffic process satisfies the following
properties.

1) A∗ is periodic.
2) Q∗ should be zero at the beginning of every period,

where Q∗ is obtained by using Equation (11) for
A∗.

3) A∗ starts a period by transmitting at the peak rate
p for an interval of length τ0’.

4) After that, A∗ transmits at rate C, for an interval
of length τ0.

5) Then, A∗ switches off, for an interval of length τ ′′0 .

Here the intervals τ0, τ ′0, τ
′′
0 are defined as:

τ ′0 =
b

p− C
, τ0 =

σ − β−1b

C − ρ
, τ ′′0 =

σ

ρ
(14)

where β is given by:

β =
p− C

p− ρ

p

C

Bits/s

Time(secs)T
l

x

Fig. 2. A Flow in ON period with a random phase lag

B. Using the Extremal traffic profile

As shown in Figure (1), an extremal leaky-bucket
source transmits at the peak rate for a period τ ′, then
at the rate C for a period τ and switches off for a period
τ ′′. As discussed in Section IV-A the values of τ , τ ′

and τ ′′ can be expressed in terms of the leaky-bucket
parameters. Further the extremal source is periodic with
a period T = τ + τ ′ + τ ′′. In order to evaluate the
Benes formula we observed in Section III-B that we need
to calculate the laplace transforms α∗ and β∗. In the
following paragraphs, we outline the method to obtain
these quantities.

The flows incident at the server conform to the
extremal specification as described. However they are
allowed to have a random phase. Thus at any time t
there will be a set of sources that are at some point
in their ON period, while the rest are in some point
in their OFF period. Obviously, over a duration of one
period (T ), the amount of data offered by each flow is
the same. Thus for the rest of the discussion, we consider
only the duration in the current period. Till time t there
should be bt/T c periods. Thus we obtain the position at
the current period by deducting from t a quantity equal
to T ∗ bt/T c. Indicate this quantity as xj .

Consider a flow, with a random phase lag, that is
assumed to have started in an ON period at time 0. A
possible position for xj is indicated as x in Figure (2).
The contribution of this flow till the point x is easily
calculated in terms of the “lag” l (indicated in the figure).
Thus the probability that the flow contributes a particular
amount of work to the system is directly related to the
lag that it features with respect to a flow whose ON
period starts at 0. For example, in Figure (2), we have the
contribution of the flow as p(τ ′− l)++C[xj−(τ ′− l)+].
We exploit this property and the fact that the phases are
uniformly distributed over the period T to calculate the
quantities α∗ and β∗.
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In the following equations Ci refers to the share of
the capacity for flow i. One way to calculate this would
be in inverse proportion of the the delay allocation for
the class. Thus the share of class j would be:

1/dj
∑

k 1/dk

C

Then, within the class the share of each flow can be
equal. With this convention, define the following quan-
tities:

r =

⌊

t

T

⌋

(Cjτ + pτ ′)

xj = t− T

⌊

t

T

⌋

l0 = (τ ′ − xj)
+

l1 = (τ + τ ′ − xj)
+

l2 = τ + τ ′ − (xj − τ ′′)+

l3 = τ − (xj − τ ′ − τ ′′)+

l4 = τ + τ ′

a0 = r + xjp

a1 = r + p(τ ′ − l1)
+ + Cj [xj − (τ ′ − l1)

+]

a2 = r + p(τ ′ − l1)
+ + Cj [xj − τ ′′ − (τ ′ − l1)

+]

a3 = r + pτ ′ + Cj(τ
′ − l2)

a4 = r + pτ ′ + Cj(xj − τ ′ − τ ′′)+

With these quantities we can now express the laplace
transforms α∗ as below.

α∗(s, t) =
l0
T
e−sa0 +

l1 − l0
Ts(a1 − a0)

[e−sa0 − e−sa1 ]

+
l2 − l1

Ts(a2 − a1)
[e−sa1 − e−sa2 ]

+
l3 − l2

Ts(a3 − a2)
[e−sa2 − e−sa3 ]

+
l4 − l3
T

e−sa4 (15)

With a flow beginning in the OFF period we apply
a similar method. In order to obtain β∗ we define the
following quantities.

l0 = (τ ′′ − xj)
+

l1 = τ ′′ − (xj − τ ′)+

l2 = τ ′′ − (xj − τ ′ − τ)+

a0 = r + pτ ′

a1 = r + pτ ′ + Cjτ

We now express β∗ in terms of the above quantities.

β∗(s, t) =
l0
T

+
l1 − l0
Tsa0

[1 − e−sa0 ]

+
l2 − l1

Ts(a1 − a0)
[e−sa0 − e−sa1 ]

+
τ ′′ − l2
T

e−sa1 (16)

We now have in Equations (15,16) the required expres-
sions to compute the Laplace transform φ∗t (s, λ).

V. DISCUSSION

We briefly discuss how to use the results and compare
with previous work.

A. Computing the probabilities

In order to obtain the final violation probabilities, the
integral in Equation (4) is numerically computed with
x→ 0. This requires that Equation (5) be evaluated. The
value of s in in Equation (5) is obtained by noting that w
is equated to be the mean of the shifted normal distribu-
tion [NoRoSi91]. This requires the Laplace transforms
α∗ and β∗, so also the computation of φ∗t (s, λ). Since
the expressions for both α∗ and β∗ are in simple closed
form, it is straightforward to compute the probabilities.
However the time complexity of the computation is high.

B. Comparison

Previously [LoZhoTo97], [ElMiWe95], [SiCh00] the
“worst-case” traffic profile considered was of the follow-
ing form. The source switches on for a period of T o =

σ
p−ρ

and transmits at the peak rate p. Then the source
switches off and stays that way for a period T f = σ

ρ
.

This description yields a simpler form for the transforms
we require. However, as mentioned in [Do95], this
description need not always be the worst-case. Recently,
the authors in [RaReRo98] note that a simple on/off
process does not lead to a worst-case scenario.

Also the traffic profile considered in this paper is
one solution to Equation (13). Thus there might be
other descriptions which maximize the same overflow
probability or delay assurance [KeKo00].

VI. CONCLUSIONS

In this paper we examined the probability of violation
of delay assurances with EDF schedulers. In order to em-
ploy the Benes approach to find the maximum unfinished
work in the system, we used a provably worst-case traffic
profile. We then derived the necessary quantities to use
this traffic profile in calculating the new delay bound.
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The significance of the results is that the delay violation
probabilities represent the worst possible traffic scenario.
This facilitates accurate design of networks with EDF
schedulers requiring worst-case delay violation bounds.
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