An Edge-based Framework for Flow Control”’

David Harrisont, Yong Xia, Shivkumar Kalyanaraman, Kishore Ramachandran
ECSE and CSt Departments
Rensselaer Polytechnic Institute
{harrisod, xiay, shivkuma, rkishore}@rpi.edu

ABSTRACT

This paper investigates the properties of an edge-based flow
control framework that could make it a viable data-plane
building block for quality of service (QoS) architectures. We
consider two broad categories of flow control: end host-based
(e.g., TCP), and network-based (e.g., Fair Queuing, CSFQ)
that differ in the choice of nodes that cooperate and where
functionality is placed. We propose an edge-based closed-
loop (EC) flow control framework in the network-based cat-
egory in which only network nodes are expected to coop-
erate. The novelty of the EC-framework lies in its entire
placement of flow control functionality at edge nodes, ex-
cept interior core routers provide one or two isolated FIFO
queues for the overall framework. The framework is divided
into logical components such as congestion estimation and
congestion response. Component instances can be combined
to form schemes that do not depend upon, but accommo-
date, packet dropping or marking for congestion detection
at core routers. We show that the Vegas is one possible
scheme in the EC-framework, and propose two new schemes,
“Monaco” and “Riviera”. A fluid model analysis is used to
develop key concepts, to provide a reference for packet sys-
tem implementations, and to demonstrate stability, fairness
and bounded queue behavior. Simulations illustrate scheme
performance, robustness comparisons, potential solutions to
pitfalls of existing mechanisms. Architectural mapping of
the EC-framework to DiffServ and commercial scenarios like
cross-ISP data VPN is discussed.

1. INTRODUCTION

Closed-loop flow control is a well-established end-to-end mech-

anism for stable, efficient and fair operation of the Internet.
In this paper we consider the application of closed-loop flow
control to quality of service (QoS) provision. Until recently
[10, 25], QoS data plane building blocks have all been open-

*This work was supported in part by National Science Foun-
dation under contracts ANI-9806660, ANI-9819112 and a
grant from Intel Corp.

loop, such as flow shapers, packet schedulers, and buffer
management modules.

End-to-end flow control techniques, such as TCP [15] and
Congestion Manager [2], assume that end systems cooper-
ate and place all flow control functionality at end systems.
In this model, consistent with the end-to-end principle [31],
network routers may provide optional functionality like ac-
tive queue management (AQM) for performance enhance-
ment [6, 13]. The primary goal of this model is to avoid
congestion collapse, i.e., the problem of end-to-end through-
put degradation under heavy loads. As usually interpreted,
this model does not aim to achieve service isolation or differ-
entiation between participating flows, and cannot function
effectively if end systems do not cooperate.

In contrast, network-based flow control models assume that
only network nodes cooperate and therefore place all flow
control functionality at network nodes. Examples include
IntServ [7], DiffServ [5] and Core-Stateless Fair Queueing
(CSFQ) [33]. The primary goal of the network-based model
is not the avoidance of congestion collapse, but to provide
service isolation or differentiation (a.k.a. QoS functions) at
some chosen flow granularity.

Within the network-based model, frameworks may create
new system levels (e.g., “edge-routers” and “core-routers”)
and make choices regarding placement of functionality among
these levels. The DiffServ and CSFQ architectures place
more per-flow functionality at the edge routers of the net-
work compared to the core routers. This trend is in line with
the end-to-end principle [31] because functionality moves to
the “highest” system level within the set of cooperating net-
work edge routers, where it can be correctly implemented
satisfying the performance constraints.

1.1 Edge-based Flow Control

In this paper, we propose an edge-based closed-loop (EC)
framework in the network-based flow control category, to
provide a data-plane building block for service differentia-
tion. The architectural novelty of the EC framework lies
in its entire placement of network-based flow control func-
tionality at edge routers, except as necessary to isolate the
EC-traffic, and its use of closed-loop schemes in this context.

The elimination of service isolation and/or differentiation
functions at core routers implies that service isolation func-
tions must be placed at edge routers to continue providing

network-wide QoS. However, it is well known that this will
lead to inefficient network operation, because unused capac-
ity in the network will not be discovered and utilized. There-
fore, in addition, we propose the use of edge-to-edge closed-
loop control to be able to match available demand and ca-
pacity dynamically. This leads to an architecture where core
routers merely provision one or two isolated queues for the
overall framework, and multiple services are provisioned en-
tirely from the network edges. In particular, the framework
expects no packet marking, buffer management or any other
special computation from core routers. These placement-
of-functionality decisions distinguishes the framework from
RED/ECN [13, 28], Packet-Pair [18], CSFQ [33] or ATM-
ABR explicit rate schemes [29].

In addition, the EC-framework proposes to use only closed-
loop schemes that do not depend upon packet loss for con-
gestion detection!. Loss-based flow control is not a sat-
isfactory building block for service differentiation because
it severely limits the dynamic range of service capabilities
possible [10, 25]. Packet-loss rate diminishes any band-
width and loss-rate guarantees possible, interacts with end-
to-end transport mechanisms like timeouts and retransmis-
sions; and is very hard to assign carefully unless stateful
AQM schemes are available at bottlenecks (which conflicts
with our function-placement assumptions).

We define a new measure for network congestion — accumula-
tion — that is the time-shifted, distributed sum of the queue
contributions of a flow at a sequence of FIFO routers (see
section 3). We prove that the behavior of the flow’s accumu-
lation measure at a sequence of FIFO routers is very similar
to the flow’s queuing behavior at a single FIFO router. Since
it is well known that service differentiation at a single FIFO
router can be effected by controlling the number of buffered
packets [14], one can control flow rates in a distributed man-
ner by controlling their accumulations. This aspect is what
motivates us to study closed-loop schemes that are based
upon accumulation estimation.

We demonstrate that the TCP Vegas [8] congestion avoid-
ance scheme, though proposed originally in an end-to-end
context, attempts to estimate accumulation, and fits into
our edge-based framework. More generally, in Section 2
we decompose our framework into logical components, in-

stances of which can be combined together to form “schemes”.

In Section 4.4 we explore the options available at each logical
component (e.g., semantics of different congestion estima-
tors and alternative estimation techniques) and the implica-
tions of various combinations. In Section 4 we develop two
new schemes called “Monaco” and “Riviera” that have dif-
ferent tradeoffs and mechanisms compared to Vegas. Proofs
of stability, fairness and queue bound of a scheme are given
in Appendix 9.1. In particular, this paper provides resolu-
tion to a number of concerns regarding the estimation issues,
dynamic stability and robustness of Vegas in Sections 4 and
5, clearing the way to use this class of schemes as a building
block for future service architectures.

In summary, this is primarily a paper on the properties of
closed-loop flow control, but from the perspective of its po-

!The schemes will be stable, robust and respond to unex-
pected packet losses, however.

tential use as a data-plane QoS building block. Architec-
tural mapping of the framework is discussed in Section 6. A
service differentiation example is given in Appendix 9.2.

2. FRAMEWORK

In the EC-framework, routers inside a network are classified
into edge and core routers. As illustrated in Figure 1(a), a
unidirectional traffic flow enters into network at an ingress
edge router, traverses a number of core routers, and then
leaves network from an egress edge router.

The EC-framework has three components: congestion mea-
sure, congestion estimation protocol, and congestion response
algorithm. Different flow control schemes make choices in
each of these components and put together the entire scheme.

A congestion measure defines the semantics of congestion
and uses a stream of congestion indications to signal the
timing and magnitude of congestion. In our framework, we
focus on a congestion measure called accumulation described
in the next section. We implicitly detect congestion at the
edges, and use in one scheme an explicit rate feedback be-
tween edge routers.

The congestion estimation protocol provides an implemen-
tation of the congestion measure. The implementation may
involve ideas like rate/window as a source-throttle, ACK-
clocking vs control-packets for feedback, and in-band or out-
of-band transmission of control information. Also, we as-
sume that the overall EC-framework is isolated from flows
that are not controlled by our algorithms (i.e., one or two
isolated queues set aside for the entire framework). This is
because the congestion measure used by end-to-end TCP is
different from that proposed in the EC-framework. End-to-
end flows are either isolated from, or mapped to the flow
control provided by the EC-framework.

The congestion response mechanism defines an increase/dec-
rease strategy for the source throttle. A range of tradi-
tional algorithms including additive-increase/multiplicative-
decrease [9] and additive-increase/additive-decrease [8] algo-
rithms can be used. Alternatively, these algorithms can be
applied to a function of both the measured input and rate
feedback if any.

We first develop an fluid model analysis for key components
in the framework. Then we will describe three schemes (Ve-
gas, Monaco, Riviera), and discuss the properties of key
component options to get an improved guidance on how
schemes can be instantiated to satisfy desired tradeoffs.

3. FLUID MODEL

In this section we use a bit-by-bit fluid model [11, 27] to
illustrate the concepts, algorithms and features for the EC-
framework.

3.1 Accumulation

Consider an ordered sequence of FIFO routers {R1, ... , Rj,
Rjt1,...,Rs} along the path of a flow ¢ in Figure 1(a).
The flow comes into the ingress edge router R; and, after
passing some intermediate core routers Ra,... ,Rj_1, goes
out from the egress edge router Ry. At time ¢ in any router

ingress Saress

egdge (a) Network Model 3 e
a4y (t_d;f)
)

t
I-d.) f(f())
Lo alt
nh"‘wnn At O/(1,A0)
time axis o *a(t+A)

{b) Accumulation

AfY

5,9

— time

t t
(c) Arrival and Service Curves

Figure 1: Network Fluid Model

R; (1 < j < J), flow ¢’s input rate is A (t), output rate
wij (t). The propagation delay from router R; to Rjy1 is d;.

We define the arrival curve A;;(t) of a flow ¢ at a router
R; as the number of bits from that flow have cumulatively
arrived at the router up to time ¢, and similarly the service
curve S;;(t) as flow ¢’s bits cumulatively serviced at R; [11],
shown in Figure 1(c). For any FIFO router R;, both A;;(t)
and S;; (t) are continuous ? and non-decreasing functions. If
we assume no packet loss, then at any time ¢, by definition,
flow 4’s buffered bits ¢;;(t) in R; is the difference between
Aij (t) and Sij (t):

i (t) = Aij(t) — Sij(t). (1)

We compute the change of the flow’s queued bits at R;

Agij(t) = qij(t+ At) —qi5(¢)
= [Aij(t+ At) — A (1)] — [Si (t + At) — Si;(t)]
= [\t At) — (¢, At)] x At
= I;(t, At) — Os5(t, At) (2)

where I;;(t, At) and O;; (¢, At) are incoming and outgoing
bits of flow 7 at router R; during the time interval [t, ¢ + At];
Xij(t, At) and 7i;;(t, At) are correspondent average input
and output rates, respectively.

Now consider the flow’s queuing behavior at a sequence of
FIFO routers. Reasonably, suppose data link layer trans-
mission could be modelled as a line, then flow #’s input rate
Xij+1(t) at a router Rj4 is a delayed version of its output
rate p;j(t) at the upstream neighbor router R;, namely

pij (t = dj) = Aija(t). 3)

Define flow i’s accumulation as a time-shifted, distributed
sum of the queued bits in all routers along its path from the

2Strictly this is true if we accept that a bit is infinitely small.

ingress router R; to the egress router Ry, i.e.,

VA gt - S di) (4)
=t k=j

shown as the solid slant line in Figure 1(b). Note this defini-
tion includes only those bits backlogged inside routers, not
those stored on transmission links. We define flow 4’s ingress
and egress rates as those at the edge routers, respectively:

Ait) = Xia(t)
pi(t) = pis(t). ()

Using (2-5), we calculate the flow’s accumulation change

Aai(t) 2 ai(t+ At) —ai(t)

J J—1
Z Agij(t — Z dr)
=1 =y

= [Ni(t—df,At) —7;(t, At)] x At
Li(t — d!) At) — Oi(t, At) (6)

where df = Z‘I 'd; is the forward direction propagation
delay of flow ¢ from R, all the way down to Ry. Similar
as equation (2), I;(t —d!, At) and O;(t, At) are flow i’s bits
coming into and going out of network during two time inter-
vals both of length At; while X;(t —d/, At) and 7, (t, At) are
correspondent average ingress and egress rates. This result,
illustrate in Figure 1(b), shows the change of a flow’s accu-
mulation on its path is only related to its input and output
at two edge routers.

For one FIFO router, it’s straight-forward to control flow
rates by controlling the number of queued packets [14]. Com-
paring equations (2) and (6) we can easily see that a flow’s
queuing behavior at a sequence of FIFO routers looks sim-
ilar to that at a single FIFO router. So we can apply the
above idea in multiple routers condition to control flow rates
by controlling their accumulations.

3.2 Control Algorithms

In the EC-framework we use flow accumulation to measure
network congestion as well as to probe variation of available
bandwidth. If accumulation is low, we increase ingress rate;
otherwise, we decrease it to drain accumulation. Specifically,
we try to keep a constant ¢; of accumulation for every flow
i by additively increasing and additively decreasing (AIAD)
its ingress rate similar to TCP Vegas [8]:

Xi(k) +~v ifai(k €i,
Ak +1) = { AlEk; - ";z if aigk; ; i @

where 0 < 7;, 0 < ¢, and k is the number of a control pe-
riod which is, ideally, a round trip propagation delay. If ~;
and ¢; are equal for all flows, this leads to traditional flow
control. Otherwise we can provide different flows differenti-
ated services. We will incorporate AIAD into the Monaco
scheme.

Another option is to explicitly use egress rate:

Ai(k) +ai if a;(k) < e,
Alk+1)= { Hz((k)) x @i if aiEk; > €. ®

where 0 < a;, 0 K B; < 1, 0 < ¢;. We call this algorithm
additive increase and multiplicative decrease [9] with egress
rate (AIMD-ER) and use it in the Riviera scheme.

3.3 Properties

For any flow control algorithm, major theoretical concerns
are its stability, fairness and queue bound. Stability is to
guarantee equilibrium operation of the algorithm. Fairness
determines allocation of network bandwidth among compet-
ing flows, e.g., max-min [27] and proportional fairness [17,
23]. Queue bound provides an upper limit on the router
buffer requirement, which is critical for real deployment.
Based on the proof in Appendix, we have:

Proposition 1: The flow control algorithm given by equation
(8) is stable, weighted proportionally fair, and with bounded
queue for any flow in any core router.

Similar result also holds for the algorithm (7), following the
line of theory in [22].

4. SCHEMES

We put together component instances to build the edge-
based flow control schemes in our framework. The scheme
design is guided by the following goals in order of decreasing
importance:

Goal 1: Stability and Avoidance of Persistent Loss: If

the queue should grow to the point of loss due to un-
derprovisioned buffers, the scheme must back off to
avoid persistent loss.

Goal 2: Avoidance of Starvation and Gross Unfairness:

Misbehaving traffic or scheme estimation errors should
not lead to starvation or gross unfairness.

Goal 3: High Utilization: When a path is presented with

sufficient demand, the scheme should converge around
full utilization of the path’s resources.

Goal 4: Loss Minimization, Proportional Fairness, De-

lay Minimization: In the steady state operation, the
scheme must operate without loss, with low queue-
ing delay and achieve proportional fairness [17]. In
general, given reasonable buffers, the scheme must at-
tempt to minimize instances of packet loss.

Now we describe example flow control schemes in the frame-
work: Vegas, Monaco and Riviera.

41 Vegas

The Vegas [8] congestion avoidance scheme was originally
proposed in an end-to-end context as an alternative TCP
implementation. However, we focus only on its congestion
avoidance scheme, which fits well into our framework as a
example scheme instance and we refer to it as EC-Vegas.

The Vegas-estimator for “accumulation” was called “back-
log” in the original paper, a term we use interchangably in
our discussion. For each flow ¢, the Vegas-estimator takes
as input an estimate of i’s round trip propagation delay,
hereafter called the basertt. Vegas then estimates the ith
control-loop’s backlog as

Gy = (expected rate — actual rate) x basertt

(

cwnd _ cwnd
basertt rtt

) X basertt. (9)

Vegas estimates the basertt as the minimum RTT measured
so far. So, if the queues drain often, it is likely that each
control loop will eventually obtain a sample that reflects
the basertt. The Vegas-estimator is used to adjust its con-
gestion window size, cwnd, so that ¢ approaches a target
range (¢1,€2). More accurately stated, the sender adjusts
the window using a variant version of the ATIAD algorithm
(7), e,

cwnd(k) +1 if Gv <er

cwnd(k) =1 if v >e2 (10)

cwnd(k +1) = {
where €, and €2 are set to 1 and 3 packets, respectively.

TCP Vegas is an ACK-clocked window-based scheme. But,
the Vegas-estimator as specified above does not require an
ack-stream. However, one of the Vegas implementations uses
the average RTT experienced by all ACKs in the previous
window to compute the backlog. To implement RTT aver-
aging at this timescale requires an ACK stream.

Thus, for EC-Vegas, we need to introduce either a new edge-
to-edge ACK flow, or a control packet to sample RTT. Edge-
to-edge ACK flows have also been proposed by Wang and
Kung [19], but they propose to implement TCP’s loss-based
congestion control for the edge-to-edge traffic. Such ACK-
flows represent more overhead in general compared to the
control-packets used in Riviera and Monaco. Vegas has sev-
eral known problems:

Basertt Estimation Errors: Suppose re-routing of a flow
increases its basertt. Vegas misinterprets an increase
in basertt as congestion and backs off. This can re-
sult in gross unfairness which is a violation of Goal

ingress

egress

/’7\ In-band control
Out-of-band packet arrives.

control packet accumulation est. Rayerse packet

arrives. = num. arrivals pair sent.
between out-of-
and in—band control packets.

(a) Monaco

ingress NN —~
egress OO N e NG T
7777777777 P
data packet basertt A
—_— accumulation est.
control packet = late arrivals
(b) Riviera

Figure 2: Accumulation Estimators

2 and makes Vegas as originally designed unsuitable
for the EC framework. Mo and Walrand [24] suggest
limiting the history on the basertt estimate by using
the minimum of the last k¥ RTT samples. We refer
to this variant as the “Vegas-k” scheme, which avoids
the gross unfairness issue. But we show in Section 4.4
that since Vegas uses an AIAD policy, it cannot guar-
antee queue drain at intermediate bottlenecks within k
RTTs. Hence, this policy can lead to unbounded queue
which introduces persistent congestion [22], violating
Goal 1.

Basertt with Standing Queues: When a flow arrives at
a bottleneck with a standing queue, it obtains an ex-
aggerated basertt estimate. The flow then adjusts its
window size to incur an extra backlog between £; and
€3 in addition to the standing queue, violating Goal 4.

Reverse Path Congestion: The Vegas-estimator is affected

by congestion in the reverse path. Reverse path con-
gestion inflates the Vegas estimator leading to sharply
reduced utilization, not achieving Goal 3.

4.2 Monaco

Monaco is an EC-framework scheme that emulates the ac-
cumulation concept described in Section 3.1, while being ro-
bust to data/control-information losses and avoiding issues
such basertt sensitivities and reverse path congestion.

4.2.1 Monaco: Congestion Estimation Protocol

To estimate accumulation, Monaco generates a pair of back-
to-back control packets once per RTT at the ingress router
as shown in Figure 2(a). One control packet is sent in-band
(IB) and the other out-of-band (OB). The OB control pack-
ets skip queues in the network by passing through a separate
dedicated high priority queue. Assuming the OB queues to
be minimal as only other OB control packets share it, such
packets experience only the forward propagation delay d{ .
The IB control packet goes along with regular data pack-
ets and reaches the destination after experiencing the cur-
rent queueing delay in the network. The Monaco-estimator
counts the number of bytes arriving between the IB and
OB control packets, see Figure 2(a). Observe that in a fluid
model, this is an exact measure of the true accumulation. In
particular, note that in Figure 2(a), the number of dashed
lines cut by the OB control packet is the notion of accu-
mulation defined by equation (4). This is exactly equal to

the number of arrivals at the receiver after the OB control
packet, but before the IB control packet.

The IB control packet carries a byte count and control-
packet sequence number. If the egress receives fewer bytes
than were transmitted, then a packet loss is detected. The
OB control packet carries the same control-packet sequence
number as the associated IB control packet and one addi-
tional piece of information: congestion feedback, i.e., flags
denoting whether the flow throttle should increase, decrease,
or decrease due to loss. Monaco also sends congestion feed-
back on the OB control packet. Observe, however that the
subsequent pair of control packets is generated only after
the arrival of the IB control packet at the ingress edge.

If either control-packet itself is lost, then the source times
out and sends a new pair of control-packets with a larger se-
quence number. The timer for control-packet retransmission
is set similar to that of TCP. These routine reliability en-
hancements are similar to those in the Congestion Manager
protocol [2]. Also note that Monaco is designed to avoid the
usage of clock values of the sender and receiver in any single
computation (the estimator is just a simple count). This
design avoids any issues with clock resolution, skew or drift
between ingress and egress.

Monaco mechanisms also remove the need for basertt mea-
surement and associated problems observed in Vegas. How-
ever, the Monaco-estimator requires an additional queue at
potential bottlenecks. We deem that this requirement is not
costly given that at least one separate queue is already re-
quired to isolate EC traffic from other non-EC traffic traffic
classes. In summary, we propose Monaco congestion estima-
tion protocol as an alternative to the Vegas congestion esti-
mation protocol in the EC-framework because it addresses
all the outstanding problems with Vegas-estimator, at min-
imal additional cost.

4.2.2 Monaco: Congestion Response Algorithm
We have several choices for the increase/decrease policy used
by Monaco. One option is ATAD window-based policy aug-
mented by rate-modulated pacing. Monaco updates its win-
dow value according to algorithm (10), and it clocks packets
out using a shaper with a rate value of of cwnd/RTT.

Another option is a simplified discrete approximation of one

packets

o kN w & o o N ®

utilization

Bottleneck Queue Length Versus Time

Botleneck Queue Length Versus Time

Botleneck Queue Length Versus Time

basertt

increase

seconds

(al) Vegas Queue Length

Utilization vs Time

packets

0 2 4 6 8

T T T T T T
basertt
increase

Increase
until loss.

70 T T T T T

basertt
/ increase

0 i

seconds

(b1) Vegas-k Queue Length

Utilization vs Time

0 2 4 6 8
seconds

10 12

(c1) Monaco-AIAD Queue Length

Bottleneck Utilization Versus Time

basertt
~— increase

sample interval=0.048s
i i i i
2 4 6 8
time (seconds)

(a2) Vegas Utilization

utilization

basertt increase.

sample interval=0.048s

utilization

basertt]
increase

sample interval=0.048s

0 i i i i i i i

2 4 6 8
time (seconds)

(b2) Vegas-k Utilization

0 2 4 6 8
time (seconds)

(c2) Monaco-AIAD Utilization

Figure 3: Basertt Estimation Error

policy in Mo and Walrand [23]:

cwnd(k + 1) = cwnd(k) —n x (Gm — target) (11)
where g is Monaco accumulation estimation, target is a
target backlog in the path akin to Vegas’ €1 and €2, 7 is
a parameter in (0,1). Both algorithms converge on pro-
portional fairness as illustrated in our simulations in which
we compare ATAD and Mo and Walrand’s policies denoted
Monaco-AIAD and Monaco-MW respectively.

4.3 Riviera

To eliminate the requirement of a high priority queue for
out-of-band control packets, we designed another scheme
called “Riviera” that has similarities to both Monaco and
Vegas but has a different set of tradeoffs.

4.3.1 Riviera: Congestion Estimation Protocol

Unlike Monaco, Riviera uses only one IB control packet
which “bounces” between ingress and egress. Therefore Riv-
iera does not require the extra OB control-packet queue used
in Monaco. This control-packet is used for all the key func-
tions: accumulation estimation, basertt estimation, feed-
back generation and data-packet loss detection. The Riviera-
estimator for accumulation is illustrated in Figure 2(b). The
egress router maintains a timer set to basertt, which is the
estimate of round-trip propagation delay as in Vegas. The
timer is started after the last arrival of the control packet at
the receiver. The Riviera-estimate of accumulation is sim-
ply the number (count) of packet arrivals after the timer ex-
pires till the next control packet arrives assuming the control
packet was not lost. We also refer to these as “late arrivals.”

Assuming no reverse path congestion, the expiry of the timer
is roughly the same point at which Monaco’s OB control
packet would have arrived. Hence, in this case, following the
argument for Monaco, the Riviera-estimator would closely
approximate the true accumulation of the flow. Riviera uses

Bottleneck utilization vs reverse path bandwidth

1.2 T T T T T

R o SRR EEEEEEEENEE
: T T
g 08f 7
s .l Monaco-AIAD Monaco-MW |
8 -
£ oar b
= -
@ oak TCP-Vegas

0 -~ | | | | | | |

5 10 15 20 25 30 35 40 48

reverse path bandwidth of the bottleneck

Figure 4: Reverse Path Congestion

the same thresholding method as Monaco to detect
tion.

conges-

The loss-detection mechanisms for control-packets and data-
packets and retransmission mechanisms for control-packets
are virtually identical to Monaco, except for the fact that a
single IB control packet is used in Riviera instead of a pair
of IB and OB control packets in Monaco. As mentioned
earlier, these simple reliability mechanisms are also found
in earlier schemes [2]). Observe that even though a timer
is used in the receiver, the RTT estimates are obtained by
using only the local clocks at the ingress and egress based
upon successive arrivals of the control packet. Therefore,
like Monaco, Riviera avoids issues related to clock skew and
clock drift.

4.3.2 Riviera: Congestion Response Algorithm
Riviera recognizes the interactions between the ATAD policy
chosen by Vegas and the basertt estimation issues. There-

fore it chooses a more conservative AIMD-ER policy:

. _f min{Xi(k), pi(k)}+ i if Gr <er
Ak +1) = { min{\(k), B m(k)} if dr > €2
(12)

where ¢r is Riviera-estimation and other parameters sim-
ilar as in algorithms (8) and (10). This policy, especially
with (; provisioned conservatively, allows a higher proba-
bility of queue drain within k& RTT samples (which is the
period Vegas-k used to estimate basertt). The AIMD-ER
algorithm also approximates ack-clocking since it increases
and decreases relative to the egress rate. We refer to this
feature as “rate-clocking”.

As discussed below, Riviera faces similar problems as Vegas.
Thus in our simulations, we do not consider Riviera and
focus on the differences between Monaco and Vegas. We
provide a theoretical analysis for Riviera in Appendix.

4.4 Comparisons

Vegas, Riviera and Monaco aim to accurately estimate ac-
cumulation, assuming different support from core routers.
If basertt can be obtained precisely and there is no reverse
path congestion, then by Little’s law, they all give unbiased
accumulation estimation on average. But in practice Ve-
gas and Riviera often have severe problems in achieving this
objective; Monaco solves known estimation problems.

Vegas estimator operates at ingress side. According to equa-
tion (9) it actually calculates:

cwnd

N B 1

qv i (rtt — basertt) (13)
cwnd b

= % (th +%) (14)

where t({ and tg are forward and reverse direction queuing
delays, respectively. The above equations show Vegas may
suffer from two problems: 1) By equation (13), if basertt
is overestimated, then Vegas underestimates accumulation.
This might lead to steady queue in bottlenecks or even per-
sistent congestion. Results for a single bottleneck topology
are shown in Figures 3(a) and (b), where basertt estimation
error is introduced by a sudden basertt change at time 10s.
Vegas operates with very low utilization of less than 10%
and Vegas-k operates with queue increase until loss occurs.
2) By equation (14), if there exists reverse direction queuing
delay, i.e., tZ > 0, then Vegas overestimates accumulation.
This leads to underutilization and is hard to handle because
Vegas has no control over reverse direction flows, as shown
in Figure 4 where Vegas utilization is only 10% ~ 60%.

Riviera faces the same problems as Vegas. It tries to appro-
priately set 3; in AIMD-ER algorithm (12) to periodically
drain the bottleneck queue according to equation (6), thus
increases the possibility of successfully sampling basertt. In
our experiments we tried several increase/decrease policies.
We found it’s still hard to get precise samples of basertt
when there are many flows.

Due to the above problems, both Vegas and Riviera fall short
of qualifying as a general building block for service differen-
tiation, because we expect to achieve service differentiation
by maintaining differential accumulations of flows inside the

system in the steady state! In such a case, the sum of ac-
cumulations would lead to a non-zero steady state queue
which is not likely to drain in £ RTTs, and hence dynamic
basertt estimation would be impossible with in-band control
packets. In summary, the sensitivity issues with Vegas and
Riviera point to a fundamental problem with the in-band
techniques for accumulation estimation.

Monaco solves both problems. Monaco estimator operates
at egress side and thus excludes the effect of reverse path
congestion. By counting the data packets arriving between
in- and out-of-band control packets, Monaco does not ex-
plicitly need to estimate the forward direction propagation
delay (actually the out-of-band control packets provide im-
plicitly this value). More specifically, Monaco implements a
rate-paced window control algorithm to smooth out incom-
ing traffic. So the time difference between the in- and out-of-
band packets gives a sample of the current forward direction
queuing delay. By Little’s law, the number of data packets
arriving during this time period is the backlogged packets
along the path. In the fluid model, this is precisely the flow’s
accumulation. In real system in which packet transmission
is not preemptive, we might have a half packet estimation
error on average at a bottleneck. Considering this possible
measurement error, we set the threshold as a range of 1 to
3 packets, instead of using a single value. This improves the
robustness of the scheme. Another advantage of using out-
of-band control packet is adaptive to re-routing since it is
sent every RTT. As shown in Figure 3(c) and Figure 4, after
a brief transient period, Monaco operates at around 100%
utilization with very low queue. So it’s immune to basertt
estimation inaccuracy and reverse path congestion.

5. SIMULATIONS

Our objectives in this section are to illustrate:

a) Basic EC-scheme steady state performance (utilization,
throughput, proportional fairness, throughput variance) in
Section 5.1. We use a workload of infinite demand, no inter-
action with end-to-end transport mechanisms like timeouts
etc., and no background non-EC flows. We use a topology
having multiple bottlenecks and heterogeneous RTTs.

b) Performance with a complex workload to illustrate safe
and robust behavior of the EC-framework in more realistic
settings in Section 5.2. The workload includes a mix of
web-like short flows and long FTP flows, varies the overall
demand, has a large number of total flows at any bottleneck,
and has background non-EC flows.

The simulations also show performance of Monaco-ATAD
and Monaco-MW compared to Vegas, Vegas-k, and TCP
SACK. In brief, this section, in combination with Section 4.4
shows that the EC-framework (and the Monaco scheme) sat-
isfies all the goals outlined in Section 4 and supports a mix
of web/FTP traffic efficiently. In all simulations we use ns-2
[26] with the parameters given in Table 1.

5.1 Steady-state Multiple Bottleneck Case

To illustrate steady state scheme behavior, we use the multi-
bottleneck network topology in Figure 5(a), with edge nodes
between the end systems and the interior nodes. We also
have heterogeneous propagation delays along various paths

send rate (Mbps)

e

All unlabelled links are 4ms, 100 Mbps.
I=ingress, E=egress, U=UDP, B=bottleneck node

(a) Topology

Aggregate Throughput of the long control Ic

8e+07 T

7e+07F . o

6e+07 . N
Prop. fairness curve
5e+07
\ =
4e+07-
\
3e+07- . Monaco-AlAD
2e+07 \\ T
tesorl ~— TCP-SACK Monaco-MW |
N -
0 [e R, | |
1 2 3 4 5 €
No. of bottlenecks
proportional fairness curve—— TCP-Vegas- -
Monaco-AIAD ---- TCP-Sack— — -

Monaco-MW - - --

(b) Aggregate Throughput of the Long Path

é-’. 25 1.2 T T T
S .
= Monaco—-AIAD
g | TCP-SACK 1k -~ il 1
§ 2 5 \ ———————— L
®
:gn % osh- \ B
g 151 S Monaco-MW
£ L
< Monaco—-AIAD 2 o6l TCP-SACK i
e k)
2 o1f Z
% | Monaco-MW = 04 TCP-Vegas -
9
£ bbb =
05T 02f .
>
Q o
o 0 I 1 ‘1 1 0 1 1 1 1
1 2 3 4 5 1 2 3 4 5 €
No. of bottlenecks No. of bottlenecks
Monaco-AIAD —— Monaco-MW TCP-Vegas--- TCP-Sack Monaco-AIAD —— Monaco-MW TCP-Vegas---- TCP-Sack

(c¢) Throughput C.0.V. of Loops on the Long Path

(d) Mean Utilization

Figure 5: Multiple Bottlenecks

Edge-Controlled (EC) Traffic

/4 2 2x N

X
{W,UF} {W,U,F} {

W,U,F}
OO OGO G©E)

WU 1-20ms 1-20ms 1-20ms 09k v) B

Do V00 e Ve g . § oo \ ;

a 545 L5156 5100 o 06l ' Both Monaco-AIAD g

1 and Monaco-MW J

10ms 2 8ms. .
S?Zkbk)s P P5-24ms

Average Bottleneck Utilization
o
«
T

5-24ms 04 1
5-24ms 5-24ms 8ms 8ms 8ms 031 b
v 0.2 B
60066 © 00 @06 ol]
_—5 X 2x 0 L I I L L
0 5 10 15 20 25 3
N BE, W.0.F) WUR J Load Factor (L)
’ ‘(Mb Best-Effort (BE) Traffic MONACO-MW —¢— MONACO-AIAD -+
send rate (Mbps) All unlabelled links are 4ms, 1Gbps.
I=ingress, E=egress, U=UDP, F=FTP (infinite file download), W=web
(a) Topology (b) Mean Bottleneck Utilization
Transfer Time Versus Load Transfer Time Versus Load
45 T T T 4 T T T T T
o
2 4T 71 @ a5t
IS 2
2 35 78
8 g 3
g o
= 25 1 g 25r
3 =
@ L - 9] -
5 g’
= L B IS}
. 15 5 st
© = - 3}
g ! g 1r
< 05F bl g
0 | | | | | 05r 7
0 5 10 15 20 25 3 0 | | | | | | | |
Load Factor (L) 0 2 4 6 8 10 12 14 16 1¢
BE —— EC --+ Load Factor (L)
(c) Monaco-MW and BE Transfer Times (d) Monaco-AIAD and BE Transfer Times
Number of Objects Transferred Versus Load Retransmission Timeout Rate Versus Load
3500 T T T T 600 T T T T
N BE ——
B 3000 i EC s
3 500 - i
|7}
§ 2500 b "
= E 400 - b
§ 2000 b 5 B
S 15001 4 5 w0 |
s]
g 10001 1 E 2001 Except 1 case, -
€
3 500k i EC has no loss,
100 -
; ‘ ‘ ‘ ‘ ‘ /RTX, or RTO.
0 5 10 15 20 25 3 o R ‘
Load Factor (L) 0 5 10 15 20 25 3
BE —— EC/Monaco-MW - -+ Load Factor (L)
(e) Monaco-MW Number of Objects Transferred (f) Monaco-MW Web TCP Retransmissions
Figure 6: Web File Transfer Results
Bottleneck 0 BE Queue Length Versus Time
500 T T T
leferent Bottleneck 0 EC Queue Length Versus Time 450~
ECand —=1s T : T 200 -
BE scales 16f 1 % L
wl | % 350
g ¥ 3001
2 12 H =
g S 250
< 10 y 9]
5 > 200F
3 8 i3
2 S 150
3 6 &
= | -
E ‘ ‘ ‘ W ‘ H I E
50 -
2 i
o LI \‘ ‘ H‘\ \‘ | ‘ | \“ u‘\‘““ | ‘ |‘ 0 ulath L ks
10 12 14 16 18 2 10 12 14 16 18 2
Time (seconds) Time (seconds)
(a) Monaco-MW Queue (b) BE Queue

Figure 7: Transient Queueing for Web Transfers for L=8

Table 1: Simulation Parameters

Parameter Value
n 0.5
max burst size, o 1000 bytes
target accumulation | 3000 bytes
UDP packet size 1000 bytes
TCP data packet size | 576 bytes

to illustrate the fact that our schemes are not sensitive to
this issue. We use infinite demand from UDP sources at end
systems to avoid interactions with transport-layer mecha-
nisms.

The only difference in the TCP Vegas and TCP SACK sim-
ulations is that they do not have edge nodes. For EC-
framework schemes, we use large enough buffers to avoid
loss. However, because TCP SACK requires loss to detect
congestion, we use a buffer of bandwidth-basertt product
computed from the basertt of the Iy — Eo path in Fig-
ure 5(a).

Figure 5(b) shows the aggregate throughput of the long
paths (Io — Eo,I1 — Ei,I» — E3) versus the number
of bottlenecks encountered on those paths, benchmarked
against the theoretical curve for proportional fairness. It
demonstrates that the EC-schemes (Monaco-AIAD, Monaco-
MW and Vegas) approach proportional fairness, satisfying
Goal 4 in Section 4, whereas TCP SACK does not.

Figure 5(c) shows the Coefficient Of Variation (C.0.V.) in
throughput defined as standard deviation divided by the
mean, a measure of throughput spread. Figure 5(d) shows
the average utilization achieved. Monaco and TCP SACK
achieves slightly higher utilization than TCP Vegas. Monaco’s
throughput C.0.V. is lower than TCP Vegas, which is much
lower than TCP SACK.

Monaco outperforms Vegas by a small margin in each case
due to its superior accumulation estimator. Section 4.4 il-
lustrated a more decisive advantage of Monaco over Vegas,
which is why we recommend Monaco as the default EC-
framework scheme. The TCP SACK underperformance in
these results may be attributed in part to synchronization
effects and timeouts. We present it here to point out that it
does not achieve proportional fairness.

5.2 Performancewith Web Wor kload

To demonstrate Monaco’s behavior under more complex and
realistic conditions, we use a similar topology in Figure 6(a)
as the last section, but change the workload to be a mix
of end-to-end, web-like short TCP flows (mice), long FTP
flows (elephants), and constant-bit rate UDP flows mapped
onto the edge-to-edge EC-flows. The UDP traffic occupies
a constant fraction of the bottleneck. Each bottleneck sees
a non-trivial number total end-to-end flows, either mapped
onto the EC-flows, or isolated into a separate queues as non-
EC flows. In addition, to illustrate the impact of intelli-
gent edge techniques, we introduce isolation between UDP,
web and FTP flows only at the edge before multiplexing
them onto an EC-loop. Moreover, a transport-aware tech-
nique, TCP Rate Control [16], is introduced to illustrate the

10

performance customization potential possible at edge-nodes.
The goal of introducing such complexity is to illustrate the
performance by turning on all potential options in the EC-
framework and to re-iterate that it is safe and beneficial to
map end-to-end flows over the EC-schemes.

We refer to the non-EC flows as best-effort (BE) traffic and
we isolate BE from EC traffic by using Deficit Round Robin
(DRR) [32] schedulers at each bottleneck. DRR is cho-
sen because it is one of the simplest known fair queueing
schedulers. To implement the Monaco backlog estimator, we
break the DRR’s EC-class into two queues: high priority for
the out-of-band control packets, and low priority for in-band
and data packets. The two priority queues together receive
only one pre-allocated share from the DRR scheduler. Each
ingress edge in addition, uses DRR to achieve isolation be-
tween web, FTP and UDP end-to-end flows mapped onto
an EC-loop.

All three queues multiplexing onto a bottleneck link share
500KBPS, and similarly for the three queues multiplexing
onto an EC-loop at the edge. As with standard DRR, when
buffers are exhausted, packets are dropped from the largest
of the three queues. Unless EC erroneously admits more
control packets then in-band plus data packets, bottleneck
loss will usually occur in either the EC low priority or BE
queues.

For the web and FTP traffic mapped to the EC-loop, each
ingress applies the TCP Rate Control (TCPR) technique.
TCPR sets the receiver advertised window in passing ac-
knowledgements to bound each connection’s window size to
a fair share of the sum of the FTP and web queues’ average
service rates. The separate web queue simply allows mice
arriving at a bottleneck dominated by elephants to come up
quickly. In other words, with TCPR, it is not necessary to
induce packet loss at the edge-nodes to constrain each end-
to-end TCP flow. Therefore, the coupling of EC-framework
control between the edge nodes, and TCP rate control at
the ingress edge allows TCP to experience zero end-to-end
congestive loss when there is sufficient buffer at all bottle-
necks in the path. Note however that TCPR, requires access
to TCP ACK flow headers, and can only be applied if such
access is available at EC-edge nodes (e.g., site-to-site VPN
in Section 6).

To simulate web traffic, we use Barford and Crovella’s model
[3]. We feed an infinite supply of packets to a TCP SACK
connection to simulate FTP. To achieve a roughly even mix
of web and FTP packets entering each bottleneck, we use a
(empirically determined) ratio of 8 web sources to one Mbps
constrained FTP connection. We vary aggregate demand on
the interior bottlenecks by scaling the number of FTP and
web sources while retaining the same demand ratio. The
total UDP traffic remains a constant. To maintain compa-
rability between the EC and BE traffic classes, we mirror the
workloads and paths between the EC and BE traffic classes.
As shown in Figure 6(a), load scaling factor L denotes the
number of FTP flows and 4L the number of web flows in
each group BE;.

Figure 6(c) and (d) confirm that Monaco improves trans-
fer times as the load increases with no negative effect at low

EC Egress

®

Peering Point
Over-engineered

Domain EC Control Class

EC Data Class
14

. Provider 2 @ DS
@ @ & Egress

H Best-effort or
DS : Other DS Class(es)

Provider 1

Edge-to-edge
Control Loop (Trunk)
Per-flow
QoS

Figure 8: QoS across Multi-ISPs

loads, while Figure 6(e) demonstrates that the improvement
in transfer times is not achieved by reducing demand. Here
we define a “web object” as the results of the HT'TP trans-
fers initiated by a user action (i.e., click, enter URL). It is
also unlikely that EC is stealing from the BE class due to
the DRR scheduler.

Also worth noting is that neither Monaco-AIAD or Monaco-
MW incurs loss in any of these simulations. Though un-
der heavy loads, both Monaco-MW (3 timeouts for L=18)
and Monaco-AIAD (33 timeouts for L=18) falsely trigger
timeouts in one case. The lack of loss can be attributed to
Monaco’s tight control on queue length despite substantial
variance (see Figure 7(a)).

6. ARCHITECTURE MAPPING

In this section, we discuss how to map the EC-framework
onto QoS and overlay architectures. The EC-framework is
complementary to, and does not necessarily compete with
current technologies like DiffServ, MPLS or ATM/Frame-
Relay networks. We discuss three examples to illustrate
the potential: mapping to DiffServ, and mapping to pro-
vide a site-to-site Virtual Private Network (VPN) service
that crosses multiple ISP boundaries, and an Overlay QoS
service.

The EC-framework naturally maps to the DiffServ (DS) ar-
chitecture [5]. In such a mapping, the EC-edge nodes can
become DS edge nodes, and implement the isolation and
closed-loop functions. The DS-byte would carry a code-
point that maps to a per-hop behavior (PHB) implemen-
tation at interior nodes. The PHB isolates all aggregate
EC-framework traffic into one queue (Vegas, Riviera) or two
queues (Monaco where the second, higher priority queue is
for out-of-band control packets). We are currently investi-
gating mechanisms that allow the EC-framework to realize a
variety of bandwidth sharing objectives. The EC-framework
can also be used in conjunction with current DS PHBs and
services. In particular, the EC-framework can operate the
interior DS network in a near lossless manner, and migrate
the issues of per-flow packet-loss assignment to the edge
nodes where more stateful and application-aware methods
can lead to superior per-flow performance customization.

The EC-framework simplifies the bandwidth services provi-
sion across multiple provider networks. Figure 8 shows that

11

an EC-loop can originate in one ISP and terminate in an-
other, provide they agree to cooperate. Cooperating ISPs
need to negotiate contracts on aggregate traffic characteris-
tics, and do a one-time provisioning of the EC-class at poten-
tial bottlenecks along the paths taken by EC-traffic. Fine-
grained control of packet loss and bandwidth assignment,
and any novel services may be provided purely at EC-edges.
Monitoring of aggregate traffic and potential punishment of
any misbehavior at the ISP boundaries is enough to enforce
contractual agreements between ISPs.

Another way to provision QoS over multi-provider bound-
aries is to introduce an “Overlay QoS” provider who owns
several nodes in the network (e.g., Akamai has over 1000
points of presence in 63 countries), and who buys commod-
ity point-to-point bandwidth or Service Level Agreement
(SLA) that crosses only a single physical service provider.
It is well known that such overlay networks could, with high
probability, route traffic not substantially worse than cur-
rent Internet BGP routing [1, 30]. QoS hungry end-to-end
applications could be mapped to such networks at the edges,
and their performance managed completely from edges us-
ing a lightweight framework like EC. The overlay edge is
a point where network QoS management and application
intelligence meet (see Section 7). We expect such overlay
QoS-based applications to be pervasive in the future.

7. SUMMARY AND FUTURE WORK

In this paper we propose an edge-based flow control (EC)
framework. The EC-framework places all flow control func-
tions at network edge routers, keeping core routers’ forward-
ing algorithm simple (one or two FIFO queues for the entire
framework). Using closed-loop EC-schemes leads to higher
efficiency, and service differentiation capabilities operating
at O(RTT) timescales, as discussed in Appendix 9.2. A
new congestion measure, accumulation, is developed because
loss-based congestion detection severely limits the range of
potential QoS capabilities. Although the ultimate objective
of this work is to provide QoS, this paper exclusively fo-
cuses on the enabling closed-loop flow control properties. In
summary, the main contributions of this paper are:

e a modular framework to generate flow control schemes
by combining framework components;

e a set of schemes with provable stability, fairness and
queue bound;

e a mathematically defined, physically meaningful con-
cept of backlogged packets, accumulation of a flow;

e a protocol realization of the accumulation estimation
in packet-switched networks that emulates accumula-
tion calculation in the fluid model;

e the framework positioned as a closed-loop data-plan
QoS building block for future services.

The placement of functions at the edge has interesting ar-
chitectural implications. The number of nodes which need
to be upgraded for QoS is smaller (only edge nodes). The
removal of functions from interior nodes means that they
are not only stateless (like CSFQ), but also do not need to

support new computation and do not need to be configured
(or signaled). In other words, interior nodes can truly fo-
cus on their core task of packet forwarding (especially when
they are resource constrained as in cheap overlay network
routers). End systems may be un-cooperative, and may
not even support congestion control, but their traffic can
be effectively isolated and punished at the edges. Policing
or penalty-box functions are not needed anywhere else in
the network. The edge is also “closer” to the end systems.
Therefore, it becomes more likely that applications can con-
vey their intelligence to the edge and participate in the QoS
assignment (or customization) process. This would lead to
a class of edge-based low-cost customized QoS services for
applications even though the path may have multiple bot-
tlenecks other than the edge. These issues will be explored
in a future paper.

8. REFERENCES
[1] D. Andersen, H. Balakrishnan, M. Kaashoek, and R.
Morris. Resilient Overlay Networks. In Proc. ACM
SOSP’01, Oct 2001.

[2] H. Balakrishnan, H. Rahul, and S. Seshan. An In-
tegrated Congestion Management Architecture for
Internet Hosts. In Proc. SIGCOMM’99, Sept 1999.

[3] P. Barford and M. Crovella. A Performance Evalua-
tion of Hyper Text Transfer Protocols. In Proc.
SIGMETRICS’99, Mar. 1999.

[4] M. Bazaraa, H. Sherali and C. Shetty. Nonlinear Pro-
gramming: Theory and Algorithms. 2nd Ed., John
Wiley & Sons, 1993.

[5] S. Blake et al. An Architecture for Differentiated
Services. IETF RFC 2475, Dec 1998.

[6] B. Braden et al. Recommendations on Queue Mana-
gement and Congestion Avoidance in the Internet.
IETF RFC 2309, Apr 1998.

[7] R. Braden, D. Clark, and S. Shenker. Integrated
Services in the Internet Architecture: an Overview.
IETF RFC 1638, Jun 1994.

[8] L. Brakmo and L. Peterson. TCP Vegas: End to End
Congestion Avoidance on a Global Internet. IEEE
Journal on Selected Areas in Communications,
13(8):1465-1480, Oct 1995.

[9] D. Chiu and R. Jain. Analysis of the Increase/
Decrease Algorithms for Congestion Avoidance in
Computer Networks. Journal of Computer Networks
and ISDN, 17(1):1-14, June 1989.

J. Crowcroft and P. Oechslin. Differentiated
End-to-End Internet Services Using a Weighted
Proportional Fair Sharing TCP. ACM Computer
Communication Review, 28(3), Jul 1998.

[10]

R. Cruz. Quality of Service Guarantees in Virtual
Circuit Switched Networks. IEEE Journal on Selected
Areas in Communications, 13(6):1048-1056, Aug 1995.

A. Demers, S. Keshav, and S. Shenker. Analysis and
Simulations of a Fair Queueing Algorithm. In Proc.
SIGCOMM’89, Sept 1989.

12

[13] S. Floyd and V. Jacobson. Random Early Detection
Gateways for Congestion Avoidance. IEEE/ACM
Trans. on Networking, 1(4):397-413, Aug 1993.

[14] R. Guérin, S. Kamat, V. Peris and R. Rajan. Scalable

QoS Provision Through Buffer Management. In Proc.

SIGCOMM’98, Sept 1998.

[15] V. Jacobson. Congestion Avoidance and Control. In

Proc. SIGCOMM’88 , Aug 1988.

S. Karandikar et al. TCP Rate Control. ACM
Computer Communication Review, 30(1), Jan 2000.

[16]

[17] F. Kelly, A. Maulloo and D. Tan. Rate Control in
Communication Networks: Shadow Prices, Propor-
tional Fairness and Stability. Journal of the Opera-

tional Research Society, Vol.49, pp. 237-252, 1998.

S. Keshav. A Control-theoretic Approach to Flow
Control. In Proc. SIGCOMM’91, Sept 1991.

H. Kung and S. Wang. TCP Trunking: Design,
Implementation and Performance. In Proc. ICNP’99,
Oct 1999.

[20] S. Kunniyur and R. Srikant. End-To-End Congestion
Control: Utility Functions, Random Losses and ECN
Marks. In Proc. INFOCOM’00, Mar 2000.

[21] S. Low and D. Lapsley. Optimization Flow Control, I:
Basic Algorithm and Convergence. IEEE/ACM Trans.
on Networking, 7(6):861-875, Dec 1999.

[22] S. Low, L. Peterson and L. Wang. Understanding TCP
Vegas: A Duality Model. In Proc. SIGMETRICS 01,
Jun 2001.

J. Mo and J. Walrand. Fair End-to-End Window
-based Congestion Control. IEEE/ACM Trans. on
Networking, 8(5):556-567, Oct 2000.

[23]

[24] J. Mo, R. La, V. Anantharam, and J. Walrand.
Analysis and Comparison of TCP Reno and Vegas. In

Proc. INFOCOM’99, Mar 1999.

T. Nandagopal et al. Scalable Service Differentiation
using Purely End-to-End Mechanisms: Features and
Limitations. In IPQo0S’00, Jun 2000.

Network Similator 2. Http://www.isi.edu/nsnam/ns/.

A. Parekh and R. Gallager. A Generalized Processor
Sharing Approach to Flow Control in Integrated
Services Networks: The Single-Node Case. IEEE/-
ACM Trans. on Networking, 1(3):344-357, Jun 1993.

K. Ramakrishnan, and S. Floyd. A Proposal to Add
Explicit Congestion Notification (ECN) to IP. IETF
RFC 2481, Jan 1999.

S. Kalyanaraman et al. The ERICA Switch Algorithm
for ABR Traffic Management in ATM Networks.
IEEE/ACM Trans. on Networking, 8(1), Feb 2000.

S. Savage et al. The End-to-end Effects of Internet
Path Selection. In Proc. SIGCOMM?’99, Sept 1999.

[31] J. Saltzer, D. Reed and D. Clark. End-To-End
Arguments In System Design. ACM Trans. on
Computer Systems, 2(4):277-288, Nov 1984.

[32] M. Shreedhar, George Varghese. Efficient Fair
Queuing using Deficit Round Robin. In Proc.

SIGCOMM’95, Aug 1995.

[33] I. Stoica, S. Shenker and H. Zhang. Core-Stateless
Fair Queueing: Achieving Approximately Fair Band-
width Allocations in High Speed Networks. In Proc.

SIGCOMM’98, Sept 1998.

9. APPENDIX

In this appendix we provide a fluid model analysis for Riv-
iera and a service differentiation example based on Monaco.

9.1 Properties

Following [17, 20, 21], we prove briefly the stability, fairness
and queue bound for Riviera using the proposed fluid model.
Similar results [22] exist for Monaco but are not provided
here. Detailed proof will be provided in a tech-report.

9.1.1 Sability
Consider a network of a set L = {1,... ,L} of links, shared
by aset I = {1,...,I} of flows. Link [€ L has capacity
c;. Flow i € I passes a route 7; consisting a subset of links,
i.e., ri={l € L|iusesl}.

Suppose the probability for flow i to detect congestion is
pi(k) = Problai(k) > €], (15)
then we have, by algorithm (8),
Ai(k+1) = [1 = pi(k)] - [Xi(F) + ai] +pi(k) - Bipa(F).

Divided by the length of the control period which is, under
ideal feedback condition, the round-trip propagation delay
d; = df +d?, where df and d? are the forward and backward

dlrectlon propagation delay of flow i, respectively, we get

Suly = AEFDZAE
_ aill —pi(k)] pi(k) .
= @ - ar : [)\l(k) — Bipi()]
or simply
i =m; - [wi — si(Xi — Bipi)] (16)
where
mi = 1—pi(k)
w; = o4 /d:
si = pi(k)/di[l —pi(k)]

are all non-negative. This differential equation shows the
dynamics of the AIMD-ER algorithm (8). We prove its sta-
bility by constructing a Lyaponov function of system states.

Define a function of all flows’ ingress rates [17, 20]

il — zﬁzZ/pz o,

leL

Ux) 2 Z[wllogk —si(1 =B

€1
(17)

13

where the penalty p;(c;,z) at link [is a non-negative, con-
tinuous, increasing function of x:

{ pi(c,) =0

if x <¢y,

if z > ¢. (18)

pi(c,x) >0
It also satisfies >, pi(ci, MY = (A — i)/ i, where X' =
Zi:lEri)\i is the aggregate input rate at link [. We have

Lemma 1: U(Y) is strictly concave, and has a unique inte-
rior maximum denoted as Upaz-

Proof. Logarithmic function is strictly concave. Every other
component in U(X') is also concave. The deﬁmtlon domain
A >0isa convex set. Plus Vi,limy, 0 OU(X)/8)\ >0
and limy, 00 QU(X)/8)\ < 0 we get this result. [

Theorem 1: V(?) 2 Upaw — U(T
for the system (16) which is stable.

) is a Lyaponov function

Proof. Apparently V(?) > 0. We have
v _ U X
8>\i - 8)\1 - mi)\i
and then
dav AN

<0.

Zm”

) is maximized at the stable point.

dt T LN dt
iel
Corollary 1: U(T

9.1.2 Fairness
Let’s define flow ¢’s net benefit

Nipe By
Bi()\i) é w; log)\i — Sl/ 1’7@/14 d (19)

0 T

which includes a utility and a penalty function. We get

Theorem 2: The maximization of U(T) is the same as a set
of games which maximizing B;();), namely

maXU(Y) < max B;(\;),Vi € 1.
x>0 Ai>0

Proof. Note Vi, we have OU(T)/(?)V- = 0B;(\i)/0)\;, plus
Lemma 1 and 8%B;(\;)/0A? < 0 we obtain this. [J

This result shows all flows’ independently maximizing their
own net benefits effectively maximizes a global interest. Now
let’s see what kind of fairness it leads to. Under ideal con-
dition, B; could be set to almost 1. If all flows compete net-
work resources so aggressively that congestion probabilities
are very large, we have

Lemma 2: If 8; =1, pi(k) — 1, and flow 4’s utility function
Ui(\i) £ w; log \;, (20)

then a constrained convex optimization is lead:

= maXZ U;s(\

i€l

max U(
x>0

st. » \i<a, VIEL

:lEr;

Proof. We get s; — oo thus pi(c;, \') has to be 0. According
to (18) we have X' < ¢, VI. [

800

700 - b

600 [~ b

ﬂ
z

£ s00f . 1
E Target ratio

£ a00f 1
% 300 - Ratio achieved by]
200 7

loss—based UDP-AIMD

100 [ERRTUUUUTTRRRRE g

0E \\ 1 1 1 1 1
400 500 600

Weights

700

800

700 - - -
) 600 - b
g .
£ s00 . e e
2 Target ratio
£ 400 l i
S
o 300 B
8

2001 Ratio achieved by 7

w00 Monaco—-AIAD b

0 1 1 1 1 1 1 1
100 200 300 400 500 600 700
Weights

Figure 9: Service Differentiation Capability

Theorem 3: Rate allocation at the stable point of the system
(16) is weighted proportionally fair [17].

Proof. Due to Corollary 1 and Lemma 2, since flow #’s utility
function U;(A;) is strictly concave, according to nonlinear
programming optimality condition [4], if A; is the allocation
to flow ¢ associated with the system stable point, then for
any other allocation \;, we have

DUR) (i =X) =) wi X _/\l

i€l €1 A

<0.

It is the definition of weighted proportional fairness. [

9.1.3 Queue Bound

Theorem 4: Any core router inside the network controlled
by (16) is with bounded queue.

Proof. Every core router is shared by a finite number of
flows. Consider a core router which is the bottleneck of an
arbitrary flow 7, we just need to prove i’s contribution to the
router’s queue is bounded. Assume network status changes
slowly such that during several control cycles the available
bandwidth p; doesn’t change. According to algorithm (8),
flow ¢ increases its ingress rate from A; o, -+, Ai k—1 t0 Aik,
each step by a;, and then decrease the rate from A; ;. after
detecting congestion. The correspondent accumulations are
@0, ,0; k-1, a;,k- Note the effect of an ingress rate is
measured dif length of time later at the egress router and,
again, it takes d® length of time to inform the ingress router.
We have

0<aio, - ,aik-2, QGik—1 < € < Ak
and

Qi1 —aiho=Nipo—pi)-di +a;-d,
thus
€; —aidf

Xik—o — i <
k—2 i d:

The maximal queue for flow i is achieved d® length of time

after \; . takes effect, i.e.,

aip-1+ Nipo1 — i) - dl+ Mg — pi) - dl
= aip14+ Mgt —pi)- (d2+d0) + aid]

maz(a;) =

C—ad!
< ei+(€ld%dl+ai)-(d?+d§)+aid§
i3
< ei+(i+ai)~2df+aidf

dr

(2

= 3(e+oaud).

14

So the queue bound for the output link £ of the router is
Q< Z maz(a;) < Z 3(e +aidi). O

il Er; il Er;

9.2 Service Example

This section presents a simple weighted service differenti-
ation example and demonstrates that the EC-framework
based upon Monaco allows the target differentiation (ratio
of throughputs of two flows) to be achieved for a large range
800:1 (see Figure 9), well beyond what has been achieved
with existing loss-based differentiation (approximately 100:1
in [25] and 10:1 in [10]). We achieve this ratio by setting each
flow’s target accumulation proportional to its weight, with
the fundamental consequence that large weight results in
proportionally large queue. The loss-based simulation was
done using AIMD algorithm with weighted increase param-
eter differentiation.

Though we use only a simple loss-based model, other au-
thors [10, 25] have studied this model with carefully designed
schemes, and still they see the limitations of the loss-based
model. For more general service differentiation (e.g., band-
width guarantees etc.), the loss-based model is less suitable
because loss interacts with end-to-end transport mechanisms
and is very hard to manage effectively without stateful AQM
schemes available at bottlenecks.

