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ABSTRACT

Today the Internet offers a single path between end-systems
even though it intrinsically has a large multiplicity of paths.
This paper proposes an evolutionary architectural frame-
work “BANANAS” aimed at simplifying the introduction
of multipath routing in the Internet. The framework starts
with the observation that a path can be encoded as a short
hash (“PathID”) of a sequence of globally known identi-
fiers. The PathID therefore has global significance (unlike
MPLS or ATM labels). This property allows multipath ca-
pable nodes to autonomously compute PathlDs in a par-
tially upgraded network without requiring an explicit sig-
naling protocol for path setup. We show that this frame-
work allows the introduction of sophisticated explicit rout-
ing and multipath capabilities within the context of widely
deployed connectionless routing protocols (e.g. OSPF, IS-IS,
BGP) or overlay networks. We establish these characteris-
tics through the development of PathID encoding and route-
computation schemes. The BANANAS framework also al-
lows considerable flexibility in terms of architectural func-
tion placement and complexity management. To illustrate
this feature, we develop an efficient variable-length hashing
scheme that moves control-plane complexity and state over-
heads to network edges, allowing a very simple interior node
design. All the schemes have been evaluated using both siz-
able SSFNet simulations and Linux/Zebra implementation
evaluated on Utah’s Emulab testbed facility.

1. INTRODUCTION

Today’s Internet routing protocols like OSPF and BGP
were designed to provide one primary end-to-end service:
“best effort reachability.” These protocols realize the “best-
effort” concept by offering a single-path to destination sub-
nets. However, the internet topology has an intrinsic multi-
plicity of paths: hosts have multiple potential network inter-
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faces and autonomous systems (both enterprises and ISPs
of various sizes) are multi-homed [1, 2, 3]. It is interesting
to ponder on two questions:

a) Why is path multiplicity a valuable architectural feature?
b) Why have we not significantly exploited the intrinsic path
multiplicity in the Internet ¢

The answer to the first question is that multi-path trans-
mission can be fundamentally more efficient than the cur-
rent single-path paradigm. Just like packet switching is fun-
damentally more efficient than circuit switching because it
offers the potential to leverage both spatial and temporal
multiplexing gains at a single link (see [4], chapter 1,2), a
network offers one more dimension where spatio-temporal
multiplexing gains may be obtained: different paths. Packet
switching does not waste unused capacity if user demand is
available at a single link; similarly, with path multiplicity
available to end-to-end flows, unused capacity in paths will
not be wasted if user demand is available. Using our pro-
posed BANANAS framework, such multiple paths may be
leveraged at different levels in the networking stack: legacy
OSPF or BGP networks, overlay networks, peer-to-peer net-
works (e.g. dynamically instantiated overlays using a peer-
to-peer lookup infrastructure to support video-conferencing)
and last-mile multi-hop fixed-wireless networks.

The answer to the second question is clearly not the lack of
algorithms and protocols. There have been several proposals
for multipath route-computation [5, 6, 7, 8], Internet signal-
ing architectures [9, 10, 11, 12, 13], novel overlay routing
methods [14, 15] and transport-level approaches for multi-
homed hosts [16, 17]. The fact that these developments have
not triggered widespread deployment suggests that the core
problem is an architectural one . The Internet lacks an evo-
lutionary framework that admits incremental deployment
of path multiplicity, while providing sufficient flexibility in
terms of architectural function-placement and management
of complexity. This paper proposes to fill that void with a
framework called “BANANAS” 2,

At the highest level, BANANAS proposes a simple ex-
tension of Internet operation to admit and leverage end-
to-end path-multiplicity (PM). In this model, source-hosts
initiate one or more end-to-end “flows” and map flows to
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of a subset of network nodes, possibly situated in multiple
administrative domains. A subset of these upgraded nodes
(e.g. selected edge-nodes) may also map “flows” to avail-
able “paths” 3. Source-hosts may arbitrarily map “pack-
ets” to “flows.” Observe that today’s single-path model
is a special case of this PM-model. The PM model also
allows a subset of source-hosts and routers to be indepen-
dently upgraded within the scope of usual administrative
boundaries. Upgraded node may “see” only a subset of
available paths within appropriate administrative bound-
aries. This high-level model is a best-effort path multiplic-
ity model, clearly different from IPv4/IPv6 connectionless
loose-source-routing model [18, 19] and from end-to-end sig-
naled source-route models used in ATM networks (e.g. PNNI
[20]) or MPLS networks [21].

BANANAS provides a set of concepts and building blocks
to realize this high-level PM model. A core abstract idea in
BANANAS is that a path can be efficiently encoded as a
short hash (called the “PathID”) of a sequence of globally-
known identifiers (e.g. router IDs, link interface IDs, link
weights, AS numbers etc.). This concept has some very im-
portant advantages. First, a hash-based data-plane encod-
ing is more efficient than IPv4/IPv6’s loose-source-routing
encoding [18, 19] that is an uncompressed string of IP ad-
dresses. Second, since the PathID is a function of globally-
known quantities, it inherits their global significance, i.e., it
can be computed and interpreted within the same scope of
visibility. This “global” scope may refer to a single rout-
ing domain if router/link IDs are involved; or may refer to
the universe of BGP-4 routers if AS numbers are used. The
global PathID semantics allows any upgraded multipath ca-
pable (MPC) node to autonomously compute the PathID
without any changes in legacy single-path capable nodes. It
also removes the need for an explicit out-of-band signaling
protocol as a path-setup mechanism. Note that one purpose
of signaling in ATM and MPLS is to map global IDs (global
addresses, path specifications) to locally assigned IDs (la-
bels). The global PathID semantics allow the mapping of
BANANAS in an incremental manner to connectionless In-
ternet routing protocols (e.g. OSPF, BGP-4).

In addition, the BANANAS framework allows consider-
able flexibility in terms of architectural function placement
and complexity management. These intangible aspects are
crucial for tailoring the proposed building blocks and estab-
lishing the appropriate incentives for adoption by vendors
and ISPs. For example, the framework allows considerable
flexibility in the choice of multipath route-computation al-
gorithms. It also provides a distributed validation proce-
dure to ensure the validity of computed PathIDs, i.e. to
check if forwarding exists in all downstream routers for the
PathIDs. As another example of architectural flexibility, we
propose an efficient variable-length hash realization of the
abstract framework: this scheme moves control-plane com-
plexity and state overheads to network edges, allowing a very
simple interior node design. The proposed scheme realiza-
tions are evaluated using integrated OSPF /BGP simulations
in sizable topologies and Linux/Zebra implementation run
on Utah’s Emulab emulation testbed facility.

We are currently deploying the BANANAS framework on
the worldwide PlanetLab infrastructure [22] as an public
experimental wide-area network overlay service. We are
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also building a medium-sized multi-hop 802.11 community
wireless network on which this framework will be deployed.
We believe that the mere expectation of multiple end-to-
end paths will trigger application innovation in new areas
such as end-to-end bandwidth aggregation [17], end-to-end
resilience and video transmission over multi-paths [14, 15,
23] and end-to-end multi-path based security strategies (e.g.
protecting data integrity using multipaths).

The rest of the paper is organized as follows. Section 2
introduces the abstract framework and concepts. Section 3
explores the architectural flexibility in BANANAS by con-
sidering an alternate index-based PathID encoding. Sec-
tion 4 summarizes the intra-domain routing extensions for
link-state protocols, OSPF and IS-IS. Section 5 develops the
inter-domain ideas of BANANAS in the context of BGP-4.
Section 6 presents both simulation and linux-based imple-
mentation results to illustrate the architectural features of
BANANAS. Related work is surveyed in Section 7, followed
by summary and concluding remarks in Section 8.

2. THE BANANAS FRAMEWORK

2.1 PathlD: Abstract Concept

Consider a network modelled as a graph G = (V, E) where
V is the set of vertices or nodes and E is the set of edges or
links in the network. Let N denote the number of nodes
in the network, i.e. the cardinality of the set V. KEach
link (7,7) € E has an identifier associated with it, denoted
by l;,;. Each node 4 also has an identifier denoted by n;.
Consider a path P;; from node ¢ to node j, which passes
through nodes 4,1,2,...,m — 1,j. This path can be repre-
sented as a sequence of globally-known node and link iden-
tifiers [ns, i1, n1, 11,2, M2, ..., lm—1,5, n;]. This path sequence
can be compactly represented by a hash of its elements. A
path identifier (or, in short “PathID”) is defined as a hash
of the above sequence or any non-null subsequence derived
from it. Observe that the IP destination address (j), the un-
compressed IPv4/v6 loose-source-routes [18, 19], the XOR
of router IDs proposed in LIRA [11], or a hash of the sub-
sequence of link weights are all examples of valid PathIDs,
obviously with differing characteristics. Therefore the par-
ticular subsequence and PathID encoding function chosen
is crucial in determining the utility of the PathID. These
abstract concepts are illustrated in Figure 1.
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PathiID is a hash of the Path sequence above.
For example, MD5, CRC, Sum, XOR, etc.

Figure 1: Path and PathID Concepts

A desirable hash is compact, easy to compute and has
a low collision probability (i.e. high uniqueness probabil-
ity). This demands a hash function that offers low collision
probabilities. A simple hash of the path sequence may be
obtained by using the sum or XOR function (suggested in
LIRA [11]). While these are simple and fast, it may lead to
non-unique PathIDs. Our canonical hash function choice is



a 128-bit MD5 hash followed by a 32-bit CRC of the 128 bit
MD5 hash (resulting in a final 32-bit hash value). We use
the notation (MD5 + CRC32) hash to represent the above
two-step hashing process. Alternatively, 32-bits of the 128-
bit MD5 hash could also have been used. This hash value is
used in conjunction with the destination address (j); leading
to a two-tuple hash: [j, PathID]. For convenience, we refer
to the second tuple value as PathID. The collision proba-
bility, probability that multiple paths lead to same PathID,
depends only on the number of paths to any given destina-
tion prefix, and the nature of the path subsequence on which
the MD5+CRC32 function is applied. Assuming a random
bit-string as input and all the 232 outputs to be equally
likely, the probability for collision is given by 1 —

n!
nF(n—k)!’
where, n is the number of possible outcomes (23?) and k is
the number of paths to a destination.

A sequence of well-known link interface IDs, router IDs
and link weights (in OSPF or IS-IS) on the path can be
used to generate the underlying path sequence. However,
link-weights are usually non-unique, chosen from a narrow
range and may be dynamic (to implement traffic engineer-
ing/ adaptive routing), whereas router IDs and link interface
IDs are unique identifiers. Our canonical choice is the subse-
quence of all node IDs on the path (generalizes to a sequence
of AS numbers in BGP-4). Section 3 develops an alternative
hash function that is a concatenation of well-known link ID
indices at nodes.

2.2 Packet Forwarding

This section describes the forwarding table structure and
forwarding algorithm corresponding to our canonical choice
of hash function and path subsequence made in Section 2.1.
Section 3 develops an alternative forwarding algorithm (for
OSPF/IS-IS) that does not require a large forwarding table
at interior nodes.

IP forwarding tables essentially contain two-tuple entries
of the form [destination prefix, outgoing interface]. A
longest-prefix-match lookup procedure is employed. At up-
graded routers we propose to use four-tuple entries of the
form [destination prefix, incoming PathID, outgoing
interface, outgoing PathID]. The “incoming PathID”
field represents the hash of the explicit path from the current
router to the destination prefix. The “outgoing PathID”
field is the hash of the corresponding path suffix from the
next upgraded router to the destination.

An upgraded router first matches the destination IP ad-
dress using the longest prefix match, followed by an ezxact
match of the PathID for that destination. If matched, the
incoming PathID in the packet is replaced by the outgoing
PathID, and the packet is sent to the outgoing interface.
If an exact match is not found (i.e. errant hash value in
packet), then the hash value in the packet is set to zero, and
the packet is sent on the default path (i.e. shortest path in
OSPF/IS-IS or default policy route in BGP-4). The hash
value may also be set to zero if the next-hop is the desti-
nation itself, or there are no upgraded routers in the path
specified by the incoming PathID. A non-upgraded router
simply ignores the PathID field and forwards the packet on
the shortest path. The global PathIDs may be computed at
each router with minor modifications to OSPF LSAs (See
Section 4).

Figure 2 shows a partially upgraded network. Nodes A,
C and D are multipath capable (MPC). Assume that node

Figure 2: Multi-Path Forwarding with Partial Up-
grades

A is the originating node for a packet destined to node F.
The shortest path from intermediate node B to node F is
B-D-F and path A-B-C-F is not available for forwarding
because node B is a non-upgraded node and the next-hop of
default shortest path of B is not C. However, paths such as
A-B-D-C-F, A-D-E-F, A-D-C-E-F etc. are available. If the
path A-B-D-E-F is chosen, then the PathID of an incoming
packet will be Hash(A-B-D-E-F). A sets the PathID field to
Hash(D-E-F), i.e. the hash of the path suffix from the next
MPC router to destination. Node B forwards the packet on
its shortest-path (i.e. to D). Node D sets the PathID to
zero, because there is no MPC router on the path to F.

2.3 Path and PathlD Computation

The BANANAS framework not only supports upgrades
of a subset of nodes, but also allows heterogeneity in mul-
tipath computation algorithms used at different upgraded
routers. The fundamental tradeoff in link-state protocols
(given our canonical choice of PathID hashing method) is
route-computation and space complexity incurred at up-
graded routers to avoid signaling.

In link-state protocols each router has a complete map of
the network in the form of link-state database. We propose
to first annotate this “map” at an upgraded node with the
knowledge of other upgraded nodes (we defer the discussion
of how this is achieved in case of OSPF/IS-IS and BGP to
sections 4 and 5). In Figure 2, upgraded node A will know
that nodes C and D are upgraded and vice versa.

Presently, consider a single flat, link-state routing domain.
We do not consider extension of BANANAS to distance-
vector routing algorithms (e.g. RIP). Using the link-state
database (“map”) and knowledge of upgraded routers, ev-
ery router can locally compute available network paths. The
simplest model that admits the largest number of paths is
where each upgraded router can forward to any neighbor.
The paths can be computed by performing a depth-first-
search (DFS) [24] that traverses every neighbor of upgraded
nodes and the shortest-path neighbor at non-upgraded nodes.
The shortest path next-hops of non-upgraded nodes can be
found by performing multiple Dijkstra’s or an all-shortest
paths algorithm e.g. Floyd-Warshall [24]. This results in a
table containing next-hops for all paths to a destination un-
der the constraint of a known subset of MPC nodes. We refer
to this strategy as DF'S under partial upgrade constraints or
DFS-PU for shorthand. This simple approach is expensive
in both computational and storage terms, especially as the
number of MPC nodes grows.

The BANANAS framework allows an upgraded router to
compute and store only a walid subset of available paths
under partial constraints. The subset of available loop-



free paths can be computed using a multipath computa-
tion algorithm available in literature, for example k-shortest-
paths, all k-hop paths, k-disjoint paths (see [5] and refer-
ences within), DFS with constrained depth ([7] uses a depth-
constraint of 1-hop) etc. The only constraint is that the
algorithm should also compute the shortest (default) path.
These algorithms may be adapted for the MPC constraint,
i.e. there is a known subset of upgraded nodes.

However, there is a second, more subtle problem: if dif-
ferent routers compute and store different sets of paths, it
is possible that the path computed by one upgraded node
may not be supported by another upgraded or non-upgraded
node that lies downstream on this path. We term such paths
as “inwvalid”, i.e., forwarding support for the path does not
exist at some downstream node.

To solve the above problem, we propose a distributed val-
idation algorithm that ensures validity of chosen paths. The
main idea behind the validation algorithm is that a path
is valid (i.e. forwarding for a path exists) if all its path
suffixes are valid. This suggests a mathematical induction
based approach. We know that all one-hop paths are always
valid because they represent a direct link. A two-hop path
is valid if its one-hop path suffiz is valid.

The proposed algorithm (see Algorithm 1) has two phases.
In the first phase a node computes the paths using the cho-
sen algorithm. For example, let us assume that node 7 uses a
k;-shortest-path algorithm. The k; paths computed to each
destination are input into a map data structure that is or-
dered by hop-count. In phase 2, the validation phase, the
node needs to know the path computation algorithm and
parameters used by other upgraded nodes. In our exam-
ple, node i needs to know the k; parameter associated with
each upgraded node j. With this knowledge, it can com-
pute the k; paths for node j and input it into the hop-count
ordered map data-structure (lines 2-5 in Algorithm 1). At
non-upgraded nodes, k; is 1 (lines 6-9 in Algorithm 1). Es-
sentially we have computed all potentially available paths in
phase 1.

Phase 2 operates similar to mathematical induction. All
one-hop paths in the map are declared as valid. For each 2-
hop path, the algorithm simply searches for the 1-hop path
suffix in the just-validated set. If a match is not found,
the path is invalid and is discarded. If the path (i.e. the
corresponding PathID entry) exists in the forwarding table,
it is removed. In this process, validating an m-hop path
entry implies looking up its (m-1)-hop path suffix in the just-
validated set of (m-1)-hop paths and finding a match (the
variable temp_pair and the lines 16,17 in Algorithm 1 are
used to find a suffix match in the Routing-Map structure).
By mathematical induction, when the entire map has been
linearly traversed, the remaining paths are valid.

The computational complexity of this approach can be
estimated as follows. In a N-node network with u upgraded
routers, the complexity of first phase is given uC'(k) + (N —
u)C(1) where, C'(k) denotes the complexity of computing
k-shortest paths, C'(1) denotes the complexity of Dijkstra’s
algorithm. The total number of paths, T, computed at the
end of first phase is equal to (N —1)((N —u)+>:—{ ki). The
complexity of the validation phase is O(T'log(T)h) where,
h is the average hop count for the paths. The log(T) term
arises due to searching for a suffix in the Map (see Algorithm
1, line 18). The validation algorithm may be optimized or
be eliminated for special cases, e.g. if all nodes are upgraded

and use the same value of k.

In summary, Algorithm 1 is a general 2-phase valida-
tion procedure that can be applied to validate paths com-
puted using any deterministic path computation algorithm
at MPC routers that also computes the default shortest
path.

Algorithm 1 Algorithm for validating paths at a router in
a partially upgraded network

1: Let NU and U denote the set of all non-upgraded and up-
graded nodes respectively

2: for allu € U do

3:  newPaths < Compute paths using u’s advertised algorithm

4 Routing_Map.append(newPaths)

5: end for

6: for alln € NU do

T

8

9

newPaths < Compute shortest path using Dijkstra’s algo-
rithm
:  Routing_Map.append(newPaths)
: end for
10: All 1-hop paths are valid
11: Initialize suffizLength « 2
12: while suffirLength < maxHops do
13:  for all path € Routing-Map do

14: if hop count of path > suffizrLength then

15: temp_pair.hopcount < suffizrLength-1;

16: temp_pair.PathString « last suffirLength nodes in
path;

17: if Routing-Map.find(temp_pair) == FALSE then

18: delete path

19: end if

20: end if

21:  end for

22:  suffizLength++;
23: end while

3. ARCHITECTURAL FLEXIBILITY IN
BANANAS

A general concern with the canonical description so far
is the increase in computational and space complexity at
upgraded nodes (both edge and core nodes). An interest-
ing question is whether we can use an alternative hashing
method that leads to overall complexity reduction and a
more attractive division of functions between the edge and
core, and between data-plane and control-plane. To demon-
strate the affirmative answer, we develop a new indez-based
encoding scheme that moves complexity to network edges,
and simplifies core node operations by using an efficient, re-
versible hash. The tradeoff is to use a variable-length PathID
encoding instead of the canonical 32-bit fixed length encod-
ing. Moreover, the scheme is only applicable to link-state
protocols, where the neighbor relationships do not change
often. Specifically, the index-based scheme is not applicable
to path-vector based protocols like BGP-4, or mobile ad-hoc
networks where neighbor relationships change rapidly.

3.1 Index-based Scheme: PathID Encoding

To motivate the scheme, consider an example. An up-
graded node orders its link interface IDs (or alternatively
neighbor node IDs)and represents each link by its index in
this ordering (see Figure 3). This link ID, i.e. index, can
now be efficiently encoded. For example, a router with 15
interfaces will need 4-bit link indices. In general, the link
or interface IDs of a node may be locally hashed using a
globally-known hash function. Since every node knows the



global hash function and it operates on globally-known link
IDs (e.g. TP addresses of interfaces) each node can indepen-
dently compute the hashes of any other node.

1 2

3 a4

I Address | Index
128.12.25.2 1

128.12.25.3
128.12.25.4
128.12.25.5

v
Node 6’s Interface Index

*Node 10’s Interface Index

~Node 9's Interface Index
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Figure 3: Explanation of Index-Based Encoding
Scheme

A path can now be specified as a concatenation of such
link-indices (e.g. Figure 3 shows PathID, in binary, of a path
via nodes 9-10-6 ). This PathID encoding is guaranteed to
be unique (unlike the earlier MD5+CRC32 encoding which
had a very small collision probability). For a reasonable
maximum bit-budget in the packet header (e.g. 128 bits),
and an average of 15 interfaces per router, up to 32-hop
paths can be encoded with this technique. The limitation of
32-hops is not too restrictive (in [25], authors find that the
average number of hops to reach a destination in the Internet
is 19); it applies only within a single area or a domain. The
PathID is re-initialized by the first upgraded router after
crossing any area or domain boundary.

The concatenation operation used here is an example of
a reversible or perfect hash, i.e., the local hash (i.e. next-
hop information) can be extracted from the overall PathID
without needing a per-path table entry. The state needed
at interior nodes is a small; only a table mapping link in-
dices to link-IDs is needed. For example, at a router with
15 interfaces, a 15 entry index-table is needed irrespective of
network size. No other control-plane computation or state-
complexity is required at interior nodes. Since the interior
nodes can forward to any neighbor now, a large number of
network paths may be supported. Edge-nodes can compute
paths using heterogeneous algorithms, and use a simpler val-
idation algorithm (see Section 3.3).

To summarize the impact in terms of function placement
and complexity management, the index-based scheme uses
per-hop PathID processing instead of a table-driven per-hop
PathID swapping strategy. Only edge routers need to com-
pute the multipaths and their PathIDs using a simplified
validation procedure. The memory requirements at the core
routers are also greatly reduces.

3.2 Index-Based Scheme: Packet Forwarding

Upgraded interior routers maintain an index table that
maps the interface index to the link interface IP address.
On receiving a packet, an upgraded interior router extracts
the interface index of the outgoing interface (next-hop) from
the PathID field in the packet header and uses the interface
index table to forward the packet on the appropriate link
(see Figure 4).

Figure 4 shows a packet being sent from node S to node
7 along the path S-6-2-4-3-7, the PathID at various points
and various interface indices. Only nodes S, 6 and 4 are
upgraded. Node S has complete map of the network from the

link-state database and knows that node 6 has two interfaces
and the next-hop index at node 6 is 2, encoded using two-
bits. Note that the interface indexing starts from 1 because
PathID of zero still refers to the default (shortest) path.
Likewise, the index at node 4 for this path is 3, encoded
using three bits. The PathID of the packet sent from node
S is 0...011102 = 14, indicating an index (102 = 2 for node
6 and 0112 = 3 for node 4). Node 6 has an index table
with 2 entries mapping the link indices to the interface IP
addresses. On receiving a packet with PathlID in the routing
header, it extracts the last two bits and then looks up its
index table. The PathID is also right-shifted by two bits in
this operation so that the next upgraded router can extract
its index from the last bits of the PathID. Similarly, node
4 will extract three bits from the PathID and right shifts it
by the same number before forwarding it. The remaining
PathID will now be zero. The non-upgraded routers merely
forward packets along the default shortest paths, oblivious
of the PathID field.

I-PathiD PathiD
0001110 0b011

I-PathiD
00011

FPathiD
b0

|-PathiD
0b0

Forwarding at upgraded router

1.Mask |-PathiD with 7

2.5hift -PathiD by 3-bits to right |
3.Get interface IP-address with index 3 :;
4.Forward packet on this interface

Figure 4: Forwarding with the Index-based PathID
encoding scheme (Note: “Ob” indicates binary en-
coding)

3.3 Index-based Scheme: Path Computation

In this scheme, “source” (or edge routers) can indepen-
dently use any multipath computation algorithm to find a
subset of available paths, similar to the discussion in Sec-
tion 2.3. The only information needed is the knowledge of
which routers in the network are upgraded (available with
the MPC-bit in LSAs).

Path validation is only necessary to impose the constraint
that non-upgraded nodes can forward packets only on their
default shortest paths. Algorithm 2 shows the pseudo-code
of a generic validation algorithm for edge routers. Only
those paths are valid, where the next-hop of the non-upgraded
routers corresponds to their shortest path next-hop. Again,
the validation algorithm consists of two phases. First phase
deals with the computation of shortest paths for non-upgraded
nodes (lines 4-6 in Algorithm 2) and computation of mul-
tiple paths using any desired multipath computation algo-
rithm. In second phase, the paths are checked for pass-
ing through non-upgraded nodes. If a path passes through
a non-upgraded node, the next-hop must be same as the
next-hop in the pre-computed shortest path. A path is
invalid if this condition is not met (lines 14-16). In a N-
node network with u upgraded routers, the complexity of
first phase is given C(k) + (N — u)C(1) where, C(k) de-
notes the complexity of computing k paths (assuming the
upgraded router keeps k paths), C(1) denotes the complex-
ity of Dijkstra’s single-shortest-path algorithm. The com-



plexity of the second phase of the validation algorithm is
O(k x (N —1) x (N —u)), where k is the maximum number
of paths for each destination to be stored in the forwarding
table. Note that the validation phase in the index-based
path encoding scheme is simpler compared to the validation
phase in Algorithm 1. This is because the upgraded routers
can forward packets to any of their interfaces. Recall that in
Algorithm 1, the validation phase also needed to ensure that
the downstream upgraded nodes of a path would indeed pro-
vide forwarding for that path (i.e. have a forwarding table
entry for that path).

Algorithm 2 Algorithm for validating paths in new Scheme
1: Let N denote the set of nodes in a network and NU denote
the set of non-upgraded nodes
2: Compute multiple paths using desired multipath computation
algorithm

3: Let P(dst) denote the set of paths to destination dst

4: forn € NU do

5:  Compute Dijkstra

6: end for

7: for dst € N do

8:  Compute the desired paths to destination dst using any
of k-shortest paths, k-disjoint paths, all paths upto k-hops
etc.

9:  for path € P(dst) do

10: forn € NU do

11: if path.find(n)==TRUE then

12: // nextHopSP is the next-hop in the shortest path

from n to dst
13: // nextHop(path) denotes the next-hop of n in the
path

14: if nextHop(path) ! = nextHopSP then

15: delete path

16: end if

17: end if

18: end for

19:  end for

20: end for

4. BANANAS EXTENSIONS FOR INTRA-
DOMAIN PROTOCOLS

In this section, we summarize the extensions to OSPF /IS-
IS to support the BANANAS framework. A 32-bit PathID
field is required in the packet header, that can be imple-
mented as a new routing option, called i-PathID (in the
context of intra-domain routing, PathID actually refers to
i-PathID). The route computation algorithm (Dijkstra’s al-
gorithm) at upgraded routers must be extended to compute
multiple paths (e.g. DFS under partial upgrade constraints
(DFS-PU), k-shortest paths [5] etc), and a validation al-
gorithm (Algorithm 1). The upgraded nodes must compute
the shortest path as the default path. Incoming packets with
erroneous PathIDs are forwarded on the shortest paths and
the PathID field set to zero. The intra-domain forwarding
tables at upgraded routers would have tuples (destination
prefiz, incoming PathID, outgoing interface (next-hop), out-
going PathID). As indicated in Figure 5, one bit in the OSPF
Link State Advertisements (LSAs) [26] must be used to in-
dicate that the router is multipath capable (MPC). In the
Linux/Zebra based implementation as well as in the SSFNet
simulations, we have used the eighth bit in the LSA options
field of the router-LSA as the MPC bit.

Also, if we allow different upgraded routers to compute
paths using different algorithms, we need some bits to indi-

LS Age

Options W

Link State ID

MPC-bit: unused bit #8 of options

k; value used at router j,

=1 / unused 8-bits after Router Type
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Figure 5: Proposed Modifications to OSPF Link
State Advertisements (LSAs)

cate the choice of route computation algorithm along with
its parameters (E.g. the value of k in k-shortest paths al-
gorithm). In our Zebra-based implementation, we have as-
sumed that upgraded nodes implement the k-shortest-path
algorithm with different values of k. Therefore, we leverage
the currently unused 8-bits after the router type field in the
LSA to indicate the value of k.

For the alternative index-based path encoding scheme, the
concatenation of indices is done from the lower-order-bits to
the high-order-bits. Each router simply shifts the PathID to
the right by the number of bits needed to encode its interface
index. This allows upgraded interior routers to extract the
next-hop index from the lowest-order-bits without knowing
its position within the path, i.e. without the knowledge of
how many upgraded nodes are on the path. The upgraded
interior routers only need to set the MPC bit in their LSA
and need not advertise the route computation algorithm.
Each upgraded router must maintain an ordered list of its
own interfaces and the corresponding index. The upgraded
edge routers can use any multipath algorithm to compute
multiple paths. However, they need to validate the paths
using the validation algorithm (Algorithm 2). All upgraded
routers must always compute the default shortest paths to
all destinations. This is necessary in order to forward pack-
ets with no PathID option, zero or erroneous PathID.

4.1 Forwarding Across Multiple Areas

Large OSPF and IS-IS networks support hierarchical rout-
ing with up to two levels of hierarchy. Our approach is to
view each area as a flat routing domain for the purpose of
multipath computation. Multiple paths are found locally
within areas, and crossing areas are view as crossing to a
new multipath routing domain, i.e. we re-use the i-PathID
field. For example, if a source needs to send a packet outside
an area, it chooses one of the multipaths to the area border
router (ABR). Then, the ABR may choose among the sev-
eral multipaths within area 0 to other ABRs. The i-PathID
field is re-initialized by the first ABR at the area-boundary.

5. BANANASEXTENSIONS TO BGP

5.1 Motivation and Goals

BGP-4 [27] is the inter-domain routing protocol in the
Internet. BGP uses a path vector and policy routing ap-
proach to announce a subset of actively used paths to its
neighbors. Load-balancing and traffic engineering in BGP
are becoming important as operators attempt to deploy ser-
vices like virtual private networks (VPNs), and optimize on
complex peering agreements [1, 28, 29, 30]. Enterprises are



also increasingly multi-homed and are increasingly active in
managing their inbound and outbound traffic [1, 31].

While BANANAS is not designed to address multitude
of configuration, stability and load-balancing problems [32,
29, 33] of BGP, it does provide a set of building blocks to
enable fine-grained BGP traffic engineering both within and
across domains. In particular, BANANAS introduces two
new capabilities: explicit exit forwarding and explicit AS-
PATH forwarding. We examine these aspects further in the
following sections.

5.2 Explicit-Exit Forwarding

The idea of explicit-exit routing is quite simple. The over-
all objective is to define a traffic aggregate and then map
it to a chosen exit router (ASBR). Traffic aggregates may
be chosen at per-packet, per-flow or per-prefix granulari-
ties by the upgraded EBGP or IBGP routers, i.e., ISPs can
define fine-grained bundles of outbound traffic. Unlike LO-
CAL_PREF, the explicit exit capability can map traffic for
the same destination prefix to multiple exits (based upon
the autonomous decisions at upgraded IBGP nodes).

The explicit exit mechanism works as follows. An up-
graded IBGP router chooses an arbitrary exit AS border
router (ASBR) for a given traffic aggregate (e.g. a flow or
all traffic to a destination prefix). It then “pushes” the desti-
nation address into a “address stack” field, and replaces the
destination address with the exit ASBR address (adjusting
the checksum appropriately). Now, intermediate routers for-
ward the packet to the exit-ASBR to which it is addressed.
The exit-ASBR then simply “pops” the address from the
address-stack field back into the destination address field
(and adjusts the checksum) before forwarding it along to
the next AS.

The upgraded IBGP node would hence have table en-
tries of the form: [Dest-Prefix Exit-ASBR Next-Hop-
to-Exit-ASBR] and [Dest-Prefix Default-Next-Hop].
The second tuple is the regular IBGP-defined default pol-
icy route for the destination prefix: this forwarding entry
is used for all traffic for which this IBGP router does not
decide the exit router. The first 3-tuple is applied only to
the traffic aggregates for which this IBGP router chooses an
explicit exit. This kind of operation is important to avoid
conflicting exit routing decisions by upgraded IBGP routers.

Observe that only a subset of IBGP routers and exit AS-
BRs (eBGP) routers need to be upgraded. All BGP routers
synchronize on their default policy routes as usual [27]. In
addition, the upgraded exit ASBRs should also synchronize
with the upgraded IBGP routers so that they know which
exits are available for any given prefix.

The explicit-exit mechanisms proposed are similar in spirit

to the label-stacking (multi-level tunnelling) ideas in MPLS[21].

A key difference is that BANANAS proposes only a single-
level address stack, whereas MPLS can have multiple levels
in its label-stack. Note that the explicit exit routing is a
special case of explicit path routing introduced in earlier
sections. The PathID “hash” in this case is simply the exit
ASBR IP address. This address stacking procedure operates
in the fast processing path at all routers (both upgraded and
non-upgraded), unlike IP loose-source-routing that defaults
to the slow-processing path because it is an IP option.

5.3 Explicit AS-PATH Forwarding
The goal of explicit AS-PATH forwarding is to provide a

distributed mechanism to send packets along an arbitrary,
but validated AS-PATH. The idea is similar to the explicit
path routing introduced for OSPF/IS-IS, except that we
now refer to explicit AS-PATHs rather than a sequence of
contiguous routers and links. In particular, we propose a
separate hash field called external-PathID or e-PathID in
packets for this function. The e-PathID is the hash of the
desired AS-PATH, i.e., hash of the sequence of AS numbers.

The e-PathID hash is processed as follows. First, in an up-
graded AS, assume that at least the entry and exit AS border
routers (ASBRs) are upgraded to support the explicit AS-
PATH function. Assume that a border router (called the en-
try ASBR) receives a packet with a non-zero, valid e-PathID.
The incoming e-PathID is used by the entry ASBR to deter-
mine an appropriate exit ASBR. The packet is then explic-
itly sent to this exit ASBR using the mechanisms described
in the earlier section, i.e. address-stacking. Indeed, once
the address is stacked, the i-PathID may also be explicitly
chosen to indicate a specific route to that exit ASBR. Note
that the e-PathID is not swapped at the entry ASBR. The
outgoing e-PathID (for the AS-PATH suffix) replaces the in-
coming e-PathID only at the ezit ASBR. This convention is
required because the autonomous system is an atomic entity
(similar to a node) as far as the e-PathID is concerned. How-
ever, the AS physically breaks up into an entry- and exit-
ASBR (similar to input and output interfaces of a node). If
we imagine that the abstract PathID swapping happens at
the output interface, that corresponds to our convention of
swapping the e-PathID at the exit ASBR. Observe, that we
have required only EBGP routers to be aware of the multi-
AS-PATH feature, and do not require upgrades in selected
IBGP routers (unlike the explicit exit case discussed earlier).

0.0.0.64/29

00032128

Figure 6: Topology for illustrating explicit AS-
PATH forwarding

To illustrate the explicit AS-PATH feature, we consider
the AS-graph topology in Figure 6, and assume that we
would like to send traffic from AS1 to AS5, i.e. to the IP pre-
fix 0.0.0.48 along AS-PATH AS1-AS2-AS3-AS5, represented
as (1 2 35). The AS-PATHs available are AS1-AS2-AS5,
AS1-AS2-AS4-AS3-AS5, AS1-AS2-AS3-AS5. The explicit
path (1 2 3 5) is chosen at router 1; the suffix AS-PATH
is (2 3 5) whose hash is placed in the e-PathID field in the
outgoing IP packet. The next-hop is an entry router in AS2.
An exact match of prefix and e-PathlID results in the packet
being forwarded to the AS3. The e-PathID will be swapped
only at the exit ASBR (i.e. Router 2 in AS2). A simi-



lar sequence of events occurs in AS3 involving entry ASBR
(router 1) and exit ASBR (router 3) before the packet is
forwarded to AS5. The outgoing e-PathID from AS3 will be
set to 0 because AS5 is the destination AS.

In spite of these apparent reductions in upgrade complex-
ity, BGP’s path-vector nature poses a more important prob-
lem. Specifically, a new AS-PATH is unknown to an up-
stream AS unless the intervening AS explicitly advertises it
(after internal synchronization). In other words, even if ISPs
were interested in AS-PATH multiplicity, increased control
traffic is necessary to advertise the existence of multiple AS-
PATHSs to neighbor AS’es. Recall that such excess control
traffic was not required in link-state algorithms (we merely
piggybacked LSAs with minimal information). On the other
hand, the path-vector nature of BGP-4 also implies that no
path computation is necessary once the multiple AS-PATHs
have been received and filtered for acceptance.

We recognize that this increased control traffic require-
ment poses a significant disincentive for ISPs against adopt-
ing multi-AS-PATH capabilities en masse. Given the scal-
ability and instability issues with adding control traffic, we
expect that ISPs may choose to advertise only a small set
of multiple AS-PATHs to their neighbor AS’es. For exam-
ple, some AS’es may collaborate to allow forwarding along
multiple paths to certain destination prefixes and advertise
this as a non-transitive attribute to certain AS’es only.

5.4 BANANAS Extensions to BGP-4

In summary, we propose two capabilities in the context of
inter-domain routing: ezplicit exit routing and explicit AS-
PATH routing. For the former, we propose a 32-bit “address
stack” field in the routing header into which the destination
IP address will be “pushed”. The destination field in the IP
header is overwritten with the exit ASBR’s IP address. The
Exit ASBR will simply “pop” the destination address back
from the ”address stack” to the destination IP address. This
address stacking procedure (similar to MPLS) operates in
the fast processing path unlike the IP loose source routing
option. Moreover, it allows flexibility for only a subset of
BGP routers to be upgraded to support such explicit exit
choice.

For explicit AS-PATH forwarding we propose a new 32-bit
field in the packet routing header called the external PathID
or e-PathID. This field stores a hash of the sequence of ASNs
along the desired explicit AS-PATH. ISPs may choose to
only advertise a small set of multiple AS-PATHs to their
selected neighbor AS’es. In a multi AS-PATH capable AS,
only the entry ASBRs and exit ASBRs (i.e. only the EBGP
routers) need to be upgraded and synchronized on the avail-
able multiple AS paths. The incoming ePathID hash is
swapped with the outgoing AS-PATH suffix hash only at
the exit AS border router. The forwarding from the entry
ASBR to the exit ASBR uses the explicit exit mechanisms
described above. Multiple paths between the entry and exit
ASBRs are possible using the i-PathID mechanism described
earlier for intra-domain routing.

6. IMPLEMENTATIONAND SIMULATION
RESULTS

In this section, we illustrate the working of the proposed
framework. We have implemented the BANANAS frame-
work schemes in the Linux kernel: we use MIT’s Click Mod-

ular Router package [34] (data-plane) and GNU Zebra rout-
ing sofware version 0.92a [35] (control-plane). These imple-
mentations are tested on Utah’s Emulab testbed [36] to em-
ulate sizable topologies running real implementation code.
In particular, we test three cases: a) when an upgraded
router keeps all available paths (as computed by the DFS-
PU strategy), b) when upgraded nodes compute k-shortest
paths, with heterogeneous values of k at different nodes, and
c¢) the index-based scheme to illustrate architectural flexibil-
ity.

We use SSFNet [37] for larger integrated BGP/OSPF sim-
ulations. These SSFNet simulations illustrate the frame-
work in larger network topologies that integrate both OSPF
and BGP BANANAS functionalities. Note that in this sec-
tion, we have intentionally preferred simplicity in terms of
topology /test-case choices. We have performed a larger set
of SSFNet simulations and Emulab runs in more complex
scenarios, all of which support our assertions. These results
will be reported in a detailed technical report.

6.1 Linux Implementation Results

Figure 7 shows the topology of a simple validation ex-
periment conducted on Utah’s Emulab [36] testbed with
the Linux Zebra version 0.92a of OSPF (i.e. control-plane)
upgraded with our BANANAS building blocks. The for-
warding plane was implemented in Linux using MIT’s Click
Modular Router package [34]. Note that this is a partially
upgraded network: only nodes 1 and 2 (the dark colored
nodes) are upgraded in this configuration. Figure 7 also in-
dicates the IP addresses of various router interfaces and the
link weights. The router ID is statically defined to be the
smallest interface IP address.

39.9
9

All IP-addresses denoted by a.b are actually 192.168.a.b

Figure 7: Experimental Topology on Utah Emulab
using Linux Zebra/Click Platforms (Note: only dark
colored nodes are multi-path capable)

6.1.1 All Paths with Partial Upgrades (DFS-PU Al-

gorithm)

Table 1 illustrates a partial forwarding table computed at
node 1 (IP address 192.168.1.1) for destination 3 (192.186.3.3).
Note that the path string shown in Table 1 is only for the
sake of illustration and is not stored in the actual routing
table. The PathIDs are the (MD5 + CRC-32) hashes of the
router IDs (i.e. IP addresses of nodes) on the path. For
example, the PathID 2084819824 corresponds to a hash of
the set of router IDs {192.168.1.1, 192.168.1.2, 192.168.6.6,
192.168.39.9, 192.168.3.3 }. The outgoing path ID is the
hash of the suffix path formed after omitting 192.168.1.1. If
the path goes through other nodes which are not upgraded
(e.g. 1-4-3), the outgoing path ID is the hash of the suffix
path starting from the next upgraded router on the path.



In the case of the path 1-4-3, both nodes 4 and 3 are not
upgraded, so the suffix path ID is zero.

Outgoing I/f Path Incoming PathID  Outgoing PathID
192.168.1.1  1-2-6-9-3 2084819824 664104731
192.168.3.1 1-3 599270449 0
192.168.4.1  1-4-3 4183108560 0
192.168.5.1  1-5-4-3 1365378675 0

Table 1: Partial routing table at 192.168.1.1 for des-
tination 192.186.3.3

6.1.2 Kk-Shortest Paths with Partial Upgrades

In this section we illustrate, using the Linux implemen-
tation, the case when the upgraded routers compute upto
k-shortest paths, and different upgraded routers using dif-
ferent values of k.

Consider the 10-node topology shown in Figure 7. This
topology was setup in the Emulab network. We assume that
the routers 192.168.1.1 and 192.168.1.2 are upgraded with
k equal to 3 and 2 respectively. The results are presented
to verify the correctness of the “validation phase” (Algo-
rithm 2). Tables 2, 3 show respectively part of the rout-
ing tables at 198.168.1.1 for destinations 198.168.6.6 and
198.168.8.8 respectively. Tables 4, 5 show the correspond-
ing entries at router 198.168.2.2. For destination 198.168.6.6
the router 198.168.1.1 finds 3 paths, all of which are valid as
two paths have next-hop 198.168.2.2 and router 198.168.2.2
keeps 2 shortest paths. For destination 198.168.8.8, the
router 198.168.1.1 computes 3-paths, 1-2-8, 1-2-6-7-8, 1-2-7-
8. The path 1-2-7-8 is invalidated in the “validation phase”
as router 198.168.2.2 only keeps 2 paths (2-8, 2-6-7-8). Note
that the Path string is shown in Tables 2-5 for the purpose
of explanation.

Path | Incoming PathID Next-hop Outgoing PathID
2-6 1973392862 0.0.0.0 1973392862
2-7-6 2123671348 192.168.7.7 2123671348

Table 4: Part of routing table at 192.168.2.2 for des-
tination 192.186.6.6

Path Incoming PathID Next-hop Outgoing PathID
2-8 3491782861 0.0.0.0 0
2-6-7-8 3645081405 192.168.6.6 0

Path Incoming PathID Next-hop Outgoing PathID
1-2-6 1989316858 192.168.1.2 3491782861
1-2-7-6 656924081 192.168.1.2 3645081405
1-3-9-6 534784006 192.168.3.3 0

Table 2: Part of routing table at 192.168.1.1 for des-
tination 192.186.6.6

Path Incoming PathID Next-hop Outgoing PathID
1-2-8 3654096761 192.168.1.2 1973392862
1-2-7-6-8 1777786090 192.168.1.2 2123671348

Table 3: Part of routing table at 192.168.1.1 for des-
tination 192.186.8.8

6.2 Evaluation of Index-based Path Encoding

Scheme

The alternative index-based PathID encoding scheme was
implemented in the Linux kernel (MIT’s Click Router plat-
form) and simulated in SSFNet. We present our simula-
tion results in this section on a sizeable topology that cor-
responds to the old MCI topology of 1995 [38].

In this configuration, only nodes 4, 6, 7, 9, 10 are up-
graded. The source node in this simulation is node 6. Ob-
serve that node 6 is the only node that computes the k-
shortest-paths (k = 5) for all destinations and runs the val-
idation algorithm (Algorithm 2). All other upgraded nodes
merely keep an index table as described in Section 3.1). Ta-
ble 6 shows a part of the forwarding table at node 6 (only

Table 5: Part of routing table at 192.168.2.2 for des-
tination 192.186.8.8

those paths for destination node 7), and the i-PathIDs using
index-based encodings. The node 6 may choose any one of
these paths for a packet to node 7. We have verified that
the progression of i-PathIDs through the network follows the
description given in Section 3.2.

6.3 Integrated OSPF/BGP SSFNet Simulation

In this section we use SSFNet simulation results to il-
lustrate the integrated operation of proposed framework in
the Internet. This example demonstrates both the intra-
domain (OSPF) and inter-domain (BGP-4) operation of the
framework with explicit AS-PATH as well as explicit exit
forwarding.

Figure 9 shows the topology used for the results presented
in this section. The topology has eight (8) autonomous sys-
tems (AS’es). Four of these AS’es, namely AS1, AS2, AS5
and AS6, have been upgraded to support explicit AS-PATH
forwarding. Even within these upgraded autonomous sys-
tems, only a subset of routers are upgraded to support the
explicit AS-PATH and explicit exit routing as described in
Sections 5.3 and 5.2. The upgraded routers have been
marked with a “U” in Figure 9. A blow-up of the inter-
nal topology of AS2 is shown in Figure 10; the upgraded
routers are again indicated with “U”

Consider forwarding of a packet from AS1 to AS8 (see Fig-
ure 9). Given the constraints that only a partial set of AS’es
are upgraded, the following AS-PATHs may be used from
AS1 to reach AS8: AS2-AS4-AS8, AS2-AS5-AS6-AS7-AS8
and AS2-AS5-AS6-AS4-AS8. These AS-PATHs and their
corresponding e-PathIDs are indicated in Table 7, which
is a part of the routing table at the AS border router in

Figure 8: Old MCI Topology: Used for Testing the
Index-Based Scheme (Only Nodes 4, 6, 7, 9, 10 are
upgraded)



0.0.0.44/27

0.0.1.74:28

0.0.0.00

0.0.2.327

0.0.0.43

U=Updated AS

Figure 9: Topology used for integrated SSFNet sim-
ulation

Path Next-Hop i-PathID
6-2-4-3-7 2 0b01110
6-10-9-17-16-11-7 10 0b00110001
6-10-14-11-7 10 0b00101
6-10-9-4-3-7 10 0b01110110001

Table 6: Paths at node 6 for destination node 7
(Note: Ob indicates binary encoding)

Forwarding Table of AS1 at Router 1

Dest NextHop In e-PathID AS-PATH Out e-PathID Exit ASBR
0.57/28 2.93/32 2025862315 2-4-8 3535826417 0.91/32
0.57/28 2.93/32 4160716901 2-5-6-7-8 1248156781 0.91/32
0.57/28 2.93/32 669121903 5-6-4-8 2630971039 0.91/32

Table 7: Integrated OSPF/BGP Simulation: For-
warding Table of the Border Router in AS1 (Note:
0.57/28 refers to IP address 0.0.0.57/28 etc)

Forwarding Table of AS2 at Router 5

Dest NextHop In e-PathID ASPATH Out e-PathID Exit ASBR
0.57/28 2.97/32 3535826417 2-4-8 3535826417 2.107/32
0.57/28 2.113/32 3535826417 2-4-8 3535826417 2.107/32
0.57/28 2.97/32 1248156781 2-5-6-7-8 1248156781 2.24/32
0.57/28 2.113/32 1248156781 2-5-6-7- 1248156781 2.24/32

Table 8: Integrated OSPF/BGP Simulation: For-
warding Table Router 5 in AS2 (See Figure 10)

0.0.2.24/32

00.2.93/32
3 0.0.2.107/32
0.0.2.97/32 u

U=Updated Router

Figure 10: Blow-up of AS2’s Internal Topology in
the Integrated OSPF/BGP Simulation (Figure 9)

Destination Path i-PathID
0.0.2.107/32 5-4-3-2 17
0.0.2.107/32 5-1-4-3-2 18
0.0.2.107/32 5-4-11-7-2 1669
0.0.2.107/32 5-4-8-7-2 201
0.0.2.24/32 5-4-11-10-15-14 69
0.0.2.24/32 5-4-8-7-6-14 169
0.0.2.24/32 5-4-8-16-15-14 105
0.0.2.24/32 5-1-4-8-16-15-14 106
0.0.2.24/32 5-4-11-9-10-15-14 101
0.0.2.24/32 5-1-4-11-9-10-15-14 102

Table 9: Forwarding table at Router 5 in AS2 (Fig-
ure 10): k Shortest Paths (k = 7)

AS1. Note that the AS-PATH AS2-AS4-AS6-AS7-ASS8 is
not available because AS4 is not upgraded, and uses a de-
fault AS-PATH of AS4-AS8. Also in this simulation, we
assumed that the upgraded routers do not do any further
filtering, i.e., they re-advertise all their available AS-PATHs
to their neighboring AS’es.

In our example simulation, the border router of AS1 chooses
the AS-PATH AS2-AS4-AS8, which corresponds to the e-
PathID of 3535826417 (see the first row of Table 7). When
the packet arrives at router 5 of AS2 (the entry ASBR), its
header looks like Figure 11(A). This entry ASBR (i.e. router
5) of AS2 examines the incoming e-PathID to find the exit
ASBR to be node 2 with IP address 0.0.2.107 (see first row
of Table 8). Note that it does not swap the e-PathID field,
because this will be done at the exit ASBR. To emphasize
this point, observe that the outgoing e-PathID column in
Table 8 is the same as the incoming e-PathID for the desti-
nation prefix 0.0.0.57/28.

The entry ASBR (router 5) now “pushes” the destination
IP address (i.e. 0.0.0.57) into the address stack field and
replaces it with the exit ASBR IP address. The entry ASBR
also chooses a path within the AS to the exit ASBR. Table 9
shows the intra-domain paths available to reach exit ASBR
(router 2). In this simulation, we have integrated the index-
based PathID encoding scheme as well as the k-shortest path
route computation scheme (k=7) with the OSPF protocol
running in AS2. In particular, the path 5-4-11-7-2 within the
AS is chosen that corresponds to a i-PathID of 1669 (see the
third row of Table 9). The header fields of the packet at this
stage are shown in Figure 11(B).

The packet proceeds on the explicit intra-domain path (as
described in earlier sections) to reach the exit router 2 with
an i-PathID value of 0. At this router, the destination ad-
dress (0.0.0.57) is “popped” back from the address stack.
The e-PathID is also replaced with the outgoing e-PathID
of 1895667324 (see Figure 11(C)). Now the packet is sent
to AS4, which is not upgraded, but sends the packet on its
default policy AS-PATH, i.e., directly to AS8. In summary,
we have shown how a distributed set of upgraded and non-
upgraded nodes, with explicit paths independently selected
within upgraded AS’es can honor an explicit AS-PATH re-
quest of the source AS.

7. RELATED WORK

Most related work for multipath routing have been done
in the context of intra-domain protocols. OSPF, the most
common intra-domain routing protocol used in the Internet
today is based on single shortest path with equal splitting
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Figure 11: Diagram Showing How e-PathID, i-
PathID and Destination Address Change in the In-
tegrated OSPF/BGP Simulation

between next-hops of equal cost paths. Lorenz et al [39]
show that OSPF routing performance could be improved by
O(N) if traffic-matrix aware explicit source-based multipath
routing is used (e.g. MPLS-based [40, 41]).

Protocol extensions to support multipath routing (both
in RIP and OSPF) have been studied by Narvaez et al [7],
Chen et al [6] and Vutukury et al [8]. In [7], authors propose
to find loop-free multipaths only by concatenating the short-
est paths of their neighbors with their link to the neighbors.
This approach essentially uses a depth first search with a
depth of 1, whereas we allow arbitrary depth in our DFS-PU
algorithm. Chen et al and Vutukury et al [6, 8] propose more
general multipath computations, but their schemes require
the co-operation and upgrade of all the routers in the net-
work. Chen et al present a general concept of suffix-matched
path identifier to allow multipath computation using dis-
tributed computation, but they use local labels to realize the
path like in ATM networks [20] or MPLS [21]. Therefore,
they require a signaling protocol to map a global path spec-
ification to locally assigned labels at each node.

The proposed BANANAS framework allows source-based
multipath routing using a “PathID”. The use of a globally
significant path hash allows multipath capabilities without
signaling (i.e. in a connectionless manner) even in a partially
upgraded network. The signaling requirement for source-
routing is seen in protocols like ATM networks, MPLS net-
works [21] and NIMROD [12] routing (a link-state approach
to inter-domain routing). IPv4 [18] and IPv6 [19, 13] pro-
vide a variable-length loose-source-routing option that may
be considered “data-plane” signaling. But IPv4/v6 uses a
uncompressed string of IP addresses in contrast to our effi-
cient PathID encoding schemes.

Even though MPLS has gained popularity in some large
ISPs, many ISPs may prefer using OSPF/IS-IS to enable
multipath and traffic engineering capabilities. This is due
to the widespread deployment and operational experience

available with OSPF /IS-IS. Our approach extends the OSPF /IS-

IS to allow such capabilities even in partially upgraded net-
works. Our index-based scheme offers significant reduction
of state complexity in comparison to MPLS label tables.
Our computations can also be further optimized using incre-
mental k-shortest path algorithms similar to those suggested
for OSPF’s Dijkstra algorithm [42, 43].

In LIRA [11], Stoica et al briefly propose a forwarding
scheme which they suggest could replace MPLS. A path is

encoded as the XOR of router IDs along the path, and is pro-
cessed along the path using a series of XOR operations. The
work in LIRA is a special case of the BANANAS framework.
In particular, the authors do not consider the larger archi-
tectural issues of partial upgrades, route-computation, state-
computation tradeoffs, inter-domain operation etc. The fo-
cus in their paper was also different: a framework for service
differentiation.

8. SUMMARY AND CONCLUDING REMARKS

The key contributions in this paper can be summarized
as follows.

a. Identification of abstract multipath architectural con-
cepts (global PathID semantics, efficient path hashing) that
are crucial to avoiding the need for signaling and allowing
incremental network upgrades in connectionless routing pro-
tocols.

b. Canonical multipath and explicit path realizations in
the context of legacy routing protocols: OSPF, BGP-4.

c. Demonstration of significant architectural flexibility:
alternative PathID encodings, alternative route-computation
algorithms (DFS-PU, k;-shortest paths), movement of com-
plexity to edges, division of functions between data-plane
and control-plane, development of distributed validation al-
gorithms etc.

d. Linux implementation results and integrated OSPF/BGP
simulation results to validate various options

These building blocks can be used in two broad ways.
First, in the context of traffic engineering within a partially
upgraded legacy network. An operator may want to emu-
late signaled capabilities in a connectionless network (e.g.
see [41, 39]) or might desire fine-grained traffic management
control hard to extract from parameter tweaking (e.g. see
[30, 29, 31, 32]). The building blocks may be mixed and
matched in a limited number of ways. For example, one
could select a MD54+CRC32 encoding for BGP-4 (i.e. e-
PathIDs) and a index-based encoding for OSPF (i-PathID).
Obviously, a common encoding must be chosen across ISPs
for the explicit AS-PATH case.

Second, and perhaps more important, the BANANAS
framework building blocks could form the long-term basis for
a best-effort end-to-end path multiplicity model. Through
the independent partial upgrades of nodes in different au-
tonomous systems, end-systems can have a growing ezpecta-
tion of multiple end-to-end paths. We strongly believe that
such a mere expectation of end-to-end path multiplicity will
trigger substantial application innovation. To test this hy-
pothesis, we plan to deploy the BANANAS framework on
the PlanetLab infrastructure [22] as a public experimental
wide-area network overlay service by Fall 2003.
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