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Abstract:
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technology. However, the TCP/IP performance over ADSL is significantly diminished
due to the effects of asymmetry. We introduce a new operational model called the “AMP
model” which, with an understanding of TCP dynamics and buffer management
techniques explains the performance effects seen. We apply this model to guide design
improvements in buffer management (ack-regulation) and scheduling schemes to achieve
performance improvements of an order of magnitude or more. The improvements
observed are better than those proposed in earlier literature.
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1. Introduction

Asymmetric Digital Subscriber Line (ADSL) is a technology promising significant bandwidth increases
over existing copper local loops for Internet (TCP/IP) traffic. ADSL provides an asymmetric channel for
data transmission: the forward channel ranges in speeds from 1.5 Mbps to 8 Mbps whereas the reverse
channel ranges in speed from 64 kbps to 768 kbps. This bandwidth asymmetry has a profound impact on
TCP performance because the TCP throughput is regulated (and limited) by the flow of acknowledgements
(called “ack clock”) [tcp-cong].

The impact of asymmetry on TCP/IP performance has been characterized by Lakshman et al [lakshman]
using an index called normalized asymmetry ratio (k) which is the ratio of raw bandwidths on both
directions to the ratio of packet sizes in both directions. When k is greater than one, the TCP throughput on
the forward channel is restricted to a maximum of  (forward channel bandwidth) / k.  Other factors like
bi-directional traffic (e.g.: downloading a web page while sending an email) or protocol overhead (e.g.:
PPPoE, PPTP, L2TP, ATM etc) will increase k and further aggravate the asymmetry problem.

Balakrishnan et al [hari], Keshav [keshav] and the PILC group [pep] independently show that performance
can be substantially increased by making two key changes: simply suppressing acknowledgements on the
reverse channel (ack-filtering), and regenerating them after the reverse link has been traversed (ack-
reconstruction). Balakrishnan et al also apply the same techniques to address types of asymmetry other
than bandwidth asymmetry including asymmetry in delay, loss rates etc. We classify these techniques, as
“ack-regulation techniques” since they are very different from mechanisms like Random Early Drop
(RED) because the latter are designed to drop packets, not acks, and are used to signal congestion to TCP,
not alleviate asymmetry problems. Our work focusses on generalizing these studies into a model called the
AMP model, and making specific design improvements (Smart Ack Dropper: SAD) for performance
optimization based upon this model.

2. The AMP model

We extend the notion of normalized bandwidth ratio (k) [lakshman] to form a simple model called the
AMP model. The model is described as follows:
• Assume that, over an observation period, the fraction of the reverse link allocated to ack traffic is

saturated at A acks/second,  and
• Each ack generates M packets on the average (M = multiplicative factor), due to the effects of TCP

dynamics and ack-regulation schemes working together, and
• The average size of packets is P bits/packet,
• The forward link capacity allocated to packets corresponding to these acks is F bits/s, then
the forward link throughput over the observation period is limited to Min (F,  A*M*P) bits/second.

Observe that Lakshman’s normalized bandwidth ratio “k” characterizes an absolute upper bound on the
forward throughput based upon link bandwidths and packet vs. ack sizes. The AMP expression, on the
other hand, is an operational bound achievable with the asymmetric channel augmented with ack-
regulation schemes.  In particular, if the ack-regulation components can achieve a maximum average
multiplicative factor of M, then the AMP expression is tighter bound on the achievable forward throughput.
Moreover, it also accounts for scheduling allocations to acks and corresponding packets and vice versa  (in
the definition of F and A), and can hence be useful in understanding effects of bi-directional traffic.

For example, if the reverse link speed is 64kbps,  the forward link speed is 8Mbps, packet size is 1000
bytes, ack size = 40 bytes,  TCP is in its slow start phase (generating two packets per ack) and no ack-
regulation schemes are used. Then ack rate (A) would now be 200 acks/second , the multiplicative factor
M=2, and P = 8000 bits, the maximum throughput limit on the forward link = Min (8 Mbps, 3.2 Mbps) =
3.2 Mbps. Note that the number of TCP flows sharing the ADSL link is immaterial in this model (it is
captured in M). In particular, in this case if the TCP sources are all in congestion avoidance (and not in
slow start), then M is closer to 1, and  limit is even lower (about 1.6 Mbps)!
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The AMP model is also useful in analyzing the bi-directional traffic case, especially when link-sharing
schemes like CBQ [cbq] are deployed. Specifically, assume that in each direction, there are two classes
(queues) served by CBQ: one for packets and one for acks. Further assume that packets on the forward link
get a fraction f (1 > f > 0) of the forward link capacity (Cf), and on the reverse link get a fraction g  (1 > g >
0) of the reverse link capacity (Cr). Acks, therefore get fractions 1-f and 1-g of capacity forward and reverse
links, respectively. Assume that Pack is the size of acks in bits/ack and that the reverse channel (both
packets and acks)  is saturated at their respective scheduling shares. The bounds on the maximum rates of
packets and acks in both directions are given in the following table:

Max Packet Rate (pkts/s) Max Ack Rate (acks/s)
Reverse Channel G* Cr /P  (saturated) (1-g)* Cr /Pack (saturated)
Forward Channel Min[(1-g) Cr M/Pack,  f*Cf /P]  Min[ f*Cf /Pack , g* Cr /P ]

Observe that  f (the link fraction allocated to packets on the forward link)  should be chosen to be large, and
can be as large as 99% for pure TCP/IP bi-directional traffic. The choice of g (the link fraction allocated to
packets on the reverse link)  is a tradeoff between performance and policy considerations. We will use this
model to design ack regulation and scheduling policies.

3. The Smart-Ack Dropping (SAD) and Ack Regeneration Policy

The Smart-ack dropping technique (SAD) is a simple extension of concepts developed by Balakrishnan et
al [hari] and Keshav [keshav], i.e. to suppress as many acks in the reverse channel as possible because acks
are cumulative. Balakrishnan et al’s “ack-filtering” technique involves checking the entire queue upon the
arrival of a new ack to remove earlier acks for the same connection. The goal is partially to free some space
in the queue for other data packets and acks, and partially to compress the ack information. Keshav
[keshav] independently proposes an “ack-collapsing” technique where all acks are queued, but at the
transmission opportunity, the latest ack is sent and all others are dropped.

SAD is perhaps closest to Keshav’s scheme in concept, but uses minimal per-flow state to avoid enqueuing
acks, which are going to be dropped anyway. This way, we require only a buffer of size N (acks) where N
is the number of active flows (assuming separate packet buffers). In particular, SAD works as follows:

We assume a FIFO queue for acks (and optionally packets). The  per-flow information (stored as a hash
table) includes a single bit, which indicates if an ack of that flow exists in the queue, and the latest ack
number seen from that flow. When an ack arrives and the per-flow bit is zero, then we enqueue the ack, set
the per-flow bit and copy the ack number into the table.  If the per-flow bit is already set upon arrival of a
non-duplicate ack, then we update the per-flow ack number information to this value, and drop the ack.
When an ack is dequeued for transmission, the latest value of ack number from the table is copied to the
header (header checksum adjusted), and the bit in the table is cleared. Ack processing is O(1), since we
search the hash table and not the FIFO queue. This scheme can be extended to account for duplicate acks
and SACKs [techreport].

A detailed analysis of the scheme applying the AMP model is also described in [techreport]. Specifically, if
TCP is in congestion avoidance, the throughput is almost constant at W/RTT. The impact of SAD is to use
the reverse channel capacity of A acks/s to support a maximum forward rate of Min[m*A, W/RTT]
packets/s. When TCP is in slow start, each ack reaching the
TCP source results in (m + 1) segments being sent where m is the number of acks suppressed by SAD. In
fact, if the TCP sources remains in slow start phase, the AMP model predicts that SAD can compensate for
arbitrary degrees of asymmetry (i.e. any finite k). However, since most TCPs  reach congestion avoidance
within a few RTTs, the multiplicative factor saturates at the value of (near-constant) m seen during the
congestion avoidance.

SAD also reduces the probability of negative interactions with RTT estimation (which occurs in
Balakrishnan et al’s scheme)  because acks are sent out in a timely manner, and queueing delay is bounded.
The suppression of acks leads to burstiness in the forward direction. This burstiness can be alleviated by
using an acknowledgement regeneration/reconstruction (AR) technique at the end of the reverse link as
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suggested by Keshav [keshav] and Balakrishnan [hari]. The regeneration scheme would regenerate (and
optionally smooth out) acks suppressed by SAD. In fact, the regenerator could regenerate more than one
ack per MSS  (which we quantify as the “regeneration factor”, R), all the way upto one ack for every byte
acked. The regeneration factor, R directly affects the rate of  TCP window increase especially during slow
start.

Data Packets
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Acknowledgements of flow 3

Copy the ack information & drop
the ack, and at the other end
regenerate the ack.

Figure 2:Illustration of SmartAckDropper(SAD)

4. Performance Evaluation

We have studied ack-regulation techniques have been studied using the “ns” simulator. The ADSL model
and terminology used in this paper is described in Figure 1. The ADSL channel (which is our focus) is
terminated on either end by devices, which are called the ATU-R (on the customer premises), and the
ATM-C (at the central office). A larger suite of results may be found in [techreport].  The analytical
explanation of the results and the limitations of the scheme are also discussed in that report.
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Figure 1: System Topology

4.1 Single TCP undirectional flow

With single TCP flow and without any ack regulation schemes, the simulation yielded the following results,
which can be used as a baseline to evaluate the effectiveness of SAD (Table 1).  As shown, the asymmetry
problem grows increasingly worse as the upstream channel becomes more constrained to a worst case of
19% utilization.

Downstream/
Upstream Speed
(Mbps/kbps)

Throughput
(Mbps)

Link Utilization K
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8/64 1.52 19% 51

8/128 3.01 37% 2.5
8/256 5.98 74.75% 1.25
8/640 7.46 93.25% 0.5
8/784 7.46 93.25% 0.41

Table 1: Uni-directional Single Flow Simulation

However, these problems can be overcome almost entirely by using SAD (Table 2).  For instance, in the
worst-case scenario (8 Mbps/64 kbps), throughput rose four-fold to 6.2 Mbps. 

Downstream link/
Upstream link
(Mbps/kbps)

Throughput
(Mbps)

Link Utilization K

8/64 6.2 77.5% 5
8/128 6.79 84.88% 2.5
8/256 7.28 91% 1.25
8/640 7.45 93.13% 0.5
8/784 7.46 93.25% 0.41

Table 2: Uni-directional Single Flow Simulation with SmartAckDropper

Additional throughput can be gained using AR techniques (Table 3). A regeneration factor (R) of R
generates R acks for every ack suppressed by SAD.  With a regeneration factor of 4, a maximum
throughput of 7.4 Mbps can be achieved even in the worst-case scenario.

Downstream/
Upstream link
(Mbps/kbps)

Throughput
(Mbps)

Regeneration
factor

8/64 7.51 4
8/64 7.40 3
8/64 6.98 2
8/64 6.65 1

Table 3: SmartAckDropper and Ack Regenerator

Although this performance is the result of a trivial uni-directional flow, in reality one will find multiple
flows, both uni-directional and bi-directional. We focus on the latter here for brevity. Please refer our
detailed technical report for a full suite of simulations [techreport].

4.2 Bi-Directional Flows

The problems associated with bi-directional transfers are unique and require a slightly different approach.
Here, link utilization on both channels is key performance indicator. Balakrishnan et al [hari] proposed that
an acks-first scheduling policy be used. However, we find that if acks are given priority, the rate of packets
on the reverse (low-speed) channel drops to unacceptably low values.  Yet if packets are given priority, the
effects of asymmetry lead to low packet throughput on the forward (high-speed) channel and beyond a
point, this cannot be compensated by ack-regulation schemes (since the behavior is also dependent on TCP
window dynamics).

Table 4 shows performance of a single FTP flow in each direction (baseline), with FIFO queuing at the
upstream link.  Here, the presence of bi-directional traffic reduces downstream throughput (and increases

                                                       
1 (8 Mbps/64 kbps)/(1000 bytes/40 bytes) = 5
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asymmetry) by almost a factor of 10. Downstream throughput worst case is 18.8 kbps, compared to 1.5
Mbps in the uni-directional model (Table 1).  Even in the case of 640 kbps upstream, downstream
throughput is reduced to 7.4% available capacity.  This drop can be attributed almost entirely to increased
asymmetry and bidirectional issues, as there were no lost packets observed.

Downstream/
Upstream link
(Mbps/kbps)

Throughput
(kbps)

Link Utilization K

8/64 18.8/58.8 0.235% / 91.875% 5
8/256 255.2/232 3.19%/90.63% 1.25
8/640 588/579.6 7.35%/90.56% 0.5

Table 4: Single Flow, Bi-directional Traffic.

The cleanest way to improve performance in such cases is to set up one queue for acks and one for packets
in both directions, serviced with a link-sharing scheduler (CBQ: Class-Based Queuing) rather than a
priority scheduler. On the ack queue on the reverse direction, both SAD and AR are applied.  CBQ assigns
fractions, F and G respectively, to the packet queues on the reverse and forward links respectively. Based
on analysis in section 2, we set F large — as large as 99.7%. The setting of G is a policy/performance issue
which we investigate here.

Table 6 shows performance using a combination of CBQ, SAD and AR for different values of G and
degrees of asymmetry. Aggregate (packet + ack) throughput for both downstream and upstream directions
is shown. Note that the performance in all cases has increased by a factor of 10-20 compared to
corresponding values in Table 4.  Furthermore, as G increases from 0.1 to 0.9, the upstream aggregate
throughput increases (and in some cases nearly doubles or triples) at the expense of downstream throughput
(20-50% throughput loss), hence leading to a policy/performance tradeoff.

Downstream/Upstream link
(Mbps/kbps)

Aggregate Throughput
(Mbps/kbps)

G

8/64 3.39/34.4 0.1
8/64 3.73/44.4 0.5
8/64 6.43/54 0.9

Downstream/Upstream link Aggregate Throughput G
8/256 5.46/84.4 0.1
8/256 5.59/149.2 0.5
8/256 6.55/217.2 0.9

Downstream/Upstream link Aggregate Throughput G
8/640 6.7/333.6 0.1
8/640 6.65/336.8 0.5
8/640 7.02/542.8 0.9

Table 5: Effect of SAD+AR+CBQ

4.3 ATM vs IP on the Local Loop

ATM has been criticized for its “cell-tax” of 10-20% on transport.  But we find that use of ack-regulation
schemes makes the issue of ATM cell-tax moot when applied on the local loop, i.e., the cell-tax is not the
dominant issue determining performance. While the cell tax increases the normalized asymmetry ratio (K),
it can easily be compensated for by using the SAD+AR techniques discussed earlier.  Table 7 shows that
the percentage change in K, when ATM is used, is no more than 16%, which has been compensated by the
SAD/AR scheme while achieving maximum levels of link utilization.
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Downstrm /
upstrm link
(Mbps/kbps)

Packet size
(bytes)

New packet
size2

K w/o ATM K w/ ATM % change
link k

8/64 1024 1174 4.88 5.64 0.16
8/128 1024 1174 2.42 2.8 0.16
8/256 1024 1174 1.21 1.4 0.16
8/640 1024 1174 0.47 0.54 0.15

Table 6: Normalized Asymmetry with ATM Fragmentation and Reassembly

Summary

We presented a simple AMP model and an improved ack-regulation scheme called SAD3 to explain and
improve the performance of TCP/IP over ADSL channels. We also propose the use of link-sharing
schedulers with just two queues (ack and packet queues, with SAD implemented on the ack queues) at the
ATU-R to effectively support bidirectional Internet traffic. The percentage gains in performance can range
from 100%-2000% . However arbitrary degrees of asymmetries cannot be solved by ack regulation
schemes because performance is ultimately dictated TCP dynamics as well.
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2 IP/ATM/LLC overhead only
3 Pulsecom has applied for a patent on the SAD scheme & algorithm


