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Abstract

Typical congestion control algorithms for high speed networks include local 
ow controllers at the

bottleneck nodes. In this paper an H1 based controller is developed for rate feedback in a single

bottleneck network. The rates can be assigned to the sources only after a certain transmission delay.

Controller design speci�cations for this time delay system include \fairness" to multiple users, \usage"

optimization, and minimization of the transients in the queue length. Stability robustness, against

uncertainties in time delays, is also speci�ed as a design goal. By a simple algebra the problem is

transformed to an H1 control of a plant with a time delay, and it is solved by using an algorithm

developed earlier for this class of problems.
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1 Introduction

Congestion is the problem which occurs when demand for a resource outstrips the capacity. In com-

puter networks, congestion may occur in routers and switches which are shared by several sources.

Note that \
ow control" is a term used for the end-to-end control of a single 
ow (or multiple 
ows

on a per-
ow basis). Congestion control has been studied widely in computer networks and com-

munications literature mainly for high speed data networks, [2, 3, 21, 24], and more recently for

Asynchronous Transfer Mode (ATM) networks, [4, 10, 20, 25, 30] (these references are only samples

from a huge literature on the subject, they are by no means complete).

There are two popular methods of controlling congestion. The \rate-based" method is the one

where sources send data at a particular rate and adjusts its rate based upon network feedback. The

\window based" control (or \credit based" control) has the sources sending no more than a window

of unacknowledged packets; sources adjust window sizes based on network feedback.

The Available Bit Rate (ABR) Service in ATM networks uses a rate-based, end-to-end tra�c

management framework [1]. This framework has three main components: source end-systems, switches

(or network nodes) and destination end-systems. Once every N packets (called \cells") the sources

send a control cell which can be used by switches to convey feedback. The control cells travel to the

destination and are returned to the source in the same path. Feedback signal may be in the form of

a single bit or an explicit rate value, and can be written in the forward or reverse direction of travel

of the control cell. In this framework the key elements of congestion control in a network are the 
ow

controllers, at the bottleneck nodes, which determine the feedback signal. Indeed many of the papers

cited above deal with this basic problem, see for example [2, 9, 20, 25, 30] and their references. For

a survey of di�erent tra�c management schemes in ATM networks see [12]; for details of a speci�c

scheme we refer to [11].

In this paper we consider a single bottleneck which receives data from n sources. The data 
ow rates

from these sources are assumed to be generated by a feedback controller. Due to physical restrictions

there are time delays in data 
ow between the sources and the bottleneck node. A feedback controller

is to be designed for this time delay system. There are several controller design methods for di�erent

classes of systems with time delays, see for example [7, 8, 13, 14, 16, 17, 18, 19, 22, 23, 26] and

their references. The techniques developed in [7, 28] are used in this paper. One of the design goals

considered here is \fairness" to multiple users trying to send information through the same bottleneck

node. That is, the minimum rate allocated to individual sources should be maximized. When sources

are unconstrained (i.e., the demand is always greater or equal to the allocation), this reduces to simply

equalizing the rates of sources. Another design objective is to maximize the \utilization," i.e. total

data 
ow into the node should be kept close to the full \capacity" (maximum allowable 
ow rate for

the data leaving the node) and the queue size should be kept close to a certain desired size. However,

the most important design speci�cation is stability of the feedback system. Stability robustness, with

respect to uncertainties in the values of time delays in each 
ow path, is also desired.

In Section 2 of this paper a mathematical description of the system model is given. Then in
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Figure 1: Flow control for n sources and a single bottleneck node

Section 3 feedback controller design problem is transformed to an H1 optimization problem for an

unstable time delay system. The controller is derived from the procedure of [27] developed for this

type of control problems. Structure of the controller is discussed in Section 4 via an example; imple-

mentation of the resulting controller is also illustrated. Concluding remarks are made in Section 5.

2 Mathematical Model

Consider a bottleneck node with n source connections, as shown in Figure 1. Let q(t) � 0 denote

the queue length at the bottleneck node, and ri(t) � 0 be the data 
ow rate at the ith source. The

maximum rate at which the ith source can send data will be denoted by di. In other words, ri is

restricted to be ri(t) � di for all i = 1; : : : ; n. The rates r1(t); : : : ; rn(t) will be assigned to the sources

by a feedback controller which measures the queue length, q(t), at the bottleneck node. The capacity

is the rate at which data is sent out from the node; it is denoted by c(t). A dynamical model for this

system is given by

_q(t) =
nX
i=1

ri(t� �i)� c(t) (1)

where �i is the time delay from the ith source to the bottleneck node. This time delay is equal to the

amount of time it takes for the feedback control signal to reach the source plus the amount of time it

takes for the data to reach the node after it is sent from the source. A block diagram of the feedback

control system is shown in Figure 2.

The utilization is de�ned to be the quantity

�(t) := min

� Pn
i=1 ri(t� �i)

c(t)
; 1

�
:

One of the objectives in high speed networks is to keep the utilization as close to 1 as possible. The

controller should also achieve \fairness" in steady state, i.e. the rates allocated to di�erent sources

should be as close to each other as possible. A trivial choice is then to select equal rates for the sources,

with a steady state value c=n, where c = limt!1 c(t) which is assumed to be non-zero.

In the frequency domain the feedback system can be represented by transfer functions as shown in

Figure 3, where qd represents the \desired" queue length at the bottleneck node, P (s) is the underlying
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Figure 2: Feedback control system.

Figure 3: Feedback control system with MISO plant.

plant and K(s) is the controller.

Clearly, the plant is a Multi Input Single Output (MISO) system whose transfer function is in the

form

P (s) =
1

s
[e��1s ; : : : ; e��ns] :

Similarly, the controller is an n� 1 system with transfer function

K(s) = [K1(s) ; : : : ; Kn(s)]
T:

In general time delays �1; : : : ; �n are unknown (in fact they might be time varying, but here they will

be assumed to be �xed). Let hi � 0 be a given lower bound of �i, and de�ne

�i := (�i � hi):

For controller design, let �+i � 0 be a known estimate of the size of the uncertainty, i.e. �i 2 [0 ; �+i ).

De�ne Po(s) to be the nominal plant

Po(s) =
1

s
[e�h1s ; : : : ; e�hns] :

The following is a coprime factorization in H1

Po(s) = D(s)�1No(s) = No(s)D(s)�1;
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where D(s) = s(s+ �)�1 and

No(s) =
1

s+ �
[e�h1s ; : : : ; e�hns] ;

for any � > 0. The uncertain plant can be represented as

P (s) = (No(s) + �N (s))D(s)�1

with

�N (s) =
1

s+ �
[(e��1s � 1) ; : : : ; (e��ns � 1)] diag(e�h1s; : : : ; e�hns)

where diag(e�h1s; : : : ; e�hns) denotes the diagonal matrix whose entries are e�h1s; : : : ; e�hns.

In the next section the simpli�ed model developed above will be considered for feedback control.

It should be mentioned that several di�erent control schemes have been determined in [20, 25, 30] for

similar models. In this paper robustness to uncertainty in the time delays will be taken into account

by putting the problem into the framework of H1 control.

3 Feedback Controller Design

3.1 Stabilization

For the nominal plant, Po, given above with the particular coprime factorization, all stabilizing con-

trollers are parameterized as (see for example the recent books [7, 31] and their references)

K(s) = (X(s) +D(s)Q(s))(Y (s)�No(s)Q(s))
�1 (2)

where Q is the free n� 1 vector of H1 functions, and stable X, Y satisfy

NoX +DY = 1 or Y =
1�NoX

D
:

Note that X is n� 1 and Y is scalar. Moreover, since D(s) = s=(s+ �), X(s) must satisfy

� = [1 � � � 1] X(0)

which has in�nitely many solutions for X(0).

3.2 Robust stability

Using standard results of robust control theory it is a simple exercise to show that a controller K(s)

is robustly stabilizing (i.e. it stabilizes all plants of the form P (s)) if it stabilizes Po(s) and satis�es

kWK(1 + PoK)�1k1 � 1 (3)
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where W = [w1 ; : : : ; wn], with wi; w
�1
i 2 H1 and

jwi(j!)j >
�����e�j�i! � 1

j!

����� for all !; and �i 2 [0 ; �+i ): (4)

For a given �+i it is easy to determine a low order weight wi(s) such that the conservatism introduced

in (4) is very small, see e.g. [15].

In terms of the free parameter Q, stability robustness is guaranteed by

kWD(X +DQ)k1 � 1: (5)

3.3 Performance issues

One of the performance objectives of rate-based congestion control is to keep the queue length, q(t),

as close to its desired value, qd(t), as possible. Consider

qd(s) =
1

s
bq(s)

where bq is an arbitrary bounded energy signal (for example if bq is a pulse of �nite duration, then qd is

a saturating ramp signal). Then the tracking error, expressed in the frequency domain, is

E(s) = qd(s)� q(s) = So(s)
1

s
(bq(s) + c(s));

where So(s) = (1 + Po(s)K(s))�1. Since K is a stabilizing controller, and Po has a pole at s = 0, we

have that So(0) = 0, and by the �nal value theorem the steady state value of the error is

ess = lim
s!0

sE(s) = lim
s!0

([e�h1s; : : : ; e�hns]K(s))�1s(bq(s) + c(s)):

The signal bq(t) is assumed to have �nite energy, so its �nal value is zero, and hence

ess = ([1; : : : ; 1]K(0))�1c:

Thus, at least one of the entries of the controller must have a pole at s = 0, in order to have zero

steady state error.

Also note that the rate feedback signals are given (in the frequency domain) by264 r1(s)...
rn(s)

375 = K(s)(1 + Po(s)K(s))�1
1

s
(bq(s) + c(s));

and recall that for \fairness" it is desired to have the steady-state values of r1; : : : ; rn equal to c=n.

This means that the entries, Ki(s), of the controller K(s) must satisfy

lim
s!0

Ki(s)([e
�h1s; : : : ; e�hns]K(s))�1 =

1

n
for all i = 1; : : : ; n:
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In conclusion, for good steady state performance the controller must be in the formK(s) = Ko(s)D(s)�1

with Ko(0) = [1; : : : ; 1]TKo�(0) for some scalar Ko�(0) 6= 0.

Now considering the parameterization (2), a desired form of the controller is obtained if Q 2 H1
is such that

Y (0) = No(0)Q(0)() lim
s!0

@

@s
((s+ �)� [e�h1s; : : : ; e�hns]X(s)) =

1

�
[1; : : : ; 1]Q(0) (6)

and

Ko(0) = lim
s!0

D(s)

(Y (s)�No(s)Q(s))
(X(s) +D(s)Q(s))

= lim
s!0

D(s)

(Y (s)�No(s)Q(s))
X(0) = [1; : : : ; 1]TKo�(0):

By the above discussion X 2 H1 must be chosen in such a way that

X(0) = [1; : : : ; 1]T
�

n
;

otherwise X(s) is free. The following choice for X(s) simpli�es the analysis:

X(s) =
�

n
F (s); where F (s) := [e�(h�h1)s; : : : ; e�(h�h1)s]T h = maxfh1; : : : ; hng:

In this case Y (s) becomes

Y (s) = 1 +
�

s
(1� e�hs)

and Y (0) = (1 + �h). Thus for (6) to hold the free parameter Q(s) should satisfy

�(1 + �h) = [1; : : : ; 1]Q(0) : (7)

In summary, with the above choices of X(s) and Y (s), the steady state performance requirements are

met if the controller is K = (X +DQ)(Y �NoQ)
�1, where Q(s) is a free stable n� 1 vector satisfying

(7). Clearly, a simple admissible Q is

Qo(s) = F (s)
�(1 + �h)

n
Q1(s) (8)

where Q1(s) is an arbitrary stable transfer function with Q1(0) = 1. In this case the controller becomes

Ko(s) = F (s)
1

n

Go(s)

1� 1
se
�hsGo(s)

where Go(s) =
�s

s+ �

�
1 +

s

s+ �
(1 + �h)Q1(s)

�
: (9)

Selection of the free parameter Q1(s) will be discussed in the following sections.

Besides the steady-state behavior, it is also desired to control the transient response of the system.

For this purpose the H1 norm of the weighted sensitivity function can be minimized (this corresponds
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to worst energy minimization for the tracking error, see for example [5] for a detailed discussion). More

precisely, the problem is to

minimize kWs(1 + PoK)�1k1 (10)

over all controllers K(s) stabilizing Po(s), whereWs(s) is the sensitivity weighting �lter. Since external

signals c(t) and qd(t) are \step-like functions" an appropriate weight is Ws(s) = 1=s. By the controller

parameterization given above the problem (10) is equivalent to

minimize kV (Y �NoQ)k1 : Q 2 H1: (11)

where V (s) :=Ws(s)D(s) = (s+ �)�1.

3.4 Special optimization problems

For the solution of (11) under the condition (5) there is signi�cant amount of degree of freedom in Q.

There are several ways to pose optimal control problems which determine the free parameter Q (and

hence the controller K) uniquely. Some of these problems are discussed below.

Problem 1. Time delays in the feedback paths between di�erent sources and the bottleneck node

can be equalized by the controller by choosing

K(s) = F (s)K�(s)

where K�(s) is a scalar controller, and h = maxfh1; : : : ; hng, (note that this is similar to the controller

structure (9)). Then the sensitivity function is So(s) = (1+P�(s)K�(s))
�1 where P�(s) =

n
s e
�hs, and

the controller K�(s) must be a stabilizing controller for the new SISO plant P�(s). In the controller pa-

rameterization discussed in Section 3.1, this structural choice corresponds to having X(s) = F (s)X�(s)

and Q(s) = F (s)Q�(s), with X� 2 H1 satisfying X�(0) = 1=N�(0), where N�(s) = ne�hs=(s + �),

and Q� 2 H1 is the free parameter.

Recall that by (7) for good steady state performance it is desired to have Q�(s) =
�(1+�h)

n Q1(s),

where Q1 2 H1 satis�es Q1(0) = 1. Let us �x Q1(s) = 1 and examine the stability robustness

inequality for this particular choice of the free parameter:

kWK(1 + P�K)�1k1 � 1; (12)

where

K(s) = F (s)
1

n

 
Go(s)

1� e�hs

s Go(s)

!
; Go(s) =

�s

s+ �

�
1 +

s

s+ �
(1 + �h)

�
:

For this controller structure, (12) is equivalent to

kW2(s)
1

s
Go(s)k1 � 1 (13)
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where W2(s) is a new uncertainty weight determined from

jW2(j!)j � 1

n

�����
nX
i=0

je�j�i! � 1je�j(h�hi)!
����� ; (14)

for all !, and all �i 2 [0 ; �+i ), see e.g. [15]. Let �
+
k be the maximum of f�+1 ; : : : ; �+n g. Then a simple,

yet conservative, form of W2 is

W2(s) =
"+ (2 + ")�s

1 + �s
; (15)

where " > 0 and � > 0 are determined from

jW2(j!)j > je�j�k! � 1j

for all !, and all �k 2 [0 ; �+k ). Clearly, (13) holds if



"�1 + 2�(1 + 1=")s

1 + �s

��
1

1 + s=�

��
1 +

(1 + h�)

�

s

1 + s=�

�




1
� 1: (16)

If we choose � such that

1

�
= 2�

�
1 +

1

"

�

then (16) holds if

"

�
2 +

h

2�(1 + 1=")

�
� 1:

Hence, if " > 0 is su�ciently small, then this controller guarantees stability robustness in the presence

of uncertainties in time delays.

In the above discussion Q1 was �xed. Now let us leave Q1 free, and de�ne a performance opti-

mization problem as follows: minimize 
 > 0 such that Ko is stabilizing Po and





"

�1Ws(1 + PoKo)

�1

WKo(1 + PoKo)
�1

#





1
� 1: (17)

Considering the controller structure (9) the problem (17) can be expressed as minimizing 
 > 0 in





"

1

s(1� e�hs 1sGo(s))

W2(s)
1
s Go(s)

#





1
� 1; (18)

over all stable Q1(s), with Q1(0) = 1. For notational convenience de�ne

Q2(s) :=
1

s
Go(s) =

�
1

1 + s=�

��
1 +

s

s+ �
(1 + �h)

�
: (19)
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So, in terms of Q2, the free parameter Q1 can be written as

Q1(s) =

��
1 + s=�

1 + �s

�
Q2(s)� 1

�
(s+ �)

(s+ �)(1 + �h)
�! 0:

If we relax the condition Q1(0) = 1 (which corresponds to steady state performance objective), the

solution of (18) can be approximated by the solution of the following problem: minimize 
 > 0 over

all Q2 2 H1 satisfying





"

1

(s+�)(1� e�hsQ2(s))

W2(s)Q2(s)

#





1
� 1; (20)

with � > 0 and � ! 0, and W2(s) is as de�ned above. Note that the problem (20) is equivalent to a

mixed sensitivity minimization problem for the SISO plant

P2(s) := e�hsW�1
2 (s); (21)

which can be solved using certain techniques from operator theory. See [6, 7, 28] and their references

for explicit computations of the optimal controller. In Section 4 implementation of the controller

obtained from (20) will be discussed in detail.

Problem 2. Let D"(s) =
s+"
s+� , where " > 0 is a small real number to be determined shortly. Using a

change of variable

Q = �D�1" (X + bQ) (22)

the condition (5) can be re-written as

kWD(1�DD�1" )X �WDDD�1"
bQk1 � 1:

Note that " > 0 can be chosen such that

�x := kWD(1�DD�1" )Xk1 � 1:

Under these conditions stability robustness is guaranteed by

kWDDD�1"
bQk1 � (1� �x) : (23)

Another design objective which reduces the problem to a scalar optimization is to equalize the contri-

bution of each control channel to the robustness inequality (23). In this case the free parameter bQ is

chosen as

bQ =

264w
�1
1
...

w�1n

375 eQ (24)
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where eQ 2 H1 is the new scalar free parameter. In terms of the new variable, eQ, stability robustness

is guaranteed if

kD2D�1"
eQk1 � (1� �x)p

n
: (25)

Then the following scalar optimization problem can be posed: minimize 
 > 0 over all eQ 2 H1
satisfying






"

�1V (1�NoX(1�DD�1" )

D + bND�1"
eQ)p

n
(1��x)D

2D�1"
eQ

#





1
� 1; (26)

where bN = No[w
�1
1 ; : : : ; w�1n ]T. The problem (26) can also be solved using results from operator theory.

The key di�culty here is to �nd an inner-outer factorization of bN , which can be seen as a parallel

connection of n stable time delay systems. Clearly, if time delays are equal in each channel, then this

problem is as easy as the �rst problem (17). When the delays are commensurate, i.e. hk = Nkho

for some ho and integers Nk, k = 1; : : : ; n, then �nding inner outer factorizations amounts to �nding

right half plane zeros of a quasi-polynomial, which is a feasible problem. On the other hand, when

delays are arbitrary the problem is di�cult, see references in [28, 29]. Nevertheless, since hk's are

nominal values of time delays, they can be chosen as commensurate, without introducing too much

conservatism.

Problem 3. In order to �nd an appropriate controller the following multivariable optimization prob-

lem can also be posed; though in this case the solution may not be unique. Recall that the rate

feedback signals (in the frequency domain) are

264 r1(s)...
rn(s)

375 = K(s)(1 + Po(s)K(s))�1
1

s
(bq(s) + c(s))

and it is assumed that jrk(t)j � dk, where dk is the \demand" corresponding to the kth source. So,

in order to put a penalty on the rates, another design objective can be speci�ed: the controller K(s)

should be such that

kW3K(1 + PoK)�1k1 � 1;

whereW3 is the diagonal weighting matrixW3 = diag(d�11 ; : : : ; d�1n ). Then a new optimization problem

can be posed: minimize 
 > 0 over all Q 2 H1 satisfying







264 

�1V (1�No(X +DQ))

WD(X +DQ)

W3D(X +DQ)

375








1

� 1:
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The above problem is a multivariable two-block H1 problem. The key step in its solution is the

inner-outer factorization of the (n+ 2)� n stable transfer matrix

264 

�1V No

WD

W3D

375 :

In general it is not possible to factor out a common time delay term from the �rst row of this matrix,

so the problem is non-trivial. However, once the inner-outer factorization is performed the methods

of [7] (Chapter 8) can be used to solve the optimization problem.

4 Controller Structure and Implementation

In this section we discuss implementation of the controller obtained from (20). By applying the

formulae given in [27], the optimal controller (denoted by K1(s) to distinguish it from Ko(s) with

Q1(s) = 1), can be easily computed. It is determined from the problem data Po(s) (the plant),

Ws(s) = 1=s (the sensitivity weight), andW2(s), (the robustness weight, de�ned above). After several

steps, involving algebraic simpli�cations and substitutions (which are ommited here for brevity), the

controller can be found as

K1(s) := F (s)
1

n

R
(s)

1� e�hsR
(s)

�
1


2s
+ s

�
(27)

where

R
(s) =

p

1� "2
s(1 + �s)

(1 + b
s+ a
s2)

a
 =
(2 + ")
�p

1� "2
; b
 =

s
�2 + 
2"2 + 2(2 + ")
�

p
1� "2 � (2 + ")2�2

1� "2

and 
 > 0 is the smallest positive solution of

ejh=
 = R
(j=
):

Note that the term (1 + 
2s2) appearing in the numerator of K1(s) gets cancelled by the roots of the

denominator, (1� e�hsR
(s)), at �j 1
 . It is a simple exercise to show that 
 is the unique solution of

f(
) = 0 where f(
) =
h



� �

2
+ Tan�1

 

b



2 � a


!
� Tan�1

�
�




�
(28)

Therefore, if h increases then so does 
, which means that the performance gets worse. The feedback

diagram illustrating a possible implementation of this controller is shown in Figure 4. Recall that in
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Figure 4: Controller implementation.
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Figure 5: Uncertainty bound.

the above formulae " and � are the parameters of W2(s), which determines a bound on the time delay

uncertainties, and h is the maximum nominal delay between the sources and the bottleneck node.

Numerical Example: Let us pick h = 0:5sec and �+ = 0:1sec, i.e. there is 20% uncertainty in the

time delay. Then, W2(s), with " = 0:1 and � = 0:1, is a valid uncertainty weight as shown in Figure 5.

The optimal performance level 
o can be found from the plot of f(
) versus 
. This is shown in

Figure 6, which indicates that 
 = 0:148 is the optimal value. Once 
 is determined, R
(s) can be

computed as

R
(s) =
0:15s(1 + 0:1s)

(1 + 0:17s + 0:03s2)
:

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 6: jf(
)j versus 
.
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For the controller Ko(s), (9), with any stable Q1(s) having Q1(0) = 1, the DC gain is in�nite

(Ko(s) contains a pole at s = 0). On the other hand, K1(0) = 1=
. So, unless 
 > 0 can be made

arbitrarily small, the controller K1(s) will not contain a pole at s = 0. If this is an undesirable

situation, the sensitivity weight should be modi�ed to Ws(s) = 1=s2 to force the controller to have

a pole at s = 0. Such a modi�cation would slightly complicate the controller computations. Indeed,

the above formula for K1(s) is obtained by hand calculations; when the weights are of high order one

needs to use a computer. It is also not so easy to give an explicit \one line" formulae for the controllers

that appear in the solution of Problems 2 and 3. However, once the problem data is speci�ed, there

are numerically feasible techniques, [7], that can be used to �nd the controller.

In the full version of the paper the controllers Ko and K1 will be compared to the controllers

obtained using Smith predictor, [20], and H2 optimization, [30], via realtime simulations.

5 Conclusions

In this paper several di�erent schemes have been proposed for H1 based 
ow controllers for a single

bottleneck node. The controllers Ko andK1, given explicitly in this paper, are designed to equalize the

time delays in each feedback channel. This way non-uniqueness problem has been avoided. Another

way to circumvent this problem is to assign a weight to each channel so that e�ects of the time delay

uncertainties (on a measure of stability robustness) are equalized. Once an inner outer factorization

of the resulting plant bND�1 is determined, the controller can be found from the similar methods that

are used to �nd K1(s). The third problem we have proposed is a multivariable H1 optimization.

In the full version of the paper, performances of the controllers determined here (and obtained

elsewhere) will be compared by real time simulations on a typical tra�c network.
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