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Abstract— In this paper, we presenta schemefor minimizing
the packet lossin an OSPFnetwork. Packet lossleadsto time-outs
in TCP which constitutesa major fraction of the Inter net traffic.
We formulate packet lossrate in the network in terms of the link
parameters, suchasbandwidth and buffer space,and the param-
etersof the traffic demands.A GI/M/1/K queuing model hasbeen
usedto computethe packetdrop probability onagivenlink assum-
ing drop-tail queuing. The problem of optimizing OSPF weights
is known to be NP-hard even for the caseof a linear objective
function [5]. We useOn-line Simulator (OLS) [1] to search for a
goodlink weight setting and asa tool for automatic network man-
agement. OLS usesfast, scalablerecursive random search (RRS)
schemeto search the parameter space.We have simulatedthe pro-
posed OSPF optimization schemeusing ns. Our resultsdemon-
strate improvementsof the order of 30-60% in the total packet
drop rate for the traffic and topologiesconsidered.

|. INTRODUCTION

In this paper we presenta schemeto minimize paclet loss
in the network. The problemof minimizing paclet loss can
be broadly classifiedas a traffic engineeringoroblem. Traffic
engineerind TE) is definedasthetaskof mappingtraffic flows
ontoanexisting physicaltopologyto meettheobjectivesof net-
work operators.In this paperthe TE objective is to minimize
the pacletsdroppedin the network. TE in a network of OSPF
routershasbeenachieved by adjustingthe link weightssuch
thatthe OSPFroutingwith theselink weightsleadsto desired
routes[4].

Themainlimitation in an OSPFnetwork is dueto the short-
estpathnatureof OSPF OSPFroutestraffic on shortestpaths
basedntheadwertisedink weights.As aresult,thelink along
theshortespathbetweerthetwo nodesnaybecomecongested
while thelinks on longerpathsmayremainidle. OSPFalsoal-
lows for EqualCostMulti Path(ECMP)wherethetraffic is dis-
tributedequallyamongvariousnext hopsof theequalcostpaths
betweena sourceanda destination11]. Thisis usefulin dis-
tributing the load to several shortesipaths. However, the split-
ting of load by ECMP is not optimalasshowvn in [5]. Various
methodshave beenproposedn literatureto balancethe traffic
acrossan OSPFnetwork. Oneof the earlierapproachewasto
adaptink weightsto reflectthelocal traffic conditionsonalink
or to avoid congestion([9], [6]). This is calledadaptve rout-
ing or traffic-sensitie routing. However, adaptingink weights
to local traffic conditionsleadsto frequentroute changesand
is unstable(see[2], [13] for stability analysis). Additionally,
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adaptve routing is basedon the local information and there-
fore cannotoptimizetraffic allocationfrom theviewpoint of the

overall network. Thesedravbacksare alleviatedby assuming
the knowledgeof entiretraffic demandof the network. This is

theapproacttakenfor TE in OSPFnetworks.

In the OLS schemethe optimizationof network protocolsis
modeledasa general'black box” problemwherethe objective
functionis unknawn but canbe evaluatedthroughsimulations.
The adwantageof this approachis thatit makesthe OLS avery
flexible systemwhoseuseis not restrictedin onespecificpro-
tocol or oneperformanceobjective However, the formulation
andevaluationof optimizationobjective is important. Figurel
shavsthe generalbperatiorof OLS andits interactionwith the
network.

Thepacletlossratefor agivenlink weightsettingcanbees-
timatedusing paclket-level or flow level simulation. However,
for fastevaluationan analyticapproachis presentedo calcu-
late the paclet drop rate by usinga GI/M/1/K queuingmodel.
Generalnter-arrival (Gl) is moregenerahrrival modelascom-
paredto the commonlyusedpoissonprocess.It allows thear
rival processto be more bursty than a poissonprocesswhile
beingmathematicallytractable.Analysisis considerablyfaster
thanthesimulationapproactandcrucialif optimallink weights
are obtainedusing a searchscheme. We have simulatedthe
OSPFoptimizationschemen ns. Our resultsshow thatthe to-
tal paclet lossin the network canbe significantly reducedby
appropriatelysettinglink weights.

Therestof the paperis organizedasfollows. Sectionll de-
rivesthe link paclet drop rate from the offeredload and for-
mulateghe optimizationproblem.Sectionlll describesheap-
proachof usingon-line simulationframewnork for OSPFopti-
mization.SectionlV presentshesimulationresultsandfinally,
SectionV presentshe conclusionsandfuturework.



Il. THE OBJECTIVE FUNCTION

Our goalis to minimize the pacletdropratein the network
for a given meanand varianceof the aggreyatedemandsbe-
tweeneachsourceand destinationrouters. Let us considera
network representedby a directedgraphG=(\/,£), where A/
and L representespectiely the setof routersandlinks in the
network. Eachlink I € £ hasbandwidthdenotedby B; and
a buffer spaceof K; paclets. We assumehat paclketsarriving
when the buffer spaceat a link is full are droppedand there
is no otheractive queuemanagemenglgorithmrunningat the
routers.In additionto the knowledgeof bandwidthandbuffers
atall thelinks, we assumehatanestimateof themeanandvari-
anceof theaggreyatedemandrom eachsources to destination
t is known. Let D, V denotethe meanandvariancematrix of
the estimatedchggregyatedemand.In practice,all suchinforma-
tion canbe obtainedusingthetoolsdescribedn [7], [8].

In the following, we will first shov how to derive the drop
probability for one link basedon the offeredload. Thenwe
will formulatethe optimalgenerarouting problemwhich aims
to optimizethe overall paclet drop ratefor the network. Note
thatthe OSPFoptimizationproblemis just the optimalgeneral
routing subjectto the shortespathconstraint.

A. Link Drop Probability

Let P denotethe paclet drop probability on a link, \, o2
denotethe mean, varianceof the offered load to this link in
pacletspersecondand B, K denoteits bandwidthandbuffer
spaceaespectiely. In orderto find a closed-formexpressiorfor
the paclet drop probability P, let us assumean exponentially
distributed paclet size with meanX. However, we consider
a generalarrival process.We computethe paclet drop proba-
bility at the link usinga GI/M/1/K queuingmodel. The drop
probability of a finite GI/M/1/K hasbeenapproximateddy an
infinite buffer GI/M/1 queud10] usingthefollowing equation.

P(Ny = K)

P(Now < K) @

PNk =K) =
Nk denotegshennumberof pacletsin thefinite bufferedqueue,
whereas N, denotemmumberof pacletsin theinfinite buffer
GI/M/1 queue.The queuelengthdistribution of GI/M/1 queue
is givenby [3]:

P(Noo =j) = Aw’™"  (j 2 0) 2
where A is the normalizationconstaniandw is a constande-
pendingon the arrival processand servicerate. w canbe ob-
tainedby solvingthefollowing equation:

(3)

where~(s) is the Laplacetransformof the arrival processand
u is the serviceratewhich is givenby % In orderto solve (3)
for w, we needto assumea inter-arrival time distribution for
the arrival process.Let us considerthe GeneralizedExponen-
tial (GE) distribution for modelingthe arrival processto first
two moments.We discussbelow the reasonfor choiceof GE
distribution.

w=7(1-wn)

The pdf of GE distributionis givenby

9(z) = (1 —p)é(z) + pae™** (4)

whered(z) is the deltafunction, p anda two constantparam-
eters. As canbe seenfrom (4), a GE processs characterized
by two parametersy anda. GE distributionis a specialcaseof
H, distribution andcanbe usedto modelgeneralinter-arrival
processethataremoreburstythanPoissorprocessFor aPois-
sonprocesghevariances equalto the squareof mean.Hence,
GE distribution maybe usedto modelthefirst two momentsof
processewith variancegreaterthanthe squareof mean.If the
arrival processs representedby a GE distribution, then, with
probability p the inter-arrival time is exponentiallydistributed
with meana andwith probability 1 — p, the inter-arrival time
is zero. Hence,this distribution represents batcharrival pro-
cesawith geometricallydistributedbatchsizeandexponentially
distributedinter-batcharrival times. For alink with A, o asits
meanandvarianceof the offeredload, we canhave the param-
etersof the GE distribution representinghearrival process:

2)2
o2+ A2 ®)

The meming of N independenGE(p;,a;) processess a bulk-
arrival Poissonprocesswith mean arrival rate ¢ equal to
Eﬁil a; and p equalto a/ 3 2. Similarly, splitting of a
GE(p,a) processnto N streamsaccordingto a Bernoullifilter
r1,ra,...rn, theparametersf thest” processare

__r
p(1—ri) +r;

p= anda = pA

pi = anda; = r;a. (6)
Reademayreferto [12], Sectionl.4for moredetails.

The paclet arrival processof a single TCP flow is bursty
in naturewith a “bulk” of paclets arriving every round-trip
time. Themodelthatwe have consideredmpliesthatwe have
“bulk” arrivals (in form of burstsof paclets from competing
TCPsourcesf varyingsizesarriving into aqueue Our model
doesnot capturethe feedbackeffect of paclet dropson TCP
flows becauseve have consideredhe aggreatetraffic arriving
atan OSPFrouterasour demandestimate.

Takingthe Laplacetransformof (4), we get,

pa
7
s+a ( )
Thensubstituteit into (3) andsolwe it for w for the GE arrival
procesgives

Gis)=1—-p+

w=p+(1-p) (8)
where, ~
a aX

p= ; =B ©)

Finally, using (1), (2), (3) and(7), we get the paclket drop

probability
_@-pp+1-p~
1—(p+1-pk+
In summary (10) representghe closedform expressionof
paclet drop probability, P, on a single link as a function of

mean,variance), o? of the arrival processmeanpaclet size
X, link bandwidthB andbuffer spacek .

(10)



B. TheOptimal Genearl Routing

Usinglink paclet drop probabilitiesobtainedfrom (10), we
canformulatethe optimalgeneraroutingproblemas:

=) MNP
leL

where); isthearrival ratefor link [ andF, is its dropratecalcu-
latedby (10). Thisis a constrainedptimizationproblemwith
theflow constraintsteachrouterj for eachdemandD(s, t) be-
tweensources anddestinatiort. If f(s Y) denoteshefractionof
thedemandD(s, t) onlink I, thenthe flow balanceconstraints
aregivenby

(11)

—D(s,t) ifj=s
s,t s,t e .
Z f((’ij)) Z f((Jvz)) - 87 ¢ If J = t (12)
i:(i,5) €L ©(j,i)eL 0 Otherwise
Themeanpacletarrival rateto alink I, A;, is givenby
)‘l = Z fl(s’t) (13)

(8,t) EN XN
The parametep(®-*) for the GE procesaisedto fit the demand
D(s,t) is givenaccordingto (5):
) _ 2D(s, t)?
D(s,t)? + V(s,1)
Let rl(s’t) denotethe probabilitywith whichthedemandD(s, t)
is sentonlink 1. Thenrl(s’t) is givenby

s,t
P& _ fl( )
! D(s,t)

(14)

p(s,t

(15)

Let p(s’t) denotethe parametep of the GE processafter split-

ting thedemandD(s, t) with pI’ObabI|ItyT(s 't Thenpl(s’t) de-
notesthe parametep of the GE processepresentinghe flow
f(s h) Theparametep(s Yis givenaccordingto (6):

pls:d)

(5,) _

Dy (16)

p(s,t) (1 — ,r.l(sat)) + Tl(s’t)

Thetotal offeredloadonlink [ is givenby A; (13),theparameter
p of theassociateGE distribution maybe obtainedoy meging

the flows f(s’ goingthroughl. If p; denoteghe parametep
of the GE processassociatedvith the aggreatetraffic on link
[, thenpy is givenby

— Al( Z fl(svt)pl(svt))fl

(s,6)EN XN
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If p; is equalo A”’IX , then,using(10), theprobabilityof paclet

droppedatlink { |s givenby

P = (o1 — p)(pr + 1 —p) ™
1—(p+1—p)fett
Theoptimalgenerafoutingproblemis givenby (11), subject
to the constraintgyiven by (13), (14), (15), (16), (17), (18). It
may be notedthat we are castingthe traffic accordingto the
routing in orderto obtainthe meanand varianceof the total
offeredtraffic to eachl € £. However, we arenot iteratingto
obtain the equilibrium traffic parameters.Essentially we are
usingthe upperboundon the paclketdrop probabilityin (11).

(18)

T

Ci

Fig. 2. Shrinkandre-alignprocedureof Recursie RandomSearch

I1l. OPTIMIZATION OF OSPF WEIGHTS USING ON-LINE

SIMULATION

The generaloptimal routing problem, where the objective
functionis completelydefinedby (11)-(18), may possiblybe
solvedfor fl(s’t)‘v’l € L by usingsomenon-lineamprogramming
technigues.However, underconstraintsof OSPFrouting, the
relationbetweerthe link weightsand optimizationmetric can
nolongerbeanalyticallydefined.Hence theoptimalroutingin
OSPFhecomes “black box” optimizationproblemwhich may
bedefinedas:

min & (w) (19)

wherew is the vector of network link weightsand ®(-) the
objective function, which is unknowvn. Basically in orderto
obtainthe valueof ® for a given OSPFweightsetting,we run
modifiedFloyd Warshalls algorithm(modifiedto obtainequal
costpathsalso)to obtainthe routing. Thenthetraffic is castto
obtain parameter®f the aggreyatepaclet arrival processand
drop probability for every link I € £ using(13), (14), (15),
(16),(17)and(18). Finally thevalueof ® maybe calculatedoy
(11). Thisis anNP-hardproblemandOLS usesRRSscheme
to obtainalink weightsettingthatis anoptimalor nearoptimal
solutionto the optimizationproblemgivenby 19.

In the context of network optimization, a highly efficient
searctalgorithmis neededo find “good” OSPHink weightset-
ting sincethe network is a dynamicsystemandnetwork condi-
tions may changesignificantlyfrom time to time. Furthermore
the searchalgorithm should be scalableto high-dimensional
problemssincetheremay be hundredof parametersn a net-
work. Anotherissuethatneeddo beconsidereds thatnetwork
simulationonly providesanapproximatesstimationof network
performanceThis meanghattheobjectivefunctionis superim-
posedwith smallrandomnoisesdueto inaccuraciesn network
modeling,simulation,etc. To addressheseissuesOLS usesa
recursverandomsearctschemdsed14] for detailsandperfor-
mancestudyof RRS).TheRRSis basedn the high-eficiency
featureof randomsamplingat initial steps. The basicidea of
RRSis to usethefirst partof high-eficiency samplego identify
promisingareaghenstartrecursverandomsamplingprocesses
in theseareasvhich shrinkandre-alignthe samplespaceo lo-
caloptima.

An examplesearchprocessof RRSis illustratedin Figure
2. Firsta number sayn, of randomsampless takenfrom the
parametespaceD, andthe bestpointis takenasthecenterCy
of the promisingregion R; whichwill befurtherexplored.The
sizeof R; is takento be the mp valueof Ci. Thenanother



I randomsamplesaretakenfrom R;. Herel shouldbe much
lessthann sincethe searchis in a promisingareaandexpects
to find betterpointsquickly. If a betterpointis found within

thesd samplesthe centerof the samplespacds movedto this

point andthe sizeis kept unchanged.As showvn in Figure 2,

the centeris moved to C,, the region R, is usedasthe next

samplespace. If a betterpointis not foundin [ samplesthe

size of samplespaceis reducedby half andthe centeris kept

unchangedAs shovnin Figure2, R3 is usedasthenext sample
spaceafter] unsuccessfutamplesn R, andthe centerC, is

left unchangedThis shrink-and-re-aligmprocedurds repeated
until the size of the region is reducedbelov a threshold,then

theabove searchprocesss restarted.
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Fig.3. Overall OSPFoptimizationsetupusingon-linesimulationarchitecture

Figure 3 shaws the functional block diagramof the overall
setupof this simulation. The OLS monitorsthe traffic to pro-
vide the estimatesof meanandvarianceof the traffic demand
for performancesvaluationof link weights. A GE model pa-
rameterareusedto fit thefirst two momentof link traffic. Di-
jkstra’s algorithm (modifiedto include ECMP) is usedto find
the OSPFpathsandtraffic is castusing split and meging of
GE flows. The aggreyatetraffic is usedto computethe paclet
lossfor a givenOSPHink weightsetting.RRSis thenbe used
to searchfor betterlink weight settingfor the network which
is evaluatedusingthe above procedure.Whena certainstop-
ping criteriais met, for example,thetime limit is reachedthe
best-so-&r link weightsettingfoundby RRSmaybe deployed
in the real network if it resultsin substantiaimprovementin
theperformancetherwisethe link weightsareleft unchanged.
A long searchtiime suggests nearoptimallink weightsetting
with high probability.

IV. SIMULATION RESULTS

In this sectionwe presentsimulationresultsto demonstrate
theminimizationof packetlossby optimizing OSPFweights.

We have consideredthree network topologies, shavn in
Figure 4, to demonstrateour results. Two are well-known

ARPANET topologyandMCI topology We couldnt include
AT&T topology usedin [4] sinceit is not publicly available.
The ARPANET topology consistsof 48 routersand 140 sim-
plex links Eachlink in thenetwork is assumedo consistof two
simplex link whoseweightsmay be setindependently MCI
topologyconsistof 19 routersand62 simplex links. We have
alsoconsidered randomlygeneratedopologywith 22 routers
and60 simplex links. Randomamountof traffic wassentfrom
every nodeto every othernodein the network. This traffic was
generatedisingWaxmansapproachFor eachnodeu, two ran-
domnumbersaregenerated),,, D,, € [0,1]. For eachpair of
nodes(u, v) anotherandomnumberC, ., € [0, 1] wasgener
ated. If A denoteghe largestEuclediandistancebetweenary
pair of nodesandif a denotesa constantthe averagedemand
betweeny andv is givenby

—8(u,v)

D(u,v) = a0y DyCy vy 25

where, §(u,v) denotesthe Euclediandistancebetweenthe
nodesu andwv. This methodof generatingandomtraffic (the

terme _JZ(Z’U)) ensuregnoretraffic for sourcedestinatiorpairs
thatarecloserto eachother Sincea productof threerandom
variablesis takento generateghe demandsthereis actuallya
large variationin the traffic demands. The ratio of squareof
meanto thevariancevasassumedo bea uniformly distributed
randomvariablein [0, 1]. The meanand varianceof the traf-
fic demandsare generatedisingthe above procedure.All the
links in the network have 1Mbpsbandwidthwith a buffer size
of 50 paclets. The paclet sizewaschoseno be exponentially
distributedwith meanpaclet size of 200 bytes. In the simula-
tion resultspresentedn this paper we do not verify the traffic
modelingassumptionssthis is notafocusof this paper

We usedns to simulatethe realnetwork runningOSPE The
traffic in thenetwork wasgeneratedh thesameway asoutlined
in the beginning of this section. However, every 200 seconds
the traffic pattern(the meanand varianceof demandmatrix)
waschangedn orderto createa dynamicscenario.The traffic
generatoiis implementedover UDP to generatebursty traffic
with the GE inter-arrival distribution describedn (4). In our
simulation,we assumelLS hasa completeknowledgeof nec-
essarynetwork information,suchas,traffic demandsnetwork
topology etc.. Whenever a changeof traffic patternhappens,
the OLS runsthe recursve randomsearchfor a certainitera-
tionsto obtaina betterparametesetting. If the optimizedset-
ting is muchbetterthanthe original, it will be deployedat 100
secondsfterthe traffic change.The 100-secondéime differ-
ences usedbecauseve wantto obsenethe performancaliffer-
encebetweerbeforeoptimizationandafteroptimization.Note
thatherewe assumeherunningtime of the searchalgorithmis
fasterthanthe traffic changeperiod,i.e., the searchalgorithm
hasfinishedrunningat 100 secondsfterthetraffic change.

The actualpaclet drop ratesare collectedduring the simu-
lation for all the traffic sinksin the network andthensummed
togetherto getthe total paclet droprate. Figure5 shows total
paclet drop ratein the network as a function of time. Table
| summarizeshe maximumimprovementin packet drop rates
for differenttopologies. Note that more or lessimprovements
may resultdependingpn thetopologyandtraffic conditions.




(a) ARPANET Topology

Fig.4. Figureshaving the network topologiesusedin simulation
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Fig.5. Figureshaving total paclet droprateasafunctionof time for the (a) ARPANET (b) MCI (c) Randomlygeneratedhetwork topology Traffic patternwas
changedattimesO0, 200,400...,the optimizedOSPFweightsweredeploed attimes100,300,...

ARPANET | MCI | Random
Max. Improvement 31.8% 60.2% | 35.7%
TABLE |

TABLE SUMMARIZING THE MAXIMUM PERCENTAGE IMPROVEMENT IN
THE PACKET DROP RATES OBTAINED FOR DIFFERENT TOPOLOGIES FOR
THE RESULTS SHOWN IN FIGURE 5

V. CONCLUSIONS AND FUTURE WORK

In this paperwe have presenteda schemefor minimizing
paclketlossin the network by optimizing OSPFweightsusing
on-line simulationframework. The optimizationproblemwas
formulated. A generalinter-arrival GI/M/1/K queuingmodel
wasusedto computethe pacletlossratein the network. A GE
processvasusedto find closed-formexpressionwhich is gen-
eralenoughto fit a burstyarrival procesgo two moments.The
simulationresultsof the proposedschemedemonstratedm-
provementsof the orderof 30-60%in thetotal dropratein the
network for the differenttopologiesconsidered. Futurework
includesdemonstratiorof the proposedschemein a real test
network. Investigatingthe issuesassociatedvith traffic moni-
toring and modelingandits impacton the performanceof dy-
namicoptimizationwill be anothemgoalfor futurework.
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