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Abstract—In this paper, we present a scheme for minimizing the
packet loss in an OSPF network by optimizing link weights using
Online Simulation. For this work we have chosen packet loss rate
in the network as the optimization metric as it is a good indicator
of congestion and impacts the performance of the underlying ap-
plications. We have formulated packet loss rate in the network
in terms of the link parameters, such as bandwidth and buffer
space, and the parameters of the traffic demands. A GI/M/1/K
queuing model has been used to compute the packet drop proba-
bility on a given link. The problem of optimizing OSPF weights is
known to be NP-hard even for the case of a linear objective func-
tion [4]. We use On-line Simulator (OLS) [14] to search for a good
link weight setting and as a tool for automatic network manage-
ment. OLS uses fast, scalable recursive random search (RRS) al-
gorithm to search the parameter space. The search algorithm has
been compared with the local search heuristic of [3] in terms of the
number of function evaluations needed to obtain a “good” OSPF
link weight setting. Our results demonstrate that the RRS takes
50-90% fewer function evaluations to find a “good” setting. The
amount of improvement depends on the network topology, traffic
conditions and optimization metric. We have simulated the pro-
posed OSPF optimization scheme usingns and our results demon-
strate improvements of the order of 30-60% in the total packet
drop rate for the traffic and topologies considered.

Index Terms— Traffic Engineering, OSPF, Optimization, Net-
work Management, Online Simulation

I. I NTRODUCTION

Traffic engineering (TE) is defined as the task of mapping
traffic flows onto an existing physical topology to meet the per-
formance objectives of network operators. The problem of min-
imizing packet loss can be broadly classified as a traffic engi-
neering problem. Prior work in the area of TE in OSPF net-
works has focused on optimizing the OSPF link weights for a
given traffic demand estimate [3], [4]. The OSPF routing with
these link weights leads to desired routes.

OSPF routes traffic on shortest paths based on the adver-
tised link weights. As a result, the links along the shortest
paths may become congested while other links on longer re-
main idle. OSPF also allows for Equal Cost Multi Path(ECMP)
where the traffic is distributed equally among various next hops
of the equal cost paths between a source and a destination [10].
This is useful in distributing the load to several shortest paths.
However, the splitting of load by ECMP is not optimal as shown
in [4]. Various methods have been proposed in literature to bal-
ance the traffic across an OSPF network. One of the earlier
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Fig. 1. On-line simulation architecture for automatic network management

approaches was to adapt link weights to reflect the local traf-
fic conditions on a link or to avoid congestion ([5], [8]). This
is called adaptive routing or traffic-sensitive routing. However,
adapting link weights to local traffic conditions leads to fre-
quent route changes and is unstable (see [1], [13] for stability
analysis of adaptive routing). Additionally, adaptive routing is
based on the local traffic conditions and therefore can not op-
timize traffic allocation from the network’s perspective. These
drawbacks are alleviated by assuming the knowledge of entire
traffic demand of the network. This is the common assumption
in all the TE work in OSPF networks. In practice, estimates of
traffic demands can be obtained by using the tools described in
[6], [7].

We use the Online Simulation (OLS) framework [14] as the
network management tool for finding and deploying “good”
OSPF link weights. In the OLS framework, the optimization of
network protocols is modelled as a general “black box” prob-
lem where the objective function is unknown but can be eval-
uated through simulations. The advantage of this approach is
that it makes the OLS a veryflexiblesystem whose use isnot
restricted in one specific protocol or one performance objec-
tive. However, the formulation and evaluation of optimization
objective is important. Figure 1 shows the general operation of
OLS and its interaction with the network.

The packet loss rate for a given link weight setting can be es-
timated using packet-level or flow level simulation. However,
for fast evaluation an analytic approach is presented to calcu-
late the packet drop rate by using a GI/M/1/K queuing model.
General inter-arrival (GI) is more general arrival model as com-
pared to the commonly used poisson process. It allows the ar-
rival process to be more bursty than a poisson process while be-
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ing mathematically tractable. However, it does not capture the
correlation structure. More accurate traffic models, that capture
the long range dependence, may be used but they are computa-
tionally intractable or very complex. Analysis is considerably
faster than the simulation approach and crucial if optimal link
weights are obtained using a search scheme. We have simulated
the OSPF optimization scheme inns. Our results show that the
total packet loss in the network can be significantly reduced by
appropriately setting link weights.

Our contributions in this paper include
• Formulation of packet loss as the optimization objective

using a GI/M/1/K queueing model
• Demonstration of Online Simulation framework as the net-

work management tool in OSPF networks
• Application of RRS for finding a “good” link weight set-

ting fast
• Demonstration of improvement in packet loss by using the

OLS scheme
The rest of this paper is organized as follows. Section II derives
the link packet drop rate from the offered load and formulates
the optimization problem. Section III describes the online sim-
ulation framework approach for OSPF optimization. Section IV
presents the simulation results and finally, Section V presents
the conclusions and future work.

II. T HE OBJECTIVE FUNCTION

Our goal is to minimize the packet loss rate in a network for
a given mean and variance of the aggregate demands between
each source and destination routers. Let us consider a network
represented by a directed graphG=(N ,L), whereN andL rep-
resent respectively the set of routers and links in the network.
Each link l ∈ L has bandwidth denoted byBl and a buffer
space ofKl packets. We assume that the packets arriving when
the buffer space at a link is full are dropped. We also assume
that there is no other active queue management algorithm run-
ning at the routers. In addition to the knowledge of bandwidth
and buffers at all the links, we assume that an estimate of the
mean and variance of the aggregate demand from each source
s to destinationt is known (using a tool suc as [6]). LetD, V
denote the mean and variance matrix of the estimated aggregate
demand.

In the following sub-sections, we will first show how to de-
rive the drop probability for one link based on the offered load.
Then we will formulate the optimal general routing problem
which aims to optimize the overall packet drop rate for the net-
work. Note that the OSPF optimization problem is just the op-
timal general routing subject to the shortest path constraint.

A. Packet Drop Probability on a Single Link

Let P denote the packet drop probability on a link,λ, σ2

denote the mean, variance of the offered load to this link in
packets per second, andB, K denote its bandwidth and buffer
space respectively. In order to find a closed-form expression for
the packet drop probabilityP , let us assume an exponentially
distributed packet size with mean̄X. However, we consider
a general arrival process. We compute the packet drop proba-
bility at the link using a GI/M/1/K queuing model. The drop

probability of a finite GI/M/1/K has been approximated by an
infinite buffer GI/M/1 queue [9] using the following equation.

P (NK = K) =
P (N∞ = K)
P (N∞ ≤ K)

(1)

NK denotes the number of packets in the finite buffered queue,
whereas,N∞ denotes number of packets in the infinite buffer
GI/M/1 queue. The queue length distribution of GI/M/1 queue
is given by [2]:

P (N∞ = j) = Aωj−1 (j ≥ 0) (2)

whereA is the normalization constant andω is a constant de-
pending on the arrival process and service rate.ω can be ob-
tained by solving the following equation:

ω = γ ((1− ω)µ) (3)

whereγ(s) is the Laplace transform of the arrival process and
µ is the service rate which is given byB

X̄
. In order to solve (3)

for ω, we need to assume a inter-arrival time distribution for
the arrival process. Let us consider the Generalized Exponen-
tial (GE) distribution for modelling the arrival process to first
two moments. We discuss below the reason for choice of GE
distribution.

The pdf of GE distribution is given by

g(x) = (1− p)δ(x) + pae−ax (4)

whereδ(x) is the delta function,p anda two constant param-
eters. As can be seen from (4), a GE process is characterized
by two parameters,p anda. GE distribution is a special case of
H2 distribution and can be used to model general inter-arrival
processes that are more bursty than Poisson process. For a Pois-
son process the variance is equal to the square of mean. Hence,
GE distribution may be used to model the first two moments of
processes with variance greater than the square of mean. If the
arrival process is represented by a GE distribution, then, with
probability p the inter-arrival time is exponentially distributed
with meana and with probability1 − p, the inter-arrival time
is zero. Hence, this distribution represents a batch arrival pro-
cess with geometrically distributed batch size and exponentially
distributed inter-batch arrival times. For a link withλ, σ as its
mean and variance of the offered load, we can have the param-
eters of the GE distribution representing the arrival process:

p =
2λ2

σ2 + λ2
anda = pλ (5)

The merging ofN independent GE(pi,ai) processes is a bulk-
arrival Poisson process with mean arrival ratea equal to∑N

i=1 ai and p equal toa/
∑ ai

pi
. Similarly, splitting of a

GE(p,a) process intoN streams according to a Bernoulli filter
r1, r2, ...rN , the parameters of theith process are

pi =
p

p(1− ri) + ri
andai = ria. (6)

Reader may refer to [12], Section 1.4 for more details.
The packet arrival process of a single TCP flow is bursty

in nature with a “bulk” of packets arriving every round-trip
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time. The model that we have considered implies that we have
“bulk” arrivals (in form of bursts of packets from competing
TCP sources) of varying sizes arriving into a queue. Our model
does not capture the feedback effect of packet drops on TCP
flows because we have considered the aggregate traffic arriving
at an OSPF router as our demand estimate.

Taking the Laplace transform of (4), we get,

G(s) = 1− p +
pa

s + a
(7)

Then substitute it into (3) and solve it forω for the GE arrival
process gives

ω = ρ + (1− p) (8)

where,

ρ =
a

µ
=

aX̄

B
. (9)

Finally, using (1), (2), (3) and (7), we get the packet drop
probability

P =
(p− ρ)(ρ + 1− p)K

1− (ρ + 1− p)K+1
(10)

In summary, (10) represents the closed form expression of
packet drop probability,P , on a single link as a function of
mean, varianceλ, σ2 of the arrival process, mean packet size
X̄, link bandwidthB and buffer spaceK.

B. The Optimal General Routing

Using link packet drop probabilities obtained from (10), we
can formulate the optimal general routing problem as:

Φ =
∑

l∈L
λlPl (11)

whereλl is the arrival rate for linkl andPl is its drop rate calcu-
lated by (10). This is a constrained optimization problem with
the flow constraints at each routerj for each demandD(s, t) be-
tween sources and destinationt. If f

(s,t)
l denotes the fraction of

the demandD(s, t) on link l, then the flow balance constraints
are given by

∑

i:(i,j)∈L
f

(s,t)
(i,j) −

∑

i:(j,i)∈L
f

(s,t)
(j,i) =




−D(s, t) if j = s
D(s, t) if j = t
0 Otherwise

(12)

The mean packet arrival rate to a linkl, λl, is given by

λl =
∑

(s,t)∈N×N
f

(s,t)
l (13)

The parameterp(s,t) for the GE process used to fit the demand
D(s, t) is given according to (5):

p(s,t) =
2D(s, t)2

D(s, t)2 + V(s, t)
(14)

Let r(s,t)
l denote the probability with which the demandD(s, t)

is sent on linkl. Thenr
(s,t)
l is given by

r
(s,t)
l =

f
(s,t)
l

D(s, t)
(15)

Let p
(s,t)
l denote the parameterp of the GE process after split-

ting the demandD(s, t) with probabilityr
(s,t)
l . Thenp

(s,t)
l de-

notes the parameterp of the GE process representing the flow
f

(s,t)
l . The parameterp(s,t)

l is given according to (6):

p
(s,t)
l =

p(s,t)

p(s,t)(1− r
(s,t)
l ) + r

(s,t)
l

(16)

The total offered load on linkl is given byλl (13), the parameter
p of the associated GE distribution may be obtained by merging
the flowsf

(s,t)
l going throughl. If pl denotes the parameterp

of the GE process associated with the aggregate traffic on link
l, thenpl is given by

pl = λl(
∑

(s,t)∈N×N
f

(s,t)
l p

(s,t)
l )−1 (17)

If ρl is equal toλlplX̄
Bl

, then, using (10), the probability of packet
dropped at linkl is given by

Pl =
(pl − ρl)(ρl + 1− pl)Kl

1− (ρl + 1− pl)Kl+1
(18)

The optimal general routing problem is given by (11), sub-
ject to the constraints given by (13), (14), (15), (16), (17), (18).
It may be noted that we are casting the traffic according to the
routing in order to obtain the mean and variance of the total of-
fered traffic to eachl ∈ L. Equilibrium parameters of the arrival
process to a link can be obtained by assuming an initial value
of drop probabilityP 0

l . The actual arrival process parameters,
taking into account the packet loss, may be obtained by split-
ting the aggregate arrival process with probability (Pl)(or P 0

l in
the first iteration). This may be iterated till the convergence of
flows is achieved to the desired accuracy. In the results shown
in this paper, we have not iterated to obtain the equilibrium traf-
fic parameters. Essentially, we are using the upper bound on the
packet drop probability as value ofPl and a higherλl in (11).

III. O PTIMIZATION OF OSPFWEIGHTS USING ON-LINE

SIMULATION

The general optimal routing problem, where the objective
function is completely defined by (11)-(18), may possibly be
solved forf (s,t)

l ∀l ∈ L by using some non-linear programming
techniques. However, under constraints of OSPF routing, the
relation between the link weights and optimization metric can
no longer be analytically defined. Hence, the optimal routing in
OSPF becomes a “black box” optimization problem which may
be defined as:

minΦ(w) (19)

wherew is the vector of network link weights andΦ(·) the
objective function, which is unknown. Basically, in order to
obtain the value ofΦ for a given OSPF weight setting, we run
modified Floyd Warshall’s algorithm (modified to obtain equal
cost paths also) to obtain the routing. Then the traffic is cast
to obtain parameters of the aggregate packet arrival process and
drop probability for every linkl ∈ L using (13), (14), (15), (16),
(17) and (18). Finally the value ofΦ may be calculated by (11).
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Fig. 2. Shrink and re-align procedure of Recursive Random Search

Finding optimal OSPF link weights is an NP-hard problem even
for a linear objective function [4]. OLS uses RRS algorithm to
obtain an optimal or near optimal link weight setting for the
optimization problem given by (19).

In the context of network optimization, a highly efficient
search algorithm is needed to find “good” OSPF link weight set-
ting since the network is a dynamic system and network condi-
tions may change significantly from time to time. Furthermore
the search algorithm should bescalable to high-dimensional
problemssince there may be hundreds of parameters in a net-
work. Another issue that needs to be considered is that network
simulation only provides an approximate estimation of network
performance. This means that the objective function is superim-
posed with small random noises due to inaccuracies in network
modelling, simulation, etc. To address these issues, OLS uses a
recursive random search scheme (see [15] for details and perfor-
mance study of RRS). The RRS is based on the high-efficiency
feature of random sampling at initial steps. The basic idea of
RRS is to use the first part of high-efficiency samples to identify
the promising areas. The recursive random sampling processes
is used in these areas which are shrunk and re-aligned to obtain
local optima.

An sample search using RRS is illustrated in Figure 2. First a
number of random samples, sayn, are taken from the parameter
spaceD, and the best point is taken as the centerC1 of the
promising regionR1 which is further explored. The pointC1

falls in AD(r), r = 1− (1− p)1/n with probabilityp.The size
of R1 is taken to be the size ofAD(r) so as to cover at least one
local optimum inAD(r) with high probability. Then another
l random samples are taken fromR1. Herel should be much
less thann since the search is in a promising area and expects
to find better points quickly. If a better point is found within
thesel samples, the center of the sample space is moved to this
point and the size is kept unchanged. As shown in Figure 2,
the center is moved toC2, the regionR2 is used as the next
sample space. If a better point is not found inl samples, the
size of sample space is reduced by half and the center is kept
unchanged. As shown in Figure 2,R3 is used as the next sample
space afterl unsuccessful samples inR2, and the centerC2 is
left unchanged. This shrink-and-re-align procedure is repeated
until the size of the region is reduced below a threshold, then
the above search process is restarted.

Figure 3 shows the functional block diagram of the overall
setup of this simulation. The OLS monitors the traffic to pro-
vide the estimates of mean and variance of the traffic demand
for performance evaluation of link weights. A GE model pa-

Compute Shortest Paths

Cast Traffic

Fit a Model

Monitor Network Traffic

Recursive Random Search

Network Management Tool

SNMP etc.

Online Simulation
Real Network

Φw

Compute λ, Φ

Fig. 3. Overall OSPF optimization setup using on-line simulation architecture

rameters are used to fit the first two moments of link traffic. Di-
jkstra’s algorithm (modified to include ECMP) is used to find
the OSPF paths and traffic is cast using split and merging of
GE flows. The aggregate traffic is used to compute the packet
loss for a given OSPF link weight setting. RRS is then be used
to search for better link weight setting for the network which
is evaluated using the above procedure. When a certain stop-
ping criteria is met, for example, the time limit is reached, the
best-so-far link weight setting found by RRS may be deployed
in the real network if it results in substantial improvement in
the performance otherwise the link weights are left unchanged.
A long search time suggests a near-optimal link weight setting
with high probability.

IV. SIMULATION RESULTS

In this section we present two sets of simulation results. One
is to demonstrate that the recursive random search scheme ob-
tains better OSPF link weight settings with fewer function eval-
uations than the algorithm proposed in [3]. Another set of re-
sults demonstrate the improvement in end-to-end performance
(in terms of the drop rate) by dynamic optimization of OSPF
weights.

We have considered three network topologies, shown in
Figure 4, to demonstrate our results. Two are well-known
ARPANET topology and MCI topology. We couldn’t include
AT&T topology used in [3] for comparison as it is not pub-
licly available (the authors could not disclose the topology).
The ARPANET topology consists of 48 routers and 140 sim-
plex links Each link in the network is assumed to consist of two
simplex link whose weights may be set independently. MCI
topology consists of 19 routers and 62 simplex links. We have
also considered a randomly generated topology with 22 routers
and 60 simplex links.

Random amount of traffic was sent from every node to every
other node in the network. This random traffic was generated
using the method outlined in [3]. For each nodeu, two random
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Fig. 4. Figure showing the network topologies used in simulation

numbers are generatedOu, Du ∈ [0, 1]. For each pair of nodes
(u, v) another random numberC(u,v) ∈ [0, 1] was generated.
If ∆ denotes the largest Euclidian distance between any pair of
nodes and ifα denotes a constant, the average demand between
u andv is given by

D(u, v) = αOuDvC(u,v)e
−δ(u,v)

2∆

where, δ(u, v) denotes the Euclidian distance between the
nodesu andv. This method of generating random traffic (the

terme
−δ(u,v)

2∆ ) ensures more traffic for source destination pairs
that are closer to each other. Since a product of three random
variables is taken to generate the demands, there is actually a
large variation in the traffic demands. The ratio of square of
mean to the variance was assumed to be a uniformly distributed
random variable in[0, 1]. The mean and variance of the traf-
fic demands are generated using the above procedure. All the
links in the network have 1Mbps bandwidth with a buffer size
of 50 packets. The packet size was chosen to be exponentially
distributed with mean packet size of 200 bytes.

In the simulation results presented in this paper, we do not
verify the traffic modelling assumptions as this is not a focus
of this paper. The performance results shown in IV-A are the
average results from ten simulation runs. Average of multiple
simulation runs is presented as we compare the performance of
two stochastic search algorithms.

A. Comparison of Search Schemes

In this section, we present the results of comparison of re-
cursive random search scheme with the local search scheme
proposed in [3]. In optimization literature, the comparison be-
tween algorithms is usually done in terms of the number of
function evaluations instead of the absolute time taken to find
a “good” parameter setting. This is because the computation
time is considerably dependent on many other factors, such as,
implementation efficiency, testing platform, compiler, etc.. As-
suming that the main computation time is for function evalu-
ations, the number of function evaluations is a more appropri-
ate performance metric under the assumption that the compu-
tation time per function evaluation is approximately the same
for both schemes. Note this assumption is not exactly true in
the context of our problem, where one function evaluation rep-
resents one optimization metric computation for a specific set

Fig. 5. Figure showing the link cost as a function of offered load

of link weights. In [3], authors have used incremental short-
est path computations to improve the speed of search as very
few link weights change from one iteration to the next which
is reported to have 15% improvements on an average. In spite
of this, we still use the number of function evaluations as our
algorithm performance metric for the reasons mentioned above
and the consideration that our algorithm is designed to be a gen-
eral “black-box” search algorithm where no problem-specific is
available. It should be noted that even after taking the 15% im-
provement for the local search scheme of [4] into consideration,
our algorithm is significantly faster (please see the results).

Loosely, we refer to the number of function evaluations re-
quired to obtain a “good” parameter setting as the speed of con-
vergence. A “good” parameter setting has been defined as the
OSPF link weight setting that give metric value lower than that
by setting all link weights equal to unity (called unit OSPF).
This definition is just for the purpose of comparison. A “good”
parameter setting may have been defined alternatively as the
link weight setting to achieve performance metric equal to, say,
80% of the unit OSPF.

1) Heuristic Piecewise Linear Metric:In order to compare
the speed of convergence of our search scheme with the local
search scheme proposed in [3], we use the same metric used in
[3], which is piecewise linear with the link offered load. Fig-
ure 5 shows the cost for one link as a function of offered load.
The optimization objective is to minimize the sum of link costs,
summed over alll ∈ L.

Figure 6 shows the optimization convergence curves for the
ARPANET, MCI and Randomly generated network topologies
respectively. For the sake of comparison, these graphs also
show the optimization metric value when all the links’ weights



6

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700 800 900 1000

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

Number of Function Evaluations

Convergence Curve for ARPANET Network

recursive random search
local search

unit weights OSPF

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700 800 900 1000

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

Number of Function Evaluations

Convergence Curve for MCI Network

recursive random search
local search

unit weights OSPF

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700 800 900 1000

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n

Number of Function Evaluations

Convergence Curve for Randomly Generated Network

recursive random search
local search

unit weights OSPF

(a) (b) (c)

Fig. 6. Figure showing the convergence curves of piecewise linear metric for (a) ARPANET (b) MCI (c) Randomly generated network topology

are set to unity. It can be seen that the recursive random search
scheme outperforms the local search scheme in terms of the
number of function evaluations needed to find a “good” param-
eter setting for all three network topologies. These results have
been tabulated in Table I.

Scheme ARPANET MCI Random
Local Search 932 433 322

RRS 350 183 9
Improvement 62.4% 57.7% 97.2%

TABLE I
TABLE COMPARING THE NUMBER OF FUNCTION EVALUATIONS NEEDED TO

OBTAIN A “ GOOD” PARAMETER SETTING FOR PIECEWISE LINEAR METRIC

2) Packet Drop Rate Metric:In this section we present the
comparative results for the packet drop metric defined in (18).
Figure 7 shows the comparison results of the optimization con-
vergence speed. The results clearly show that the recursive ran-
dom algorithm significantly outperforms the local search algo-
rithm. Table II shows that for the packet drop rate metric, our
recursive random search scheme took 70% or fewer function
evaluations to obtain a “good” OSPF link weight setting.

Scheme ARPANET MCI Random
Local Search 882 469 372

RRS 210 125 54
Improvement 76.1% 73.3% 85.5%

TABLE II
TABLE COMPARING THE NUMBER OF FUNCTION EVALUATIONS NEEDED

TO OBTAIN A “ GOOD” PARAMETER SETTING PACKET DROP RATE METRIC

B. Optimizing OSPF for improving packet drop rate

Now we describe the simulation showing how the net-
work performance can be improved by our OSPF optimization
scheme. Figure 3 shows the overall simulation set-up.

We used the network simulatorns [11] to simulate the real
network running OSPF. The traffic in the network was gener-
ated in the same way as outlined in the beginning of this sec-
tion. However, every 200 seconds the traffic pattern (the mean

and variance of demand matrix) was changed in order to create
a dynamic scenario. The traffic generator is implemented over
UDP to generate bursty traffic with the GE inter-arrival distri-
bution described in (4). In our simulation, we assume OLS has
a complete knowledge of necessary network information, such
as, traffic demands, network topology, etc.. Whenever a change
of traffic pattern happens, the OLS runs the recursive random
search for a certain iterations to obtain a better parameter set-
ting. If the optimized setting is much better than the original,
it will be deployed at 100 seconds after the traffic change. The
100-seconds time difference is used because we want to observe
the performance difference between before optimization and af-
ter optimization. Note that here we assume the running time of
the search algorithm is faster than the traffic change period, i.e.,
the search algorithm has finished running at 100 seconds after
the traffic change.

The actual packet drop rates are collected during the simu-
lation for all the traffic sinks in the network and then summed
together to get the total packet drop rate. Figure 8 shows to-
tal packet drop rate in the network as a function of time. Table
III summarizes the maximum improvement in packet drop rates
for different topologies. Note that more or less improvements
may result depending on the topology and traffic conditions.

ARPANET MCI Random
Max. Improvement 31.8% 60.2% 35.7%

TABLE III
TABLE SUMMARIZING THE MAXIMUM PERCENTAGE IMPROVEMENT IN

THE PACKET DROP RATES OBTAINED FOR DIFFERENT TOPOLOGIES FOR

THE RESULTS SHOWN INFIGURE 8

V. CONCLUSIONS ANDFUTURE WORK

In this paper we have presented a scheme for minimizing
packet loss in the network by optimizing OSPF weights using
Online simulation framework. The optimization problem was
formulated. A general inter-arrival GI/M/1/K queuing model
was used to compute the packet loss rate in the network. A GE
process was used to find closed-form expression which is gen-
eral enough to fit a bursty arrival process to two moments. OLS
uses a fast, scalable recursive random search (RRS) scheme to
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Fig. 7. Figure showing the convergence curve of total packet drop rate for (a) ARPANET (b) MCI (c) Randomly generated network topology
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Fig. 8. Figure showing total packet drop rate as a function of time for the (a) ARPANET (b) MCI (c) Randomly generated network topology. Traffic pattern was
changed at times 0, 200, 400..., the optimized OSPF weights were deployed at times 100, 300,...

search the parameter space. The search algorithm has been
compared with the local search heuristic of [3] in terms of
the number of function evaluations needed to obtain a “good”
OSPF link weight setting. Our results demonstrate that the
RRS takes 50-90% fewer function evaluations to find a “good”
setting. The amount of improvement depends on the network
topology, traffic conditions and optimization metric. The sim-
ulation results demonstrated improvements of the order of 30-
60% in the total drop rate in the network for the different topolo-
gies considered.

Future work includes demonstration of the proposed scheme
in a real test network. Validating the GE model for traffic,
packet loss probability approximation and developing models
for Random Early Drop (RED) and more complex buffering
strategies are topics for future work. Investigating issues asso-
ciated with traffic monitoring and modelling and its impact on
the performance of dynamic optimization will be another goal
for future work.

REFERENCES

[1] Dimitri P. Bertsekas, “Dynamic Models of Shortest Path Routing Algo-
rithms for Communication Networks with Multiple Destinations,”Pro-
ceedings of 1979 IEEE Conference on Decision and Control, Ft. Laud-
erdale, FL, pp. 127-133, Dec. 1979.

[2] Robert B. Cooper, “Introduction to Queueing Theory,” Second Ed. New
York : North Holland, 1981.

[3] Bernard Fortz and Mikkel Thorup, “Internet Traffic Engineering by Opti-
mizing OSPF Weights, inProceedings of the INFOCOM 2000, pp. 519-
528, 2000.

[4] Bernard Fortz and Mikkel Thorup, “Increasing Internet Capacity Using
Local Search,” Preprint,http://smg.ulb.ac.be/Preprints/Fortz0021.html,
2000.

[5] David W. Glazer and Carl Tropper, “A New Metric for Dynamic Routing
Algorithms,” IEEE Transactions on Communications,Vol. 38 No.3 March
1990.

[6] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford and F. True,
“Deriving traffic demands for operational IP networks: methodology and
experience,”IEEE/ACM Transaction on Networking, pp. 265-278, June
2001.

[7] A. Feldmann, A. Greenberg, C. Lund, N. Reingold and J. Rexford,
“Netscope: traffic engineering for IP networks,”IEEE Network Magazine,
special issue on Internet traffic engineering, pp. 11-19, March/April 2000.

[8] Atul Khanna and John Zinky, “The Revised ARPANET Routing Metric,”
Proceedings of the ACM SIGCOMM,pp. 45-56, 1989.

[9] Ramesh Nagarajan, James F. Kurose, and Don Towsley, “Approximation
techniques for computing packet loss in finite-buffered voice multiplexers,”
IEEE J.Select.Areas Commun., 9(3):368–377, April 1991.

[10] J. Moy, “OSPF Version 2,” RFC 2178, April 1998.
[11] (1997) NS-2(network simulator) http://www-mash.cs.berkeley.edu/ns.
[12] Harry G. Perros Queueing Networks With Blocking, Exact and Approxi-

mate Solutions,Oxford University Press, 1994.
[13] Zheng Wang, Jon Crowcroft, “Analysis of Shortest-Path Routing Algo-

rithms in a Dynamic Network Environment,”Computer Communication
Review, Vol. 22, no. 2, pp.63-71, 1992.

[14] T. Ye, D. Harrison, B. Mo, B. Sikdar, H. T. Kaur, S. Kalyanaraman, B.
Szymanski and K. S. Vastola, “Network Management and Control Using
Collaborative On-line Simulation,”In Proceedings of IEEE ICC,Helsinki,
Finland, June 2001.

[15] T. Ye, S. Kalyanaraman, “A Recursive Random Search Algorithm for Op-
timization Network Protocol Parameters,” Technical report, ECSE Depart-
ment, Rensselaer Polytechnic Institute, 2001.


