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Abstract—In this paper, we present a scheme for minimizing the
packet loss in an OSPF network by optimizing link weights using
Online Simulation. For this work we have chosen packet loss rate
in the network as the optimization metric as it is a good indicator
of congestion and impacts the performance of the underlying ap-
plications. We have formulated packet loss rate in the network SNMP, Network Node

in terms of the link parameters, such as bandwidth and buffer Network

space, and the parameters of the traffic demands. A GI/M/1/K Information

queuing model has been used to compute the packet drop proba- |  Control Plane
bility on a given link. The problem of optimizing OSPF weights is Advised [(Net""ork Pr°t°°°'5)]
known to be NP-hard even for the case of a linear objective func- Parameters
tion [4]. We use On-line Simulator (OLS) [14] to search for a good

link weight setting and as a tool for automatic network manage-
ment. OLS uses fast, scalable recursive random search (RRS) al-
gorithm to search the parameter space. The search algorithm has approaches was to adapt link weights to reflect the local traf-

been compared with the local search heuristic of [3] in terms of the . i : . . .
number of function evaluations needed to obtain a “good” OSPF fic conditions on a link or to avoid congestion ([5], [8]). This

link weight setting. Our results demonstrate that the RRS takes IS called adaptive routing or traffic-sensitive routing. However,
50-90% fewer function evaluations to find a “good” setting. The adapting link weights to local traffic conditions leads to fre-
amount of improvement depends on the network topology, traffic quent route changes and is unstable (see [1], [13] for stability
ngggi%ngsp?:ng ?i?;iig‘giiiﬂosr‘crr;er;récus\i’vesh:r‘]’gs&’:‘:‘;gﬁt‘i élr:aem%rr?_ analysis of adaptive routing). Additionally, adaptive routing is
gtrate improverF;]ents of the order of 23-60% in the total packet bas_ed on t_he local .traﬁlc conditions and therefore can not op-
drop rate for the traffic and topologies considered. timize traffic allocation from the network’s perspective. These
drawbacks are alleviated by assuming the knowledge of entire
traffic demand of the network. This is the common assumption
in all the TE work in OSPF networks. In practice, estimates of
traffic demands can be obtained by using the tools described in

. INTRODUCTION [6], [7]

Traffic engineering (TE) is defined as the task of mapping We use the Online Simulation (OLS) framework [14] as the
traffic flows onto an existing physical topology to meet the pepetwork management tool for finding and deploying “good”
formance objectives of network operators. The problem of mifRSPF link weights. In the OLS framework, the optimization of
imizing packet loss can be broadly classified as a traffic engietwork protocols is modelled as a general “black box” prob-
neering problem. Prior work in the area of TE in OSPF nelem where the objective function is unknown but can be eval-
works has focused on optimizing the OSPF link weights for @ated through simulations. The advantage of this approach is
given traffic demand estimate [3], [4]. The OSPF routing witfhat it makes the OLS a veffjexible system whose use isot
these link weights leads to desired routes. restricted in one specific protocol or one performance objec-

OSPF routes traffic on shortest paths based on the ad\Hye However, the formulation and evaluation of optimization
tised link weights. As a result, the links along the shortegbjective is important. Figure 1 shows the general operation of
paths may become congested while other links on longer f8LS and its interaction with the network.
main idle. OSPF also allows for Equal Cost Multi Path(ECMP) The packet loss rate for a given link weight setting can be es-
where the traffic is distributed equally among various next hofimated using packet-level or flow level simulation. However,
of the equal cost paths between a source and a destination [1@).fast evaluation an analytic approach is presented to calcu-
This is useful in distributing the load to several shortest patHate the packet drop rate by using a GI/M/1/K queuing model.
However, the splitting of load by ECMP is not optimal as show&eneral inter-arrival (Gl) is more general arrival model as com-
in [4]. Various methods have been proposed in literature to balred to the commonly used poisson process. It allows the ar-
ance the traffic across an OSPF network. One of the earliafal process to be more bursty than a poisson process while be-

Simulator

Fig. 1. On-line simulation architecture for automatic network management

Index Terms— Traffic Engineering, OSPF, Optimization, Net-
work Management, Online Simulation



ing mathematically tractable. However, it does not capture tpeobability of a finite GI/M/1/K has been approximated by an
correlation structure. More accurate traffic models, that captindinite buffer GI/M/1 queue [9] using the following equation.

the long range dependence, may be used but they are computa-
: : o : P(Ny = K)
tionally intractable or very complex. Analysis is considerably P(Nk =K)=——>2""~/
faster than the simulation approach and crucial if optimal link P(Ne < K)

v;/]eights are optajned usin% a segrch schemel. Wﬁ haV(:]Si”;lU@eKddenotes the number of packets in the finite buffered queue,
the OSPF optimization schemenn. Our results show that the nareas v denotes number of packets in the infinite buffer

total packet loss in the network can be significantly reduced By;\y/1 queue. The queue length distribution of GI/M/1 queue
appropriately setting link weights. is given by [2]:
Our contributions in this paper include '
« Formulation of packet loss as the optimization objective P(Ny = j) = Aw?™? (4 = 0) 2)
using a GI/M/1/K queueing model ) o )
« Demonstration of Online Simulation framework as the net¥here A is the normalization constant andis a constant de-
work management tool in OSPF networks pending on the arrival process and service raiecan be ob-

« Application of RRS for finding a “good” link weight set- tained by solving the following equation:

ting fast
« Demonstration of improvement in packet loss by using the w=7(1-wp) 3)

OLS scheme where(s) is the Laplace transform of the arrival process and
The rest of this paper is organized as follows. Section Il derivgss the service rate which is given l:% In order to solve (3)
the link packet drop rate from the offered load and formulatésr ., we need to assume a inter-arrival time distribution for
the optimization problem. Section Il describes the online sinthe arrival process. Let us consider the Generalized Exponen-
ulation framework approach for OSPF optimization. Section IWal (GE) distribution for modelling the arrival process to first
presents the simulation results and finally, Section V presefiifo moments. We discuss below the reason for choice of GE
the conclusions and future work. distribution.

The pdf of GE distribution is given by
Il. THE OBJECTIVE FUNCTION

_ —ax

Our goal is to minimize the packet loss rate in a network for 9(@) = (1 =p)o(x) + pac )
a given mean and variance of the aggregate demands betwgRBres(z) is the delta functionp anda two constant param-
each source and destination routers. Let us consider a netweidss. As can be seen from (4), a GE process is characterized
represented by a directed gragh(\,£), whereN andL rep- by two parametersg; anda. GE distribution is a special case of
resent respectively the set of routers and links in the networi, distribution and can be used to model general inter-arrival
Each link! € £ has bandwidth denoted b%; and a buffer processes that are more bursty than Poisson process. For a Pois-
space ofi; packets. We assume that the packets arriving whebn process the variance is equal to the square of mean. Hence,
the buffer space at a link is full are dropped. We also assurg& distribution may be used to model the first two moments of
that there is no other active queue management algorithm rgocesses with variance greater than the square of mean. If the
ning at the routers. In addition to the knowledge of bandwidtrival process is represented by a GE distribution, then, with
and buffers at all the links, we assume that an estimate of th@bability p the inter-arrival time is exponentially distributed
mean and variance of the aggregate demand from each sowtA meana and with probabilityl — p, the inter-arrival time
s to destinatiort is known (using a tool suc as [6]). L&, V s zero. Hence, this distribution represents a batch arrival pro-
denote the mean and variance matrix of the estimated aggregsi€s with geometrically distributed batch size and exponentially
demand. distributed inter-batch arrival times. For a link with o as its

In the following sub-sections, we will first show how to demean and variance of the offered load, we can have the param-
rive the drop probability for one link based on the offered loagters of the GE distribution representing the arrival process:
Then we will formulate the optimal general routing problem
which aims to optimize the overall packet drop rate for the net- p= 2)\? anda = pA (5)
work. Note that the OSPF optimization problem is just the op- o2 + X2
timal general routing subject to the shortest path constraint. The merging of\' independent GE,a

(1)

i) processes is a bulk-
arrival Poisson process with mean arrival rateequal to

A. Packet Drop Probability on a Single Link Zij\;l a; and p equal toa/ Y % Similarly, splitting of a
Let P denote the packet drop probability on a link, 02 GE(p,a) process intaV streams hccording to a Bernoulli filter

denote the mean, variance of the offered load to this link in, 2, ...rx, the parameters of thé" process are

packets per second, a8l K denote its bandwidth and buffer P

space respectively. In order to find a closed-form expression for pi = m anda; = r;a. (6)

the packet drop probability?, let us assume an exponentially ! !

distributed packet size with meaki. However, we consider Reader may refer to [12], Section 1.4 for more details.

a general arrival process. We compute the packet drop probaThe packet arrival process of a single TCP flow is bursty

bility at the link using a GI/M/1/K queuing model. The dropin nature with a “bulk” of packets arriving every round-trip
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time. The model that we have considered implies that we halvet pl(s7t) denote the parametgrof the GE process after split-
“bulk” arrivals (in form of bursts of packets from competinging the demand(s, t) with probabilityrl(s’t). Thenpl(s7t) de-

TCP sources) of varying sizes arriving into a queue. Our mod@tes the parameterof the GE process representing the flow
does not capture the feedback effect of packet drops on TCR.t) The parametqm(s,t) is given according to (6):
: ; :

flows because we have considered the aggregate traffic arrivihg

at an OSPF router as our demand estimate. (o) ps:t)
Taking the Laplace transform of (4), we get, p" = (16)
g p (4) g 1 P (1 — rl(s,t)) i Tl(s,t)
_1_ ba
Gls)=1-p+ s+a (7) The total offered load on linkis given by); (13), the parameter
Then substitute it into (3) and solve it farfor the GE arrival pofthe as?gglateFj GE distribution may be obtained by merging
process gives the flows f;™" going throgghl. |f.pl denotes the parametpr .
w=p+(1—p) 8) of the GE process associated with the aggregate traffic on link
[, thenp, is given by
where, ~
p=2 aX (9) =M > FEpt) L 17)
12 B (s,t)EN'XN
Finally, using (1), (2), (3) and (7), we get the packet drop B
probability If p;is equal toAlf;%X, then, using (10), the probability of packet
p_ (p—p)p+1-—p¥« (10) dropped at link is given by
1_(p+1_p)K+1 ( )( 41 )Kl
In summary, (10) represents the closed form expression of p = L PP b (18)

packet drop probabilityP, on a single link as a function of
mean, variance\, o? of the arrival process, mean packet size The optimal general routing problem is given by (11), sub-

X, link bandwidthB and buffer spacé. ject to the constraints given by (13), (14), (15), (16), (17), (18).
It may be noted that we are casting the traffic according to the

B. The Optimal General Routing routing in order to obtain the mean and variance of the total of-

Using link packet drop probabilities obtained from (10), wéered traffic to each € £. Equilibrium parameters of the arrival

can formulate the optimal general routing problem as: process to a link can be obtained by assuming an initial value

of drop probability”?. The actual arrival process parameters,

¢ = Z N B (11) taking into account the packet loss, may be obtained by split-

lec ting the aggregate arrival process with probabiliy)(or P in

where); is the arrival rate for link and P, is its drop rate calcu- the fir;t itergtion). This may.be iterated till the convergence of

lated by (10). This is a constrained optimization problem wit]JPW,S is achieved to the dt_eswed accuracy. In the rg_sul_ts shown

the flow constraints at each routeior each deman®(s, ¢) be- in this paper, we have not iterated to obtain the equilibrium traf-

ween source and destination. If f(“"’t) denotes the fraction of fic parameters. Essentially, we are using the upper bound on the
-0

the demand(s, t) on link [, then the flow balance constraint£aCket drop probability as value &f and a highen, in (11).

are given by
[1l. OPTIMIZATION OF OSPFWEIGHTS USING ON-LINE
o " —D(s,t) ifj=s SIMULATION

Z f(ifj) - Z f(j,%) =4 D(s,1) ifj = t_ (12) The general optimal routing problem, where the objective
a(Eg)eL  i(ieL 0 Otherwise function is completely defined by (11)-(18), may possibly be

The mean packet arrival rate to a lihk\;, is given by solved forf, "Vl € £ by using some non-linear programming

techniques. However, under constraints of OSPF routing, the

A\ = Z fl(”) (13) relation between the link weights and optimization metric can
(s,£)EN XN no longer be analytically defined. Hence, the optimal routing in

) OSPF becomes a “black box” optimization problem which may
The parametep(*) for the GE process used to fit the demange defined as:

D(s,t) is given according to (5): min ®(w) (19)
o) = 2D(s,t)?
D(s,t)? + V(s,t)

wherew is the vector of network link weights andl(-) the
objective function, which is unknown. Basically, in order to
obtain the value of for a given OSPF weight setting, we run
Letr\>" denote the probability with which the demafds, t) modified Floyd Warshall's algorithm (modified to obtain equal

is sent on link. Thenrls’t) is given by cost paths also) to obtain the routing. Then the traffic is cast
to obtain parameters of the aggregate packet arrival process and
drop probability for every link € £ using (13), (14), (15), (16),

(17) and (18). Finally the value df may be calculated by (11).

(14)

(s.)
rot) =

D(s,t) (15)
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Fig. 2. Shrink and re-align procedure of Recursive Random Search

Finding optimal OSPF link weights is an NP-hard problem even
for a linear objective function [4]. OLS uses RRS algorithm to
obtain an optimal or near optimal link weight setting for the
optimization problem given by (19).

In the context of network optimization, a highly efficient T
search algorithm is needed to find “good” OSPF link weight set- Online Simuaion Red Network
ting since the network is a dynamic system and network condi- S _ o _ _
tions may change significantly from time to time. Furthermorjag' 3. Overall OSPF optimization setup using on-line simulation architecture
the search algorithm should lszalable to high-dimensional

problemssince there may be hundreds of parameters in & Ngtieters are used to fit the first two moments of link traffic. Di-
work. Another issue that needs to be considered is that ”etwﬂigtra’s algorithm (modified to include ECMP) is used to find
simulation only provides an approximate estimation of netwotke OSPF paths and traffic is cast using split and merging of
performance. This means that the objective function is SUPErigE flows. The aggregate traffic is used to compute the packet
posed with small random noises due to inaccuracies in netwgks for 4 given OSPF link weight setting. RRS is then be used
modelling, simulation, etc. To address these issues, OLS Us§§ @earch for better link weight setting for the network which
recursive random search scheme (see [15] for details and perfgray g|uated using the above procedure. When a certain stop-
mance study of RRS). The RRS is based on the high-efficiengyq criteria is met, for example, the time limit is reached, the
feature of random_sampllng a_t |n|t|a_l _steps. The baS'C_'dea_Bést-so—far link weight setting found by RRS may be deployed
RRS is to use the first part of high-efficiency samples to identify the real network if it results in substantial improvement in
the promising areas. The recursive random sampling procesggsperformance otherwise the link weights are left unchanged.
is used in these areas which are shrunk and re-aligned to ob;glfbng search time suggests a near-optimal link weight setting

local optima. . o o ~ with high probability.
An sample search using RRS is illustrated in Figure 2. Firsta

number of random samples, sayare taken from the parameter
spaceD, and the best point is taken as the certtgrof the
promising regionR; which is further explored. The poirdf; In this section we present two sets of simulation results. One
fallsin Ap(r),r = 1 — (1 — p)*/™ with probabilityp.The size is to demonstrate that the recursive random search scheme ob-
of R; is taken to be the size of p () so as to cover at least onetains better OSPF link weight settings with fewer function eval-
local optimum inAp(r) with high probability. Then another uations than the algorithm proposed in [3]. Another set of re-
{ random samples are taken fraRy. Herel should be much sults demonstrate the improvement in end-to-end performance
less tham since the search is in a promising area and expe¢is terms of the drop rate) by dynamic optimization of OSPF
to find better points quickly. If a better point is found withinweights.
thesel samples, the center of the sample space is moved to thisWe have considered three network topologies, shown in
point and the size is kept unchanged. As shown in Figure Rigure 4, to demonstrate our results. Two are well-known
the center is moved t@;, the regionR; is used as the next ARPANET topology and MCI topology. We couldn’t include
sample space. If a better point is not found isamples, the AT&T topology used in [3] for comparison as it is not pub-
size of sample space is reduced by half and the center is kiiglyy available (the authors could not disclose the topology).
unchanged. As shown in FigureR; is used as the next sampleThe ARPANET topology consists of 48 routers and 140 sim-
space aftet unsuccessful samples i, and the cente€’; is plex links Each link in the network is assumed to consist of two
left unchanged. This shrink-and-re-align procedure is repeatsithplex link whose weights may be set independently. MCI
until the size of the region is reduced below a threshold, thespology consists of 19 routers and 62 simplex links. We have
the above search process is restarted. also considered a randomly generated topology with 22 routers
Figure 3 shows the functional block diagram of the overa#ind 60 simplex links.
setup of this simulation. The OLS monitors the traffic to pro- Random amount of traffic was sent from every node to every
vide the estimates of mean and variance of the traffic demasither node in the network. This random traffic was generated
for performance evaluation of link weights. A GE model padsing the method outlined in [3]. For each naddéwo random

Network Management Tool
SNMPetc.

IV. SIMULATION RESULTS



(a) ARPANET Topology (b) MCI Topology (c) Randomly Generated Topology

Fig. 4. Figure showing the network topologies used in simulation

numbers are generatéd,, D,, € [0, 1]. For each pair of nodes
(u,v) another random number, ., € [0, 1] was generated.

If A denotes the largest Euclidian distance between any pair of
nodes and ity denotes a constant, the average demand between
uw andw is given by

s o © o N B
Ll pnel] N

—5(u,v)

D(u,v) = a0y D,Cy pye 23 1 .

where, 6(u,v) denotes the Euclidian distance between the R ’ e
nodesu andv. This method of generating random traffic (the
terme%) ensures more traffic for source destination pai@g. 5. Figure showing the link cost as a function of offered load
that are closer to each other. Since a product of three random
variables is taken to generate the demands, there is actualg
large variation in the traffic demands. The ratio of square Q
mean to the variance was assumed to be a uniformly distriburrg
random variable irf0, 1]. The mean and variance of the traf;
fic demands are generated using the above procedure. All
links in the network have 1Mbps bandwidth with a buffer siz
of 50 packets. The packet size was chosen to be exponentig
distributed with mean packet size of 200 bytes.

In the simulation results presented in this paper, we do

fink weights. In [3], authors have used incremental short-
path computations to improve the speed of search as very
link weights change from one iteration to the next which
reported to have 15% improvements on an average. In spite
§his, we still use the number of function evaluations as our
orithm performance metric for the reasons mentioned above
the consideration that our algorithm is designed to be a gen-
eral “black-box” search algorithm where no problem-specific is
ailable. It should be noted that even after taking the 15% im-

V?f['rfly the traﬁlghmodel:lng assumptlolr:s a; th's,'s I?/o;\a foi ovement for the local search scheme of [4] into consideration,
of this paper. € performance results shown in 1v-A are r algorithm is significantly faster (please see the results).

average results from ten simulation runs. Average of multip eITooser, we refer to the number of function evaluations re-

simulation runs s presente(_j as we compare the performanc%&red to obtain a “good” parameter setting as the speed of con-

two stochastic search algorithms. vergence. A “good” parameter setting has been defined as the
OSPF link weight setting that give metric value lower than that

A. Comparison of Search Schemes by setting all link weights equal to unity (called unit OSPF).

In this section, we present the results of comparison of r&his definition is just for the purpose of comparison. A “good”
cursive random search scheme with the local search schgmeameter setting may have been defined alternatively as the
proposed in [3]. In optimization literature, the comparison bédink weight setting to achieve performance metric equal to, say,
tween algorithms is usually done in terms of the number 80% of the unit OSPF.
function evaluations instead of the absolute time taken to find1) Heuristic Piecewise Linear MetriciIn order to compare
a “good” parameter setting. This is because the computatithre speed of convergence of our search scheme with the local
time is considerably dependent on many other factors, such search scheme proposed in [3], we use the same metric used in
implementation efficiency, testing platform, compiler, etc.. A43], which is piecewise linear with the link offered load. Fig-
suming that the main computation time is for function evalusre 5 shows the cost for one link as a function of offered load.
ations, the number of function evaluations is a more appropfihe optimization objective is to minimize the sum of link costs,
ate performance metric under the assumption that the compummed over all € L.
tation time per function evaluation is approximately the same Figure 6 shows the optimization convergence curves for the
for both schemes. Note this assumption is not exactly true ARPANET, MCI and Randomly generated network topologies
the context of our problem, where one function evaluation respectively. For the sake of comparison, these graphs also
resents one optimization metric computation for a specific s&tow the optimization metric value when all the links’ weights
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Fig. 6. Figure showing the convergence curves of piecewise linear metric for (a) ARPANET (b) MCI (c) Randomly generated network topology
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are set to unity. It can be seen that the recursive random seant variance of demand matrix) was changed in order to create
scheme outperforms the local search scheme in terms of thdynamic scenario. The traffic generator is implemented over
number of function evaluations needed to find a “good” parardDP to generate bursty traffic with the GE inter-arrival distri-

eter setting for all three network topologies. These results hawation described in (4). In our simulation, we assume OLS has
been tabulated in Table I.

TABLE COMPARING THE NUMBER OF FUNCTION EVALUATIONS NEEDED TO
OBTAIN A “GOOD” PARAMETER SETTING FOR PIECEWISE LINEAR METRIC

2) Packet Drop Rate Metric:In this section we present the
comparative results for the packet drop metric defined in (18

Scheme ARPANET | MCI Random
Local Search 932 433 322
RRS 350 183 9
Improvement| 62.4% 57.7% | 97.2%
TABLE |

a complete knowledge of necessary network information, such
as, traffic demands, network topology, etc.. Whenever a change
of traffic pattern happens, the OLS runs the recursive random
search for a certain iterations to obtain a better parameter set-
ting. If the optimized setting is much better than the original,

it will be deployed at 100 seconds after the traffic change. The
100-seconds time difference is used because we want to observe
the performance difference between before optimization and af-
ter optimization. Note that here we assume the running time of
the search algorithm is faster than the traffic change period, i.e.,
the search algorithm has finished running at 100 seconds after
the traffic change.

)_The actual packet drop rates are collected during the simu-

Figure 7 shows the comparison results of the optimization cdgtion for all the traffic sinks in the network and then summed
vergence speed. The results clearly show that the recursive i@gether to get the total packet drop rate. Figure 8 shows to-

dom algorithm significantly outperforms the local search alg(ra"21I

packet drop rate in the network as a function of time. Table

rithm. Table Il shows that for the packet drop rate metric, ol SUmmarizes the maximum improvement in packet drop rates
recursive random search scheme took 70% or fewer functiff different topologies. Note that more or less improvements

evaluations to obtain a “good” OSPF link weight setting.

Scheme ARPANET | MCI Random
Local Search 882 469 372
RRS 210 125 54
Improvement| 76.1% 73.3% | 85.5%
TABLE Il

TABLE COMPARING THE NUMBER OF FUNCTION EVALUATIONS NEEDED

TO OBTAIN A “GOOD" PARAMETER SETTING PACKET DROP RATE METRIC

B. Optimizing OSPF for improving packet drop rate

Now we describe the simulation showing how the nepacket loss in the network by optimizing OSPF weights using
work performance can be improved by our OSPF optimizatiddnline simulation framework. The optimization problem was
scheme. Figure 3 shows the overall simulation set-up.

We used the network simulatars [11] to simulate the real was used to compute the packet loss rate in the network. A GE
network running OSPF. The traffic in the network was genegprocess was used to find closed-form expression which is gen-
ated in the same way as outlined in the beginning of this searal enough to fit a bursty arrival process to two moments. OLS
tion. However, every 200 seconds the traffic pattern (the meases a fast, scalable recursive random search (RRS) scheme to

may result depending on the topology and traffic conditions.

ARPANET | MCI | Random
Max. Improvement| 31.8% 60.2% | 35.7%
TABLE Il

TABLE SUMMARIZING THE MAXIMUM PERCENTAGE IMPROVEMENT IN
THE PACKET DROP RATES OBTAINED FOR DIFFERENT TOPOLOGIES FOR
THE RESULTS SHOWN INFIGURE 8

V. CONCLUSIONS ANDFUTURE WORK
In this paper we have presented a scheme for minimizing

formulated. A general inter-arrival GI/M/1/K queuing model
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Fig. 7. Figure showing the convergence curve of total packet drop rate for (a) ARPANET (b) MCI (c) Randomly generated network topology
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Fig. 8. Figure showing total packet drop rate as a function of time for the (a) ARPANET (b) MCI (c) Randomly generated network topology. Traffic pattern was
changed at times 0, 200, 400..., the optimized OSPF weights were deployed at times 100, 300,...
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