
1

A Connectionless Approach to Intra-domain Traffic
Engineering

Hema Tahilramani Kaur, Shivkumar Kalyanaraman, Shifalika Kanwar, Andreas Weiss,
Niharika Mateti, Biplab Sikdar

Abstract—
We propose a new hash-based approach for connection-

less intra-domain traffic engineering (TE) in the Internet.
The main idea is to capture an intra-domain path as a 32-
bit hash of globally known quantities such as router Ids
and link weights in the packet header. This hash, called
the “PathID” allows explicit source-directed routing with-
out signaling or high per-packet overhead, while enabling
an incremental upgrade strategy for common intra-domain
routing protocols like OSPF and IS-IS. Another key advan-
tage of the framework (similar to that achievable in signaled
frameworks like MPLS) is the de-coupling of the multi-path
computation problem from the problem of mapping traffic
to the paths. The proposed scheme essentially trades off
computational complexity at upgraded multi-path capable
routers to avoid signaling. We analyze these tradeoffs and
propose concrete solutions to manage the complexity. Simu-
lation and Linux/Zebra based implementation experiments
have been used to demonstrate various aspects of the pro-
posed framework. We demonstrate that a variety of polyno-
mial complexity route computation algorithms, combined
with selective upgrades of routers can offer substantial traf-
fic engineering capabilities in the network.

Index Terms— Traffic Engineering, MPLS, Multi-path
Routing, OSPF

Methods Keywords – System design, Simulations, Experi-
mentation with real networks/Testbeds

I. INTRODUCTION

Traffic Engineering (TE) deals with the task of map-
ping traffic flows to the routes setup in an existing phys-
ical topology to meet the network and user performance
objectives. A desirable traffic engineering solution must
provide network operators a precise control over the traf-
fic flows within their routing domains. This enables
them to provide new services by appropriately manag-
ing the traffic. Multi Protocol Label Switching (MPLS)

The authors are with the Department of ECSE, Rensselaer Poly-
technic Institute, Troy, NY-12180. E-mail: fhema, shivkuma, kan-
wasg@networks.ecse.rpi.edu, fweissa2, matetn, sikdabg@rpi.edu

The project was supported in part by DARPA Contract F30602-00-
2-0537 NSF Grant ANI9819112 and an Intel grant

is an example of a connection-oriented or signaled TE
approach. MPLS allows explicit setup of label switched
paths (LSPs), and arbitrary flexibility in mapping traffic to
the available LSPs.

In contrast, current work in the area connectionless
intra-domain TE uses a parametric approach where the
routing algorithm only provides a single shortest path (or
multiple paths in case of Equal Cost Multi Path (ECMP))
between any node pair, but the link weights are optimized
to achieve TE objectives. In this case, the problem of traf-
fic mapping to paths is coupled with the problem of route
calculation. The parametric approach will hence lead to
a route change for any desired change in traffic mapping
(or change in the demand matrix). This approach would
rule out the possibility of source-controlled traffic map-
ping on finer time-scales, and would lead to control traffic
overhead (LSA re-advertisement) for every change in link
weight.

In this paper, we propose a new connectionless ap-
proach to TE that allows explicit source control over the
route taken by a packet through the network. Our ap-
proach decouples the way traffic is mapped to available
paths from the problems of route computation and packet
forwarding. Moreover the approach is connectionless,
(i.e. it does not need signaling) and can be very effective
even in a partially upgraded network. We show that the
new capability requires a forwarding algorithm upgrade
and route computation upgrade at selected routers; and
the route computation tradeoff is manageable. In sum-
mary, the goal of this paper is to emulate a critical subset
of signaled TE capabilities (e.g. MPLS-like) within a par-
tially upgraded connectionless network, with manageable
tradeoffs.

A. Classification of Intra-domain Traffic Engineering Ap-
proaches

We classify the current intra-domain TE approaches
into three groups- a) connectionless parametric approach;
b) connection-oriented approach; c) connectionless multi-
path approach.

2

1) The Parametric Approach: In this approach, the TE
problem of mapping traffic on physical links is translated
to the problem of using a routing that achieves the desired
traffic mapping. The desired routing is obtained by using
appropriate OSPF link weights. This is the most common
approach to achieve traffic engineering in OSPF networks.
The idea of optimizing OSPF link weights for the prevail-
ing traffic conditions was proposed in [5], [16]. The traf-
fic is assumed to be quasi-stationary and link weights are
optimized according to the projected traffic demands for
certain times of the day. However, finding optimal link
weights for a given traffic demand under constraints is a
NP-Hard problem [6]. Fortz and Thorup use a local search
algorithm to find a good link-weight setting [5], [6]. In
[9], we formulate the minimization of packet loss rate in
the network as the optimization objective and use an ef-
ficient global search approach called Recursive Random
Search (RRS) [26] to find good link weights.

OSPF-ECMP [8], [22] allows traffic to be split equally
among the multiple next hops for paths with equal weights
to the destination. OSPF-OMP [24] uses ECMP, but in-
stead of depending upon link weight assignments, sam-
ples and floods per-link traffic load information using
opaque Link State Advertisements (LSAs). The infor-
mation is used to change local load-splitting decisions at
other upgraded nodes. Though OSPF-ECMP and OSPF-
OMP based traffic mapping schemes are different in char-
acter from link-weight settings, they involve a degree of
coupling between route computation and traffic mapping
to these routes.

2) The Connection-oriented Approach: The
connection-oriented approach (e.g. MPLS, ATM and
frame-relay) is a more direct approach to intra-domain
TE. In this approach, paths are established with optional
resource reservation and packets may be independently
mapped to available paths at the source. The explicit-path
selection and setup allows an attractive range of TE
capabilities. The clean separation between routing (i.e.
control-plane) and forwarding (i.e data-plane) allows
the deployment of a single forwarding algorithm (e.g.
label-switching). New services can be provided by simply
changing the way packets are mapped to routes. The main
limitation of the connection-oriented approach is the need
for a signaling protocol which requires all the routers
along the path to be upgraded and is hard to extend to
multiple routing areas within a domain or across multiple
domains.

3) The Multi-Path Approach: The multi-path ap-
proach aims to exploit the resources of the underlying
physical network by providing multiple paths between any
source and destination. Multi-path routing has a potential

to aggregate bandwidth on various paths, allowing a net-
work to support data transfer rates higher than what is pos-
sible with any single path [21]. Prior work has extended
intra-domain routing algorithms (both RIP and OSPF) for
multi-path support [15], [25]. Narvaez et al [15] propose
to find loop-free multi-paths only by looking at concate-
nating the shortest paths of their neighbors with their link
to the neighbors (i.e. depth first search with a depth of 1).
Chen et al and Vutukury et al [1], [25] propose more gen-
eral multi-path computations, but their schemes require
the co-operation and upgrade of all the routers in the net-
work. Chen et al’s work presents a general concept of
suffix-matched path identifier to allow multi-path compu-
tation using distributed computation, but they use local la-
bels to realize the path. Note that the local labels in Chen
et al’s framework and MPLS labels only have a local sig-
nificance, and hence require a signaling protocol to map a
global path specification to locally assigned labels at each
node.

Our proposed framework allows source-based multi-
path routing using a “PathID”. The use of a globally sig-
nificant path hash allows multi-path capabilities without
signaling (i.e. in a connectionless manner) even in a par-
tially upgraded network. Even though MPLS has gained
popularity in some large ISPs, a significant fraction of
ISPs [14] favor using OSPF/IS-IS to enable TE without
migrating to a fully-MPLS upgraded network. This is
due to the widespread deployment and operational expe-
rience available with OSPF/IS-IS. Our approach extends
the OSPF/IS-IS to allow TE capabilities even in partially
upgraded networks.

The key contributions in this paper can be summarized
as follows.

� A new connectionless framework that allows pack-
ets to be forwarded along explicit path specified by
the source without using signaling and in a partially
upgraded network scenario. The proposed approach
also provides a clean separation between routing (i.e.
control-plane) and forwarding (i.e. data-plane), that
does not induce routing instability even for fine-
grained traffic mapping changes.

� The proposed framework trades off local computa-
tional complexity to avoid signaling. We quantify
this tradeoff and propose various ways to manage
the computation and space complexity. In particular,
we propose polynomial-time complexity algorithms
for computing available paths in a partially upgraded
network.

� We demonstrate mapping of the proposed scheme
to an OSPF implementation. Simulation and
Linux/Zebra implementation experiments are used

3

to validate the framework and illustrate its perfor-
mance.

This paper is organized as follows. Section II describes
concepts such as PathID (i.e. hash), packet forwarding
paradigm and a basic path computation algorithm using
the proposed connectionless approach and sets up the fun-
damental tradeoffs in the framework. We quantify the
computation tradeoffs by analytically deriving, the num-
ber of paths available to a router for both the full and
partially upgraded case (Appendix). We propose differ-
ent mechanisms to manage the complexity tradeoff in
Section III. In particular, we allow arbitrary choice of
polynomial-complexity route computation algorithms at
each upgraded router; and show that a common validation
phase can ensure that only consistent and valid routes are
chosen. We illustrate this concept by using a k-shortest
path computation algorithm. The value of k can be cho-
sen to manage both the computational and space over-
heads. Section IV summarizes the extensions in OSPF to
implement the proposed scheme. We have implemented
the proposed scheme in Linux using the OSPF implemen-
tation in Zebra version 0.92a and MIT’s Click Modular
Router package [10] for the forwarding plane. In Sec-
tion V we illustrate the operation of the framework us-
ing Linux-based implementation and simulations using
SSFNet. Finally, conclusions and directions for future
work are presented in Section VI.

II. PROPOSED CONNECTIONLESS APPROACH

A key idea in this paper is the use of a hash of the
path in a fixed-size routing header which is carried by the
packet. The hash is based upon the sequence of router ip-
addresses (or router ids) and link weights in the path (that
are globally known due to link-state nature of OSPF and
IS-IS) unlike local identifiers, i.e. labels, in MPLS.

New York

San Francisco
(Ingress)

Seattle

Miami

B

A
120

5

1321 Signalling Message

Fig. 1. MPLS Path Set-up

To illustrate the key idea, consider an MPLS LSP from
“San Francisco” to “New York” in Figure 1. The ingress

router (San Francisco) chooses an explicit path and in-
vokes a signaling protocol (e.g. RSVP-TE or CR-LDP)
to setup the LSP. The path setup involves local assign-
ment of labels and setting up a input-output label and port
mapping in the label switch table. The sequence of la-
bel swaps along the path may be imagined as a mapping
between local labels at switches to the global path spec-
ification which is carried in the signaling protocol. The
path itself may be computed in any out-of-band manner or
specified manually by the operator. To forward a packet,
the ingress router prepends the MPLS header to the IP
packet, and specifies the MPLS label of the first hop in
the MPLS header. The MPLS label is matched at each
hop to decide the output port, and the incoming label is
swapped with an outgoing label from the matching table
entry. Figure 2 shows an example of label changes as a
packet is forwarded along the LSP.

IP Label

IP 120

New York

San Francisco
(Ingress)

Seattle

Miami

B

A
120

5

1321

IP

IP

1321

5

Fig. 2. MPLS Packet Forwarding

Figure 3 shows the packet forwarding and pathID swap-
ping using our proposed connectionless approach. The
ingress computes the paths to the destination and forwards
packets on these paths by setting appropriate pathID in the
routing header. In this example, for simplicity, we assume
that all the routers are upgraded and pathID is the sum of
the weights associated with the links along the path. These
assumptions are made in this example for ease of expla-
nation. A routing header is prepended to the incoming IP
packet at the ingress router. The pathID field in the rout-
ing header is set to �� for a packet to be routed on the
path (SFO-A-Miami-NYC). Note that 36=9+27, i.e. sum
of link weights A-Miami and Miami-NYC. At the router
A, the pathID of the incoming packet is matched and the
packet is forwarded on link A-Miami and the pathID field
is set to 27. Figure 3 shows how a multi-path capable
ingress utilizes the two paths and achieves forwarding on
these paths.

Since OSPF and IS-IS are link-state based algorithms,
each router has a complete map of the network. Therefore,
a router can locally compute the paths that are available to

4

IP PathID

New York

San Francisco
(Ingress)

Seattle

Miami

B

A

IP

IP

IP

IP

IP

9

27

5

4

10

36

27

0

5

0

Fig. 3. Packet forwarding and pathID swapping in the proposed
scheme

each destination. It then uses a well known hash func-
tion to create the corresponding forwarding table entries.
No signaling or connection set-up is used for establishing
the path; the approach is connectionless. The connection-
less global-hash idea also allows an interesting extension:
even in the case of a partially upgraded network, the avail-
able paths can be computed as described in subsequent
sections. Observe that the fundamental tradeoff in our ap-
proach is local route computation and space complexity
incurred at upgraded routers to avoid signaling.

A. PathID Concept

Consider a network modeled as a graph G � �V�E�
where V is the set of vertices or nodes and E is the
set of edges or links in the network. Let N denote
the number of nodes in the network, i.e. the cardi-
nality of the set V . Each link �i� j� � E has a
weight or cost associated with it, denoted by wi�j . Con-
sider a path pi�j from node i to node j, which passes
through nodes i� �� �� ����m � �� j and links of weights
wi��� w���� ���� wm���j . This path can be represented as a
sequence: �i� wi��� �� w���� �� ���� wm���j � j	. This path se-
quence can be represented by a hash of its elements. If
this hash leads to a unique hash value for a unique input
sequence with a high probability, we can use this hash
to represent a path concisely. A path identifier, in short
PathID, is defined as a hash of the sequence of node and/or
link identifiers (we use link weights as link identifiers).
These concepts are illustrated in Figure 4.

In the case of intra-domain routing (e.g. OSPF or IS-
IS), the node IDs (i.e. router IDs) and link weights are
known at all routers. Hashing such a sequence of glob-
ally known quantities allows us to avoid signaling because
each upgraded router on the path can unambiguously in-
terpret the hash with a very high likelihood. Recall that
one purpose of signaling in ATM and MPLS is to map
global IDs (addresses, path specifications) to local IDs (la-
bels). Since we obtain pathID from the global IDs (router

Fig. 4. Path, Path Suffix and PathID Concepts

IDs and link weights), signaling is not necessary for path
selection.

The choice of the hash function is dictated by the need
to minimize the collision probability which directly af-
fects the uniqueness and utility of the hash. A simple hash
of the path sequence may be obtained by using the sum or
XOR function. The advantage of using a simple hash is
that pathID computation is very simple and fast. On the
other hand, it may lead to non-unique pathIDs for differ-
ent paths with a high probability. We therefore propose
to use a 128-bit MD5 hash of the nodeIDs along the path,
followed by a 32-bit CRC of the 128 bit MD5 hash to
result in a 32-bit hash field. We use the notation (MD5
+ CRC-32) hash to represent the above two-step hashing
process. This hash in conjunction with the destination ad-
dress (j) is used to forward a packet at the intermediate
routers. If the sequence of node IDs along the path is
unique (and assuming for simplicity that adjacent nodes
do not have multiple links), then by the properties of the
MD5 and CRC-32 hash functions, the tuple = [j, PathID]
is very highly likely to be unique.

A quick survey of the collision probabilities for the
MD5 hash leads us to the conclusion that MD5 is a robust
hash with a collision probability of less than 1 in 100 mil-
lion. For the CRC-32, the probability for collision can be
approximated by ������

���
which can be evaluated to about

1 in 8 million.

B. Packet Forwarding

The forwarding table entries of the existing OSPF/IS-
IS routers is of the form [destination prefix, outgoing
interface], and a longest-prefix-match IP lookup proce-
dure is used. At upgraded routers, we propose to include
an “incoming pathID” and an “outgoing PathID” fields
in the routing table entry to enable explicit forwarding
along multiple paths. Hence, the upgraded routers will
have the forwarding table entries of the form [destination

5

prefix, incoming pathID, outgoing interface, outgoing
pathID]. The “incoming pathID” field represents the hash
of the explicit path starting from the current router to the
destination prefix. The “outgoing pathID” field is the hash
of the path from the next upgraded router on the explicit
path specified by “incoming pathID” to the destination.
As mentioned earlier, the pathID field is stored in a new
routing header in IP packets. Incoming packets at a router
already have a pathID specification in their routing header
or just the destination IP address.

An upgraded router first matches the destination IP ad-
dress using the longest prefix match followed by an exact
match of the pathID for that destination. If matched, the
incoming pathID in the packet is replaced by the outgoing
pathID, and the packet is sent to the outgoing interface.
Observe that this procedure is a hybrid of IP’s longest
prefix match and MPLS’s label swapping, but using the
globally known pathID instead of labels which does not
need signaling. If an exact match is not found (i.e. errant
hash value in packet), then the hash value in the packet is
set to zero, and the packet is sent on the default path (i.e.
shortest path in OSPF/IS-IS). The hash value may also
be set to zero if the next-hop is the destination itself, or
there are no upgraded routers in the path specified by the
incoming pathID. A non-upgraded router simply ignores
the pathID field and forwards the packet on the shortest
path. Such an extension to the forwarding tables will lead
to increased space requirements at the router. In general,
if there are K paths on an average to any destination then
the forwarding table now has �K � ��N more entries in
the forwarding table. Also, each routing table entry has
�
 bits more than the normal case.

Fig. 5. Multi-Path Forwarding with Partial Upgrades

Figure 5 illustrates the forwarding procedure in a par-
tially upgraded network. Nodes A, C and D in the fig-
ure are multi-path capable (MPC). Lets say that node A
is the originating node for a packet destined to node F.
The shortest path from intermediate node B to node F

is B-D-F and path A-B-C-F is not available for forward-
ing because node B is a non-upgraded node. However,
paths such as A-B-D-C-F, A-D-E-F, A-D-C-E-F are avail-
able. If the path A-B-D-E-F is chosen, then the PathID
of an incoming packet will be Hash(A-B-D-E-F). A sets
the PathID field to Hash(D-E-F), i.e. the hash of the path
suffix from the next MPC router to destination. Node B
forwards the packet on its shortest-path (i.e. to D). Node
D sets the PathID to zero, because there is no MPC router
on the path to F.

C. Path Computation Issues

In link-state routing, each router has a complete map
of the network in the form of link-state database. Us-
ing this link-state database and knowledge of upgraded
routers, every router can locally compute the paths that
are available to each destination. The knowledge of up-
graded routers can be obtained by the upgraded multi-
path capable (MPC) routers setting a bit (referred to as
the MPC-bit) in their link state advertisements (LSAs).
Non-upgraded routers merely ignore this bit, whereas the
upgraded routers use it to infer available multiple paths.
Using this model we first develop a simple (but computa-
tionally complex) algorithm to compute all paths to a des-
tination under the constraint that a known subset of nodes
in the network have been upgraded to support multi-path
routing.

The algorithm (Algorithm 1) at upgraded node i uses
the network map (graph) and first runs an all-pairs short-
est path computation, i.e., the Floyd-Warshall Algorithm
[3]. For any chosen node k and destination j, the Floyd-
Warshall algorithm sets up the next-hop node l in the
shortest path in node k’s routing table. Given these rout-
ing tables, a depth-first search (DFS) rooted at node i is
done to discover multiple paths from i to each destination
j. A per-node variable visited nodes is used, within each
DFS pass, to mark the nodes visited by the DFS algorithm.
A node is included in the path is it is not visited already,
thus ensuring loop-free paths. At node k, the algorithm
considers all neighbors if k is an upgraded node, other-
wise, it only considers the next-hop node on the shortest
path from k to the destination. If the chosen next-hop node
of k has not been visited earlier, this node is appended to
the path. The procedure is now repeated using k’s next-
hop node as the source. Once the DFS is complete at node
k, then the visited nodes�k	 is reset to zero. With minor
extensions, Algorithm 1 can be used to compute the hash
for each path simultaneously.

The computational complexity of simple sequential
Floyd-Warshall implementation is O�N�� where N is
the number of nodes in the network. Alternatively, one

6

Algorithm 1 Algorithm for computing all paths between
a source and destination with only some nodes supporting
multi-path forwarding

adjacency matrix[i][j]=link weight if � link from i to j, else
-1
partial paths is the sum of link weights on the path, it is ini-
tialized to zero
partial paths nexthop is the next-hop node on the path
no paths denotes the number of path currently being tra-
versed, at the end of the procedure it will denote the number
of paths found between a source and destination
N denotes the number of nodes in the network
The array visited nodes marks a node if it has appeared in
the currently traversed path. It is initialized to zero
procedure ComputePartialPaths(src, dst, no paths, par-
tial paths, partial paths nexthop, level)
begin
visited nodes[src]� 1
if src is a multi path node then

for i = 1 to N do
save current value of partial paths
if (� link from src to i) && (visited nodes[i]==0) then

if level == 0 then
partial paths nexthop[no paths]� i;

end if
partial paths[no paths]+=adjacency matrix[src][i]
if i==dst then

partial paths nexthop[no paths+1]�
partial paths nexthop[no paths]

no paths ++
else

ComputePartialPaths(i,dst,no paths,
partial paths,partial paths nexthop,level+1)

end if
end if

end for
else

/* shortest paths and shortest paths nexthop is computed
by calling AllShortestPaths() */
i� shortest paths nexthop[src][dst]
if visited nodes[i]==0 then

partial paths[no paths] += adjacency matrix[src][i];
if level == 0 then

partial paths nexthop[no paths]� i;
end if
if i==dst then

partial paths nexthop[no paths+1]�
partial paths nexthop[no paths]

no paths ++
ComputePartialPaths(i,dst,no paths,partial paths,

partial paths nexthop, level+1)
end if

end if
end if
visited nodes[src]� 0
end

may run Dijkstra (N-u) times where u is the number
of multi-path capable or upgraded nodes. The Dijk-
stra’s algorithm with adjacency lists has complexity of
O�Elog�N��, where E is the number of edges or links
in the network. So varying over N �u source nodes gives
a complexity of O��N �u�Elog�N��. Unfortunately, the
above complexity is dominated by the complexity of DFS
which is given by bm where b is the branching factor, that
is 1 for a non-upgraded node and equal to degree for an
upgraded node. m is the depth we hit in a DFS which
can be equal to N � � in the worst case. This results in
an overall NP-complete algorithm which presents a need
to find solutions to manage the computational complexity.
The reduction in computational complexity will also lead
to the reduction of space complexity. Appendix provides
an average analysis of the space complexity, i.e., the num-
ber of paths computed using the above approach which is
also large for the fully upgraded case.

III. MANAGING THE COMPUTATIONAL COMPLEXITY

We propose two methods of managing the computa-
tional and space complexity:

a) Leave the route computation algorithm (Algo-
rithm 1) unchanged, but we divide routers into
two types: Passively Multi-Path Capable (P-
MPC) and Multi-Path Capable (MPC). The for-
mer class of routers will not advertise them-
selves as MPC to other routers (i.e. they will
not set the MPC bit in their LSAs), even though
they are aware of the presence of other MPC
routers and can compute the available multi-
paths through other MPC routers. This essen-
tially makes Algorithm 1 see a smaller effec-
tive number of MPC routers and hence a smaller
DFS computational complexity.

b) Change the route computation algorithm to find
a subset of all available valid paths through the
partially upgraded network. Several algorithms
of polynomial complexity (in space and time)
are available in this realm. Given this, we de-
velop a new polynomial complexity path vali-
dation algorithm which can be applied to any
set of paths computed by the above algorithms,
provided it knows what algorithm is being used
at each MPC router. This validation phase
hence allows each MPC node to use heteroge-
neous route computation algorithms to manage
the overall space-time tradeoff. An LSA exten-
sion is needed for this approach to capture the
parameters and the type of the algorithm used at
an MPC router. This is discussed in Section IV.

7

These approaches are discussed further in the follow-
ing subsections. We present Linux implementation and
SSFNet simulation results in Section V to illustrate the
simplicity and viability of these two methodologies.

A. Passively Multi-Path Capable Routers

The notion of a Passively Multi-Path Capable (P-MPC)
router serves three purposes: control of computation com-
plexity, defining the notion of “sources” in a network, al-
lowing for targeted upgrades and targeted set of multi-
paths for a given traffic engineering goal.

First, as discussed earlier, the computation complex-
ity of the DFS is dependent upon the branching factors
it encounters. If fewer routers are MPC, then DFS traver-
sals will encounter smaller average branching factors, and
hence control the actual computational complexity seen
in practice. The total number of paths computed (space
tradeoff) is also dramatically reduced in this process.

Second, one can safely upgrade a router (e.g. an edge-
router) and allow it to have visibility into the available
multi-paths in the network, but without adding to the com-
putational complexity of all other MPC routers. Such vis-
ibility is useful for the P-MPC router to act as a “source”
for the purposes of source-based traffic mapping within
the framework. Indeed, one rough definition of a “source”
is the first upgraded (MPC or P-MPC) router in the path of
a packet that makes the multi-path forwarding and traffic-
splitting decisions (by setting pathID and forwarding ap-
propriately) on behalf of the traffic originator (i.e. source
host).

Third, since the other MPC routers do not “see” the P-
MPC router as multi-path capable, this feature provides
a convenient way of specifying that the P-MPC routers
do not offer multi-path forwarding services to the net-
work. Routers with specific characteristics (e.g. core ver-
sus edge, routers with large degree, large degree in the
shortest path tree etc.) could be chosen to be made MPC,
and the rest could be P-MPC. This would also localize a
majority of traffic mappings to flow through a controlled
set of routers. Moreover, if certain specific explicit paths
are desired rather than a broad set of multi-paths, the key
nodes on such paths could be upgraded to be MPC.

Thus the simple feature of P-MPC or MPC upgrades
provides a considerable administrative flexibility in man-
aging the computation and space tradeoffs.

B. Computing a Subset of Available Multi-Paths

Another approach to manage the complexity at a router
is by computing and storing only a subset of available
paths. A router may keep multiple paths for a subset

of destinations or few paths to all the destinations. Any
technique such as k-shortest paths, all k-hop paths, DFS
with constrained depth, k-disjoint paths, etc. can be used
to compute this subset of all available paths. However,
this approach introduces a new problem: the actual paths
for which forwarding is available in the network depends
in an interrelated manner on the route computation algo-
rithms used at each node. For example, if a MPC router
keeps only a subset of available paths, it may happen that
forwarding along a path does not exist because a down-
stream MPC router does not keep that path in its forward-
ing table. We propose a fully distributed method of ensur-
ing consistency between routers and to enable the discov-
ery of all possible valid multi-paths in the network. We
refer to this as the multi-path validation algorithm.

To illustrate our approach, we use the k-shortest paths
algorithm (See for example [4], [12], [19], [23]) to com-
pute up to k loop-free routes at MPC routers. If all the
routers in the network are MPC routers, compute k short-
est paths to each destination, and have the same value of
k, the packet forwarding will exist for all the computed
paths. In other words, the locally computed paths are all
valid, i.e., forwarding exists for every locally computed
path and no further multi-path validation phase is neces-
sary. However, if only a subset of routers are MPC, and/or
different routers use a different value of k (possibly due
to different speeds and/or memory capacity), packet for-
warding may not be available on all the computed paths,
and a validation phase is necessary.

In particular, forwarding along a path computed by
router A will not exist if a downstream router B does not
install the suffix path (i.e. suffix pathID) in its forward-
ing table. We define valid path as a path for which for-
warding exists, i.e., every suffix path of this path is also
valid. We propose a polynomial time algorithm to vali-
date the computed paths locally at a router. Note again
that the algorithm we propose is general and can be used
to validate paths even if any other deterministic path com-
putation scheme is used, so long as the computation also
includes the shortest paths to any destination. The valida-
tion algorithm assumes that a router has knowledge of the
path-computation scheme at other upgraded routers. We
discuss how to implement this feature in OSPF/IS-IS in
Section IV.

The computation of up-to k, valid, loop-free shortest
paths is a two-phase algorithm. In first phase, a router
locally computes k-shortest paths from itself to all other
nodes in the network [12], [4], [23], [19]. A validation
computation is done to find a set of valid paths. The vali-
dation algorithm proceeds as follows:

Knowing that other MPC routers also use a k-shortest

8

path computation algorithm, it computes the ki-shortest
paths for all the upgraded routers in the network with a
value of k as advertised by the router. We assume that
upgraded routers advertise the path computation scheme
and its parameters in their router LSAs. To generalize,
note that we can locally compute the paths for other MPC
routers according to the path computation scheme adver-
tised by the router. For non-upgraded or P-MPC routers,
shortest paths are computed using Dijkstra’s algorithm.
Now all the computed paths (including those for other
MPC routers) are sorted in ascending order of hop count.

Algorithm 2 shows the pseudo-code of the second
phase, i.e., the validation part. It uses the simple recursive
definition of a valid path, i.e. a path is valid if all its suffix
paths are valid. We can break this up into a mathematical
induction, where a k-hop path is valid if the correspond-
ing (k-1)-hop suffix path is valid; and prove the base con-
dition, i.e. the 1-hop suffix path to the destination is valid.
All the 1-hop paths as computed above (locally and for
other MPC routers) are always valid because there is a di-
rect link between the relevant router and the destination of
the path. Now, observe that any 2-hop path is valid if the
corresponding 1-hop path suffix is valid. For example, the
path 1-2-3 is valid if the path 2-3 is valid and so on. So, the
algorithm first processes all 1-hop paths in the sorted list
of computed paths. Once these are validated (trivially),
it sorts this sub-list of one-hop paths. For every 2-hop
path, it then searches for the existence of the correspond-
ing one-hop suffix path in the sorted and validated 1-hop
path sublist. If the 1-hop path is not found, then the 2-hop
path is immediately invalidated and removed from the list.
Else the 2-hop path is validated. Once all the 2-hop paths
are processed, the 2-hop path sublist is processed. Simi-
larly, when a m-hop path is being processed, the algorithm
merely looks up the corresponding (m-1)-hop path suffix
in the sorted sublist of validated (m-1)-hop paths. The
path is invalidated and removed if the (m-1)-hop path suf-
fix is not found. By mathematical induction, the algorithm
terminates and validates all the residual paths in polyno-
mial time complexity.

In a N-node network with u upgraded routers, the com-
plexity of first phase is given uC�k� � �N � u�C�d�
where, C�k� denotes the complexity of computing k-
shortest paths to all the nodes in the network, C�d� de-
notes the complexity of Dijkstra’s algorithm or any other
scheme used to find the shortest paths to all the nodes. If
ki denotes the value of k for upgraded router i, the to-
tal number of paths, T , at the end of first phase is equal to
�N�u��

Pi�u
i�� ki. The complexity of the validation phase

is O�T log�T ��h� where, �h is the average hop count for the
paths. The log(T) term arises due to searching for a suffix

Algorithm 2 Algorithm for validating paths at a router
with only some nodes supporting multi-path forwarding

All paths are stored in a data structure (routing map).It has
a pair of hopcount and series of nodes which form the path
(PathString,eg 1-2-3) as primary key. Pathid is stored as a
value associated with each key.
MaxHops is the number of hops in the longest path
countHops is used as a counter for iterating from 2 to Max-
Hops
j is used for keeping track of the length of suffix to be
matched
Paths with hop count one are valid
temp pair is a pair of hopcount and PathString. It is used as
a key to find a particular entry in the map.
routing map.find(arg) returns true if the map entry corre-
sponding to arg is found
Initialize j� 2
for countHops 2 to maxHops do

for all i � map do
PathString� path stored in i
if hop count of i � countHops then

tempnodes� last j nodes in PathString
temp pair.hopcount� countHops-1;
temp pair.PathString� tempnodes;
if routing map.find(temp pair) == FALSE then

delete i
end if

end if
end for
countHops+=1;
j+=1;

end for

in the Map (see Algorithm 2). This can be achieved with
a lower complexity by using specialized data structures
such as hash-maps. In summary, Algorithm 2 is a gen-
eral validation procedure that can be applied to validate
paths computed using any deterministic path computation
algorithm at MPC routers.

IV. OSPF/IS-IS EXTENSIONS

In this section, we summarize the extensions to
OSPF/IS-IS to support the proposed scheme. Apart from
the extensions discussed in this section, a 32-bit PathID
field is required in the packet header which may be imple-
mented as a new routing options header. Observe that the
proposed per-packet overhead of 32-bits is smaller than
a 128-bit IPv6 address, that is considered acceptable per-
packet overhead.

The route computation algorithm (Dijkstra’s algorithm)
at upgraded routers must be replaced with a multi-path
computation algorithm, such as DFS with partial upgrades
(DFS-PU), k-shortest paths or any other path computation
algorithm, and a validation algorithm (Algorithm 2). A

9

validation algorithm is not needed if the subset of routers
which are upgraded use DFS-PU or all routers in the net-
work are upgraded and keep exactly k-shortest paths with
same value of k. However, the routers must keep the short-
est path as the default path. Incoming packets with erro-
neous pathID are forwarded on the shortest paths and the
pathID field set to zero.

The intra-domain forwarding tables at upgraded routers
would have tuples (Destination prefix, pathID, Next-
Hop, out-pathID). The OSPF Link State Advertisements
(LSAs) [13] can be extended with one bit to indicate
whether the router is multi-path capable (MPC); the bit is
not set by P-MPC routers. In our Linux/Zebra based im-
plementation, we have used the eighth bit in the LSA op-
tions field of the router-LSA as the MPC bit. Also, since
we allow different upgraded routers to compute paths dif-
ferently, we need some bits to indicate the choice of route
computation algorithm along with its parameters e.g. the
value of k in k-shortest paths algorithm. Note that this
assumes that a router has same value of k for all destina-
tions. In our implementation, we have added 8-bits after
the router type field in the LSA to indicate the value of k.
Additional 4-bits can be used to indicate the route compu-
tation algorithm at a router.

V. IMPLEMENTATION AND SIMULATION RESULTS

In this section, we illustrate the working of the pro-
posed framework using SSFNet [20] simulations and
Linux implementation using MIT’s Click Modular Router
package [10]. We use the SSFNet simulations to illustrate
the framework in larger network topologies. We use the
Linux implementation to demonstrate the operation of the
proposed scheme in a small topology. We demonstrate
both the cases, i.e, when an upgraded router keeps all
available paths and when it keeps only k-shortest paths.

A. SSFNet Simulation Results

We demonstrate that even with very few upgraded
routers, many paths are available to the upgraded routers
i.e. the MPC routers as well as the P-MPC routers. Avail-
ability of many paths at an upgraded router allows flex-
ibility in traffic splitting and thus, enable the operator to
use the bandwidth available on these paths.

Figure 6 shows a 33-node, 61 link topology where all
the links have 1Mbps bandwidth and 0.005ms latency.
The network is simulated as a single OSPF area. Ta-
ble I shows the number of paths available when only two
routers, 12 and 19, were upgraded. These results assume
that a MPC router stores all the available paths. Table II
shows the number of paths available when four routers, 7,

12, 19 and 27, were upgraded. The results show that even
with a small number of upgraded routers, many paths are
available to the “source” or P-MPC routers.

Fig. 6. 33-node topology used for SSFNet simulations

Router No. of Paths Avg. no. of paths per dst
12 204 6.4
19 233 7.3

TABLE I
NUMBER OF PATHS AVAILABLE AT UPGRADED ROUTERS

12 AND 19

Router No. of Paths Avg. no. of paths per dst
7 484 15.1
12 224 7.0
19 285 8.9
27 519 16.2

TABLE II
NUMBER OF PATHS AVAILABLE AT UPGRADED ROUTERS

7, 12, 19 AND 27

B. Linux Implementation Results

Figure 7 shows the topology of a simple validation ex-
periment conducted on Utah’s Emulab [11] testbed with
the Linux Zebra version 0.92a of OSPF upgraded with
our traffic engineering building blocks. The forwarding
plane was implemented in Linux using MIT’s Click Mod-
ular Router package [10]. Figure 7 also indicates the ip-
addresses of various router interfaces and the link weights.
The router ID is statically defined to be same as the ip-
address of one of the router interfaces. However, for sim-
plicity, we have chosen the smallest ip-address interface
as the router ID.

10

All IP−addresses denoted by a.b are actually 192.168.a.b

67.7

67.6

8.25.1

4.4 4.1

3.3

39.3 39.9

45.5

45.4

43.3

51.1
8.8

69.9

5.5

51.5 81.1 81.8
78.8

78.7

6.2
1.21.1

3.143.4

6.6

7.77.2

21 45

51

73

38

83

6755

9367

51

53 45

43
69.675

4

9

1 7

10

2

3

5 8

6

Fig. 7. Experimental Topology on Utah Emulab using Linux Ze-
bra/Click Platforms

1) All Paths with Partial Upgrades: Table III illus-
trates a partial forwarding table at node 1 (IP address
192.168.1.1) for destination 3 (192.186.3.3). Note that the
path string shown in Table III is only for the sake of illus-
tration and is not stored in the actual routing table. The
pathIDs are the (MD5 + CRC-32) hashes of the router
IDs (i.e. IP addresses of nodes) on the path. For exam-
ple, the pathID 2084819824 corresponds to a hash of the
set of router IDs f192.168.1.1, 192.168.1.2, 192.168.6.6,
192.168.39.9, 192.168.3.3 g. The path suffix ID is the
hash of the suffix set formed after omitting 192.168.1.1.
If the path goes through other nodes which are not up-
graded (e.g. 1-4-3), the suffix path ID is the hash of the
suffix path starting from the next upgraded router on the
path. In the case of the path 1-4-3, both nodes 4 and 3 are
not upgraded, so the suffix path ID is zero.

Outgoing I/f Path PathID PathSuffixID
192.168.1.1 1-2-6-9-3 2084819824 664104731
192.168.3.1 1-3 599270449 0
192.168.4.1 1-4-3 4183108560 0
192.168.5.1 1-5-4-3 1365378675 0

TABLE III
PARTIAL ROUTING TABLE AT 192.168.1.1 FOR DESTINATION

192.186.3.3

2) k-Shortest Paths with Partial Upgrades: In this sec-
tion we illustrate, using the Linux implementation, the
case when the upgraded routers compute up-to k-shortest
paths. We consider the case when different upgraded
routers used a different value of k.

Consider the 10-node topology shown in Figure 7. This
topology was setup in the Emulab network. We assume
that the routers 192.168.1.1 and 192.168.1.2 are upgraded
with k equal to 3 and 2 respectively. The results are pre-
sented to verify the correctness of the “validation phase”
(Algorithm 2). Tables IV, V show respectively part of the
routing tables at 198.168.1.1 for destinations 198.168.6.6

and 198.168.8.8 respectively. Tables VI, VII show the cor-
responding entries at router 198.168.2.2. For destination
198.168.6.6 the router 198.168.1.1 finds 3 paths, all of
which are valid as two paths have next-hop 198.168.2.2
and router 198.168.2.2 keeps 2 shortest paths. For des-
tination 198.168.8.8, the router 198.168.1.1 computes 3-
paths, 1-2-8, 1-2-6-7-8, 1-2-7-8. The path 1-2-7-8 is in-
validated in the “validation phase” as router 198.168.2.2
only keeps 2 paths (2-8, 2-6-7-8). Note that the Path string
is shown in tables IV-VII for the purpose of explanation.

Path PathID Next-hop out-PathID
1-2-6 1989316858 192.168.1.2 3491782861
1-2-7-6 656924081 192.168.1.2 3645081405
1-3-9-6 534784006 192.168.3.3 0

TABLE IV
PART OF ROUTING TABLE AT 192.168.1.1 FOR DESTINATION

192.186.6.6

Path PathID Next-hop out-PathID
1-2-8 3654096761 192.168.1.2 1973392862
1-2-7-6-8 1777786090 192.168.1.2 2123671348

TABLE V
PART OF ROUTING TABLE AT 192.168.1.1 FOR DESTINATION

192.186.8.8

Path PathID Next-hop out-PathID
2-6 1973392862 0.0.0.0 1973392862
2-7-6 2123671348 192.168.7.7 2123671348

TABLE VI
PART OF ROUTING TABLE AT 192.168.2.2 FOR DESTINATION

192.186.6.6

Path PathID Next-hop out-PathID
2-8 3491782861 0.0.0.0 0
2-6-7-8 3645081405 192.168.6.6 0

TABLE VII
PART OF ROUTING TABLE AT 192.168.2.2 FOR DESTINATION

192.186.8.8

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a connectionless ap-
proach to intra-domain traffic engineering. The proposed
approach allows routing along explicit paths without re-
quiring a signaling protocol and with only partial network
upgrades. In particular, we propose to use a hash of the
path in a fixed-size routing header which is carried by the
packet. The main idea is to use a global path identifier
(pathID) that is based on ip-addresses and/or link weights
(globally known due to link-state nature of OSPF and IS-
IS) instead of local identifiers, i.e. labels, in MPLS. This

11

allows different routers to compute pathIDs consistently
without the use of a signaling algorithm. The forwarding
is based on longest destination prefix match followed by
an exact pathID match. We have developed algorithms to
compute paths available at a router under partial upgrade
assumptions. The Linux implementation and simulations
illustrate different aspects of the proposed scheme.

Future work includes the demonstration of a range of
practical traffic engineering applications using our frame-
work. The impact of using heterogeneous route compu-
tation algorithms on the TE capabilities needs further re-
search. We also plan to map interesting applications like
interactive multimedia and large-file-transfer to statisti-
cally multiplex the network using the multi-paths to get a
larger multiplexing gain out of the network. In this paper,
our focus was on a single-area OSPF routing domain. But
the work can be easily extended to multiple areas, if we
assume that the PathID is re-initialized at area boundaries.
Our ongoing work extends the framework to inter-domain
TE and multi-exit routing in autonomous systems by con-
sidering AS numbers or exit ASBRs as node-identifiers.
We are also beginning to work with key representatives in
the IETF and IRTF to consider large-scale trials and po-
tential standardization of this framework.

REFERENCES

[1] J. Chen, P.Druschel, D.Subramanian, “An Efficient Multipath
Forwarding Method,” in INFOCOM’98, March, 1998.

[2] D. Coppersmith and and S. Winograd, “ Matrix Multiplication
via Arithmetic Progression,” ACM Symp. on Theory of Com-
puting (STOC), 1987, pp.1-6.

[3] T.H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, “Intro-
duction to Algorithms”, The MIT Press, McGrawHill Book
Company, Second Edition, 2001.

[4] D. Eppstein, “Finding the k shortest Paths,” Proceedings of
35th IEEE Symposium on Foundations on Computer Science,
pp. 154-165, 1994.

[5] B. Fortz, M. Thorup, “Internet Traffic Engineering by Opti-
mizing OSPF Weights, in Proceedings of the INFOCOM 2000,
pp. 519-528, 2000.

[6] B. Fortz, M. Thorup, “Increasing Internet Capacity Using Lo-
cal Search,” Preprint, 2000.

[7] B. Fortz, M. Thorup, “Optimizing OSPF/IS-IS Weights in a
Changing World,” IEEE Journal on Selected Areas in Com-
munications, Vol. 20 No. 4, 2002.

[8] C. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm,”
IETF RFC 2992, 2000.

[9] Hema T. Kaur, T. Ye, S. Kalyanaraman, K. S. Vas-
tola, “Minimizing Packet Loss by Optimizing OSPF
Weights using Online Simulation,” Preprint, available from
http://www.ecse.rpi.edu/Homepages/shivkuma/research/papers-
rpi.html, 2002.

[10] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek,
“The Click modular router,” ACM Transactions on Computer
Systems, Vol. 18, No. 3, August 2000, pages 263-297.

[11] J. Lepreau, “The Utah Emulab Network Testbed,”
http://www.emulab.net/

[12] Ernesto Q. Vieira Martins, Marta Margarida B. Pascoal and
Jos Luis E. Santos, “The K shortest loopless paths prob-
lem,” Research Report, CISUC, July 1998, available from
http://www.mat.uc.pt/ eqvm/cientificos/investigacao/r papers.html.

[13] J. Moy, “OSPF Version 2,” IETF RFC 2328, April 1998.
[14] North American Network Operators Group (NANOG) atten-

dees, Private communication, June 2002.
[15] P. Narvaez, K. Y. Siu, “Efficient Algorithms for Multi-Path

Link State Routing,” ISCOM’99, Kaohsiung, Taiwan, 1999.
[16] K.G. Ramakrishnan, M.A. Rodrigues, “Optimal Routing in

Shortest Path Data Networks,” Bell Labs Technical Journal,
January-June 2001.

[17] F. Roman, “Shortest Path Problem is Not Harder than Ma-
trix Multiplication,” Information Processing Letters, Vol. 11,
1980, 134-136.

[18] E. Rosen et al, “Multi-Protocol Label Switching Architecture,”
IETF RFC 3031, January 2001.

[19] R. Shier, “On Algorithms for Finding the k Shortest Paths in a
Network,” Networks, vol. 9, pp. 195-214, 1979.

[20] Scalable Simulation Framework (SSF) Network Models,
available from http://www.ssfnet.org.

[21] H. Suzuki and F. A. Tobagi, “Fat bandwidth reservation
scheme with multi-link and multi-path routing in ATM net-
works,” In Proceedings of IEEE INFOCOM, 1992.

[22] D. Thaler and C. Hopps, “Multipath Issues in Unicast and
Multicast Next-Hop Selection,” IETF RFC 2991, 2000.

[23] D. M. Topkis, “A k shortest path algorithm for adaptive routing
in communications networks,” IEEE Transactions on Commu-
nications, Vol. 36, 1988.

[24] C. Villamizar, “OSPF Optimized Multipath (OSPF-
OMP),” Expired Internet Draft, 1999. Available from
http://www.ietf.org/proceedings/99mar/I-D/draft-ietf-ospf-
omp-02.txt

[25] S. Vutukury and J.J. Garcia-Luna-Aceves, “ A Simple Ap-
proximation to Minimum-Delay Routing,” SIGCOMM ’99,
September, 1999.

[26] T. Ye, S. Kalyanaraman, “A Recursive Random Search Al-
gorithm for Optimization of Network Protocol Parameters,”
Technical report, ECSE Department, Rensselaer Polytechnic
Institute, 2001.

APPENDIX

Consider an arbitrary graph G � �V�E�, where V is
the set or vertices or nodes in the graph and E is the set of
edges denoted by �i� j� where i� j � V . Let N denote the
number of nodes in the graph, i.e., the cardinality of V .
We characterize the graph by a probability mass function
of the node out-degree, i.e. the probability that a node has
k neighbors is given by p�k�, � � k � N � �. Let d�i�
denote the out-degree of a node i. We also assume that
a node is equally likely to have a link to any of the other
n� � nodes. Now, consider any two arbitrary nodes s and
m. Given node s has i neighbors, the probability that a
link exists between s and m is given by i��N � ��. In
other words,

P ��s�m� � Ejd�s� � i	 �
i

N � �
(1)

12

Hence, the probability that a link exists between any two
nodes s and m is given by

q �
N��X
i��

i

N � �
p�i� (2)

Then, the probability that any k hop path exists in this
arbitrary network can be obtained by considering a fully-
connected network. In a fully-connected network,

No. of k hop paths �

�
� for k � �Qk

i���N � i� � � k � N � �

(3)
A k hop path exists in this arbitrary network if each of the
k links exist in the arbitrary network i.e. with probability
qk. The expected number of k hop paths, H(k), in the
random graph between any two nodes s and d is given by

H�k� �

�
q for k � �

qk
Qk

i���N � i� � � k � N � �
(4)

The expected number of paths from s to d is given by

S�N� � q �
N��X
k��

�
qk

kY
i��

�N � i�

�
(5)

To validate (5), we generated random graphs with dif-
ferent values of q and used DFS to find total number of
paths between a source and destination. Average num-
ber of paths was computed by averaging the number of
paths over all source and destinations. A total of 1000
topologies were generated an average number of paths
computed. Table VIII compares average number of paths
as obtained using (5) and from DFS for a 10-node network
for different values of q. The results show that our model
is a very good aproximation estimating the expected num-
ber of available paths.

q Analysis DFS Relative Error
0.20 2.85 2.65 0.075
0.28 15.00 14.62 0.026
0.36 65.70 67.24 0.023

TABLE VIII
COMPARISON OF NUMBER OF PATHS FOUND USING ANALYSIS

AND DFS FOR 10-NODE NETWORKS WITH ALL UPGRADED NODES

A. Average number of paths with partial upgrades

We now consider the case when only a subset of the
routers in the network are upgraded to support multi-
paths. Let the probability that an arbitrary router in the

network is upgraded be given by p. As before, the proba-
bility that a link between any two nodes exists, q is again
given by Equation 2. The number of paths between any
source destination pair which now exist depends on the
number of upgraded routers in the path and the exact po-
sition of these routers. For example, if the source node is
upgraded, it has a choice of N � � nodes for the next hop,
assuming of course that links exists between then. How-
ever, in case it is not upgraded, the number of next hop
choices is 1. This argument can also be extended to the
other nodes in the path. Also, we not that the status of
the penultimate router and the destination do not matter
since the last hop constitutes a direct connection between
them. For a N node network, the expected number of k
hop paths, H�k�, is then given by

H�k� �

������
�����

q for k � �

qk
h
��� p�k���

pk��
Qk

j���N � j��Pk��
i�� p

k���i��� p�iS�N� k� i�
i

� � k � N � �

(6)
where

S�N� k� i� �
kX

j���

kX
j��j���

� � �
kX

ji�ji����

kY
m��

m��j������ji

�N �m�

(7)
In Eqn. (6), the term �� � p�k�� denotes the case where
the first k � � routers are not upgraded, in which case
there is only one k-hop path, which exists with probability
qk. The second term in that expression considers the case
where all the first k�� routers are upgraded in which case
this becomes to the fully upgraded scenario. The term
S�N� k� i� counts the number of k hop paths when there
are i non-upgraded routers in the path for any given source
destination pair in the N node network.

