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Abstract

In this paper, we present a scheme for minimizing packet
loss in OSPF networks by optimizing link weights using On-
line Simulation. We have chosen packet loss rate in the net-
work as the optimization metric as it is a good indicator
of congestion and impacts the performance of the under-
lying applications. We have formulated packet loss rate in
the network in terms of the link parameters, such as band-
width and buffer space, and the parameters of the traffic de-
mands. A GI/M/1/K queuing model has been used to com-
pute the packet drop probability on a given link. The prob-
lem of optimizing OSPF weights is known to be NP-hard
even for the case of a linear objective function [4]. We use
Online Simulation (OLS) framework [14] to search for a
good link weight setting and as a tool for automatic net-
work management. OLS uses fast, scalable recursive ran-
dom search (RRS) algorithm to search the parameter space.
Our results demonstrate that the RRS takes 50-90% fewer
function evaluations as compared to the local search heuris-
tic of [3] to find a “good” link weight setting. The amount of
improvement depends on the network topology, traffic con-
ditions and optimization metric. We have simulated the pro-
posed OSPF optimization scheme using ns and our results
demonstrate improvements of the order of 30-60% in the to-
tal packet drop rate for the traffic and topologies consid-
ered.

1. Introduction

Traffic engineering (TE) is defined as the task of map-
ping traffic flows onto an existing physical topology to meet
the performance objectives of network operators. The prob-
lem of minimizing packet loss can be broadly classified as
a traffic engineering problem. Prior work in the area of TE
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in OSPF networks has focused on optimizing the OSPF link
weights for a given traffic demand estimate [3], [4] in order
to minimize congestion. A piece-wise linear link cost func-
tion was assumed in [3], [4]. The OSPF routing with these
link weights leads to desired routes.

OSPF routes traffic on shortest paths based on the adver-
tised link weights. As a result, the links along the shortest
paths may become congested while other links on longer
paths remain idle. OSPF also allows for Equal Cost Multi
Path (ECMP) where the traffic is distributed equally among
various next hops of the equal cost paths between a source
and a destination [10]. This is useful in distributing the load
to several shortest paths. However, as shown in [4], the split-
ting of load by ECMP is not optimal. One of the earlier
approaches to achieve load balancing was by adapting link
weights to reflect local traffic conditions on a link ([5, 8]).
This is called adaptive or traffic-sensitive routing. However,
adapting link weights to local traffic conditions leads to fre-
quent route changes and is unstable (see [1, 13] for stability
analysis of adaptive routing). Additionally, adaptive routing
is based on the local traffic conditions and therefore can not
optimize traffic allocation from the network’s perspective.
These drawbacks are alleviated by assuming the knowledge
of all traffic demands the network. This is a common as-
sumption in all the TE work at the intra-domain level. In
practice, only estimates of traffic demands can be derived
by using monitoring tools described in [6, 7].

We use the Online Simulation (OLS) framework [14] as
an automatic network management tool for finding and de-
ploying “good” OSPF link weights. The OLS is a generic
network management framework for performance opti-
mization of network protocols. In particular, OLS does
not interfere with the packet-by-packet data of the net-
work but exhibits what we term as “second-order” control
on network protocols. The OLS architecture is composed
of autonomous online simulators that continuously mon-
itor and model the network conditions and topology.
Using the topology and traffic input from these measure-
ments, the OLS executes simulations or analysis to evaluate
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automatic network management

the performance of the network for a given set of proto-
col parameters. Thus, OLS may be used to “tune” param-
eters of any network protocol. The underlying assumption
is that the performance is sensitive to the parameter set-
tings and a “good” parameter setting depends on the net-
work topology and current traffic conditions. A network
management tool such as SNMP is used in OLS to de-
ploy improved parameter values (link weights in this case).
The OLS uses fast search schemes to obtain better pa-
rameter settings for a given traffic and topology condi-
tion. The OLS uses a best-effort parameter search strat-
egy; where the emphasis is not on “full” optimization, but
on continuously and increasingly moving the system to-
wards a “better” operating point. The OLS may be triggered
either periodically or by a substantial change in the net-
work load. However, due to control overhead and system
limitations, an upper bound may be imposed on how fre-
quently OLS is triggered for the optimization.

In the OLS framework, the optimization of network pro-
tocols is modeled as a general “black box” problem where
the objective function is unknown but can be evaluated
through simulations. The advantage of this approach is that
it makes OLS a very flexible system whose use is not re-
stricted to one specific protocol or one performance objec-
tive. However, the formulation and evaluation of optimiza-
tion objective is important. Figure 1 shows the general op-
eration of OLS and its interaction with the network.

In this paper, for fast evaluation, we present an ana-
lytic approach to calculate the packet drop rate by using
GI/M/1/K queuing model. General inter-arrival (GI) is more
general arrival model as compared to the commonly used
poisson process. It allows the arrival process to be more
bursty than a poisson process while being mathematically
tractable. However, the GI model does not capture the cor-
relation structure of the traffic. More accurate traffic mod-
els, that capture the long range dependence, may be used
but they are either computationally intractable or very com-
plex.

Our contributions in this paper include

• Formulation of packet loss as the optimization objec-
tive using a GI/M/1/K queueing model

• Demonstration of OLS as network management tool in
OSPF networks

• Application of RRS for finding a “good” link weight
setting fast

• Demonstration of improvement in packet loss by using
OLS framework

The rest of this paper is organized as follows. In Section
2, we derive packet drop rate at a link using the offered
load and formulate the optimization problem. In Section 3
we describe the OLS approach for OSPF optimization. Sec-
tion 4 presents the simulation results and finally, Section 5
presents the conclusions and directions for future work.

2. The Objective Function

The goal is to minimize the packet loss rate in a network
for a given mean and variance of the aggregate demands
between each source and destination routers. Let us con-
sider a network represented by a directed graph G=(N ,L),
where N and L represent respectively the set of routers and
links in the network. Each link l ∈ L has bandwidth de-
noted by Bl and a buffer space of Kl packets. We assume
that the packets arriving when the buffer space at a link is
full are dropped. We also assume that there is no other ac-
tive queue management algorithm running at the routers. In
addition to the knowledge of bandwidth and buffers at all
the links, we assume that an estimate of the mean and vari-
ance of the aggregate demand from each source s to desti-
nation t is known (using a tool such as [6]). Let D, V denote
the mean and variance matrix of the estimated aggregate de-
mand.

In the following sub-sections, we first derive the drop
probability for one link based on the offered load. Then we
formulate the optimal general routing problem which aims
to optimize the overall packet drop rate for the network.
Note that the OSPF optimization problem is just the opti-
mal general routing subject to the shortest path constraint.

2.1. Packet Drop Probability on a Single Link

Let P denote the packet drop probability on a link, λ,
σ2 denote the mean, variance of the offered load to this link
in packets per second, and B, K denote its bandwidth and
buffer space respectively. In order to find a closed-form ex-
pression for the packet drop probability P , let us assume an
exponentially distributed packet size with mean X̄ . How-
ever, we consider a general arrival process. We compute the
packet drop probability at the link using a GI/M/1/K queu-
ing model. The drop probability of a finite GI/M/1/K has



been approximated by an infinite buffer GI/M/1 queue [9]
using the following equation.

P (NK = K) '
P (N∞ = K)

P (N∞ ≤ K)
(1)

NK denotes the number of packets in the finite buffered
queue, whereas, N∞ denotes number of packets in the infi-
nite buffer GI/M/1 queue. The queue length distribution of
GI/M/1 queue is given by [2]:

P (N∞ = j) = Aωj−1 (j ≥ 0) (2)

where A is the normalization constant and ω is a constant
depending on the arrival process and service rate. ω can be
obtained by solving the following equation:

ω = γ ((1 − ω)µ) (3)

where γ(s) is the Laplace transform of the inter-arrival time
distribution and µ is the service rate which is given by B

X̄
.

In order to solve (3) for ω, we need to assume a inter-
arrival time distribution for the arrival process. Let us con-
sider the Generalized Exponential (GE) distribution for
modelling the arrival process to first two moments. We dis-
cuss below the reason for the choice of GE distribution.

The pdf of GE distribution is given by

g(x) = (1 − p)δ(x) + pae−ax (4)

where δ(x) is the delta function, p and a two constant pa-
rameters. As can be seen from (4), a GE process is charac-
terized by two parameters, p and a. GE distribution is a spe-
cial case of H2 distribution and can be used to model gen-
eral inter-arrival processes that are more bursty than Pois-
son process. For a Poisson process the variance is equal to
the square of mean. Hence, GE distribution may be used
to model the first two moments of processes with variance
greater than the square of mean. If the arrival process is rep-
resented by a GE distribution, then, with probability p the
inter-arrival time is exponentially distributed with mean a
and with probability 1 − p, the inter-arrival time is zero.
Hence, this distribution represents a batch arrival process
with geometrically distributed batch size and exponentially
distributed inter-batch arrival times. For a link with λ, σ as
its mean and variance of the offered load, we can have the
parameters of the GE distribution representing the arrival
process:

p =
2λ2

σ2 + λ2
and a = pλ (5)

The merging of N independent GE(pi,ai) processes is a
bulk-arrival Poisson process with mean arrival rate a equal
to

∑N
i=1 ai and p equal to a/

∑ ai

pi
. Similarly, splitting of a

GE(p,a) process into N streams according to a Bernoulli fil-
ter r1, r2, ...rN , the parameters of the ith process are

pi =
p

p(1 − ri) + ri
and ai = ria. (6)

Reader may refer to [12], Section 1.4 for more details.
The packet arrival process of a single TCP flow is bursty

in nature with a “bulk” of packets arriving every round-trip
time. The model that we have considered implies that we
have “bulk” arrivals (in form of bursts of packets from com-
peting TCP sources) of varying sizes arriving into a queue.
Our model does not capture the feedback effect of packet
drops on TCP flows because we have considered the aggre-
gate traffic arriving at an OSPF router as our demand esti-
mate.

Taking the Laplace transform of (4), we get,

G(s) = 1 − p +
pa

s + a
(7)

Then substitute it into (3) and solve it for ω for the GE ar-
rival process gives

ω = ρ + (1 − p) (8)

where,

ρ =
a

µ
=

aX̄

B
. (9)

Finally, using (1), (2), (3) and (7), we get the packet drop
probability

P =
(p − ρ)(ρ + 1 − p)K

1 − (ρ + 1 − p)K+1
(10)

In summary, (10) represents the closed form expression of
packet drop probability, P , on a single link as a function
of mean, variance λ, σ2 of the arrival process, mean packet
size X̄ , link bandwidth B and buffer space K.

2.2. The Optimal General Routing

Using link packet drop probabilities obtained from (10),
we can formulate the optimal general routing problem as:

Φ =
∑

l∈L

λlPl (11)

where λl is the arrival rate for link l and Pl is its drop rate
calculated by (10). This is a constrained optimization prob-
lem with the flow constraints at each router j for each de-
mand D(s, t) between source s and destination t. D(s, t) is
in packets per second. If f

(s,t)
l denotes the fraction of the

demand D(s, t) on link l, then the flow balance constraints
at router j are given by

∑

i:(i,j)∈L

f
(s,t)
(i,j) −

∑

i:(j,i)∈L

f
(s,t)
(j,i) =







−D(s, t) if j = s
D(s, t) if j = t
0 Otherwise

(12)
The mean packet arrival rate to a link l, λl, is given by

λl =
∑

(s,t)∈N×N

f
(s,t)
l (13)



The parameter p(s,t) for the GE process used to fit the de-
mand D(s, t) is given according to (5):

p(s,t) =
2D(s, t)2

D(s, t)2 + V(s, t)
(14)

Let r
(s,t)
l denote the probability with which the demand

D(s, t) is sent on link l. Then r
(s,t)
l is given by

r
(s,t)
l =

f
(s,t)
l

D(s, t)
(15)

Let p
(s,t)
l denote the parameter p of the GE process after

splitting the demand D(s, t) with probability r
(s,t)
l . Then

p
(s,t)
l denotes the parameter p of the GE process represent-

ing the flow f
(s,t)
l . The parameter p

(s,t)
l is given according

to (6):

p
(s,t)
l =

p(s,t)

p(s,t)(1 − r
(s,t)
l ) + r

(s,t)
l

(16)

The total offered load on link l is given by λl (13), the pa-
rameter p of the associated GE distribution may be obtained
by merging the flows f

(s,t)
l going through l. If pl denotes

the parameter p of the GE process associated with the ag-
gregate traffic on link l, then pl is given by

pl = λl(
∑

(s,t)∈N×N

f
(s,t)
l p

(s,t)
l )−1 (17)

If ρl is equal to λlplX̄
Bl

, then, using (10), the probability of
packet dropped at link l is given by

Pl =
(pl − ρl)(ρl + 1 − pl)

Kl

1 − (ρl + 1 − pl)Kl+1
(18)

The optimal general routing problem is given by (11),
subject to the constraints given by (13), (14), (15), (16),
(17), (18). It may be noted that we are casting the traffic ac-
cording to the routing in order to obtain the mean and vari-
ance of the total offered traffic to each l ∈ L. Equilibrium
parameters of the arrival process to a link can be obtained by
assuming an initial value of drop probability P 0

l . The actual
arrival process parameters, taking into account the packet
loss, may be obtained by splitting the aggregate arrival pro-
cess with probability (Pl)(or P 0

l in the first iteration). This
may be iterated till the convergence of flows is achieved to
the desired accuracy. In the results shown in this paper, we
have not iterated to obtain the equilibrium traffic parame-
ters. Essentially, we are calculating the upper bound on the
packet drop probability as value of Pl and a higher λl in
(11).
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Figure 2. Shrink and re-align procedure of
RRS

3. Optimization of OSPF weights Using On-
line Simulation

The general optimal routing problem, where the objec-
tive function is completely defined by (11)-(18), may possi-
bly be solved for f

(s,t)
l ∀l ∈ L by using some non-linear

programming techniques. However, under constraints of
OSPF routing, the relation between the link weights and
optimization metric can no longer be analytically defined.
Hence, the optimal OSPF routing becomes a “black box”
optimization problem which may be defined as:

min Φ(w) (19)

where w is the vector of network link weights and Φ(·) the
objective function, which is unknown. Basically, in order to
obtain the value of Φ for a given OSPF weight setting, we
run modified Floyd Warshall’s algorithm (modified to ob-
tain equal cost paths also) to obtain the routing. Then the
traffic is cast to obtain parameters of the aggregate packet
arrival process and drop probability for every link l ∈ L us-
ing (13), (14), (15), (16), (17) and (18). Finally the value
of Φ may be calculated by (11). Finding optimal OSPF link
weights is an NP-hard problem even for a linear objective
function [4]. OLS uses RRS algorithm to obtain an opti-
mal or near optimal link weight setting for the optimization
problem given by (19).

In the context of network optimization, a highly efficient
search algorithm is needed to find “good” OSPF link weight
setting since the network is a dynamic system and network
conditions may change significantly from time to time. Fur-
thermore the search algorithm should be scalable to high-
dimensional problems since there may be hundreds of pa-
rameters in a network. Another issue that needs to be con-
sidered is that network simulation only provides an approx-
imate estimation of network performance. This means that
the objective function is superimposed with some noise due
to inaccuracies in network modeling, simulation, etc. To
address these issues, OLS uses a recursive random search
(RRS) (see [15] for details and performance study of RRS).
The RRS is based on the high-efficiency feature of random
sampling at initial steps. The main idea in RRS is to use
the high-efficiency random samples to identify the promis-



ing areas. The recursive random sampling process is used
in these areas which are shrunk and re-aligned to obtain lo-
cal optima.

An sample search using RRS is illustrated in Figure 2.
First, a number of random samples, say n, are taken from
the parameter space D. The best point is taken as the cen-
ter C1 of the promising region R1 which is further explored.
The point C1 falls in AD(r), r = 1− (1− p)1/n with prob-
ability p.The size of R1 is taken to be the size of AD(r)
so as to cover at least one local optimum in AD(r) with
high probability. Then, another l random samples are taken
from R1. Note that l should be much less than n since
the search is in a promising area and expects to find bet-
ter points quickly. If a better point is found within these l
samples, the center of the sample space is moved to this
point and the size is kept unchanged. For example, in Fig-
ure 2 the center is moved to C2, the region R2 is used as the
next sample space. If a better point is not found in l sam-
ples, the size of sample space is reduced by half and the
center is kept unchanged. In Figure 2, R3 is used as the next
sample space after l unsuccessful samples in R2, and the
center C2 is left unchanged. This shrink-and-re-align pro-
cedure is repeated until the size of the region is reduced be-
low a threshold, then the above search process is restarted.

Real Network

Compute

Φ

λ, Φ
Cast Traffic

Fit a Model
Monitor Network Traffic

SNMP etc.

w

Online Simulation

Compute Shortest Paths

Network Management Tool

Recursive Random Search

Figure 3. Overall OSPF optimization setup
using OLS

Figure 3 shows the functional block diagram of the over-
all setup of this optimization scheme. The OLS monitors the
traffic to provide the estimates of mean and variance of the
traffic demand for performance evaluation of link weights.
A GE model parameters are used to fit the first two mo-
ments of link traffic. Dijkstra’s algorithm (modified to in-
clude ECMP) is used to find the OSPF paths and traffic is
cast using split and merging of GE flows. The aggregate
traffic is used to compute the packet loss for a given OSPF
link weight setting. RRS is then be used to search for bet-
ter link weight setting for the network which is evaluated
using the above procedure. When a certain stopping crite-

ria is met, for example, the time limit is reached, the best-
so-far link weight setting found by RRS may be deployed
in the real network if it results in substantial improvement
in the performance otherwise the link weights are left un-
changed. A long search time suggests a near-optimal link
weight setting with high probability.

4. Simulation Results

In this section we present two sets of simulation results.
One is to demonstrate that RRS obtains better OSPF link
weight settings with fewer function evaluations than the al-
gorithm proposed in [3]. Another set of results demonstrate
the improvement in end-to-end performance (in terms of the
drop rate) by dynamic optimization of OSPF weights.

We have considered three network topologies -
ARPANET, Old MCI and randomly generated, shown
in Figure 4, to demonstrate our results. We couldn’t in-
clude AT&T topology used in [3] for comparison as
it is not publicly available (the authors could not dis-
close the topology). The ARPANET topology consists of
48 routers and 140 simplex links Each link in the net-
work is assumed to consist of two simplex link whose
weights may be set independently. MCI topology con-
sists of 19 routers and 62 simplex links. We have also con-
sidered a randomly generated topology with 22 routers and
60 simplex links.

Random amount of traffic was sent from every node to
every other node in the network. This random traffic was
generated using the method outlined in [3]. For each node
u, two random numbers are generated Ou, Du ∈ [0, 1]. For
each pair of nodes (u, v) another random number C(u,v) ∈
[0, 1] was generated. If ∆ denotes the largest Euclidian dis-
tance between any pair of nodes and if α denotes a constant,
the average demand between u and v is given by

D(u, v) = αOuDvC(u,v)e
−δ(u,v)

2∆

where, δ(u, v) denotes the Euclidian distance between the
nodes u and v. The ratio of square of mean to the variance
was assumed to be a uniformly distributed random variable
in [0, 1] (please note that SqV, ratio of variance to square
of mean will be > 1). The mean and variance of the traffic
demands are generated using the above procedure. All the
links in the network have 1Mbps bandwidth with a buffer
size of 50 packets. The packet size was chosen to be expo-
nentially distributed with mean packet size of 200 bytes.

In the simulation results presented in this paper, we do
not verify the traffic modeling assumptions as this is not a
focus of this paper. The performance results shown in 4.1
are the average results from ten simulation runs. Average
of multiple simulation runs is presented as we compare the
performance of two stochastic search algorithms.
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Figure 4. Figure showing the network topologies used in simulation
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Figure 5. Figure showing the convergence curves of piecewise linear metric for (a) ARPANET (b) MCI
(c) Randomly generated network topologies

4.1. Comparison of Search Schemes

In this section, we present the results of comparison of
the RRS with the local search scheme proposed in [3]. In
optimization literature, the comparison between algorithms
is usually done in terms of the number of function evalua-
tions instead of the absolute time taken to find a “good” pa-
rameter setting. This is done because the computation time
is considerably dependent on many other factors, such as,
implementation efficiency, testing platform, compiler, etc..
Assuming that the main computation time is for function
evaluations, the number of function evaluations is a more
appropriate performance metric under the assumption that
the computation time per function evaluation is approxi-
mately the same for both schemes. Note this assumption
is not exactly true in the context of our problem, where
one function evaluation represents one optimization met-
ric computation for a specific set of link weights. In [3],
authors have used incremental shortest path computations
to improve the speed of search as very few link weights
change from one iteration to the next which is reported to
have 15% improvements on an average. In spite of this, we
use the number of function evaluations as our algorithm per-

formance metric for the reasons mentioned above and the
consideration that RRS is designed to be a general “black-
box” search algorithm where no problem-specific is avail-
able. It should be noted that even after taking the 15% im-
provement for the local search scheme of [4] into consid-
eration, our algorithm is significantly faster (please see the
results).

Loosely, we refer to the number of function evaluations
required to obtain a “good” parameter setting as the speed of
convergence. A “good” parameter setting has been defined
as the OSPF link weight setting that give metric value lower
than that by setting all link weights equal to one (called unit
OSPF weights). This definition is a simple setting used for
the sake of comparison. A “good” parameter setting may
have been defined alternatively as the link weight setting to
achieve performance metric equal to, say, 80% of the unit
OSPF.

4.1.1. Heuristic Piecewise Linear Metric In or-
der to compare the speed of convergence of our search
scheme with the local search scheme proposed in [3], we
use the cost metric used in [3], which is piecewise lin-
ear with the link offered load. The optimization objec-
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Figure 6. Figure showing the convergence curve of total packet drop rate for (a) ARPANET (b) MCI
(c) Randomly generated network topology
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Figure 7. Figure showing total packet drop rate as a function of time for the (a) ARPANET (b) MCI
(c) Randomly generated network topology. Traffic pattern was changed at times 0, 200, 400..., the
optimized OSPF weights were deployed at times 100, 300,...

Scheme ARPANET MCI Random
Local Search 932 433 322

RRS 350 183 9
Improvement 62.4% 57.7% 97.2%

Table 1. Table comparing the number of func-
tion evaluations needed to obtain a “good”
parameter setting (unit OSPF weights) for
piecewise linear metric

tive is to minimize the sum of link costs, summed over
all l ∈ L (please refer to [3] for details of the cost func-
tion).

Figure 5 shows the optimization convergence curves
for the ARPANET, MCI and Randomly generated network
topologies respectively. It can be seen that RRS outperforms
the local search scheme in terms of the number of function
evaluations needed to find a “good” parameter setting for

Scheme ARPANET MCI Random
Local Search 882 469 372

RRS 210 125 54
Improvement 76.1% 73.3% 85.5%

Table 2. Table comparing the number of func-
tion evaluations needed to obtain a “good”
parameter setting for packet drop rate metric

all three network topologies. These results have been tabu-
lated in Table 1.

4.1.2. Packet Drop Rate Metric In this section we
present the comparative results for the packet drop met-
ric defined in (18). Figure 6 shows the comparison re-
sults of the optimization convergence speed. The results
clearly show that RRS significantly outperforms the lo-
cal search algorithm. Table 2 shows that for the packet
drop rate metric, RRS took 70% or fewer function evalua-



ARPANET MCI Random
Max. Improvement 31.8% 60.2% 35.7%

Table 3. Table summarizing the maximum
percentage improvement in the packet drop
rates for the results shown in Figure 7

tions to obtain a “good” OSPF link weight setting.

4.2. Optimizing OSPF for reducing packet loss

We now describe the simulations showing how the net-
work performance can be improved using proposed OSPF
optimization scheme. Figure 3 shows the overall simula-
tion set-up. We have used the network simulator ns [11]
to simulate the real network running OSPF. The traffic in
the network was generated in the same way as outlined in
the beginning of this section. However, every 200 seconds
the traffic pattern (the mean and variance of demand matrix)
was changed in order to create a dynamic scenario. The traf-
fic generator is implemented over UDP to generate bursty
traffic with the GE inter-arrival distribution described in (4).
In our simulation, we assume OLS has a complete knowl-
edge of necessary network information, such as, traffic de-
mands, network topology, etc.. Whenever a change of traf-
fic pattern happens, the OLS runs RRS for a certain number
of iterations to obtain a better parameter setting. If the opti-
mized setting is much better than the original, it is deployed
at 100 seconds after the traffic change.

The actual packet drop rates are measured during the
simulation at all the traffic sinks in the network and are
summed together to get the total packet drop rate. Figure
7 shows total packet drop rate in the network as a function
of time. Table 3 summarizes the maximum improvement in
packet drop rates for different topologies. Note that more
or less improvements may result depending on the topology
and traffic conditions. Moreover, we have used randomly
generated UDP traffic which does not resemble the traffic
in actual networks.

5. Conclusions and Future Work

In this paper we have presented a scheme for minimiz-
ing packet loss in the network by optimizing OSPF weights
using Online simulation framework. We have formulated
an optimization problem was and used general inter-arrival
GI/M/1/K queuing model to compute the packet loss rate
in the network. A GE process was used to find closed-form
expression which is general enough to fit a bursty arrival
process to two moments. OLS uses a fast, scalable RRS
to search the parameter space. Substantial performance im-
provements have been demonstrated using ns simulations.

Future work includes demonstration of the proposed
scheme in a real test network. Validating the GE model for
traffic, packet loss probability approximation and develop-
ing models for Random Early Drop (RED) and more com-
plex buffering strategies are topics for future work. Inves-
tigating issues associated with traffic monitoring and mod-
elling and their impact on the performance of dynamic op-
timization will be another goal for future work.
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