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Abstract

An H∞ based robust controller is designed for a rate-feedback �ow-control problem in single-bottleneck communication networks.
The controller guarantees stability robustness to uncertain time-varying multiple time-delays in di;erent channels. It also brings the queue
length at the bottleneck node to the desired steady-state value asymptotically and satis=es a weighted fairness condition. Lower bounds
for stability margins for uncertainty in the time-delays and for the rate of change of the time-delays are derived. A number of simulations
are included to demonstrate the time-domain performance of the controller. Trade o;s between robustness and time-domain performance
are also discussed. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

High speed data communication networks require re-
source management methods in order to provide good
quality of service to its users. One typical resource man-
agement tool is �ow control, which is aimed at avoiding
traBc congestion by regulating the rate of data packets sent
from the sources. This problem has been studied widely in
computer networks and communications literature, see for
example Bonomi and Fendick (1995), Jain (1996), Parekh
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and Gallager (1994), Ramakrishnan and Newman (1995)
and their references.
Feedback schemes used for �ow control may be clas-

si=ed into two groups: “rate-based” and “window-based”
(also called “credit-based”) �ow control. The rate-based
control with explicit feedback is chosen as the standard
�ow control scheme in asynchronous transfer mode (ATM)
switching networks, by the ATM forum (ATM Forum
TraBc Management, 1996). The window-based �ow con-
trol with loss-based or bit-based feedback is popular in
end-to-end �ow control in the Internet (e.g., TCP (Jacob-
son, 1988)), though rate-based schemes are also being
proposed recently (Floyd, Handley, Padhye, & Widmer,
2000).
All congestion control frameworks have three main com-

ponents implemented at the source end-system, switches (or
routers) and destination end-systems. In the case of ATM
available bit rate (ABR) service (ATM Forum TraBc Man-
agement, 1996), the sources send a control cell once every
N packets (called “cells”) which can be used by switches to
convey feedback. The control cells travel to the destination
and are returned to the source in the same path. Feedback
signal may be in the form of a single bit or an explicit rate
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value, and can be written in the forward or reverse direc-
tion of travel of the control cell. Many papers in the litera-
ture deal with the problem of designing the �ow controllers
at bottleneck nodes, see for example Altman and Ba)sar
(1997), Altman, Ba)sar, and Srikant (1997), Benmohamed
and Meerkov (1993), Ja;e (1981), Mascolo, Cavendish,
and Gerla (1996); Rohrs and Berry (1997), Zhao, Li, and
Sigarto (1997) and their references. ATM networks (and a
competing technology MPLS (Rosen, Viswanathan, & Cal-
lon, 2001) are deployed in the core of today’s Internet and
therefore do not reach out to all end-systems, i.e., its con-
trol does not operate on end-to-end, short-lived �ows, but
on edge-to-edge, long-lived aggregate �ows. As providers
consider building future overlay networks on top of the
Internet (where they may control both the “switches” and
“end- or edge-systems”), they could consider an explicit
rate-feedback framework.
In contrast, the end-to-end congestion control model

in the Internet (e.g., TCP) attempts to solve an optimiza-
tion problem by decoupling the network problem of as-
signing bit-marks or losses (penalties or prices) from the
source problem of utility maximization (e.g., see Kelly,
Maulloo, and Tan (1998), Gibbens and Kelly (1999),
Kunniyur and Srikant (2001, 2000), Low (2000), Low
and Lapsley (1999), Massoulie and Roberts (1999) and
references within). The various versions of TCP and
drop=marking algorithms (Mathis, Mahdavi, Floyd, &
Romanow, 1996; Floyd & Henderson, 1999; Brakmo &
Peterson, 1995; Floyd & Jacobson, 1993; Floyd, 1994)
can be captured by the optimization framework just
described.
Our focus in the paper is on the explicit-rate feedback

framework. A challenging aspect of �ow control, as far as
controller design in this framework is concerned, is the ex-
istence of time-delays in the data-�ow. Since the controller
is to be implemented at the bottleneck node, which regulates
the data rates of the sources, a time-delay occurs between
the time a command signal for a rate is issued and the actual
time this rate is set (time-delay from the bottleneck node to
the source node, backward delay). Furthermore, the e;ect
of the new rate is seen only after a time-delay which is
required for the data to reach the bottleneck (time-delay
from the source node to the bottleneck node, forward
delay). Therefore, the total delay in the process (from the
control input to the regulated output) is the sum of these
two delays, i.e., the round-trip delay. To further complicate
the situation, these time-delays are usually uncertain and
are time-varying. Furthermore, since there usually are more
than one source a;ecting a bottleneck, there are multiple
time-delays. There are several controller design methods
for di;erent classes of systems with time-delays, see for ex-
ample Kojima, Uchida, and Shimemura (1993), Niculescu,
Dion, and Dugard (1996) and Stepan (1989) and their
references. The techniques developed in (Foias, 1Ozbay, &
Tannenbaum, 1996; Toker & 1Ozbay, 1995) are used in
this paper.

One of the design goals considered here is weighted
fairness, which means allocating di;erent percentages of
the available capacity to di;erent sources. Thus, weighted
fairness may be used as a pricing tool. Another design ob-
jective is tracking, which is to keep the queue size close
to a certain desired size. By choosing this level suBciently
larger than zero and suBciently smaller than the bu;er
size, nonlinear e;ects may also be avoided and the outgo-
ing �ow rate may be kept close to the full capacity (thus
achieving the maximum utilization of the network). How-
ever, the most important design speci=cation is stability
robustness with respect to uncertainties in the values of
time-delays in each �ow path (Blanchini, Cigno, & Tempo,
1998).
In a recent work, ( 1Ozbay, Kalyanaraman, & İftar, 1998),

an H∞ based �ow controller was designed for an ex-
plicit rate feedback based congestion control in high speed
networks. Internally robust implementation of this con-
troller was discussed in 1Ozbay, Kang, Kalyanaraman, and
İftar (1999), where some simulations demonstrating the
time-domain performance of the controller were also pre-
sented. One disadvantage of that controller, however, is
that, it was obtained by equalizing the nominal time-delays
in all the channels. This may result in an underutilization
of the network if the di;erence between the time-delays of
di;erent sources is large. Another shortcoming was that,
only time-invariant time-delay was considered. Therefore,
there was no guarantee of robustness when the time-delays
vary in time. In the present work, we alleviate both of
these drawbacks. Precisely, we design a controller which
is robust to uncertain time-varying multiple time-delays.
A multi-variable approach is undertaken here, as opposed
to the single-input single-output approach undertaken in
1Ozbay et al. (1998, 1999). Therefore, di;erent time-delays
in di;erent channels are dealt with appropriately. The con-
troller forces the queue length at the bottleneck node to the
desired steady-state value asymptotically and also satis=es
a weighted fairness condition.
In summary, our focus in the paper is on the ATM-like

explicit-rate feedback framework and not the end-to-end de-
coupled optimization framework. We aim to use the richer
information available in the former model to e;ect robust
control over a wider spectrum of objectives in spite of
time-varying time-delays.
In Section 2 we derive the mathematical model of

the system and consider robustness against time-varying
multiple time-delays in di;erent channels. Performance
issues are discussed in Section 3. Robustness and per-
formance conditions are combined in Section 4 to de=ne
a two-block optimization problem, which is solved in
the same section. Time-domain performance of the con-
troller is presented in Section 5 through a number of
simulations. Robustness bounds, as well as the trade-o;
between robustness and time-domain performance are dis-
cussed in Section 6. Some concluding remarks are made in
Section 7.
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Fig. 1. The feedback control system.

2. Mathematical model

We consider the feedback system depicted in Fig. 1, which
consists of a bottleneck node, n source nodes feeding the
bottleneck node, and a controller which is to be implemented
at the bottleneck node. A queue may form at the bottleneck
node, whose dynamics is described as

q̇(t) =
n∑

i=1

rbi (t)− c(t); (1)

where q(t) is the queue length at time t; rbi (t) is the rate
of data received at the bottleneck node at time t from the
ith source node, and c(t) is the outgoing �ow rate from the
bottleneck node at time t, which is equal to the capacity of
the outgoing link at time t, unless q(t) = 0. In this model,
the round-trip delay, 
i(t), is de=ned as 
i(t)= 
bi (t)+ 
fi (t),
where

• 
bi (t):=hbi + �bi (t): is the backward time-delay from the
controller to the ith source node (the time-delay which
occurs between the time a command signal for a rate
is issued and the actual time this rate is set) where
hbi is the nominal time invariant known backward de-
lay and �bi (t) is the time-varying backward time-delay
uncertainty,

• 
fi (t):=hfi + �fi (t): is the forward time-delay from the ith
source node to the bottleneck node (the time-delay which
is required for the data to reach the bottleneck node)
where hfi is the nominal time invariant known forward
delay and �fi (t) is the time-varying forward time-delay
uncertainty.

Thus, it is assumed that the total nominal time-delay is de-
=ned as hi:=hbi + hfi and the total time delay uncertainty is
de=ned as �i(t) := �bi (t) + �fi (t).
Under these assumptions, to determine rbi (t), we write the

total amount of data received at the bottleneck node from

Fig. 2. Fictitious system.

the ith source node by time t:

∫ t

0
rbi (’) d’=



∫ t−
fi (t)

0
rsi (’) d’; t − 
fi (t)¿ 0;

0; t − 
fi (t)¡0;

(2)

where

• rsi (t):=ri(t − 
bi (t)): is the rate of data sent from the ith
source node at time t,

• ri(t): is the rate command for the ith source node issued
at the controller at time t.

By taking the derivative of both sides of (2), the forward
delay operator equations are obtained as

rbi (t) =


 (1− �̇

f
i (t))ri(t − 
i(t)); t − 
fi (t)¿ 0;

0; t − 
fi (t)¡0;
(3)

where we made the substitution rsi (t − 
fi (t)) = ri(t − 
i(t))

and 
̇fi (t) = �̇
f
i (t).

We assume that (d=dt)(t − 
fi (t))¿0, then 
̇fi (t)¡1, i.e.

�̇
f
i (t)¡1. If this is not true, a packet sent out from the source
node at a particular time may reach the bottleneck node
before another packet which was sent at an earlier time.
Furthermore, �i(t) and �fi (t) are assumed to satisfy

|�i(t)|¡�+i ; |�̇i(t)|¡�i; |�̇fi (t)|¡�f
i (4)

for some known bounds �+i ¿0 and 06 �f
i 6 �i¡1. It is

also assumed that the queue size always remains between
zero and the bu;er capacity and 06 ri(t)6di, where di is
the limit at which source i can send data.
The above described system is captured by (see Ap-

pendix A for details) the uncertain system shown in Fig. 2,
with

P0(s) =
1
s
[e−h1s : : : e−hns]; (5)
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�0
LTV = blockdiag

{[
�0
1;1

�0
1;2

]
; : : : ;

[
�0
n;1

�0
n;2

]}
; (6)

YW (s) = [ YW 1(s) : : : YWn(s)]; (7)

YWi(s) =
[ei;1

s
ei;2
]
; (8)

where ei;1 := (�i + �f
i )=
√
1− �i, ei;2 := 2�+i , and

�0
i; j (i = 1; : : : ; n and j = 1; 2) are arbitrary LTV systems

with norm less than 1. The induced L2-norm of �0
LTV is

then less than
√
2.

To =nd a =xed LTI controller K(s) which robustly
stabilizes the system shown in Fig. 2, let us consider the
following coprime factorizations of the nominal plant
in H∞:

P0(s) =
1
s
[e−h1s : : : e−hns]

=N (s)M−1(s) = M̃
−1

(s)Ñ (s); (9)

where N (s) = Ñ (s) = (1=(s+ �))[e−h1s : : : e−hns], M (s) =
(s=(s + �))In, and M̃ (s) = s=(s + �), where In denotes the
n×n identity matrix and �¿0 is arbitrary. Now a parame-
terization of all controllers K(s) which stabilize P0(s) can
be obtained in terms of Q∈H∞ (Zhou, Doyle, & Glover,
1996).

K(s) = [X (s) +M (s)Q(s)][Y (s)− N (s)Q(s)]−1; (10)

where X ∈H∞ and Y ∈H∞ satisfy the Bezout identity:
M̃ (s)Y (s)+ Ñ (s)X (s)=1. Since lims→0 M̃ (s)=0, to satisfy
the Bezout identity we must have lims→0 Ñ (s)X (s) = 1,
equivalently, �−1[1 : : : 1]X (0) = 1. Thus, we choose

X (s) = [ 1 : : :  n]T�; (11)

where real numbers  i are such that
∑n

i=1  i=1. The entries
of X (s),  i’s, bring in an extra freedom in choosing the
controller. Later in the paper we will show that this freedom
may be used in satisfying the weighted fairness condition.
Once X (s) is chosen as in (11), we must choose

Y (s) = M̃
−1

(s)[1− Ñ (s)X (s)]

=
s+ �
s

− �
s

n∑
i=1

 ie−his: (12)

By using the small gain theorem (e.g., see Zhou et al., 1996),
the closed-loop system shown in Fig. 2 is robustly stable for
all ‖�0

LTV‖¡
√
2 (hence, the actual closed-loop system is

robustly stable for all time-delay variations satisfying (4))
if K(s) stabilizes P0(s) (i.e., K(s) is as given in (10) with
Q∈H∞) and ‖K(I+P0K)−1 YW‖∞6 1=

√
2. This condition

is satis=ed if

‖WKS‖∞6 1 (13)

with S(s) = (I + P0(s)K(s))−1 = M̃ (s)[Y (s) − N (s)Q(s)]
and W (s) = w(s)In, where

w(s) =
√
2


1

s

√√√√ n∑
i=1

e2i;1 +

√√√√ n∑
i=1

e2i;2


 :

3. Performance issues

In this section we will consider some performance issues
related to the nominal plant.

3.1. Tracking

One of the performance objectives of rate-based con-
gestion control is to keep the queue size, q(t), as close
to its desired value, qd(t), as possible. In order to make
steady-state tracking analysis, we assume that the limit
limt→∞ c(t)=:c∞ exists, for example c(t) can be a step-like
function (more realistically, c(t) may have infrequent sud-
den changes with small variations between such changes;
thus, c(t) may be approximated by a series of step functions).
Consider qd(s) = (1=s)q̂(s) where q̂ is an arbitrary bounded
energy signal. For example if q̂ is a pulse of =nite duration,
then qd is a saturating ramp. Considering the nominal plant,
the tracking error, e(t)=qd(t)−q(t), satis=es the following
frequency domain identity: e(s) = S(s)(1=s)[q̂(s) + c(s)].
Since K is a stabilizing controller, and P0 has a pole at
s=0, we have that S(0)=0, and by the =nal value theorem
the steady-state value of the error is

ess = lim
s→0

([e−h1s : : : e−hns]K(s))−1s[q̂(s) + c(s)]

= ([1 : : : 1]K(0))−1c∞

(note that the signal q̂(t) is assumed to have =nite energy,
so its =nal value is zero). Thus, at least one of the entries
of the controller must have a pole at s= 0, in order to have
zero steady-state error.

3.2. Weighted fairness

Note that the rate feedback signals are given by
[r1(s) : : : rn(s)]T = K(s)S(s)(1=s)(q̂(s) + c(s)). It may be
desired to give di;erent steady-state weights (say #1; : : : ; #n)
to di;erent sources (these weights may be determined, e.g.,
according to a pricing policy). That is, it is desired that
limt→∞ ri(t) = #ic∞, where real numbers #i¿0 are such
that

∑n
i=1 #i = 1. This means that the entries, Ki(s), of the

controller K(s) must satisfy

lim
s→0

Ki(s)([e−h1s : : : e−hns]K(s))−1 = #i (14)

for i=1; : : : ; n. If the steady-state weights must be distributed
equally among the sources, we take #i = 1=n; i = 1; : : : ; n.
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3.3. Transient response

Besides the steady-state behavior, it is also desired to
control the transient response of the system. For this purpose
the H∞ norm of the weighted sensitivity function can be
taken as the cost to be minimized (this corresponds to worst
energy minimization for the tracking error, see for example
Doyle, Francis, and Tannenbaum (1992), Foias, 1Ozbay, and
Tannenbaum (1996). More precisely, the problem is to

minimize ‖WsS‖∞ (15)

over all controllers K stabilizing P0, where Ws is the sen-
sitivity weighting =lter. By examining the formula given
in Toker and 1Ozbay (1995), it is seen that the poles of
this =lter appear as the poles of the open-loop system P0K .
Since P0 has one pole at s = 0, in order for K to have a
pole at s = 0 (which was found to be a requirement for
tracking) Ws must have double poles at s = 0. Thus we
take

Ws(s) =
1
s2
: (16)

4. An H∞ optimization problem

We can combine the robust stability (13) and nominal
performance (15) conditions to de=ne a two-blockH∞ op-
timization problem:

inf

∥∥∥∥∥
[
WsS

WKS

]∥∥∥∥∥
∞

=:$opt ; (17)

where the in=mum is taken over all K stabilizing P0 sub-
ject to the weighted fairness condition (14). Note that,
due to the choice of Ws in (16), the tracking condition
(that K must have a pole at s = 0) will be satis=ed auto-
matically.
The following observations will be used to determine an

upper bound for $opt in terms of solutions to n decoupled
H∞ problems. We begin with

Ws(s)S(s) =Ws(s)M̃ (s)[Y (s)− N (s)Q(s)]

=Ws(s)
s

s+ �

[
s+ �
s

− �
s

n∑
i=1

 ie−his

− 1
s+ �

n∑
i=1

e−hisQi(s)

]

=
n∑

i=1

 iWs(s)Mi(s)[Yi(s)− Ni(s)Qi(s)]; (18)

where Yi(s) := (s + �)=s − (�=s)e−his, Ni(s) := (1= i(s +
�))e−his, Mi(s):=s=(s + �), and Qi(s) is the ith element
of Q(s). Let us also de=ne Xi(s):= i�, which satis=es

Mi(s)Yi(s) + Ni(s)Xi(s) = 1. Then

W (s)K(s)S(s) =W (s)[X (s) +M (s)Q(s)]M̃ (s)

=
n∑

i=1

Wi(s)
[
 i�+

s
s+ �

Qi(s)
]

s
s+ �

=
n∑

i=1

Wi(s)[Xi(s) +Mi(s)Qi(s)]Mi(s);

(19)

where Wi(s) is a n×1 vector consisting of w(s) at the ith
row and 0’s elsewhere.
Using (18) and (19), problem (17) can be rewritten as

inf
Q∈H∞

∥∥∥∥∥
n∑

i=1

[
 iWs[Yi − NiQi]Mi

Wi[Xi +MiQi]Mi

]∥∥∥∥∥
∞

=:$opt ; (20)

where the in=mum is taken over all Q∈H∞, subject to the
weighted fairness condition (14). Let

inf
Qi∈H∞

∥∥∥∥∥
[

n−1Ws[Yi − NiQi]Mi

(n i)−1w[Xi +MiQi]Mi

]∥∥∥∥∥
∞

=:$i; (21)

where the in=mum is taken over all Qi ∈H∞, sub-
ject to the weighted fairness condition (14). Clearly,
$opt6

∑n
i=1 n i$i. Since it is very complicated, if not

impossible, to =nd an optimal solution to problem
(20) subject to (14), we propose a suboptimal solution
Q(s) = [Q1(s) : : : Qn(s)]T, where each Qi(s) satis=es (21)
such that the weighted fairness condition (14) is also satis-
=ed. For this, we will =rst =nd a solution to (21) for each
i without considering the condition (14); and then show
that, by a proper choice of  i, this solution also satis=es the
weighted fairness condition (14).
Let us de=ne

Ci(s):=[Xi(s) +Mi(s)Qi(s)][Yi(s)− Ni(s)Qi(s)]−1 (22)

so that

Qi(s) = [Mi(s) + Ci(s)Ni(s)]−1[Ci(s)Yi(s)− Xi(s)]: (23)

Then (21) can be rewritten as

inf
Ci stabilizing Pi

∥∥∥∥∥
[

n−1Ws[1 + PiCi]−1

(n i)−1wCi[1 + PiCi]−1

]∥∥∥∥∥
∞

=:$i; (24)

where Pi(s):=Ni(s)M−1
i (s) = (1= is)e−his. As shown in

Appendix B, the solution to problem (24) is

Ci(s) =
n i$i

2
√
2
∑n

j=1(�
+
j )2

(
shi − ki
shi

)
1

1 + Fi(shi)
; (25)
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Fig. 3. The implementation of the controller.

where Fi(shi) corresponds to a =nite impulse response (FIR)
=lter of duration hi (thus, it can easily be implemented in
discrete-time with hi=Ts states, where Ts is the sampling
period) and ki and $i are constants to be calculated. The
details of the computation of Fi, ki, and $i are given in
Appendix B.
The controller can now be determined as (see

Appendix C) K(s) = [K1(s) : : : Kn(s)]T, where

Ki(s) =
Ci(s)

1 + Ci(s)Pi(s)


1−

n∑
j=1

 j
Pj(s)Cj(s)

1 + Pj(s)Cj(s)




−1

:

(26)

The determined controller may be implemented as shown
in Fig. 3.
Now it remains to be shown that the parameters  i used in

X (s) can be chosen so that the resulting controller satis=es
the weighted fairness condition (14). Using (10), it can be
shown that (14) can be written as

lims→0
 i�+ (s=(s+ �))Qi(s)∑n

l=1 e
−hls[ l�+ (s=(s+ �))Ql(s)]

= #i: (27)

However, sinceQi ∈H∞ (thus lims→0Qi(s) is =nite) for all
i=1; : : : ; n and

∑n
l=1  l=1, the left-hand side simply reduces

to  i. Thus, to satisfy the weighted fairness condition, we
simply need to choose:  i = #i; i = 1; : : : ; n.

5. Simulation results

The closed-loop system with the determined controller
shown in Fig. 3 is implemented in SIMULINK and the
system is simulated for a number of di;erent conditions.

Table 1
Parameter for Case 1

i hbi �bi hfi �fi #i �+i �i �fi $i

1 0.9 0:5 sin((2*=50)t) 0.1 0:1 sin((*=50)t) 0.2 2 0.1 0.01 2.35
2 1.85 0:2 sin((*=50)t) 0.15 0:1 cos((*=50)t) 0.1 3 0.2 0.02 3.07
3 0.9 0:5 cos((2*=50)t) 0.1 0:05 sin((*=100)t) 0.4 2 0.1 0.01 2.35
4 1.88 0:3 cos((2*=50)t) 0.12 0:05 cos((*=100)t) 0.2 3 0.2 0.02 3.07
5 1.8 0:4 sin((2*=50)t) 0.2 0:05 sin((*=50)t) 0.1 3 0.2 0.02 3.07
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Fig. 4. Simulation results for Case 1.

Nonlinear aspects of the system are also taken into account
in these simulations: the queue length and all the rates must
be non-negative, and the queue size cannot exceed 100 pack-
ets. In all the cases except for Case 2 we assumed that the
sources can supply data at a rate no more than 100 packets=s.
The parameters hi = hbi + hfi , #i, �

+
i , �i and �f

i are design
parameters used for the controller derivation and $i is the
resulting H∞ cost which is used in the controller imple-
mentation. The actual delays used in the simulations are

bi (t)= hbi + �bi (t) and 
fi (t)= hfi + �fi (t). In all the cases the
number of sources is assumed to be n=5, the desired queue
length is taken as qd = 30 packets, and the capacity of the
outgoing link is taken as 60 packets=s.
Case 1: The delays (in seconds), fairness weights, and

the other controller parameters are as shown in Table 1. The
plots of the queue length, q(t), and the �ow rates, rsi (t),
for each source are shown in Fig. 4. In the period between
0 to about 20 s we note that the queue size is zero. This
corresponds to the time needed for the sum of the rates rbi (t)
to exceed the capacity of the outgoing link at the bottleneck
node. Note that the relative steady-state �ow rates of the
sources are equal to the relative fairness weights of these
sources.
Case 2: Next we consider the same system as in Case 1,

with the same delays, fairness weights, and other controller
parameters. But in this case we assume that the sources can
supply data at relatively lower rates. These rates are shown in
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Table 2
Rate limits for Case 2

i 1 2 3 4 5

di (in packets=s) 10 20 20 20 5
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Fig. 5. Simulation results for Case 2.

Table 2 for each source. The resulting queue length and
�ow rates are shown in Fig. 5. As observed from this =gure,
�ow rates at sources 1, 3 and 5 are saturated. However, the
controller can successfully redistribute the unused rates to
the other two sources 2 and 4. Also note that the relative
steady-state �ow rates of the unsaturated sources are equal to
the relative fairness weights of these sources. Although the
controller is unaware of the saturation, it can still regulate
the queue length, however, this regulation takes a little bit
more time and a larger overshoot is observed in the queue
length.
Cases 3 and 4: The delays are the same as in Case 1, the

problem data is changed as shown in Table 3.
The results for Cases 3 and 4 are shown in Figs. 6 and

7, respectively. Comments on these results are made in
Section 6.
Although not easily noticable in the =gures, steady-state

oscillations exist in all the responses, due to the time-varying

Table 3
Design parameter for Cases 3 and 4

Case 3 parameters Case 4 parameters

i �+i �i �fi $i �+i �i �fi $i

1 0.1 0.03 0.005 0.61 6 0.7 0.2 4.39
2 0.25 0.03 0.005 1.02 8 0.7 0.2 5.33
3 0.1 0.03 0.005 0.61 6 0.7 0.2 4.39
4 0.25 0.03 0.005 1.02 8 0.7 0.2 5.33
5 0.25 0.03 0.005 1.02 8 0.7 0.2 5.33
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Fig. 6. Simulation results for Case 3.
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Fig. 7. Simulation results for Case 4.

forward delay (precisely due to the term (1− �̇
f
i (t)) appear-

ing in (3)). The magnitude of these oscillations would be
larger if the rate of change of the forward delay was larger
and would be zero if this rate was zero (see Ata)slar et al.,
2000). These oscillations are unavoidable unless some in-
formation about the forward delay uncertainty is available
to the controller.
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Fig. 8. Stability margins with �f = 0.

Fig. 9. Stability margins with �f = �.

We also did other simulations showing that the controller
responds well to variations in the capacity of the outgoing
link (see Ata)slar et al., 2000). The response of the controller
in this case may further be improved if a capacity predictor,
which predicts future values of this capacity, is included in
the controller (see Quet, Ramakrishnan, 1Ozbay, & Kalya-
naraman, 2001).

6. Stability margins

Robust stability is achieved when (13) is satis=ed. By
using the arguments leading to (21), lower bounds (suBcient
conditions) on the actual stability margins for ei;1 (call it
ei;1;act) and for ei;2 (call it ei;2;act) must satisfy:

n∑
i=1

e2i;1;act =
1
$2

n∑
i=1

e2i;1 and

n∑
i=1

e2i;2;act =
1
$2

n∑
i=1

e2i;2;

(28)

where $:=
∑n

i=1 n i$i. We note that, for the case n¿1, there
are in=nitely many solutions to (28) and the system is ro-
bustly stable for any one of these solutions. These bounds
on the actual stability margins are depicted in Figs. 8 and
9 for various feasible uncertainty levels for the case n = 1
and where we used h= 1 to normalize the delay. It is seen
that, for a =xed � and �f ; e2;act increases with increasing �+

while e1;act decreases slightly. Similarly, for a =xed �+ and
�f ; e1;act increases with increasing � while e2;act decreases

slightly. The e;ect of larger �f , although less noticable, is
to slightly decrease both margins especially when � is close
to 1. These =gures indicate that, for large stability robust-
ness margins e1;act and e2;act, the uncertainty levels �+ and
� must be chosen as large as possible. Such a choice, how-
ever, may adversely a;ect the time-domain performance of
the controller. For small values of � and �+ as for the Case
3 of simulations, it is seen in Fig. 6 that the response is os-
cillatory, but relatively fast. Whereas for large values of the
same design parameters as for the Case 4 of simulations,
it is seen in Fig. 7 that the response is smoother, but takes
much longer time to settle down. Similar results were also
found in 1Ozbay et al. (1999) for the case of time-invariant
delays.

7. Conclusions

Robust controller design for a �ow control problem in
communication networks has been considered. A robust
controller has been designed against uncertain time-varying
multiple time-delays. The controller brings the queue length
at the bottleneck node to the desired steady-state value
asymptotically and also satis=es a weighted fairness con-
dition. Stable implementation of the controller has also
been presented. This implementation is depicted in Fig. 3.
As seen from this =gure, the controller includes n inte-
grators followed by delay elements (Pi’s) and n blocks
(Ci’s) each of which include (as seen in (25)) a pro-
portional plus integral (PI) term which is cascaded with
a feedback block containing an FIR =lter. Since digital
implementation of delays and FIR =lters are relatively
easy, the controller can easily be implemented with-
out too much computational overhead, at the bottleneck
node.
A number of simulations have been included to demon-

strate the time-domain performance of the controller. Sta-
bility margins for uncertainty in the time-delays and for
the rate of change of the time-delays have also been dis-
cussed and their lower bounds have been derived. It has
been shown that there is a tradeo; between robustness
and the time-domain performance. If the uncertainty lev-
els are chosen high, then the system is highly robust to
uncertain time-varying time-delays and a smooth, how-
ever very slow, response is obtained. On the other hand, if
these levels are chosen low, the response is much faster,
but more oscillatory. Furthermore, for lower uncertainty
levels, the actual stability margins are also lower, in
general.
In this work we considered only the case of a sin-

gle bottlenek node. Although the present work may be
extended to the case of multiple bottlenecks, the exten-
sion is not trivial since the controllers to be implemented
at di;erent bottlenecks will interact. Initial results on
this topic may be found in Biberovi\c, İftar, and 1Ozbay
(2001).
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We also note that, in this work, we did not utilize the
special structure of the uncertainty given in (6). This special
structure may be taken into account by using the structured
singular value approach, as demonstrated in Ata)slar, 1Ozbay,
and İftar (2001).

Appendix A. Uncertainty model

From (1) and (3), q(t) is given by

q(t) =
∫ t

0

[
n∑

i=1

(1− �̇
f
i (+))ri(+− 
i(+))− c(+)

]
d++ q(0):

(A.1)

Let

q0(t):=
∫ t

0

[
n∑

i=1

ri(+− hi)− c(+)

]
d++ q(0) (A.2)

and �q(t):=q(t) − q0(t). Also let ,i:=+ − 
i(+) = + − hi −
�i(+)=:fi(+). Then

d,i
d+

= 1− d�i
d+

= 1− gi(,i); (A.3)

where

gi(,):=
d�i
d+

∣∣∣∣
+=f−1

i (,)
:

Note that, the inverse function + = f−1
i (,) exists since, by

(4), d,i=d+¿0.
Now, noting that, from (A.3), d+= d,i=(1− gi(,i)) and

assuming that �i(0) = 0, we see that:

�q(t) =
n∑

i=1

[∫ t

0
(1− �̇

f
i (+))ri(+− 
i(+)) d+

−
∫ t−hi

−hi
ri(/) d/

]

=
n∑

i=1

[∫ t

0
(1− �̇

f
i (+))ri(+− 
i(+)) d+

−
∫ t−hi

t−hi−�i(t)
ri(+) d+

−
∫ t

0
ri(+− 
i(+)) [1− gi(+− 
i(+))] d+

]

=
n∑

i=1

[∫ t

0
[gi(+− 
i(+))− �̇

f
i (+)]ri(+− 
i(+)) d+

−
∫ t−hi

t−hi−�i(t)
ri(+) d+

]
: (A.4)

Fig. 10. Model of the uncertain part of the system.

We now have �q(t) =
∑n

i=1 �
i
q(t), where �

i
q(t) is the output

of the system shown in Fig. 10, with �i;1 and �i;2 linear
time varying (LTV) systems, Mgi and M

�̇fi
are the LTV

systems de=ned by pi(t)= gi(t) ri(t) and zi(t)= �̇
f
i (t)yi(t),

respectively, and ei; j’s are constants to be speci=ed
later.
Note that

∫ ∞

0
|yi(t)|2 dt =

∫ ∞

0
|xi(t − 
i(t))|2 dt

=
∫ ∞

−
i(t)
|xi(,i)|2 d,i

1− gi(,i)

¡
1

1− �i

∫ ∞

0
|xi(,i)|2 d,i; (A.5)

where we assumed ri(t) = 0 for t¡0. This implies
that the L2-induced norm of �i;1 is less than ((�i +

�f
i )=
√
1− �i)(1=ei;1), since |gi|¡�i and |�̇fi |¡�f

i . Then,
de=ning ei;1 = (�i + �f

i )=
√
1− �i, we show that the

L2-induced norm of �i;1 is less than 1.
Also, using the fact that ri(t)¿ 0, we note that

∥∥∥∥∥
∫ t−hi

t−hi−�i(t)
ri(+) d+

∥∥∥∥∥
2

¡

∥∥∥∥∥
∫ t−hi+�+i

t−hi−�+i

ri(+) d+

∥∥∥∥∥
2

(A.6)

since |�i(t)|¡�+i . Therefore we obtain

‖vi‖2 ¡
∥∥∥∥∥ 1
ei;2

(
1− e−2�+i s

s
e−(h−�+i )s

)∥∥∥∥∥
∞

‖ri‖2: (A.7)

Now, noting that

∥∥∥∥∥ 1
2�+i

(
1− e−2�+i s

s
e−(h−�+i )s

)∥∥∥∥∥
∞

¡1

by taking ei;2 = 2�+i we have the L2-induced norm of �i;2

less than 1.



926 P.-F. Quet et al. / Automatica 38 (2002) 917–928

Appendix B. Solution to the optimization problem

Let us de=ne W̃ i(s):=(1=n)Ws(s) = (h2i =n)=(his)
2 and

Ŵ i(s):=(s=n)w(s) = �̃i + �̃i(his), where

�̃i =
√
2n−1

√√√√ n∑
i=1

e2i;1 =
√
2n−1

√√√√ n∑
i=1

(�i + �f
i )2

1− �i
;

�̃i =
√
2(nhi)−1

√√√√ n∑
i=1

e2i;2 = 2
√
2(nhi)−1

√√√√ n∑
i=1

(�+i )2:

We also de=ne P̂i(s):=(1=nhi)Pi(s) = (1=n i)(1=his)e−his

and Ĉi(s):=nhiCi(s), so that (24) can be rewritten as

inf
Ĉi stabilizing P̂i

∥∥∥∥∥
[

W̃ i[1 + P̂iĈi]−1

Ŵ iP̂iĈi[1 + P̂iĈi]−1

]∥∥∥∥∥
∞

=:$i; (B.1)

which is now in terms of the normalized frequency ŝi:=his.
In deriving (B.1) from (24) we also made use of the fact
that |e−jhi!|= 1 for all !∈R.
By de=ning �̂i = n�̃i=h

2
i , �̂i = n�̃i=h2i , and $̂i = n$i=h2i , and

applying the formulae given in Toker and 1Ozbay (1995) and
1Ozbay et al. (1999), the optimal solution to (B.1) is found as

Ĉi(s) =
n i$̂i
�̂i

(
ŝi − ki
ŝi

)
1

1 + Fi(ŝi)
; (B.2)

where

Fi(6) =
(6+ ki)(6+ ai)(62 + bi6+ ci)− (64 − $̂−2

i )

64 − $̂−2
i

− ($̂i=�̂i)e
−662(6− ki)

64 − $̂−2
i

; (B.3)

ci:=
√
xi; ai:=

1

ci�̂i

√√√√1− �̂
2
i

$̂2i
;

bi:=

√√√√ �̂
2
i

�̂
2
i

+ 2ci − a2i ; ki:=
9i − 1√
$̂i(9i + 1)

and xi¿0 is the unique positive root of

x3i +
1

$̂2i
x2i +

(
1− �̂

2
i

$̂2i

)
�̂
2
i

�̂
4
i

xi − (1− �̂
2
i =$̂

2
i )

2

�̂
4
i

= 0

with

9i:=
e−1=

√
$̂i

�̂i(1=
√
$̂i + ai)((1=$̂i) + ci + bi=

√
$̂i)

:

The optimal H∞ performance cost $̂i is determined as the
largest root of the equation

1− $̂i
�̂i
e−ss2

(s− ki)
(s+ ki)(s+ ai)(s2 + bis+ ci)

∣∣∣∣
s=j=

√
$̂i

= 0:

(B.4)

A time domain realization of Fi(ŝi) given in (B.3) can be
obtained by noting that

Fi(6) = Ei(e−6I − e−Ai)(6I − Ai)−1Bi; (B.5)

where

Ai =




0 1 0 0

0 0 1 0

0 0 0 1

$̂−2
i 0 0 0


 ; Bi =



0

0

0

1


 ;

Ei =
$̂i
�̂i
[0 0 ki − 1]:

This in turn shows that the impulse response of Fi(6) is re-
stricted to the time interval [0; 1], and hence, Fi(his) may be
realized as a =nite impulse response (FIR) =lter of duration
hi, with impulse response

fi(t) =

{
−(1=hi)Eie(1=hi)Ai(t−hi)Bi for 06 t¡hi;

0 otherwise:

Solution to (24) can now be obtained asCi(s)=(1=nhi)Ĉi(s),
which leads to (25).

Appendix C. Stable implementation of the controller

Once Ci(s) is obtained as given in (25), Qi(s) can be
obtained from (23). However, in order to avoid an unsta-
ble realization of Yi(s); Qi(s) must be implemented after
making some factorizations in (23). Note that Yi(s) = (1−
Ni(s)Xi(s))M−1

i (s). Thus, using (23),

Qi(s) = [Mi(s) + Ci(s)Ni(s)]−1

[Ci(s)(1− Ni(s)Xi(s))− Xi(s)Mi(s)]M−1
i (s)

=
[

Ci(s)
1 + Ci(s)Pi(s)

M−1
i (s)− Xi(s)

]
M−1

i (s): (C.1)

Once Qi(s), thus Q(s), is obtained, the controller K(s) can
be obtained by using (10). We can avoid the unstable re-
alization of the Y (s) in a similar way. By substituting (12)
into (10), and using the equalities M (s)Q(s) = Q(s)M̃ (s),
N (s)M (s) = M̃ (s)Ñ (s) and N (s) = Ñ (s), we can show that
K(s) is obtained as

K(s) = Z(s)[1− N (s)Z(s)]−1M̃ (s); (C.2)
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where

Z(s) =




C1(s)
1 + C1(s)P1(s)

...
Cn(s)

1 + Cn(s)Pn(s)


 M̃

−1
(s): (C.3)

Then, using (C.3) in (C.2), the controller is determined as
K(s) = [K1(s) : : : Kn(s)]T, where Ki(s) is as given in (26).
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