
Congestion Pricing Overlaid on Edge-to-Edge
Congestion Control

Murat Yuksel, Shivkumar Kalyanaraman and Anuj Goel
Rensselaer Polytechnic Institute, Troy, NY

Emails: yuksem@ecse.rpi.edu, shivkuma@ecse.rpi.edu, goela@cs.rpi.edu

Abstract— One of the biggest obstacles for implementing con-
gestion pricing is the pricing time-scale. The Internet traffic is
highly variant and hard to control without a mechanism that
operates on very low time-scales, i.e. on the order of round-trip-
times (RTTs). However, pricing naturally operates on very large
time-scales because of human involvement. So, in order to put
tight control on congestion through pricing, new implementation
methods and architectures are needed for congestion pricing. In
order to solve this problem, we propose a novel approach Pricing
over Congestion Control (POCC). The essence of POCC is to
overlay congestion pricing on top of an underlying congestion
control scheme which enforces a much tighter control than
pricing. This way congestion in the interior network is controlled
very tightly, while pricing is done at time-scales large enough to
incorporate human involvement.

I. INTRODUCTION

Implementation of congestion pricing still remains a chal-
lenge, although several proposals have been made, e.g. [1], [2],
[3]. Among many others, one major implementation obstacle
can be defined as the need for frequent price updates. This
is relatively very hard to achieve in a wide area network
such as the Internet, since users need to be informed about
every price update. In [4], the authors showed that users do
need feedback about charging of the network service (such as
current price and prediction of service quality in near future).
However, in our recent work [5], we illustrated that congestion
control through pricing cannot be achieved if price changes are
performed at a time-scale larger than roughly 40 round-trip-
times (RTTs). This means that in order to achieve congestion
control through pricing, service prices must be updated very
frequently, i.e. 2-3 secs.

We propose a novel solution, Pricing over Congestion Con-
trol (POCC). POCC overlays pricing on top of an underlying
congestion control mechanism to make sure congestion is
controlled at low time-scales. This way the pricing mechanism
on top can operate at larger time-scales, which makes human
involvement possible.

We particularly focus on diff-serv [6] architecture. We use
an available edge-to-edge pricing mechamism (Distributed-
DCC [7]) and edge-to-edge congestion control mechanism
(Riviera [8]) in order to present the idea of pricing overlay
over congestion control. We present simulation results for
Distributed-DCC over Riviera, and illustrate benefits of over-
laying pricing on top of congestion control.

The paper is organized as follows: In the next section, we
briefly survey the literature in the area of Internet pricing.
In Section III, we present POCC ideas in detail and describe

solutions to potential problems. Next in Sections III-B and
III-C, we briefly describe an edge-to-edge pricing framework
(Distributed-DCC) and an edge-to-edge congestion control
mechanism (Riviera), which we will use later in simulation
experiments. In Section IV, we present simulation experiments
of Distributed-DCC over Riviera and illustrate POCC ideas.
We finalize with summary and discussions.

II. LITERATURE SURVEY

There has been several pricing proposals, which can be clas-
sified in many ways: static vs. dynamic, per-packet charging
vs. per-contract charging, and charging prior to service vs.
posterior to service. Although there are opponents to dynamic
pricing in the area (e.g. [9], [10]), most of the proposals have
been for dynamic pricing (specifically congestion pricing) of
networks. Examples of dynamic pricing proposals are MacKie-
Mason and Varian’s Smart Market [1], Gupta et al.’s Priority
Pricing [11], Kelly et al.’s Proportional Fair Pricing (PFP) [12],
Semret et al.’s Market Pricing [3], and Wang and Schulzrinne’s
Resource Negotiation and Pricing (RNAP) [2]. Odlyzko’s Paris
Metro Pricing (PMP) [13] is an example of static pricing
proposal. Clark’s Expected Capacity [14] and Cocchi et al.’s
Edge Pricing [15] allow both static and dynamic pricing. In
terms of granularity, Smart Market, Priority Pricing, PFP and
Edge Pricing employ per-packet charging, whilst RNAP and
Expected Capacity employ per-contract charging.

Smart Market is based primarily on imposing per-packet
congestion prices, which makes it ideal because of its finest
granularity [16]. While Smart Market holds one extreme
in terms of granularity, Expected Capacity holds the other
extreme. Expected Capacity proposes to use long-term con-
tracts for statistical capacity allocation and pricing. Prices are
updated at the beginning of each long-term contract, which
incorporates little dynamism to prices.

An important recent work mainly focusing on implemen-
tation issues is RNAP. Although RNAP provides a complete
picture for incorporation of admission control and congestion
pricing, it has excessive implementation overhead since it
requires all network routers to participate in determination of
congestion prices. This requires upgrades to all routers similar
to the case of Smart Market. We believe that pricing schemes
that require upgrades to all routers will eventually fail in
implementation phase. Because, Internet routers are owned by
different entities who may or may not be willing to cooperate
in upgrading routers.



(a) Pricing with no underlying edge-to-edge congestion control (b) Pricing over edge-to-edge congestion control

Fig. 1. Comparison of POCC with the case of no underlying congestion control.

(a) Traditional pricing architecture (b) POCC

Fig. 2. Comparison of POCC with traditional pricing architectures in terms of participation of network routers into price calculation.

III. PRICING OVER CONGESTION CONTROL (POCC)

Fro the rest of the paper, we will present POCC ideas by
considering diff-serv environment. So, we will refer to edge-
to-edge pricing and edge-to-edge congestion control during the
dicussions. Note that the ideas can be generalized to the case
where diff-serv is not under consideration.

The essence of POCC is to overlay pricing on top of
congestion control, which is a novel approach. Assuming that
there is an underlying edge-to-edge congestion control scheme,
the pricing scheme on top can determine user incentives
and set the parameters of that underlying scheme such that
it leads to fairness and better control of congestion. So,
it will be possible to favor some traffic flows with higher
willingness-to-pay (i.e. budget) than the others. Furthermore,
the pricing scheme will also bring benefits such as an indirect
control on user demand by price, which will in turn help the
underlying edge-to-edge congestion control scheme to operate
more smoothly. However the overall system performance (e.g.
fairness, utilization, throughput) will be dependent on the
flexibility of the underlying congestion control mechanism.

Figure 1 illustrates the difference between POCC architec-
ture and a pricing architecture without underlying congestion
control. Observe that in POCC, the pricing protocol will be
able to operate at larger time-scale and hence provide smooth

prices to customers. However, when there is no underlying
congestion control, the pricing protocol will have to operate
at small time-scale and update prices frequently, in order to
enforce control over congestion. This will cause highly fluctu-
ating prices and hence there will be need for an intermediary
(i.e. a software or hardware agent) that undertakes the job of
smoothing prices.

As another benefit from POCC, amount of effort to calculate
prices will be less. To calculate congestion-based prices,
the provider has to gather congestion information across its
network. So, if the pricing protocol is responsible for control-
ling congestion, then congestion at any node in the network
must immediately effect prices. Traditionally [12], [17], this
problem of communicating congestion information to user is
resolved by involving each network node in price calculation
as shown in Figure 2-a. The idea is to let each network node
convey its congestion price (i.e. congestion measure) to the
user directly, and charge the user based on each of these
conveyed prices. However, this approach requires upgrades
to all current Internet routers which are typically owned by
different entites who may not cooperate in upgrading routers.
POCC solves this implementation problem by pricing at large
time-scales since control of congestion is left the underlying
edge-to-edge congestion control mechanism. Pricing at larger



time-scales allow provider to gather congestion information at
larger time-scales which does not require participation of all
network nodes. So, it becomes possible to employ closed-loop
edge-to-edge techniques to obtain congestion information. An
example is shown in Figure 2-b, where congestion information
is obtained by closed-loop estimation of available capacity.
Observe that traditional pricing architectures require partici-
pation of all network nodes in price calculation, while POCC
requires particiation of only a subset of them. Figure 2 shows
the difference by representing participating nodes in gray and
the others in white.

We now first describe the problems raised by POCC ar-
chitecture in diff-serv environment, then describe Distributed-
DCC (i.e. an edge-to-edge pricing mechanism) and Riviera
(i.e. an edge-to-edge congestion control mechanism), and then
provide solutions to the problems for overlaying Distributed-
DCC over Riviera.

A. POCC: Problems

In diff-serv environment, overlaying pricing on top of con-
gestion control raises two major problems:

1) Parameter mapping: Since the pricing scheme wants to
allocate network capacity according to the user incen-
tives (i.e. the users with larger budget should get more
capacity) that changes dynamically over time, it is a
required ability to set corresponding parameters of the
underlying edge-to-edge congestion control mechanism
such that it allocates the capacity to the user flows
according to their incentives. So, this necessitates a
method of mapping parameters of the pricing scheme
to the parameters of the congestion control mechanism.

2) Edge queues: The underlying edge-to-edge congestion
control scheme will not always allow all the traffic
admitted by the pricing scheme, which will cause queues
to build up at the network edges. So, management of
these edge queues is necessary in POCC architecture.
Figures 1-a and 1-b compare the situation of the edge
queues in the two cases when there is an underlying
congestion control scheme and when there is not.

B. An Edge-to-Edge Pricing Framework: Distributed-
Dynamic Capacity Contracting (Distributed-DCC)

Distributed-DCC models a short-term contract for a given
traffic class as a function of price per unit traffic volume Pv ,
maximum volume Vmax (maximum number of bytes that can
be sent during the contract) and the term of the contract T
(length of the contract):

Contract = f(Pv, Vmax, T ) (1)

In the Distributed-DCC framework, customers can only
access network core by making contracts with the provider
stations placed at the edge routers. Access to available con-
tracts can be done in different ways, which is known as edge
strategy. Two basic edge strategies are “bidding” (many users
bids for an available contract) or “contracting” (users negotiate
with the provider for an available contract). So, edge strategy

is the decision-making mechanism to identify which customer
gets an available contract at the provider station.

Stations can advertise congestion-based prices if they have
actual information about the congestion level in the network
core. This congestion information can come from the interior
routers or from the egress edge routers depending on the
congestion-detection mechanism being used. DCC assumes
that the congestion detection mechanism is able to give con-
gestion information in time scales (i.e. observation intervals)
smaller than contracts. The reader can find more details about
Distributed-DCC in [7].

C. An Edge-to-Edge Congestion Control Mechanism: Riviera

Riviera takes advantage of two-way communication be-
tween ingress and egress edge routers in a diff-serv network.
Ingress sends a forward feedback to egress in response to
feedback from egress, and egress sends backward feedback
to ingress in response to feedback from ingress. So, ingress
and egress of a traffic flow keep bouncing feedback to each
other. Ignoring loss of data packets, the egress of a traffic flow
measures the accumulation, a, caused by the flow.

The egress node keeps two threshold parameters to detect
congestion: max thresh and min thresh. For each flow, the
egress keeps a variable that says whether the flow is congested
or not. When a for a particular flow exceeds max thresh, the
egress updates the variable to congested. Similarly, when a is
less than min thresh, it updates the variable to not-congested.
It does not update the variable if a is in between max thresh
and min thresh. The ingress node gets informed about the
congestion detection by backward feedbacks and employs
AIMD-ER (i.e. a variant of AIMD) to adjust the sending rate.

In a single-bottleneck network, Riviera can be tuned such
that each flow gets weighted share of the bottleneck capacity.
The ingress nodes maintain an additive increase parameter, α,
and a multiplicative decrease parameter, β, for each edge-to-
edge flow. These parameters are used in AIMD-ER. Among
the edge-to-edge flows, by setting the increase parameters (α)
at the ingresses and the threshold parameters (max thresh
and min thresh) at the egresses in ratio of desired rate
allocation, it is possible to make sure that the flows get the
desired rate allocation. For example, assume there are two
flows 1 and 2 competing for a bottleneck (similar to Figure
3). If we want flow 1 to get a capacity of w times more than
flow 2, then the following conditions must be hold:

1) α2 = w α1
2) max thresh2 = w max thresh1
3) min thresh2 = w min thresh1

D. POCC: Solutions for Distributed-DCC over Riviera

1) Parameter mapping: For each edge-to-edge flow,
Distributed-DCC can calculate the capacity share of that
flow out of the total network capacity. Let γij = cij/C
be the fraction of network capacity that must be given to
the flow i to j, where C is the total network capacity and
cij is Distributed-DCC’s target capacity for flow i to j.
Distributed-DCC can convey γijs to the ingress stations,



Fig. 3. Experimental single-bottleneck network.

and they can multiply Riviera’s increase parameter αij

with γij . Also, Distributed-DCC can communicate γijs
to egresses, and they can multiply Riviera’s threshold
parameters with γij . This solves the parameter mapping
problem defined in Section III-A.

2) Edge queues: In Distributed-DCC, ingress stations main-
tain an estimation of available capacity for each edge-
to-edge flow. So, one intuitive way of making sure that
the user will not contract for more than the amount
that the network can handle is to subtract necessary
capacity to drain the already built edge queue from
the estimated edge-to-edge capacity cij , and then make
contracts accordingly. In other words, the ingress station
updates the estimated capacity for flow i to j by the
following formula c′ij = cij − Qij/T , and uses c′ij for
price calculation. Note that Q is the actual edge queue
length, and T is the length of the contract.

IV. SIMULATION EXPERIMENTS AND RESULTS

We now present ns [18] simulation experiments of
Distributed-DCC over Riviera on single-bottleneck topology.
The single-bottleneck topology has a bottleneck link, which is
connected to n edge nodes at each side where n is the number
of users. The bottleneck link has a capacity of 10Mb/s and all
other links have 15Mb/s. Propagation delay on each link is
5ms, and users send UDP traffic with an average packet size
of 1000B. To ease understanding of experiments, each user
sends its traffic to a separate egress. Figure 3 shows a single-
bottleneck topology with n = 3. The white nodes are edge
nodes and the gray nodes are interior nodes. The figure also
shows the traffic flow of users on the topology. Buffer size is
assumed to be infinite, so no packet drop is allowed.

Each user flow tries to maximize its total surplus (i.e. u(x)−
xp) by contracting for b/p amount of capacity, where b is its
budget and p is price. The flows’s budgets are randomized
according to Normal distribution with a given mean value.
This mean value is what we will refer to as flows’s budget in
our simulation experiments.

We run simulation experiments for POCC on the single-
bottleneck topology, which is represented in Figure 3. We also
run experiment for Distributed-DCC with exactly the same
parameters in order to see the effect of using an underlying
congestion control mechanism. In these experiments, there are
3 users with budgets of 30, 20, 10 respectively for users 1, 2,
3. Total simulation time is 15000s, and at the beginning only
the user 1 is active in the system. After 5000s, the user 2 gets

active. Again after 5000s at simulation time 10000, the user
3 gets active.

In terms of results, the volume given to each flow is
very important. Figures 4-a and 5-a show the flow rates in
Distriuted-DCC only and Distributed-DCC over Riviera re-
spectively. We see the flows are sharing the bottleneck capacity
in proportion to their budgets. In comparison to Distributed-
DCC over Riviera, Distributed-DCC only allocates the rate
more smoothly but with the same average proportionality to
the flows. The noisy volume allocation in Distributed-DCC
over Rivera is caused by coordination issues (i.e. parameter
mapping, edge queues) investigated in Section III-A.

Figure 4-b and 5-b show the price being advertised to flows
in Distributed-DCC only and Distributed-DCC over Riviera
respectively. As the new users join in, the pricing scheme
increases the price in order to balance supply and demand.

Figures 4-c and 5-c shows the bottleneck queue size in
Distributed-DCC only and Distributed-DCC over Riviera re-
spectively. Notice that queue sizes make peaks transiently at
the times when new users gets active. Otherwise, the queue
size is controlled reasonably and the system is stable. In
comparison to Distributed-DCC only, Distributed-DCC over
Riviera manages the bottleneck queue much better because
of the tight control enforced by the underlying edge-to-edge
congestion control algorithm Riviera. The results follows with
the big picture presented in Figure 1.

Figures from 6-a to 6-c show the sizes of edge queues in
Distributed-DCC over Riviera. We observe stable behavior but
with oscillations larger than the bottleneck queue illustrated
in Figure 5-c. This is because of the tight edge-to-edge
congestion control, which pushes backlog to the edges.

Also from Figures 4-a and 5-a, we observe that capacity
being allocated to flows are slightly different. In the case of
Distributed-DCC only, the flow rates are slightly higher than
the ones in the case of Distributed-DCC over Riviera. This
is mainly due to Riviera’s tight control, which reduces the
effective capacity of the bottleneck.

V. SUMMARY

We presented a new architecture to implement congestion
pricing in large networks. We proposed Pricing over Con-
gestion Control (POCC) as a novel approach for solving the
time-scale problem of pricing. By comparative evaluation, we
showed that POCC performs better in terms of managing con-
gestion in network core because of the tight control enforced
by the underlying edge-to-edge congestion control mechanism.

Future work should include investigation of issues related
to extending POCC ideas on multiple diff-serv domains. Also,
POCC ideas must be tested with edge-to-edge schemes other
than Distributed-DCC and Riviera. Another interesting issue
to look at is the end-to-end delay in POCC. POCC reduces the
bottleneck queue length, but a thorough analysis of end-to-end
delay is necessary for evaluating QoS in POCC architecture.

REFERENCES

[1] J. K. MacKie-Mason and H. R. Varian, Pricing the Internet. Kahin,
Brian and Keller, James, 1993.



0

2

4

6

8

10

12

0 2000 4000 6000 8000 10000 12000 14000

V
ol

um
e 

(M
b)

Time (seconds)

Flow 0
Flow 1
Flow 2

0

1

2

3

4

5

6

7

0 2000 4000 6000 8000 10000 12000 14000

P
ri

ce
 (

$/
M

b)

Time (seconds)

Flow 0
Flow 1
Flow 2

0

50

100

150

200

250

0 2000 4000 6000 8000 10000 12000 14000

B
ot

tl
en

ec
k 

Q
ue

ue
 S

iz
e 

(p
ac

ke
ts

)

Time (seconds)

(a) Flow rates (b) Price advertised to the flows (c) Bottleneck queue length

Fig. 4. Results of single-bottleneck experiment for Distributed-DCC without any underlying congestion control

0

1

2

3

4

5

6

7

8

9

0 2000 4000 6000 8000 10000 12000 14000

V
ol

um
e 

(M
b)

Time (seconds)

Flow 0
Flow 1
Flow 2

0

1

2

3

4

5

6

7

0 2000 4000 6000 8000 10000 12000 14000

P
ri

ce
 (

$/
M

b)

Time (seconds)

Flow 0
Flow 1
Flow 2

0

50

100

150

200

250

0 2000 4000 6000 8000 10000 12000 14000

B
ot

tl
en

ec
k 

Q
ue

ue
 S

iz
e 

(p
ac

ke
ts

)

Time (seconds)

(a) Flow rates (b) Price advertised to the flows (c) Bottleneck queue length

Fig. 5. Results of single-bottleneck experiment for POCC (Distributed-DCC over Riviera)

0

500

1000

1500

2000

2500

0 2000 4000 6000 8000 10000 12000 14000

E
dg

e 
Q

ue
ue

 f
or

 F
lo

w
 0

 (
pa

ck
et

s)

Time (seconds)

0

100

200

300

400

500

600

700

800

900

0 2000 4000 6000 8000 10000 12000 14000

E
dg

e 
Q

ue
ue

 f
or

 F
lo

w
 1

 (
pa

ck
et

s)

Time (seconds)

0

50

100

150

200

250

300

0 2000 4000 6000 8000 10000 12000 14000

E
dg

e 
Q

ue
ue

 f
or

 F
lo

w
 2

 (
pa

ck
et

s)

Time (seconds)

(a) Edge queue for flow 0 (b) Edge queue for flow 1 (c) Edge queue for flow 2

Fig. 6. Sizes of edge queues in the single-bottleneck experiment for POCC (Distributed-DCC over Riviera)

[2] X. Wang and H. Schulzrinne, “An integrated resource negotiation,
pricing, and QoS adaptation framework for multimedia applications,”
IEEE Journal of Selected Areas in Communications, vol. 18, 2000.

[3] N. Semret, R. R.-F. Liao, A. T. Campbell, and A. A. Lazar, “Pricing,
provisioning and peering: Dynamic markets for differentiated Internet
services and implications for network interconnections,” IEEE Journal
of Selected Areas in Communications, vol. 18, 2000.

[4] A. Bouch and M. A. Sasse, “Why value is everything?: A user-centered
approach to Internet quality of service and pricing,” in Proceedings of
IEEE/IFIP International Workshop on Quality of Service (IWQoS), 2001.

[5] M. Yuksel, S. Kalyanaraman, and B. Sikdar, “Effect of pricing intervals
on congestion-sensitivity of network service prices,” Rensselaer Poly-
technic Institute, ECSE Nets Lab, Tech. Rep. ECSE-NET-2002-1, 2002.

[6] S. B. et. al, “An architecture for Differentiated Services,” IETF RFC
2475, December 1998.

[7] M. Yuksel and S. Kalyanaraman, “Distributed Dynamic Capacity Con-
tracting: A congestion pricing framework for diff-serv,” in Proceedings
of IFIP/IEEE MMNS, 2002.

[8] D. Harrison, S. Kalyanaraman, and S. Ramakrishnan, “Overlay band-
width services: Basic framework and edge-to-edge closed-loop building
block,” Poster in ACM SIGCOMM, 2001.

[9] A. M. Odlyzko, “Internet pricing and history of communications,” AT
& T Labs, Tech. Rep., 2000.

[10] I. C. Paschalidis and J. N. Tsitsiklis, “Congestion-dependent pricing of
network services,” IEEE/ACM Transactions on Networking, vol. 8, no. 2,
pp. 171–184, 2000.

[11] A. Gupta, D. O. Stahl, and A. B. Whinston, Priority pricing of Integrated
Services networks. Eds McKnight and Bailey, MIT Press, 1997.

[12] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control in commu-
nication networks: Shadow prices, proportional fairness and stability,”
Journal of Operations Research Society, vol. 49, pp. 237–252, 1998.

[13] A. M. Odlyzko, “A modest proposal for preventing Internet congestion,”
AT & T Labs, Tech. Rep., 1997.

[14] D. Clark, Internet cost allocation and pricing. Eds McKnight and
Bailey, MIT Press, 1997.

[15] R. Cocchi, S. Shenker, D. Estrin, and L. Zhang, “Pricing in computer
networks: Motivation, formulation and example,” IEEE/ACM Transac-
tions on Networking, vol. 1, December 1993.

[16] M. Yuksel and S. Kalyanaraman, “A strategy for implementing Smart
Market pricing scheme on diff-serv,” in Proc. of IEEE GLOBECOM’02.

[17] S. H. Low and D. E. Lapsley, “Optimization flow control – I: Basic
algorithm and convergence,” IEEE/ACM Transactions on Networking,
vol. 7, no. 6, pp. 861–875, 1999.

[18] “UCB/LBLN/VINT network simulator - ns (version 2),” http://www-
mash.cs.berkeley.edu/ns, 1997.


