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Abstract— This paper1 generalizes the TCP Vegas congestion
avoidance mechanism and proposes a model to use accumulation,
buffered packets of a flow inside network routers, as a congestion
measure on which a family of congestion control schemes can
be derived. We call this model accumulation-based congestion
control (ACC). We use a bit-by-bit fluid model to define the
accumulation concept and develop a general control algorithm
which includes a set of control policies. Then we prove its
proportional fairness and global stability. The ACC model serves
as a reference for packet network implementations. We show
that TCP Vegas is one possible scheme which fits into the ACC
model. It is well known that Vegas suffers from round trip
propagation delay estimation error and reverse path queuing
delay. We therefore design a new scheme called Monaco which
solves these problems by employing an out-of-band receiver-based
accumulation estimator, with minimal support from network
routers. Analysis and simulation comparisons between Vegas and
Monaco demonstrate the effectiveness of the Monaco accumula-
tion estimator. We use ns-2 simulations to show that the static and
dynamic performance of Monaco matches the theoretic results.
One key issue regarding the ACC model in general, i.e., the
scalability of router buffer requirement, is discussed.

I. INTRODUCTION

Much research has been conducted toward achieving stable,
efficient and fair operation of packet-switching networks. TCP
congestion control [7] is an end-to-end mechanism which has
been critical for the stability of the Internet. It detects network
congestion by inferring packet loss assumed to be caused
only by congestion. As an alternative TCP implementation,
Vegas [3] uses another measure called backlog, the number of
buffered packets inside network, to detect network congestion.
Unfortunately Vegas has technical problems inherent to its
backlog estimator which prevent it from functioning properly.
There has been a substantial body of work on these issues,
such as [1] [13] [12]. But none of them provides a solution to
estimate backlog unbiasedly in case of round trip propagation
delay estimation error or reverse path congestion.

In this paper, we offer a solution to the above problems and
develop a systematic model to generalize the Vegas congestion
avoidance mechanism. Formally, we define in the fluid model
the backlog (hereafter we call accumulation) as a time-shifted,
distributed sum of the queue contributions of a flow at a set
of FIFO routers on its path. We show that flow rates can be
controlled by controlling the accumulations in a distributed
manner. We study a set of closed-loop congestion control
schemes that are based upon the idea of keeping a target
accumulation for each flow individually.

1This work was supported in part by NSF under contracts ANI-9806660
and ANI-9819112 and a grant from Intel Corp.

We first develop the key concepts for this accumulation-
based congestion control (ACC) model in Section II. An ACC
model has two components: congestion estimation and conges-
tion response. The congestion estimation component defines
a congestion measure (i.e., accumulation) and provides an
implementation of the measure; while the congestion response
component defines an increase/decrease policy for the source
throttle. We apply queuing analysis [14] and Kelly’s nonlinear
optimization model [8] to demonstrate the equilibrium fairness
characteristics of the ACC model and then propose a general
control algorithm which is globally stable and steers the
network to the equilibrium. A range of traditional algorithms
including additive-increase-additive-decrease [4] and other al-
gorithms [14] can be used. Detailed proofs of the ACC stability
and fairness are given in the technical report [15].

Within the ACC model a family of different schemes make
choices in each of the ACC components and put together
the entire scheme. We describe two packet network exam-
ple schemes in Section III. We demonstrate that the TCP
Vegas congestion avoidance mechanism attempts to estimate
accumulation, and fits into the ACC family. But Vegas often
fails to provide an unbiased accumulation estimation. Then
we develop a new scheme called Monaco that emulates the
ACC fluid model in a better way. Particularly, Monaco solves
the above problem of Vegas by employing an out-of-band
receiver-based accumulation estimation. We provide resolution
to a number of concerns regarding the accumulation estimation
issues in Section III-C. In Section IV we use ns-2 simulations
to show the static and dynamic performance of the Monaco
scheme. We conclude this paper in Section V by discussing
a key concern regarding the ACC model in general, i.e., the
scalability of buffer requirement.

II. ACC FLUID MODEL

We define accumulation using a bit-by-bit fluid model and
use accumulation to measure and control network congestion.
We show that keeping constant accumulation inside network
routers for each flow is equivalent to a nonlinear optimization
which allocates network capacity proportionally fairly. We
then develop a globally stable general control algorithm.

A. Accumulation

Consider an ordered sequence of FIFO nodes {R1, . . . , RJ}
along the path of a unidirectional flow i in Figure 1(a). The
flow comes into the network at the ingress node R1 and, after
passing some intermediate nodes R2, . . . , RJ−1, goes out from
the egress node RJ . At time t in any node Rj , flow i’s input
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rate is λij(t), output rate is µij(t). The propagation delay from
node Rj to node Rj+1 is a constant value dj .

We define the arrival curve Aij(t) of a flow i at a node Rj

as the number of bits of that flow which have cumulatively
arrived at the node up to time t, and similarly the service
curve Sij(t) as flow i’s bits cumulatively serviced at node
Rj , drawn in Figure 1(c). For any FIFO node Rj , both Aij(t)
and Sij(t) are continuous2 and non-decreasing functions. If
there is no packet loss3 or duplication, then at any time t,
by definition, flow i’s buffered bits qij(t) in node Rj is the
difference between Aij(t) and Sij(t), as shown in Figure 1(c):

qij(t) = Aij(t) − Sij(t). (1)

We compute the change of flow i’s queued bits at Rj :

∆qij(t) = qij(t + ∆t) − qij(t)
= [Aij(t + ∆t) − Aij(t)]

− [Sij(t + ∆t) − Sij(t)]
= [λij(t,∆t) − µij(t,∆t)] × ∆t

= Iij(t,∆t) − Oij(t,∆t) (2)

where Iij(t,∆t) and Oij(t,∆t) are incoming and outgoing
bits of flow i at node Rj during the time interval [t, t + ∆t];
λij(t,∆t) and µij(t,∆t) are the correspondent average input
and output rates, respectively.

Now consider the flow’s queuing behavior at a sequence of
FIFO nodes. Reasonably, suppose data-link layer transmission
could be modelled as a line with fixed delay, then flow i’s
input rate λi,j+1(t) at a node Rj+1 is a delayed version of its
output rate µij(t) at the upstream neighbor node Rj , namely,

µij(t − dj) = λi,j+1(t) (3)

where dj is the propagation delay from Rj to Rj+1.
Define flow i’s accumulation as a time-shifted, distributed

sum of the queued bits in all nodes along its path from the
ingress node R1 to the egress node RJ , i.e.,

ai(t) =
J∑

j=1

qij(t −
J−1∑

k=j

dk) (4)

which is shown as the solid slant line in Figure 1(b). Note the
equation includes only those bits backlogged inside the buffers

2Strictly this is true if we accept that a bit is infinitely small.
3However, an ACC scheme should be robust and respond to unexpected

packet losses. See more details in Section III-B.2.

of all nodes on the path, not those stored on transmission links.
This definition provides a reference to implement an unbiased
accumulation estimator in Section III-B.1. We define flow i’s
ingress and egress rates as those at the ingress and egress
nodes, respectively:

λi(t) = λi1(t)
µi(t) = µiJ(t). (5)

Using Equations (2)–(5), we calculate flow i’s accumulation
change as follows:

∆ai(t) = ai(t + ∆t) − ai(t)

=
J∑

j=1

∆qij(t −
J−1∑

k=j

dk)

= [λi(t − df
i ,∆t) − µi(t,∆t)] × ∆t

= Ii(t − df
i ,∆t) − Oi(t,∆t) (6)

where df
i =

∑J−1
j=1 dj is the forward direction propagation

delay of flow i from node R1 all the way down to node RJ .
Similar to Equation (2), Ii(t−df

i ,∆t) and Oi(t,∆t) are flow
i’s bits coming into and going out of network during two
different time intervals but both of length ∆t; while λi(t −
df

i ,∆t) and µi(t,∆t) are the correspondent average ingress
and egress rates. The result, illustrated in Figure 1(b), shows
the change of a flow’s accumulation on its path is only related
to its input and output at the ingress and egress nodes.

For one FIFO node, it’s straight-forward to control flow
rates by controlling the number of queued packets [5], since
buffered packets decide completely the service received if
the scheduling discipline is FIFO. Due to the similarity of
Equations (2) and (6), for a sequence of FIFO nodes, we aim
to control flow rates by controlling the accumulations, i.e.,
keeping a steady state accumulation inside network for each
flow. Note Equations (2) and (6) have a significant difference
of the one-way propagation delay df

i , which is a constant as
long as flow i’s route is fixed.

B. Queuing and Optimization Analysis

To give a better understanding of using accumulation as
the steering parameter for congestion control, we provide
physically a simple queuing analysis and mathematically an
optimization theory to demonstrate the steady state picture of
the ACC model based no [8] [14]. It turns out that ACC steers
the network to an equilibrium of proportionally fair bandwidth
allocation. Then we develop a globally stable control algorithm
to drive the network to the equilibrium.

Network congestion control can be formalized as a re-
source allocation problem. Consider a network of a set L =
{1, . . . , L} of links, shared by a set I = {1, . . . , I} of flows.
Each link l ∈ L has capacity cl. Flow i ∈ I passes a route
Li consisting of a subset of links, i.e., Li = {l ∈ L | i
traverses l}. A link l is shared by a subset Il of flows where
Il = {i ∈ I | i traverses l}.

Let’s firstly consider from queuing perspective [14]. After
the system approaches a steady state (so we can neglect the
time variable t in all the previous equations), at any link l the



queue length ql (=
∑

i∈Il
qil), or equivalently the queuing

delay tql (= ql/cl), could be non-zero only if the capacity
cl is fully utilized by the sharing flows of the aggregate
rate

∑
i∈Il

xi, where xi is the sending rate of flow i. This
suggests either ql = 0 (i.e., tql = 0 which means the link
is not congested) or

∑
i∈Il

xi = cl (which means the link
is congested). We use window-based congestion control, in
which a window wi bits of flow i could be stored either in node
buffers as accumulation ai (=

∑
l∈Li

qil) or on transmission
links as xi·rttp i, where rttp i is flow i’s round trip propagation
delay. Since wi = xi · rtti where rtti is the round trip time
observed by flow i, we summarize to get:

Proposition 1: If we use accumulation ai as a steering
parameter to control flow i’s congestion window size wi,
then at the steady state (achievable by the control algorithm
in Section II-C) we have, ∀i ∈ I,∀l ∈ L :
(a) wi = ai + xi · rttp i ⇒ ai = xi(rtti − rttp i) =
xi ·

∑
l∈Li

tql;
(b) tql · (cl −

∑
i∈Il

xi) = 0;
(c)

∑
i∈Il

xi ≤ cl;
(d) tql ≥ 0;
(e) xi > 0.

Alternatively, network resource allocation can also be mod-
elled as a nonlinear optimization problem [8] [11] [9], where
the network tries to maximize the sum of all flows’ utility
functions

∑
i∈I Ui(xi), in which flow i’s utility function

Ui(xi) is a measure of its happiness when it sends at a rate of
xi > 0, subject to a set of capacity constraints

∑
i∈Il

xi ≤ cl

at all links. Using Lagrange multiplier method, we construct a
Lagrange function L( �x, �p ) =

∑
i∈I Ui(xi) +

∑
l∈L pl · (cl −∑

i∈Il
xi). If utility functions are defined as Ui(xi) = si lnxi,

where si > 0 is a weight, then because of the strict concavity
of the objective function constrained by a convex set, the
Karush-Kuhn-Tucker condition can be applied to obtain:

Proposition 2: The nonlinear programming problem

maximize
∑

i∈I

si lnxi (7)

subject to
∑

i∈Il

xi ≤ cl,∀l ∈ L

xi > 0,∀i ∈ I

has a unique global maximum. The sufficient and necessary
condition for the maximum is, ∀i ∈ I,∀l ∈ L :
(a) ∂L( �x, �p )/∂�x = 0 ⇒ si = xi ·

∑
l∈Li

pl;
(b) pl · (cl −

∑
i∈Il

xi) = 0;
(c)

∑
i∈Il

xi ≤ cl;
(d) pl ≥ 0;
(e) xi > 0.

Now let’s compare the above two results. If replacing si

with ai, pl with tql, we find that Proposition 2 is turned into
Proposition 1, and vice versa. This observation indicates that,
by using accumulation as a steering parameter to control flow
rate, the network is actually doing a nonlinear optimization in
which flow i’s utility function is

Ui(xi) = ai lnxi. (8)

It turns out that accumulation ai is an instance of the weight
si, which could be used to provide a weighted proportionally
fair congestion control as shown in Section II-D. Besides, the
Lagrange multiplier pl is a measure of congestion, or price
explored in [11], at link l. In particular, the queuing delay tql

is an instance of such price. The more severe the congestion at
link l, the higher the price pl, the larger the queuing delay tql.
If there is no congestion at that link, then there is no queuing
delay, i.e., tql = 0, the price pl is also 0.

C. Control Algorithm

In the ACC model we use accumulation to measure network
congestion as well as to probe available bandwidth. If accu-
mulation is low, we increase congestion window; otherwise,
we decrease it to drain accumulation. More accurately, we try
to maintain a constant target accumulation a∗

i for each flow i
by applying a general ACC control algorithm:

ẇi(t) = −η · f(ai(t) − a∗
i ) (9)

where wi(t), ai(t) and a∗
i are respectively the congestion

window size, accumulation and target accumulation value of
flow i, f(·) is a strictly increasing, differentiable function with
a unique root 0 (i.e., only f(0) = 0) and η > 0.

Obviously Equation (9) includes a set of algorithms. The
reason we present a general algorithm here is that all instance
algorithms which fit into Equation (9) share a common steady
state property of proportional fairness, as shown in the next
subsection, where we also show that the above algorithm is
globally stable.

By choosing different f functions, we can instantiate the
above general algorithm into a set of control policies including
the well-known additive-increase-additive-decrease (AIAD)
policy popularized by TCP Vegas, an algorithm proposed by
Mo and Walrand [14], and a proportional control policy used
by the Monaco scheme in the next section, among others.

D. Properties

For any congestion control algorithm, major theoretic con-
cerns are its stability, fairness and queue bound. Stability is
to guarantee equilibrium operation of the algorithm. Fairness,
either max-min or proportional [8], determines the allocation
of network bandwidth among competing flows. Queue bound
provides an upper limit on the router buffer requirement, which
is important for real deployment. We prove the following result
in [15].

Proposition 3: The accumulation-based control algorithm
given by Equation (9) is globally asymptotically stable and
weighted proportionally fair.

Even we keep a finite accumulation inside network for
every flow, the steady state queue at a node scales up to the
number of flows sharing that bottleneck. In practice, we need
to provide enough buffers to avoid packet loss and make the
congestion control protocol robust to such loss, if unavoidably
any (see Section III-B). Another way to alleviate this problem
is to control aggregate flow in a network edge-to-edge manner,



instead of end-to-end for each micro-flow of source-destination
pair, since the ACC model can be mapped onto end-to-
end hosts or network edge-to-edge (though we focus on the
model itself and don’t elaborate the architecture issues in this
paper). A possibly better solution to keep steady state queue
length bounded is to use an active queue management (AQM)
mechanism such as AVQ [10]. We have implemented this
option. Due to space limit, we do not include it here. The
reader is referred to [15] for details.

Interestingly, as Proposition 3 states (and validated by our
experiments), different ACC control policies can achieve the
same fairness property, as long as they fit into Equation (9).
Thus to achieve a particular steady state performance, we
have the freedom to choose from a set of control policies
of different dynamic characteristics. In this sense, we regard
that the ACC model manifests congestion control as a two-
step issue of setting a target steady state allocation (fairness)
and then designing a control policy (stability and dynamics)
to achieve that allocation.

III. ACC SCHEMES

In this section we instantiate the ACC fluid model into
two example schemes for packet-switching networks. Firstly
we show that TCP Vegas tries to estimate accumulation and
fits into the ACC model. Unfortunately Vegas often fails
to provide an unbiased accumulation estimation. Therefore
we design a new scheme called Monaco which solves the
estimation problems of Vegas. Monaco also improves the
congestion response by utilizing the value of estimated
accumulation, unlike Vegas’ AIAD policy which is possibly
slow in reacting a sudden change in user demands or network
capacity. By comparing Monaco and Vegas via analysis and
simulation we reach two observations: It is effective to employ
1) a receiver-based mechanism and, 2) the measurement of
forward path queuing delay, instead of round trip queuing
delay as in Vegas, to estimate accumulation unbiasedly. The
scheme design is guided by the following goals:

#1: Stability: The scheme should converge to an equilibrium
in a reasonably dynamic environment with changing
demands or capacity;

#2: Proportional Fairness: Given enough buffers, the
scheme must achieve proportional fairness and operate
without packet loss at the steady state;

#3: High Utilization: When a path is presented with suffi-
cient demand, the scheme should converge around full
utilization of the path’s resources;

#4: Avoidance of Persistent Loss: If the queue should grow
to the point of loss due to underprovisioned buffers, the
scheme must back off to avoid persistent loss.

A. Vegas

Vegas was proposed as an alternative TCP implementation.
It includes several modifications over TCP Reno [7]. However,
we focus only on its congestion avoidance mechanism, which
fits well as an example ACC scheme.

The Vegas estimator for accumulation was originally called
“backlog”, a term we use interchangeably in this paper. For
each flow, the Vegas estimator takes as input an estimate of its
round trip propagation delay, hereafter called rttp (or basertt
in [3] [13]). Vegas then estimates the backlog as

âV = (
cwnd

rttp
− cwnd

rtt
) × rttp (10)

=
cwnd

rtt
× rttq (11)

where cwnd/rtt is the average sending rate during that RTT
and rttq = rtt − rttp is the round trip queuing delay. If rttp
is accurately available and there is no reverse path queuing
delay, then according to Little’s Law, âV provides an unbiased
estimation for accumulation.

Vegas estimates rttp as the minimum RTT measured so far.
If the queues drain often, it is likely that each control loop will
eventually obtain a sample that reflects the true propagation
delay. The Vegas estimator is used to adjust its congestion
window size, cwnd, so that âV approaches a target range of
ε1 to ε2 packets. More accurately stated, the sender adjusts
cwnd using an AIAD policy:

cwnd(n + 1) =
{

cwnd(n) + 1 if âV < ε1
cwnd(n) − 1 if âV > ε2

(12)

where ε1 and ε2 are set to 1 and 3 packets, respectively.
Vegas has several well-known problems: i) Rttp Estimation

Errors: Suppose re-routing of a flow increases its propagation
delay. Vegas misinterprets such an increase as less congestion
and sends faster. Hence, this policy can lead to unbounded
queue which introduces persistent loss and congestion [12],
violating the goals #1 and #4. Mo et al. [13] suggest limiting
the history on the rttp estimate by using the minimum of the
last k, instead of all, RTT samples. We refer to this variant
as the “Vegas-k” scheme. Still, it cannot guarantee queue
drain at intermediate bottlenecks within k RTTs, shown in
Section III-C; ii) Rttp with Standing Queues: When a flow
arrives at a bottleneck with a standing queue, it obtains an
exaggerated rttp estimate. The flow then adjusts its window
size to incur an extra backlog between ε1 and ε2 packets
in addition to the standing queue. This leads to a bandwidth
allocation away from the target proportional fairness, violating
the goal #2; iii) Reverse Path Congestion: The Vegas estimator
is affected by congestion in the reverse path. Reverse path
congestion inflates the Vegas estimator leading to sharply
reduced utilization, not achieving the goal #3.

B. Monaco

Monaco emulates the accumulation defined by Equation (4)
and implements a receiver-based out-of-band measurement. It
is immune to issues such as rttp sensitivities and reverse path
congestion and robust to control and data packet losses. We
describe firstly the Monaco accumulation estimator and then
its congestion response policy.

1) Monaco: Congestion Estimation Protocol: Let’s look
at the definition of accumulation in Equation (4). It is the
sum of the queued bits of a flow at a sequence of FIFO
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routers, including both ingress and egress nodes4 as well as
intermediate routers. We aim to eliminate the computation at
intermediate routers. Actually it is impossible for all nodes
Rj (1 ≤ j ≤ J) to compute synchronously their queues
qij(t −

∑J−1
k=j dk) at different times since no common clock

is maintained.
To estimate accumulation without explicit computation at

intermediate routers, Monaco generates a pair of back-to-back
control packets once per RTT at the ingress node as shown
in Figure 2. One control packet is sent out-of-band (OB) and
the other in-band (IB). The OB control packet skips queues
in the intermediate routers by passing through a separate
dedicated high priority queue. Assuming the OB queues to be
minimal as only other OB control packets share them, such
packets experience only the forward propagation delay df

i . The
IB control packet goes along with regular data packets and
reaches the egress node after experiencing the current queuing
delay in the network. The time interval between the OB and
IB control packets measured at the egress node is a sample
of the current forward trip queuing time (fttq). Considering
a network with enough buffers where there is no packet loss,
if flow rates at all routers do not change dramatically, then by
Little’s Law, the number of data packet arrivals at the egress
node after the OB control packet, but before the IB control
packet equals the accumulation. In Figure 2, the dashed lines
cut by the forward direction OB control packet are those data
packets, with each cut happening in the router Rj at time
t −

∑J−1
k=j dk, ∀j ∈ {1, ..., J}. Also observe in the figure that

we can measure rtt at both ingress and egress nodes and rttp
at the egress node.

Besides, we need to consider the effect of traffic burstiness.
When we have a congestion window size cwnd, we also
compute a rate based on RTT estimation: rate = cwnd/rtt.
At the ingress node we use this rate value to smooth incoming
traffic and thus alleviate the effect of burstiness. At the egress
node the accumulation is computed as the product of fttq and
an exponentially weighted moving average of the egress rate.

In practice, both data and control packets maybe lost be-
cause of inadequate router buffer size or too many competing
flows. To enhance the robustness of Monaco estimator when
data packets are lost, the IB control packet, identified by a
control packet sequence number, carries a byte count of the
number of data bytes sent during that period. If the egress node

4The reader may think the ingress node as source(sender) and the egress
node as destination(receiver).

receives fewer bytes than were transmitted, then packet loss
is detected. The forward OB control packet carries the same
control packet sequence number as the associated IB control
packet. Monaco sends congestion feedback on the reverse
OB control packet, in which there is one additional piece of
information: congestion feedback, i.e., a flag denoting whether
the congestion window cwnd should increase, decrease, or
decrease-due-to-loss. The subsequent pair of forward control
packets is generated after the arrival of the reverse OB control
packet at the ingress node.

If either control packet is lost, then the ingress node times
out and sends a new pair of control packets with a larger
sequence number. The timer for control packet retransmission
is similar to that of TCP.

2) Monaco: Congestion Response Protocol: As already
noted, we use accumulation to measure network congestion
and to probe available bandwidth. We keep constant accumu-
lation for every flow by increasing/decreasing its congestion
window when the accumulation is lower/higher than the target
value.

Since pure window-based control policy introduce unde-
sirable burstiness we use rate-modulated window control to
smooth incoming traffic by employing at the ingress node a
leaky bucket shaper with a rate value of cwnd/rtt and burst
parameter of one packet.

We provide below a proportional control policy among a
set of what Monaco can use:

cwnd(n + 1) = cwnd(n) − κ · (âM − a∗) (13)

where âM is the Monaco accumulation estimation, a∗, set to 3
packets, is a target accumulation in the path akin to ε1 and ε2
used by Vegas, κ is set to 0.5, and cwnd(n) is the congestion
window value at a control period n.

Monaco improves Vegas’ control policy by utilizing the
value of estimated accumulation fedback by the reverse OB
control packet, instead of taking it as binary information
(i.e., “how congested”, instead of “congested or not”). If the
congestion feedback is decrease-due-to-loss, Monaco halves
the congestion window as in TCP Reno.

C. Comparisons of Vegas and Monaco

Vegas and Monaco both aim to accurately estimate accu-
mulation, assuming different support from network routers. If
rttp can be obtained precisely and there is no reverse path
congestion then, by Little’s law, both of them give unbiased
accumulation estimation on average. But in practice Vegas has
severe problems in achieving this objective; Monaco solves
known estimation problems.

Vegas estimator operates at sender side. According to Equa-
tion (10) it actually calculates:

âV =
cwnd

rtt
× ( rtt − rttp ) (14)

=
cwnd

rtt
× ( tfq + tbq ) (15)

where tfq and tbq are forward and reverse direction queuing
delays, respectively. The above equations imply that Vegas



may suffer from two problems: 1) By Equation (14), if rttp is
overestimated, then Vegas underestimates accumulation. This
leads to extra steady queue in bottlenecks or even persistent
congestion. Simulation results in [15] show that Vegas operates
with very low utilization of less than 10% and Vegas-k
operates with queue increase until loss occurs when there
exists rttp estimation error. 2) By Equation (15), if there exists
reverse direction queuing delay (because of reverse direction
flows), i.e., tbq > 0, then Vegas overestimates accumulation.
This leads to underutilization and is hard to handle because the
forward direction flows have no control over those on reverse
direction.

Due to the above problems, Vegas falls short of qualifying
as an effective ACC scheme, because we expect to achieve
congestion control by maintaining constant accumulation for
each flow at the steady state! In such a case, the sum of
accumulations would lead to a non-zero steady state queue
which is not likely to drain, and hence dynamic rttp esti-
mation would not possibly be unbiased with only in-band
measurements. In summary, the rttp sensitivity issues of Vegas
point to a fundamental problem of the in-band techniques for
accumulation estimation.

Monaco solves both problems. Monaco estimator operates
at receiver side and thus excludes the effect of reverse path
congestion. By measuring the time interval between the OB
and IB control packets, Monaco does not explicitly need to
estimate the forward direction propagation delay. (Actually
the OB control packet provides implicitly this value.) More
specifically, since Monaco implements a rate-paced window
control algorithm to smooth out incoming traffic, the time
difference between the OB and IB control packet arrivals gives
a sample of the current forward direction queuing delay fttq.
By Little’s law, the number of data packets arriving during this
time period is the backlogged packets along the path. Using the
OB control packet also makes Monaco adaptive to re-routing
since it is sent every RTT. Simulation results in [15] show
that, under the same condition, Monaco operates at around
100% utilization with no packet loss. So it’s immune to rttp
estimation inaccuracy and reverse path congestion.

The above comparisons between Vegas (including Vegas-k)
and Monaco suggest two important observations on how to
estimate accumulation unbiasedly: 1) The key is to measure
forward direction queuing delay (via the OB and IB control
packets in Monaco), instead of round trip queuing delay
(as in Vegas); And consequently, 2) it’s better to measure
accumulation at the receiver side, otherwise it’s difficult to
eliminate the effect of reverse path queuing delay which is
hardly under forward direction congestion control.

IV. SIMULATIONS

In the last section we have shown that Monaco outperforms
Vegas. So we focus on evaluating the dynamic and steady
state performance of Monaco. We use ns-2 simulations with
data packet size of 1000 bytes and target accumulation set
to 3000 bytes. We also implement Monaco in Linux kernel
v2.2.18 and validate most of simulation results [15]. In brief,
in combination with Section III-C, this section shows that
Monaco satisfies all the goals outlined in Section III.

A. Single Bottleneck with Dynamic Demands

Firstly we consider a single 30Mbps bottleneck with 2ms
propagation delay shared by 3 sets of flows using the Monaco
scheme. Set 1 has 10 flows starting at 0s and stopping at
30s; Set 2 has 5 flows starting at 10s and stopping at 40s;
Set 3 has 5 flows starting at 20s and stopping at 50s. Each
source-destination pair is connected to the bottleneck via a
10Mbps 1ms link. The one-way propagation delays for the
3 sets of flows are 4ms, 9ms and 14ms, respectively. We
simulate for 50s. We performed two simulations, one with
enough buffer provided for a droptail bottleneck, the other
with underprovisioned buffer.

In the first simulation, the bottleneck router has enough
buffer of 90 packets, as shown in Figure 3(a1), where there
is no packet loss. We randomly pick one flow from each set
and draw its individual throughput in Figure 3(a2). We observe
that from 0s to 30s, the throughput is about 3Mbps, since only
10 flows are active; When the 5 flows from set 2 jump in at
10s, the throughput drops to 2Mbps, as we have 15 active
flows. Similarly, when the final 5 flows from set 3 enter at
20s, the throughput changes to 1.5Mbps. Then at 30s, the 10
flows of set 1 stop, the throughput increases to 3Mbps. At
40s, the 5 flows of set 2 leave, only the 5 flows of set 3
are in the system with throughput of about 6Mbps. Bottleneck
queue length is depicted in Figure 3(a1) where incoming flows
build up a steady queue and flows leave with queue decrease,
on average 3 packets for each flow as specified by target
accumulation. During the simulation bottleneck utilization
always stays around 100%, except two soon-recovered drops
during abrupt demand changes at 30s and 40s. This simulation
validates that Monaco demonstrates a stable behavior under
a dynamic and heterogeneous environment and keeps steady
queues inside bottleneck.

In the second simulation, the droptail bottleneck router
buffer is underprovisioned, as illustrated in Figure 3(b1), we
can see that the queue length grows to the limit of the whole
buffer size of 55 packets, and there is a correspondent packet
loss leading to halving of the congestion window during
20s ∼ 30s. Consequently, the throughput is more oscillating
as seen in Figure 3(b2), but the bottleneck is still fully
utilized. From this simulation, we see that without enough
buffer, Monaco shows a degraded behavior under dynamically
changing demands.

B. Multiple Bottlenecks

Now we show the steady state performance of Monaco
when flow traverses more than one bottleneck. We use a
linear topology with multiple congested links. We did a set of
simulation experiments by changing the number of bottlenecks
N from 2 to 9. There are 3 “long” flows passing all the
bottlenecks and a set of “short” flows each using only one
bottleneck. Every bottleneck link has 100Mbps capacity and
4ms delay. The long flows have very different RTTs. We
simulated for 50s under only one condition with enough buffer
provided for all the droptail routers. As already shown in the
last subsection, if droptail router buffer is not enough, the
Monaco scheme performance degrades.
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Fig. 3. Monaco under a Single Bottleneck with Enough (90 packets, a) or Underprovisioned (55 packets, b) Buffer and Multiple Bottlenecks (c)

As illustrated in Figure 3(c1), the steady state throughput
curves of all long flows are located near the theoretic one of
100/(3 + N)Mbps. Each individual long flow gets roughly
its fair share, for all cases of N = 2, 3, ..., 9 bottlenecks.
The difference of throughput between the 3 long flows is
measured by the Coefficient of Variance (C.O.V.) of their
throughput, depicted in Figure 3(c2), which is between 2%
and 5% for all cases. This simulation shows that, with enough
buffer provisioned, Monaco achieves a proportionally fair
bandwidth allocation in a multiple bottleneck case, validating
our theoretic results of Proposition 3.

V. SUMMARY

In this paper we generalize TCP Vegas and develop a con-
gestion control model using accumulation, which is buffered
packets of a flow inside network routers, as a measure to detect
and control network congestion. By applying a simple queuing
analysis and nonlinear optimization theory on the fluid model,
we prove that the ACC model allocates network bandwidth
proportionally fairly – which is its steady state feature. We
propose a set of globally stable control algorithms that drive
the network toward the equilibrium – which is related to
its dynamic characteristics. A family of schemes, including
Vegas, could be derived based on the ACC model. Using the
model as a reference, we design a new scheme Monaco which,
with two priority FIFO queues provided by network routers,
solves the well-known problems of Vegas. We use a set of
simulations to evaluate the dynamic and steady state perfor-
mance of Monaco under different topologies and conditions.
The scheme demonstrates its effectiveness in keeping network
stable, fair, and efficiently utilized, given enough buffers in the
bottleneck routers. With underprovisioned buffer, Monaco’s
performance is degraded. This buffer scalability problem can
be solved by employing the AVQ algorithm running inside the
bottleneck, as implemented in [15].

One may ask that if the two-queue support from all bot-
tlenecks, even its complexity is very low, is unrealistic. But

for a non-AQM droptail bottleneck, as already explored in
related research and this paper, in-band measurement tech-
niques suffer from inherently hard accumulation estimation
problem. So there is a fundamental tradeoff between ACC
scheme performance and its requirement.

By keeping different accumulation for different flows, it’s
possible to provide differentiated services. These issues are
explored in our related research [6].
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