UBRA+: Improving Performance of TCP over ATM-UBR Service

Rohit Goyal, Raj Jain, Shivkumar Kalyanaraman, Sonia Fahmy and Seong-Cheol Kim

*

Department of Computer and Information Science, The Ohio State University
395 Dreese Lab, 2015 Neil Avenue
Columbus, OH 43210-1277, U.S.A.

E-mail: {goyal,jain,shivkuma,fahmy}Qcis.ohio-state.edu

Abstract

ATM-UBR service responds to congestion by dropping cells
when switch buffers become full. TCP connections running
over UBR experience low throughput and high unfairness.
For 100% TCP throughput, each switch needs buffers equal
to the sum of the window sizes of all the TCP connec-
tions. Intelligent drop policies can improve the performance
of TCP over UBR with limited buffers. The UBR+ service
proposes enhancements to UBR for intelligent drop. The
Early Packet Discard scheme improves throughput but does
not attempt to improve fairness. The Selective Packet Drop
scheme based on per-connection buffer occupancy improves
fairness. The Fair Buffer Allocation scheme further improves
both throughput and fairness.

1 Introduction

The Unspecified Bit Rate (UBR) service provided by ATM
networks has no explicit congestion control mechanisms [2].
However, it is expected that many TCP applications will
use the UBR service category. Several studies have analyzed
the performance of TCP over UBR [1, 6, 13]. TCP sources
running over UBR with limited switch buffers experience low
throughput and high unfairness [3, 4, 5, 9, 12].

Studies have shown that intelligent drop policies at switches
can improve throughput of transport connections. FEarly
Packet Discard (EPD) [1] proposed by Romanov and Floyd
has been shown to improve TCP throughput but not fairness
[9]. A policy for selective cell drop based on per-VC account-
ing can be used to improve fairness. Enhancements that per-
form intelligent cell drop policies at the switches need to be
developed for UBR. to improve transport layer throughput
and fairness.

Heinanen and Kilkki [8] have designed a drop policy called
Fair Buffer Allocation (FBA) that attempts to improve fair-
ness among connections. The FBA scheme uses a FIFO
buffer and per-VC accounting to selectively drop complete
packets from a connection based on the connection’s buffer

*Seong-Cheol Kim is with Samsung Electronics Co. Ltd., Korea

0-7803-3925-8/97 $10.00 ©1997 IEEE

occupancy. FBA tries to allocate a fair share of bandwidth to
competing sources by managing the amount of buffer space
used by each connection.

In this paper, we analyze several enhancements to the ATM
UBR service category. This enhanced service category is
called UBR+ because it maintains the simplicity of UBR and
performs congestion control without explicit feedback control
mechanisms. UBR+ improves throughput and fairness by
intelligent cell drop policies. We describe the performance of
TCP over UBR and its various enhancements.

We first discuss the congestion control mechanisms in the
TCP protocol and explain why these mechanisms can result
in low throughput during congestion. We then describe the
simulation setup used for all our experiments and define our
performance metrics. We present the performance of TCP
over vanilla UBR and explain why this results in poor perfor-
mance. We then describe the Early Packet Discard scheme
and present simulation results of TCP over UBR with EPD.
Next, we present a simple selective drop policy based on per-
VC accounting. This is a simpler version of the Fair Buffer
Allocation scheme as proposed by Heinanen and Kilkki. We
present an analysis of the operation of these two schemes and
the effect of their parameters. We also provide guidelines for
choosing the best FBA parameters.

2 TCP Congestion Control

TCP relies on a window based protocol for congestion con-
trol. TCP connections provide end-to-end flow control to
limit the number of packets in the network. The flow con- -
trol is enforced by two windows. The receiver’s window
(RCVWND) is used by the receiver as measure of its buffer
capacity. The Congestion Window (CWND) is kept at the
sender as a measure of the network capacity. The sender
sends data one window at a time, and cannot send more than
the minimum of RCVWND and CWND into the network.

The TCP congestion control scheme consists of the “Slow
Start” and “Congestion Avoidance” phases. The source
starts transmission in the slow start phase by sending one
segment (typically 512 Bytes) of data, (i.e., CWND = 1

1042

TCP segment), and effectively doubles CWND every round
trip time. The slow start phase continues until CWND
reaches SSTHRESH (typically initialized to 64K bytes) and
then the congestion avoidance phase begins. During the con-
gestion avoidance phase, the source increases its CWND by
1/CWND every time a segment is acknowledged. The slow
start and the congestion avoidance phases correspond to an
exponential increase and a linear increase of the congestion
window every round trip time respectively. If a TCP con-
nection loses a packet, the destination responds by sending
duplicate acks for each out-of-order packet received. Conges-
tion is detected at the source by the triggering of a retrans-
mission timeout. At this point, SSTHRESH is set to max{2,
min{CWND/2, RCVWND}}. CWND is set to one segment.

Wait for

Stow Wait foc Slow Coogesu.
Tuneown ~ Tiveun

Stact voichan

s

LLLLL

ccccc

SSTHRESH,~CWND /2

SSTHRESH ~CWND2]

TinE

Figure 1: TCP CWND vs Time

As a result, CWND < SSTHRESH and the source enters
the slow start phase. The source then retransmits the lost
segment and increases its CWND by one every time a new
segment is acknowledged. The source proceeds to retransmit
all the segments since the lost segment before transmitting
any new segments. This corresponds to a go-back-N retrans-
mission policy. The typical changes in the source window
plotted against time are shown in Figure 1.

Most TCP implementations use a 500 ms timer granularity
for the retransmission timeout. The retransmission timer is
calculated as a function of the estimates of the average and
mean-deviation of the Round Trip time (RTT) [14]. Because
of coarse grained TCP timers, when there is loss due to con-
gestion, significant time may be lost waiting for the retrans-
mission timeout to trigger. The source does not send any
new segments when duplicate acks are being received. When
the retransmission timeout triggers, the connection enters
the slow start phase. As a result, the link may remain idle
for a long time and experience low utilization. Many of the
retransmitted segments may be discarded at the destination
if the latter had cached the out-of-order segments.

Coarse granularity TCP timers and retransmission of
segments by the go-back-N policy are the main rea-
sons that TCP sources can experience low through-
put and high file transfer delays during congestion.

TCP Reno includes the Fast Retransmit and Fast Recovery
algorithms that improve TCP performance when a single seg-
ment is lost. However, in high bandwidth links, network con-
gestion can result in several dropped segments. In this case,
fast retransmit and recovery are not able to recover from the

loss and slow start is triggered. In our experiments, typical
losses are due to congestion and result in multiple segments
being dropped. Therefore, we study TCP over UBR, without
fast retransmit and recovery.

3 The Simulation Experiment

3.1 Simulation Model

All simulations presented in this paper are performed on the
N source configuration shown in Figure 2. The configuration
consists of N identical TCP sources that send data whenever
allowed by the window. The switches implement UBR ser-
vice with optional drop policies described in this paper. The
following simulation parameters are used [13]:

Switch Switch

Destination IN

= Kan x Km

All Links = 155.52 Mbps

Figure 2: The N-source TCP configuration

e The configuration consists of N identical TCP sources as
shown in Figure 2. All sources are infinite TCP sources.
The TCP layer always sends a segment as long as it is
permitted by the TCP window. The traffic is unidirec-
tional. Only the sources send data. The destinations
send only acknowledgments.

o All link delays are 5 microseconds for LANs and 5 mil-
liseconds for WANs. All link bandwidths are 155.52
Mbps. Peak cell rate is 155.52 Mbps.

o TCP fast retransmit and recovery are disabled. This
isolates the slow-start and congestion avoidance behav-
ior of TCP. Moreover, fast retransmit and recovery are
unable to handle multiple packet losses, which are seen
in our simulations.

o The TCP segment size is set to 512 bytes. This is the
most common value used by current TCP implementa-
tions.

¢ TCP timer granularity is set to 100 ms. This affects
the triggering of retransmission timeout due to packet
loss. The value used in most TCP implementations is
500 ms, and some implementations use 100 ms. Sev-
eral other studies have used smaller TCP timer gran-
ularity and have obtained higher throughput numbers.
However, the timer granularity is an important factor in
determining the amount of time lost during congestion.

1043

Small granularity results in less time being lost wait-
ing for the retransmission timeout to trigger. This re-
sults in faster recovery and higher throughput. However,
TCP implementations do not use timer granularities of
less than 100 ms, and producing simulation results with
lower granularity artificially increases the throughput.

o TCP maximum receiver window size is 64K bytes for
LANs. This is the default value used in TCP. For WANSs,
this value is not enough to fill up the pipe, and reach
full throughput. In the WAN simulations we use the
TCP window scaling option to scale the window to the
bandwidth delay product of approximately 1 RTT. The
window size used for WANSs is 600000 Bytes.

e Duration of simulation runs is 10 seconds for LANs and
20 seconds for WANSs.

e All TCP sources start and stop at the same time. There
is no processing delay, delay variation or randomization
in any component of the simulation. This highlights the
effects of TCP synchronization as discussed later. TCP
delay ack timer is NOT set. Segments are acked as soon
are they are received.

3.2 Performance Metrics

The performance of TCP over UBR is measured by the effi-
ciency and fairness which are defined as follows:

(Sum of TCP throughputs)

Effici =
cency (Maximum possible TCP throughput)

The TCP throughputs are measured at the destination TCP
layers. Throughput is defined as the total number of bytes
delivered to the destination application divided by the total
simulation time. The results are reported in Mbps.

The maximum possible TCP throughput is the throughput
attainable by the TCP layer running over UBR on a 155.52
Mbps link. For 512 bytes of data (TCP maximum segment
size}, the ATM layer receives 512 bytes of data + 20 bytes of
TCP header + 20 bytes of IP header + 8 bytes of LLC header
+ 8 bytes of AALS5 trailer. These are padded to produce 12
ATM cells. Thus, each TCP segment results in 636 bytes at
the ATM Layer. From this, the maximum possible through-
put = 512/636 = 80.5% = 125.2 Mbps approximately on a
155.52 Mbps link.

Fairness Index = (£z;)%/ (n xZz?)

Where x; = throughput of the ith TCP source, and n is the
number of TCP sources '

The fairness index metric applies well to the n-source sym-
metrical configuration. For more general configurations with
upstream bottlenecks, the max-min fairness criteria [7] can
be used.

4 TCP over UBR

In its simplest form, an ATM switch implements a tail drop
policy. When a cell arrives at the FIFO queue, if the queue
is full, the cell is dropped, otherwise the cell is accepted. If
a cell is dropped, the TCP source loses time waiting for the
retransmission timeout. Even though TCP congestion mech-
anisms effectively recover from loss, the resulting throughput
can be very low. It is also known that FIFO buffering with
tail drop results in excessive wasted bandwidth. Simple tail
drop of ATM cells results in the receipt of incomplete seg-
ments. When part of a segment is dropped at the switch,
the incomplete segment is dropped at the destination dur-
ing reassembly. This wasted bandwidth further reduces the
effective TCP throughput.

We simulate 5 and 15 TCP sources with finite buffered
switches. The simulations are performed with three values
of switch buffer sizes both for LAN and WAN links. For
WAN experiments, we choose buffer sizes of approximately
k times the bandwidth-delay product of the connection for
k = 1,2 and 3. Thus, we select WAN buffer sizes of 12000,
24000 and 36000 cells. These values are chosen because most
feedback control mechanisms can achieve steady state in a
fixed number of round trip times, and have similar buffer
requirements for zero loss at the switch [10]. It is interesting
to assess the performance of vanilla UBR in this situation.
For LANs, 1 RTT x Bandwidth is a very small number (11
cells) and is not practical as the size for the buffer. For LAN
links, the buffer sizes chosen are 1000, 2000, and 3000 cells.
These numbers are closer to the buffer sizes of current LAN
switches.

Column 4 of tables 2 and 3 show the efficiency and fairness
values respectively for these experiments. Several observa-
tions can be drawn from these results.

¢ TCP over vanilla UBR results in low fairness in
both LAN and WAN configurations. This is due
to TCP synchronization effects. TCP connections are
synchronized when their sources timeout and retrans-
mit at the same time. This occurs because packets
from all sources are dropped forcing them to enter slow
start phase. However, in this case, when the switch
buffer is about to overflow, one or two connections get
lucky and their entire windows are accepted while the
segments from all other connections are dropped. All
these connections wait for a timeout and stop sending
data into the network. The connections that were not
dropped send their next window and keep filling up the
buffer. All other connections timeout and retransmit
at the same time. This results in their segments being
dropped again and the synchronization effect is seen.

The sources that escape the synchronization get most
of the bandwidth.

e The default TCP maximum window size leads
to low efficiency in LANs. LAN simulations have
very low efficiency values (less than 50%) while WAN

1044

Table 1: TCP over UBR: Buffer requirements for zero loss

Number of Config- Effi- Fair- Max Queue
Sources uration ciency ness (Cells)

5 LAN 1 1 7591

15 LAN 1 1 22831

5 WAN 1 1 59211

15 WAN 1 1 196203

simulations have higher efficiency values. For LANs, the
the TCP receiver window size (65535 Bytes) corresponds
to more than 1500 cells at the switch for each source.
For 5 sources and a buffer size of 1000 cells, the sum
of the window sizes is almost 8 times the buffer size.
For WAN simulations, with 5 sources and a buffer size
of 12000 cells, the sum of the window sizes is less than
6 times the buffer size. Moreover, the larger RTT in
WANS allows more cells to be cleared out before the next
window is seen. As a result, the WAN simulations have
higher throughputs than LANs. For LAN experiments
with smaller window sizes (less than the default), higher
efficiency values are seen.

e Efficiency typically increases with increasing
buffer size. Larger buffer sizes result in more cells
being accepted before loss occurs, and therefore higher
efficiency. This is a direct result of the dependence of
the buffer requirements on the window sizes.

TCP performs best when there is zero loss. In this situa-
tion, TCP is able to fill the pipe and fully utilize the link
bandwidth. During the exponential rise phase (slow start),
TCP sources send out two segments for every segment that
is acked. For N TCP sources, in the worst case, a switch can
receive a whole window’s worth of segments from N-1 sources
while it is still clearing out segments from the window of the
Nth source. As a result, the switch can have buffer occu-
pancies of up to the sum of all the TCP maximum sender
window sizes. This is especially true for connections with
very small propagation delays. For large propagation delays,
the switch has more time to clear out a segment before it
sees the two segments which resulted from the ack.

Table 1 contains the simulation results for TCP running over
UBR service with infinite buffering. The maximum queue
length numbers give an indication of the buffer sizes required
at the switch to achieve zero loss for TCP. The connections
achieve 100% of the possible throughput and perfect fairness.

For the five source LAN configuration, the maximum queue
length is 7591 cells = 7591 / 12 segments = 633 segments
~ 323883 Bytes. This is approximately equal to the sum
of the TCP window sizes (65535 x 5 Bytes). For the five
source WAN configuration, the maximum queue length is
59211 cells = 2526336 Bytes. This is slightly less that the
sum of the TCP window sizes (600000 x 5 = 3000000 Bytes).
This is because the switch has 1 RTT to clear out almost

500000 bytes of TCP data (at 155.52 Mbps) before it re-
ceives the next window of data. In any case, the increase in
buffer requirement is proportional to the number of sources
in the simulation. The maximum queue is reached just when
the TCP connections reach the maximum window. After
that, the window stabilizes and TCP’s self clocking conges-
tion mechanism puts one segment into the network for each
segment that leaves the network. For a switch to guar-
antee zero loss for TCP over UBR, the amount of
buffering required is equal to the sum of the TCP
maximum window sizes for all the TCP connections.

5 UBR+: Early Packet Discard

The Early Packet Discard (EPD) policy [1] has been sug-
gested to remedy some of the problems with tail drop
switches. EPD drops complete packets instead of partial
packets. As a result, the link does not carry incomplete
packets which would have been discarded during reassembly.
A threshold R, less than the buffer size, is set at the switches.
When the switch queue length exceeds this threshold, all cells
from any new packets are dropped. Packets which had been
partly received before exceeding the threshold are still ac-
cepted if there is buffer space. In the worst case, the switch
could have received one cell from all N connections before
its buffer exceeded the threshold. To accept all the incom-
plete packets, there should be additional buffer capacity of
the sum of the packet sizes of all the connections. Typically,
the threshold R should be set to the buffer size — N x the
maximum packet size, where N is the expected number of
connections active at one time.

The EPD algorithm used in our simulations is the one sug-
gested by [4, 12]. Column 5 of tables 2 and 3 show the
efficiency and fairness respectively of TCP over UBR with
EPD. The switch thresholds are selected so as to allow one
entire packet from each connection to arrive after the thresh-
old is exceeded. We use thresholds of Buffer Size — 200 cells
in our simulations. 200 cells are enough to hold one packet
each from all 15 TCP connections. This reflects the worst
case scenario when all the fifteen connections have received
the first cell of their packet and then the buffer occupancy
exceeds the threshold.

Tables 2 and 3 show that EPD improves the efficiency
of TCP over UBR, but it does not improve fair-
ness. This is because EPD indiscriminately discards com-
plete packets from all connections without taking into ac-
count their current rates or buffer utilizations. When the
buffer occupancy exceeds the threshold, all new packets are
dropped. The slight improvement in fairness in the LAN
cases is because EPD can sometimes break TCP synchroniza-
tion and in such cases only a few connections are dropped
during congestion.

1045

6 UBR-+: Selective Drop using Per-
VC Accounting

Per-VC accounting can be effectively used to achieve a
greater degree of fairness among TCP connections. A VC
that is using up an excessive share of the throughput or buffer
capacity can be penalized preferentially over another. The
scheme presented here is a simpler version of the Fair Buffer
Allocation scheme proposed in [8] and described in the next
section. Selective Drop keeps track of the activity of each VC
by counting the number of cells from each VC in the buffer.
A VC is said to be active if it has at least one cell in the
buffer. A fair allocation is calculated as the (current buffer
occupancy) divided by (number of active VCs).

Let the buffer occupancy be denoted by X, and the number
of active VCs be denoted by N,. Then,

Fair allocation = X/N,

The ratio of the number of cells of a VC in the buffer to
the fair allocation gives a measure of how much the VC is
overloading the buffer i.e., by what ratio it exceeds the fair
allocation. Let Y; be the number of cells from VC; in the
buffer. Then the Load Ratio of V C; is defined as

Number of Cells from VC;
Fair Allocation

Load Ratio of VC; =
=Y x N, /X

If the load ratio of a VC is greater than a parameter Z,
then new packets from that VC are dropped in preference
to packets of a VC with load ratio less than Z. Thus, Z is
used as a cutoff for the load ratio to indicate that the VC is
overloading the switch.

Figure 3 shows the buffer management of the Selective drop
scheme. For a given buffer size K (cells), the selective drop
scheme assigns a static minimum threshold parameter R
(cells). If the buffer occupancy X is less than or equal to
this minimum threshold R, then no cells are dropped. If the
buffer occupancy is greater than R, then the next new in-
coming packet of VC; is dropped if the load ratio of VC; is
greater than Z.

We performed simulations to find the value of Z that opti-
mizes the efficiency and fairness values. We first performed 5
source LAN simulations with 1000 cell buffers. We set R to
0.9 x the buffer size K. This ensured that there was enough
buffer space accept incomplete packets during congestion. We
experimented with values of Z = 2,1, 0.9, 0.5 and 0.2. Z =
0.9 resulted in good results. A further simulation of Z around
0.9 shows that Z = 0.8 produces the best efficiency and fair-
ness values for this configuration. For WAN simulations, any
Z value between 0.8 and 1 produces good results. Tables 2
and 3 show the simulation results for the optimal perfor-
mances of each scheme. The following observations can be
made from the simulation results:

e Selective Drop using per-VC accounting im-
proves the fairness of TCP over UBR+EPD.
This is because cells from overloading connections are
dropped in preference to underloading ones. As a re-
sult, Selective Drop is more eflective in breaking TCP
synchronization. When the buffer exceeds the thresh-
old, only cells from overloading connections are dropped.
This frees up some bandwidth and allows the under-
loading connections to increase their window and obtain
more throughput.

o Fairness and efficiency increase with increase in
the buffer size.

e Fairness decreases with increase in the number
of sources.

7 UBR-+: The Fair Buffer Alloca-
tion Scheme

The Fair Buffer Allocation Scheme proposed by [8] uses a
smooth form of the parameter Z and compares it with the
Load ratio of a VC. To make the cutoff smooth, FBA uses the
current load level in the switch. The scheme compares the
load ratio of a VC to one plus another threshold that deter-
mines how much the switch is congested. Let K be the buffer
capacity of the switch in cells. For a given buffer size K, the
FBA scheme assigns a static Minimum Threshold parameter
R (cells). If the bufler occupancy X is less than or equal to
this minimum threshold R, then no cells are dropped. When
the buffer occupancy is greater than R, then upon the arrival
of every new packet, the load ratio of the VC (to which the
packet belongs) is compared to an allowable drop threshold
calculated as Zx(1 + (K—X)/(X—R)). In this equation Z is
a linear scaling factor. The next packet from V C; is dropped
if

(X >R) AND (¥; x N, / X > Z((K — R)/(X — R)))

Figure 3 shows the switch buffer with buffer occupancies X
relative to the minimum threshold R and the buffer size K
where incoming TCP packets may be dropped.

K R X o

Packets may No packets are dropped
be dropped

= Butier Size (cells)
= Minumum Threstiold
X = Buiter Occupancy

=X

Figure 3: Selective Drop and FBA: Buffer occupancy for
drop

Note that when the current buffer occupancy X exceeds the
minimum threshold R, it is not always the case that a new

1046

packet is dropped. The load ratio in the above equation
determines if V' C; is using more than a fair amount of buffer
space. X / N, is used as a measure of a fair allocation for
each VC, and Zx((K — R)/(X — R)) is a drop threshold for
the buffer. If the current buffer occupancy (Y;) is greater
than this dynamic threshold times the fair allocation (X /
N,), then the new packet of that VC is dropped.

7.1 The FBA Parameters

The load ratio threshold for dropping a complete packet is
Z((K — R)/(X — R)). As R increases for a fixed value of
the buffer occupancy X, X — R decreases, which means that
the drop threshold ((K — R)/(X — R)) increases and each
connection is allowed to have more cells in the buffer. Higher
values of R provide higher efficiency by allowing higher buffer
utilization. Lower values of R should provide better fairness
than higher values by dropping packets earlier.

The parameter Z scales the FBA drop threshold by a multi-
plicative factor. Z has a linear effect on the drop threshold,
where lower values of Z lower the threshold and vice versa.
Higher values of Z should increase the efficiency of the con-
nections. However, if Z is very close to 1, then cells from a
connection may not be dropped until the buffer overflows.

7.2 Effect of FBA Parameters: Simulation
Results

We performed a full factorial experiment with the follow-
ing parameter variations for both LANs and WANs. Each
experiment was performed for N source configurations.

¢ Number of sources, N = 5 and 15.

¢ Buffer capacity, K = 1000, 2000 and 3000 cells for LANs
and 12000, 24000 and 36000 cells for WANs.

e Minimum drop threshold, R = 0.9xK , 0.5xK and
0.1xK.

e Linear scale factor, Z = 0.2, 0.5 and 0.8.

A set of 54 experiments were conducted to determine the val-
ues of R and Z that maximized efficiency and fairness among
the TCP sources. We sorted the results with respect to the
efficiency and fairness values. The following observations can
be made from the simulation results.

e There is a tradeoff between efficiency and fair-
ness. The highest values of fairness (close to 1) have the
lowest values of efficiency. The simulation data shows
that these results are for low R and Z values. Higher
values of the minimum threshold R combined with low
Z values lead to slightly higher efficiency. Efficiency is
high for high values of R and Z. Lower efficiency val-
ues have either R or Z low, and higher efficiency values

have either of R or Z high. When R is low (0.1), the
scheme can drop packets when the buffer occupancy ex-
ceeds a small fraction of the capacity. When Z is low, a
small rise in the Joad ratio will result in its packets being
dropped. This improves the fairness of the scheme, but
decreases the efficiency especially if R is also low. For
configurations simulated, we found that the best
value of R was about 0.9xK and Z about 0.8.

¢ The fairness of the scheme is sensitive to parame-
ters. The simulation results showed that small changes
in the values of R and Z can result in significant differ-
ences in the fairness results. With the increase of R and
Z, efficiency shows an increasing trend. However there
is considerable variation in the fairness numbers. We at-
tribute this to TCP synchronization effects. Sometimes,
a single TCP source can get lucky and its packets are ac-
cepted while all other connections are dropped. When
the source finally exceeds its fair-share and should be
dropped, the buffer is no longer above the threshold be-
cause all other sources have stopped sending packets and
are waiting for timeout.

e FBA improves both fairness and efficiency of
TCP over UBR. In general, the average efficiency and
fairness values for FBA (for optimal parameter values)
are higher than the previously discussed options. Tables
2 and 3 show the fairness and efficiency values for FBA
switches with R = 0.9 and Z = 0.8.

8 UBR+: Summary

Tables 2 and 3 summarize the successive improvements of
the UBR service in the form of a comparative analysis of the
various options of UBR+. This summary is based on the
choice of optimal parameters for the drop policies. For both
selective drop and fair buffer allocation, the values of R and
Z are chosen to be 0.9 and 0.8 respectively.

¢ TCP achieves maximum possible throughput
when no segments are lost. To achieve zero loss
for TCP over UBR, switches need buffers equal to the
sum of the receiver windows of all the TCP connections.

o With limited buffer sizes, TCP performs poorly
over vanilla UBR switches. TCP throughput is low,
and there is unfairness among the connections. The
coarse granularity TCP timer is an important reason
for low TCP throughput.

e UBR with EPD improves the throughput perfor-
mance of TCP. This is because partial packets are not
being transmitted by the network and some bandwidth
is saved. EPD does not have much effect on fairness
because it does not drop segments selectively.

e UBR with selective packet drop using per-VC
accounting improves fairness over UBR+EPD.

1047

Table 2: UBR+: Comparative analysis (Efficiency)

Config- N Buffer UBR EPD Selec. FBA
uration (cells) Drop
LAN 5 1000 0.21 0.49 0.75 0.88
LAN 5 2000 032 0.68 0.85 0.84
LAN 5 3000 047 0.72 0.90 0.92
LAN 15 1000 0.22 0.55 0.76 0.91
LAN 15 2000 049 081 0.82 0.85
LAN 15 3000 047 091 0.94 0.95
WAN 5 12000 0.86 0.90 0.90 095
WAN 5 24000 0.90 091 092 092
WAN 5 36000 091 0.81 0.81 0381
WAN 15 12000 0.96 0.92 0.94 095
WAN 15 24000 094 091 0.94 0.96
WAN 15 36000 0.92 0.96 096 0.95

Table 3: UBR+: Comparative analysis (Fairness)

Config- N Buffer UBR EPD Selec. FBA
uration (cells) Drop
LAN 5 1000 0.68 057 099 0.98
LAN 5 2000 0.90 098 0.96 98
LAN 5 3000 097 0.84 0.99 0.97
LAN 15 1000 0.31 0.56 0.76 097
LAN 15 2000 © 0.59 0.87 0.98 0.96
LAN 15 3000 0.80 0.78 094 093
WAN 5 12000 0.75 0.94 095 094
WAN 5 24000 083 0.99 0.99 1
WAN 5 36000 0.86 1 1 1
WAN 15 12000 0.67 093 091 0097
WAN 15 24000 0.82 092 097 098
WAN 15 36000 0.77 0.91 0.89 097

Connections with higher buffer occupancies are more
likely to be dropped in this scheme. The efficiency val-
ues are similar to the ones with EPD.

UBR with the Fair Buffer Allocation scheme can
improve TCP throughput and fairness. There is a
tradeoff between efficiency and fairness and the scheme
is sensitive to parameters. We found R = 0.9 and Z =
0.8 to produce best results for our configurations.

TCP synchronization is an important factor that
effects TCP throughput and fairness. Vanilla UBR
and EPD are ineffective in breaking TCP synchroniza-
tion. Selective feedback schemes are needed to break
synchronization effects. Some values of FBA param-
eters are successful in breaking TCP synchronization,
and these values produce high efficiency and fairness.

References

[1] Allyn Romanov, Sally Floyd, “Dynamics of TCP Traffic
over ATM Networks,” IEEE JSAC, May 1995.

2] ATM Forum, “ATM Trafic =~ Management
Specification Version 4.0, April 1996,
ftp://ftp.atmforum.com/pub/approved-specs/af-
tm-0056.000.ps

[3] Chien Fang, Arthur Lin: “On TCP Performance of UBR
with EPD and UB R-EPD with a Fair Buffer Allocation
Scheme,” ATM FORUM 95-1645, December 1995.

[4] Hongqing Li, Kai-Yeung Siu, and Hong-Ti Tzeng, “TCP
over ATM with ABR service versus UBR+EPD ser-
vice,” ATM FORUM 95-0718, June 1995.

[5] H. Li, K.Y. Siu, H.T. Tzeng, C. Ikeda and H. Suzuki
“TCP over ABR and UBR Services in ATM,” Proc.
IPCCC’96, March 1996.

(6] Hongging Li, Kai-Yeung Siu, Hong-Yi Tzeng, Brian
Hang, Wai Yang, “ Issues in TCP over ATM,” ATM
FORUM 95-0503, April 1995.

[7] J. Jaffe, “Bottleneck Flow Control,” IEEE Transactions
on Communications, Vol. COM-29, No. 7, pp. 954-962.

[8] Juha Heinanen, and Kalevi Kilkki, “A fair buffer allo-
cation scheme,” Unpublished Manuscript.

[9] Raj Jain, R. Goyal, S. Kalyanaraman, S. Fahmy, F. Lu,
and S. Srinid hi, “Buffer requirements for TCP over
UBR” ATM FORUM 96-0518, April 1996. !

[10] Shiv Kalyanaraman, Raj Jain, Sonia Fahmy, Rohit
Goyal, Fang Lu and Saragur Srinidhi, “Performance of
TCP/IP over ABR,” Proc. IEEE Globecom’96, Novem-
ber 1996.

j11] Shivkumar Kalyanaraman, Raj Jain, Rohit Goyal, So-
nia Fahmy and Seong-Cheol Kim, “Performance of TCP
over ABR on ATM backbone and with various VBR
background traffic patterns,” Proc. ICC’97, June 1997.

[12] Stephen Keung, Kai-Yeung Siu, “Degradation in TCP
Performance under Cell Loss,” ATM FORUM 94-0490,
April 1994.

[13] Tim Dwight, “Guidelines for the Simulation of TCP /IP
over ATM, 7 ATM FORUM 95-0077r1, March 1995.

{14] V. Jacobson, “Congestion Avoidance and Control,” Pro-
ceedings of the SIGCOMM’88 Symposium, pp. 314-32,
August 1988.

LAll our papers and ATM Forum contributions are available from
http://www.cis.ohio-state.edu/ ~ jain

1048

