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Abstract—State signaling and maintenance mechanisms play
crucial roles in communication network protocols. State is used
to facilitate indirections in protocols such as routing. Design
approaches for traditional state signaling mechanisms have been
categorized into soft and hard state. In both approaches, the
state is deterministic. Hence, we call both as having strong state
semantics, or more crisply, refer to them as strong state. If the
state tracks entities with dynamic nature, strong state rapidly
becomes invalidated and needs to be refreshed explicitly through
control packets. In this paper, we evaluate the recently proposed
weak state [1]. Weak state is a generalization of soft state that
is characterized by probabilistic semantics and local updates.
It is interpreted as a probabilistic hint and not absolute truth.
It contains a measure of confidence in the state value, which
is a measure of the probability that the state is valid. The
confidence or the state semantics is decayed locally without the
need for explicit state update traffic traversing the network. The
local updates also help the protocol use better estimates for the
state value. We define two metrics, pure distortion and informed
distortion, to evaluate the consistency of the weak state paradigm
and compare it against strong state. Pure distortion measures
the average gap between the actual value of the state and the
value maintained at a remote node. On the other hand, the use of
confidence increases the protocol’s ability to cope with even large
pure distortion. The resulting effective distortion is captured by
the informed distortion metric.

Using mathematical analysis, we compare weak with strong
state. Local updates reduce the pure distortion because the pro-
tocol use the best estimate of state value. The informed distortion
is also significantly less because the probabilistic confidence value
hints the protocol if the state is invalid. The weak state mechanism
can be used to build protocols (eg: WSR [1]), which systematically
interpret the state information. The state itself can be mostly
updated locally, with less frequent explicit update messages over
the network (i.e. leading to dramatic reductions in control traffic).

I. INTRODUCTION

The operation of a majority of network protocols rely on
state information at remote nodes in order to facilitate indi-
rections. State signaling system is one of the most important
building blocks of protocol design. State maintenance at the
remote nodes is equally important; however, it has not received
a comparable attention from the community. In this paper, we
generalize the novel weak state concept that has been proposed
for routing in dynamic mobile ad-hoc networks in [1] and
compare/contrast it with the traditional strong state concept.

This material is based upon work supported by the National Science
Foundation under Grant No. 0546402 and 0627039. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the National Science
Foundation.

Traditionally, the concept of state can be classified into
two categories based on the way that the state is signaled
to the remote node: hard and soft state approaches. Hard
state remains valid until it is explicitly removed using state-
teardown messages by the node that installs the state. The
installer node refreshes the state at the remote nodes only
when the state is updated. Since the state is removed explicitly,
reliable communication is essential. On the other hand, soft
state, which was originally introduced by Clark [2], times out

unless it is refreshed within a time-out duration. The state
installer node periodically issues a refresh message. Once this
message is received by the node maintaining the state, the
timer corresponding to the state is rescheduled. If the timer
expires, the state times out and removed from the system. Soft
state does not require explicit removal messages. As a result,
reliable signaling is not required. Refresh message losses can
be tolerated since the state is refreshed periodically.

Both hard state and soft state are regarded as absolute truth.
We say such a state information has strong semantics or it
is a strong state. If a state with strong semantics contains
information about a dynamic entity, it is rapidly invalidated.
The state requires to be explicitly refreshed frequently through
control message traffic in order to provide up-to-date infor-
mation. As a remedy to this problem, weak state has been
recently proposed [1]. Unlike traditional state, weak state
is not deterministic. It yields probabilistic hints. Weak state
has probabilistic semantics and it is more stable. The state
information is accompanied with a confidence value, a measure
of the probability that the state remains valid. The confidence
is weakened/decayed in time locally. Once the confidence is
below a threshold value, the state is removed from the system.
Weakening the state corresponds to aging it and is equivalent
to a soft timeout. Hence, weak state is a generalization of soft
state. A comparison of hard, soft and weak states are given in
Fig. 1. Weak state mechanism design is characterized by two
properties:

1) Probabilistic semantics: The information that the state
yields is not deterministic. Instead, the validity of the in-
formation is subject to a probabilistic confidence value.

2) Local updates: The information maintained at remote
nodes can be updated without explicit control mes-
sages from the sender. With local updates, the remote
nodes can estimate the actual value of the state and
decay/weaken the state semantics or the confidence in
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Fig. 1. A comparison summary of hard state, soft state and weak state approaches. Hard state requires explicit control message to be removed. Soft state
times out if it is not refreshed within the timeout interval. Weak state is associated with a confidence value θ, which is a decreasing function of time. When
the confidence is below a threshold value γ, it is removed.

the information so that more informed decisions can be
made.

In this paper, we present an analytical evaluation of weak
state mechanism design in terms of its consistency and com-
pare it with strong state. The consistency of the state is
characterized by the accuracy of the indirection based on the
perceived value maintained at the remote node. One particular
value of a state can be interpreted differently for indirections
in protocols that utilizes different state mechanism design
approaches. In order to evaluate the consistency, we use the
pure distortion and informed distortion metrics. Pure distortion
measures the difference between the actual state value and
the corresponding perceived state value. If the protocol uses
weak state, pure distortion is smaller because the protocol can
use an estimate state value instead of a mere last reported
value. In addition, using the confidence as a probabilistic hint,
increases the protocol’s ability to the cope with pure distortion
and helps it adapt to dynamism. In other words, it is superior to
have a hint with a measure of confidence than having invalid
deterministic state which may lead to wrong decisions with
probability 1. The effect of the confidence parameter on the
consistency of the indirection is captured by the informed
distortion metric.

We show that if the state tracks a dynamic entity, weak
state causes significantly less distortion than strong state if
they are refreshed by the same rate. In other words, weak
state mechanism can achieve targeted distortion metrics with
a smaller refresh rate and hence less overhead. This however

does not mean that there is no trade off. The maintained
information is not perfect and the protocol may choose dif-
ferent ways to interpret and deal with the confidence. For

example, [1] proposed the Weak State Routing (WSR) protocol
for routing in large scale and dynamic networks. In WSR, a
packet is successively biased towards the points yielded by the
intermediate nodes that contain increasingly more confident
state. The protocol increases the delivery ratio and decreases
the overhead significantly at the cost of increasing path length.
With the dramatically reduced control traffic, longer paths need
not imply longer end-to-end delivery latency since the protocol
reduces queueing in the intermediate nodes.

A. Related Work

The weak state concept has been first coined in [1], where
it has been used to perform routing in large scale and dy-
namic mobile ad-hoc networks. However, other realizations
are possible such as PROPHET [3] and EDBF [4]. A survey of
methods for approximate global state for distributed systems is
presented in [5]. The author mentions that such approximate or
“weak” state could be a useful primitive for dynamic networks.

The most closely related works to this paper are [6] and
[7]. These papers present analytical comparisons of hard state,
soft state and the hybrid approaches in terms of consistency.
Both model state with strong semantics and focus only on the
signaling mechanism. In this paper, we evaluate the states with
weak and strong semantics. The results show that weak state
is more consistent.

B. Organization of Paper

In Section II, we lay out the foundations of our analysis.
In Section III, we extend our analysis to a broader range of
scenarios. We model the state information using a variety of
stochastic processes in Section IV and evaluate the consistency
of strong state and weak state in terms of pure and informed
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Fig. 2. Single Hop Signaling System. The sender S is connected to the
receiver R with a logical link. The logical link can consist of a series of
physical links which enables end-to-end signaling

distortion. In Section V, we use experiments to evaluate weak
state for a more complex scenario. Finally, we conclude the
paper in Section VI.

II. ANALYSIS FRAMEWORK

A. System and Data Model

In this paper, we adopt the single hop signaling system
used in both in [6] and [7]. The system consists of a sender
node and a receiver node where the sender installs the state
at the remote receiver node and refreshes it. The sender and
the receiver are connected to each other via one physical or
logical link. The logical link can be composed of a sequence of
physical hops (see Fig. 2). INSTALL, REFRESH and REMOVE
messages on Fig. 1 are transferred over the logical link. The
signaled messages can be lost while being transferred through
the logical link. This model captures the scenarios where
signaling occurs between end-to-end systems. In our analysis,
we consider the soft state signaling mechanism.

We assume that the state value is a continuous time stochas-
tic process. The state update corresponds to the changes
in the value of the sender’s state. The intervals between
state updates are independent and exponentially distributed
random variables, with parameter λ. Soft state times out if
it is not refreshed within some timeout interval, χ. Weak
state, on the other hand, is a tuple (X̂, θ), where X̂ is the
perceived value at the receiver and θ is the confidence, the
probability that the state at the receiver remains valid or
a measure of this probability. At time t, the confidence is
θ(t) = P (ζ > t) = exp (−λt) where ζ denotes the time
interval in which the state at the sender remains the same.
The confidence of the state is decayed in time locally at the
receiver. Once the confidence is below some threshold, γ, the
receiver removes the state. The state lifetime is very long
in comparison to the average state update interval and state
timeout interval; it approaches infinity. In other words, the
sender node always maintains a value that corresponds to the
state. Table I lists the main variables we use in the paper.

B. Consistency

We use the term indirection to refer to the decision per-
formed by the protocol. For example, in a routing protocol
each entry in the routing table involves indirection from
a persistent name (ID) to a locator. The protocol delivers
packets using the locator; a next hop, a sequence of hops, etc.
The indirection is consistent if the state information at the
sender and the receiver is the same. The indirection becomes
inconsistent if (i) the state at the sender is updated but the
receiver’s state is not refreshed, or (ii) the receiver falsely
removes the state due to a series of refresh messages being
lost in the logical link while the sender still maintains it. The

TABLE I
SUMMARY OF NOTATION

Notation Description

X State value at the sender

X̂ State value at the receiver

ζ Random variable for state update interval

λ Average state update rate, i.e. E[ζ] = 1/λ

χ State timeout interval

p Signaling loss rate

T State refresh interval

θ Confidence in state information

γ Confidence threshold for removing weak state

S Strong semantics

W Weak semantics

indirection can be also inconsistent if the sender removes the
state and the receiver maintains it until the state time-out. We
assume that the lifetime of the sender’s state is very large
and approaches infinity, so this situation is not a factor in our
analysis.

Without loss of generality, let’s assume that the state is most

recently updated at time t = 0, X(0) = X̂(0). Let d(t)
denote the instantaneous distortion between the state value
at the sender and the receiver at time t. If the state has
strong semantics1, the information is deterministic and the
instantaneous distortion is defined as:

dS(t) =

{

0 if X(t) = X̂(t)
1 otherwise

(1)

The state information is probabilistic in weak state. Even
if the state at the sender and the receiver are different, the
distortion is small if the receiver has small confidence in the
state it maintains. If the state at the sender and the receiver are
different from each other, the distortion is characterized by the
confidence at the receiver, the probability that the state is still
valid according to the receiver. On the other hand, weak state
can still cause distortion when state at the sender and the state
at the receiver are the same. In this case, the amount of the
distortion is the probability that the state might be invalid as
inferred by the receiver. The resulting instantaneous distortion
for weak state is:

dW (t) =

{

1 − θ(t) if X(t) = X̂(t)
θ(t) otherwise

(2)

At time t, the probability for the state at the sender changes

value is P
(

X(t) 6= X̂(t)
)

= P (ζ ≤ t) = 1 − exp (−λt).

Hence, the expected instantaneous distortion at time t can be
modeled as:

DS(t) =

{

1 − exp(−λt) if t ≤ χ
exp(−λt) otherwise

(3)

DW (t) =

{

2 exp(−λt) (1 − exp(−λt)) if t ≤ χ
exp(−λt) otherwise

(4)

The second terms in both (3) and (4) are due to false removal
of the state at the receiver and the value is the probability that
the state is still valid. Remember that, when the confidence is

1We denote the semantics of the state as a subscript throughout the paper.



0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

State Update Rate (λ)

A
v
e
ra

g
e
 D

is
to

rt
io

n

 

 

Strong State

Weak State

Fig. 3. Comparison against the state update rate λ. A higher λ indicates that
the information is more dynamic. For small λ values, the distortion for weak
state is larger because the state at the sender is less likely to change and weak

state can cause distortion even if X̂ = X. In this case, the first part of (4)
is larger than that of (3). Yet, as the dynamism increases, distortion in strong
state grows, but weak state is able figure out that state is not as useful.

below the threshold value, the receiver removes the state and
the confidence value is taken as 0.

The average overall distortion, which is denoted by D,
within the interval between two state refresh messages re-
ceived by the receiver is:

D =

∞
∑

i=1

1

iT
pi−1(1 − p)

∫ iT

0

D(τ)dτ (5)

where i is the number of attempts to deliver a refresh message
successfully to the receiver and iT is the time between the two
consecutive refresh message receptions.

The distortion with respect to the state update rate, λ, is
presented in Fig. 3. The figure is obtained with T = 5s,
p = 0.02. For strong state χ = 15s. However, the timeout
value for weak state changes with respect to λ. To calculate
χ, we use θ(χ) = γ = 0.01. When the update rate is small,
the state values at the receiver and the sender are likely to
remain the same within the interval the receiver receives two
consecutive refresh messages. Given X̂ = X , the strong state
does not cause any distortion. However, the indirection yielded
by weak state is probabilistic and it can cause distortion
according to (2). Hence, the distortion of weak state is larger
than strong state when the dynamism is low. As λ increases,
the state becomes more dynamic and changes more quickly.
As a result, the state is more likely to change between two
consecutive instants the sender refreshes the receiver. Due to
its deterministic nature, strong state causes more distortion.
In weak state however, local updates of the confidence about
the state reduces the distortion. At a high rate value, the
state rapidly changes. However, the confidence on the state
information also quickly drops, therefore the distortion does
not increase.

In Fig. 4, we show how distortion changes with respect to
the state refresh interval. Plotting this figure, we used λ = 0.1
and p = 0.02. For strong state χ = 3T and for weak state χ
is calculated as in the previous example. When T is low, the
state is frequently updated. As a result, the duration in which

X̂ 6= X reduces. Consequently, the distortion of strong state is
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Fig. 4. Comparison of against the state refresh interval, T . If T is small, the
state is frequently refreshed by the sender. As a result, strong state is likely
to remain valid between two refresh message receptions. However, even if
the state values at the sender and the receiver are same, weak state causes
distortion according to (2). On the other hand, if T is large, the state probably
changes until a new refresh message arrives. Hence, strong state becomes
less consistent. Weak state however figures that the maintained information is
likely invalidated. Weak state causes the same distortion with less messages.

small. Since weak state can make indirection mistakes due to
probabilistic decisions, its distortion is slightly higher than the
strong state. On the other hand, if T is large, the probability
that the state changes within the time interval between the
reception of two consecutive state refresh messages is high.
Therefore, the distortion increases for strong state. However,
in weak state the confidence on the maintained state also
decreases with time, therefore distortion does not increase.

The indirections performed with weak state are more ac-
curate in dynamic scenarios since they are performed with
probabilistic hints rather than invalid deterministic information
that lead to wrong decisions with probability 1. This also
implies that the distortion caused by strong state at a refresh
rate can be achieved using a larger refresh interval by the weak
state. In other words weak state causes less overhead.

III. EXTENSION OF ANALYSIS: STATE WITH CONTINUOUS,
CORRELATED SPACE

In some scenarios, the information that receiver’s state is
different than the sender’s state may not sufficient and the
amount by which they are apart is also important. For example,
if we perform routing using the geographical locations instead
of link states, the distance between the exact location of the
node and its perceived location matters. To capture this, we
extend the analysis in this section. The state at the sender is
x(t) and perceived state at the receiver is x̂(t) at time t.

Let t0 and t1 denote two arbitrary consecutive time instants
at which the destination receives state update information, with
x(t0) = x0. In strong state, the state information perceived by
the receiver remains constant until t1.

x̂S(t) = x(t0), t0 ≤ t ≤ t1 (6)

On the other hand, weak state can be updated locally using
the statistical properties of the process2. x̂W (t) is the expected

2Obtaining the information about these properties is beyond the scope of
this paper.



value of x(t), which is the best estimate given x(t0) = x0.

x̂W (t) = E [x(t)|x(t0) = x0] (7)

Equation (7) captures that weak state is constantly refreshed
using previous values and the properties of the process. The
confidence of the state at time t, θ(t) is characterized by the
probability that

θ(t) = P (|x(t) − x̂W (t)| ≤ ρ) (8)

where difference up to ρ in the state value is tolerable for
indirection.

As the difference between the actual value and the main-
tained value increases, the state at the receiver becomes less
valid. (8) yields the probability that the maintained state is
close to the actual value. If θ(t) ≤ γ, the state is removed.

The protocol operating with weak state at remote node
knows how much it can trust the maintained value, and
hence the effective distortion is lower. However, this does
not necessarily suggest how close the value maintained at the
receiver is to the state value at the sender. In this section, we
differentiate these two senses of distortion.

A. Instantaneous Distortion

As an intermediate step, let e(t) denote the distortion
between the state values at the sender and the receiver at time
t. We use the mean square error metric and assume that the
receiver is aware of the value of the state information at t0.
The instantaneous distortion can be calculated as

e(t) = E
[

(x(t) − x̂(t))2|x(t0) = x0

]

. (9)

For strong state, x̂S(t) = x0.

eS(t) = E
[

(x(t) − x0)
2|x(t0) = x0

]

= E
[

x(t)2|x(t0) = x0

]

− 2x0E [x(t)|x(t0) = x0] + x2
0

= µ2
t + σ2

t − 2x0µt + x2
0

= σ2
t + (µt − x0)

2 (10)

where µt is the expected value of xt given x(t0) = x0 and
σ2

t is the variance under the same condition.

On the other hand, for weak state, we have x̂W (t) = µt.

eW (t) = E
[

(x(t) − µt)
2|x(t0) = x0

]

= σ2
t (11)

Since (µt − x0)
2 ≥ 0 for all t and x0, we have eW ≤ eS.

In other words, the instantaneous distortion for weak state is
smaller than that of strong state for the same t.

B. Pure Distortion

We use the term pure distortion to describe the average gap
between the actual value of the state at the sender and the value
maintained at the receiver. Pure distortion is the time average
of instantaneous distortion defined in Section III-A. We do
not consider the confidence in the state information for the
pure distortion. In WSR implementation, the pure distortion
corresponds to the distance between the location of a node
and the point an intermediate node directs a packet destined
to that node.

Similar to the previous section, without loss of generality,
let’s again assume t0 = 0. Then the average pure distortion
within two consecutively received state refresh messages is:

eP =
∞
∑

i=1

1

iT
pi−1(1 − p)

∫ iT

0

e(τ)dτ (12)

Since eW (t) ≤ eS(t) ∀t, eP
W ≤ eP

S for the same T .
Therefore, we can use a larger T value for weak state to
achieve the same average distortion. Large refresh interval
implies lower refresh rate and overhead.

C. Informed Distortion

Other than predicting the current value of the state, local
updates associated with weak state are particularly useful for
adjusting the confidence in the maintained value. In order to
capture the effect of confidence, we introduce the concept
of informed distortion. Consider a receiver node contains
information about a remote node. When asked about the state
information, it will reply “The actual state value is within
the interval [ϑ − ρ, ϑ + ρ] with probability ν.” The pure
distortion can be a very large value; however, its effect on the
accuracy of the indirection will be limited if ν is low. If weak
state mechanism design is used, the protocol can adapt itself
appropriately instead of making deterministic decisions which
lead to invalid indirections with strong state. For example in
WSR [1], intermediate nodes do not always bias the packets
they receive even if they contain information about the location
of the node. If the confidence in the information is low,
they relay the packet without using the information. This
way, the packets are not forwarded to invalid locations and
the information maintained in the intermediate node do not
deteriorate the performance even though the pure distortion is
high. On the other hand; if the receiver’s state is within the
interval of ρ of the sender’s state the strong state does not cause
distortion because such a difference can be tolerable for the
protocol. For example, in MANET routing if the difference
between the actual location information and the perceived
location information of the destination node is within some
distance value, the protocol can still deliver the packet. This
however may not be true for weak state because the decisions
are associated with probabilistic confidence values. In order to
analytically capture these effect, we incorporate the confidence
as following:

ǫS(t) =

{

0 if |x(t) − x̂S(t)| ≤ ρ
eS(t) otherwise

ǫW (t) =

{

(1 − θ(t))eW (t) if |x(t) − x̂W (t)| ≤ ρ
θ(t)eW (t) otherwise

The expected values are:

e
(I)
S (t) = P (|x(t) − x̂S(t)| > ρ) eS(t) (13)

e
(I)
W (t) = 2(1 − θ(t))θ(t)eW (t) (14)

In order to derive an expression for the average informed
distortion, we substitute (10) and (11) with (13) and (14) in
(12), respectively. Also note that in either case, if t > χ and
|x(t) − x̂(t)| ≤ ρ, there is a distortion involved due to false
removal of the state and its expected value is σ2 in both cases.



IV. PARTICULAR EXAMPLE PROCESSES FOR STATE

INFORMATION

In this section, we use random process models to evalu-
ate weak state and strong state. The analysis of particular
forms of these random processes gives insights about the
quantitative performance differences resulting from adopting
different types of state mechanisms under various dynamic
conditions. We use several Gaussian random process models
for mathematical tractability. If the random variables y1 and
y2 are jointly Gaussian, given y1, f(y2|y1) is a normal density
with mean η2 + rσ2(y1 − η1)/σ1 and variance σ2

2(1 − r2),
where r is the correlation coefficient between y1 and y2.

With a Gaussian process, the confidence for a weak state at
time t according to (8) is:

θ(t) = erf

(

ρ

σt

√
2

)

(15)

where erf(.) is the error function, given that the last refresh
message is received at t = 0.

The processes we use are: Wiener Process and Ornstein-
Uhlenbeck Process.

A. Wiener Process

This process is characterized by the independent,
stationary increments. x(t + τ) − x(t) ∼ N

(

0, σ2τ
)

for all t and τ ≥ 0. The conditional density is
(x(t + τ)|(x(t) = x0)) ∼ N (x0, σ

2τ).
Wiener process consists of divergence from a reference

point. The update in the state information refreshes the starting
point for the subsequent process. The process is defined with
respect to a reference point and time. The variance of a sample
from the process grows linearly with time without bounds.
Therefore, we assume that the state information is not removed
from the receiver.

In this case, the values of strong and weak states are
identical because x(t) is a martingale and hence µt = x0.
Given the same refresh interval T , the average pure distortion
in both cases, using (12), is

eP
W = eP

S =
1

2(1 − p)
σ2T

We compute the informed distortion numerically.
Since x̂S(t) = x̂W (t) = µ(t), we have
P (|x(t) − x̂S(t)| ≤ ρ) = θ(t).

In Fig 5, we present the pure and informed distortion for
strong and weak state with respect to the variance of the state
value, σ2. We take the message loss probability on the logical
hop as p = 0.02 and the state refresh interval as T = 5
seconds. To determine the confidence, we use ρ = 2. The
state variance yields the dynamism of the state. When the
state variance is low, the receiver’s state is likely to remain
within the tolerable interval of the sender’s state. In this case,
strong state does not incur any informed distortion; whereas,
weak state can still cause informed distortion because of its
probabilistic semantics. Even though this happens with low
probability, the value in (14) is slightly larger than the one
in (13). Consequently, the same trend follows in the time
average as well. On the other hand, as the dynamism increases
weak state causes much less informed distortion because with
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Fig. 5. Pure Distortion and Informed Distortion with respected to state
variance (σ2), which is an indicator of dynamism. Pure distortion is identical
for both strong state and weak state because µt = x0 in (10). Because of
probabilistic semantics, weak state causes slightly more informed distortion
for when the dynamism is low. For highly dynamic state, information
distortion is much lower in weak state.
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Fig. 6. Pure Distortion and Informed Distortion with respect to the interval
between two consecutive refresh messages issued by the sender, T . When
T is low, the receiver’s state is frequently refreshed and it is more likely
to remain within the tolerable interval of sender’s state. In this case, strong
state does not cause any informed distortion whereas weak state can cause
some distortion even though it occurs with low probability. Hence, for small
T informed distortion is slightly larger for weak state. When T is large,
the informed distortion is much smaller for weak state due to probabilistic
semantics.

probabilistic semantics, it is able to figure that the state is less
likely to be valid.

In Fig 6, we present the resulting pure and informed distor-
tion for strong state and weak state with respect to the refresh
interval, T . We use the same parameters as in the previous
case with σ2 = 2. Pure distortion for strong state and weak
state are the same. When the state refresh interval is small,
the receiver’s state is frequently updated and the probability
that it remains within the sender’s state’s tolerable interval is
large. In this case, strong state does not cause any informed
distortion. On the other hand, weak state can cause some
distortion even though it happens with a small probability.
As a result, strong state causes slightly less distortion than the
weak state. When T is large, the receiver’s state probably does
not remain within the tolerable interval. Weak state can infer
this due to small confidence. Therefore, as T increases the
informed distortion for the weak state becomes significantly



lower than strong state. Even if the pure distortion is very
large, the receiver is aware of this and hence the protocol can
adapt to prevent any performance loss. In order to achieve
the same informed distortion, strong state needs to be updated
using a much smaller refresh interval implying more overhead,
which in turn causes performance degradation.

B. Ornstein-Uhlenbeck Process

We use Ornstein-Uhlenbeck Process in order to incorporate
the state timeout into our analysis. The process is stationary,
Gaussian and Markovian. E[x(t)] = 0 as t → ∞. The

autocorrelation function is of the form R(τ) = σ2e−α|τ |.
Given x(0) = x0, the random variable x(t) is a Gaussian
random variable with mean µt = x0e

−αt and variance
σ2

t = σ2(1 − e−2αt) [8] (chapter 11-1).

Considering the state timeout, the instantaneous distortion
values are

eS(t) =

{

σ2(1 − e−2αt) + (µt − x0)
2 t ≤ χ

σ2 t > χ
(16)

eW (t) =

{

σ2(1 − e−2αt) t ≤ χ
σ2 t > χ

(17)

The equations are obtained using necessary substitutions
in (10) and (11). In both cases, the instantaneous distortion
becomes σ2, the variance of a sample obtained from the
process without any conditional information, when t > χ since
the state is removed the receiver does not maintain any value.

The state information maintained at the receiver can be still
valid even if the receiver removes the state due to refresh
messages that are lost over the logical link. The probability
that a state that has been removed is still valid is associated
with the confidence given in (15). Considering this, and using
(13) and (14) the expected informed distortion values are

e
(I)
S (t) =

{

(1 − Θ(t))
(

σ2(1 − e−2αt) + (µt − x0)
2
)

t ≤ χ
Θ(t)σ2 t > χ

e
(I)
W (t) =

{

2 (1 − θ(t)) θ(t)
(

σ2(1 − e−2αt)
)

t ≤ χ
θ(t)σ2 t > χ

where Θ(t) = P (|x(t) − x0| ≤ ρ) and θ(t) is given in (15).

For pure distortion, let’s introduce an intermediate step

E(t1, t2) :=

∫ t2

t1

e(τ)dτ

and E(t) = E(0, t). For t ≤ χ, we have

ES(t) = σ2

(

t +
1

2α
e−2αt − 1

2α

)

+ x2
0

(

t +
2

α
e−αt − 2

α
− 1

2α
e−2αt +

1

2α

)

(18)

EW (t) = σ2

(

t +
1

2α
e−2αt − 1

2α

)

The equations are derived by integrating (16) and (17),
respectively. Note that (18) is obtained given that x0 is known.
However, x0 is also a stochastic value. Since E[x2

0] = σ2, in

order to find the expected distortion, we plug in σ2 for x2
0.

Then, the cumulative distortion is

ES(t) = 2σ2

(

t +
1

α
e−αt − 1

α

)

In order to find the average distortion, we have to divide
the time axis into two, before and after timeout, in order to
capture (17) and (16). Define

κ =
⌊ χ

T

⌋

The average pure distortion considering the refresh packet
losses can be derived as follows:

eP =

κ
∑

i=1

1

iT
pi−1(1 − p)E(iT )

+

∞
∑

i=κ+1

1

iT
pi−1(1 − p) [E(χ) + E(χ, iT )]

Note that E(χ, t) = σ2(t − χ) if t ≥ χ.
For weak state,

eP
W ≈ σ2

[

1 − 1

2αT
+

1

2αT
e−2αT (1 − p)

1 − (pe−2αT )κ

1 − pe−2αT

+
1

κT
pκ 1

2α
e−2αχ

]

(19)

(19) is because ui

i
≈ ui when u << 1. Also note that

ui

i
< ui. Since ui converges if 0 < u < 1, ui

i
converges as

well.
Similarly for strong state, we have

eP
S ≈ 2σ2

[

1 − 1

αT
+

e−αT

αT
(1 − p)

1 − (pe−αT )κ

1 − pe−αT

+ 2pκ 1

ακT
e−αχ

]

(20)

We obtain the informed distortion values through numerical
analysis. We now compare and contrast the distortion perfor-
mance of weak and soft state for this particular process. Unless
otherwise noted, we use the following default parameters:
σ = 1, p = 0.02, T = 5s, ρ = 1/

√
2, γ = 0.01 and α = 0.1.

For strong state, χ = 3T .
In Fig. 7, we compare strong state and weak state against the

state refresh interval. In all cases, more consistent indirection,
i.e a smaller distortion, requires larger state refresh rate. The
results here are similar to those we present in Fig. 6. The figure
shows that all the distortion metrics increase with the refresh
interval; however, weak state can achieve a target distortion
with larger refresh intervals, and reduces the overhead. Since
weak state contains the confidence in the state, the distortion
is much smaller in comparison to the strong state which
uses deterministic semantics. With weak state, even when
the pure distortion is larger, the destination is aware of the
probability that the actual state remains within a predefined
interval around the value updated locally.

In Fig. 8, we show the effect of the correlation parameter
α on the distortion metrics. Consider two samples obtained
from the state x at times t1 and t2. The correlation coefficient
between x(t1) and x(t2) is given by e−α|t1−t2|. With large
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Fig. 7. Pure Distortion and Informed Distortion with respect to the refresh
interval, T . With small T , the receiver’s state is frequently refreshed and
distortion metrics are low. As T grows, distortion metrics increase. Weak
state reduces the pure distortion using better estimates. With probabilistic
semantics, it is also aware that the perceived state is unlikely valid and hence
informed distortion is lower.
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Fig. 8. Distortion metrics with respect to the process correlation parameter,
α. Large α indicates that the state value is more dynamic even though the
state variance is the same. Weak state reduces the pure distortion by obtaining
better estimates about the state value. The probabilistic semantics decreases
the informed distortion.

α, the correlation between these two samples decreases. This
way, α is similar to λ parameter we used in Section II, the
rate at which state is updated.

As α increases, the correlation between the last updated
state value and the current value of the state decreases. The
strong state approach turns into modeling a random variable
with another (almost) uncorrelated random variable that per-
tains to the same mean and variance, which is the last received
update. In this case, the mean square and the pure distortion
becomes twice as the variance of the random variables. On
the other hand, locally updating the state limits the expected
distortion to variance of the state. Since the difference between
the

Note that, α indicates how fast the process deviates from
previous values. In order to achieve a distortion bound, the
state refresh interval should decrease with increasing α. Weak
state helps achieving this criterion with larger refresh interval.

V. EXPERIMENTAL EVALUATION

In our analysis in previous sections, we assume that the
receiver is aware of the properties of the process that the state
yields information about. However, this may not always be
true. In this section, we perform simulations to evaluate weak
state and strong state without such knowledge. We simulate a
500 node network where nodes move according to the Gauss-
Markov mobility model [9] in a 2000x2000 m2 area using ns2.
Each node sends its location updates to a fixed base station that
is located right in the center of the area through multiple hops
using geographical routing. The bit error rate in the wireless
channel is 0.001. The refresh messages can also be lost due
to MAC layer errors.

In the mobility model we use, the node velocity is modeled
as a discrete Ornstein-Uhlenbeck Process, which we have
reviewed in the previous section. The node velocity is cor-
related over time. The node velocity can be represented by
the following equation.

vn = αvn−1 + (1 − α)µ̄ +
√

1 − α2ωn−1 (21)

where α is the correlation parameter, µ is the asymptotic mean
velocity vector and ωn are the independent zero mean gaussian
random variables with variance σ2. vn is the velocity vector
within the time interval n and n + 1 and it constant in this
interval. The location of a node at time n is

xn = x0 +

n−1
∑

j=0

vj

The central base station maintains the location information
of each node. Let x̂(a)n denote the location entry for node
a at time n in the base station. We calculate the distortion
metrics numerically. The pure distortion at time n for node a
is |x(a)n − x̂(a)n|, the distance between the actual position
and the maintained position. If the receiver were aware about
the mobility model as well as the values for µ̄, α and σ, the
distance between the actual location of a node and its location
perceived by the base station would be a random variable with
Rayleigh distribution. With this model, the confidence value
at the nth time step would be

θ(n) = 1 − exp(− ρ2

σ2
n

)

where

σn =
√

2(1 − α2)

n−1
∑

i=0

i−1
∑

j=0

αi−j−1σ

However without such knowledge, we cannot use such a prob-
abilistic confidence. Instead, we use a confidence value that ex-
ponentially decays with time such that θ(n) = qn. Moreover,
local updates only consist of updating the confidence value
rather than obtaining a better estimate, of which advantages
are already reported in [9]. In our case, the perceived location
for weak state is the last reported location of the node, similar
to the strong state.

In Fig 9, we show the average distortion results we obtained
from the simulations where the nodes move according to
Gauss-Markov model with parameters, α = 0.75, |µ̄| = 10
and σ = 1. In strong state, state timeout interval is χ = 3T
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Fig. 9. Distortion with respect to state refresh interval from simulation
results where the state corresponds to the positions of nodes where they move
according to the Gauss-Markov mobility model but the receiver is not aware of
the properties of node mobility. The local updates only consist of weakening
state semantics, or the confidence. Hence, pure distortion is equal for each
while informed distortion for weak state is smaller.

where T is the state refresh interval. On the other hand, weak
state times out at n when qn = 0.01. We used q = 0.9
in our evaluation. The pure distortion is identical for both
state types since the perceived location information is the
same in both cases and the refresh packets are subject to the
same loss probability. The difference in the informed distortion
stems from the probabilistic semantics of the weak state. The
strong state does not cause any informed distortion if the
pure distortion is less than ρ, which we took ρ = 50 in
our calculations. Weak state can cause distortion in this case
with probability 1 − qn. If pure distortion is larger than ρ,
informed distortion is found by weighting the pure distortion
by 1 and qn for strong state and weak state, respectively. The
simulation results show that when T is small, the state is
frequently updated and the pure distortion is less likely to be
larger than ρ. Hence, the informed distortion for strong state is
very small. As T increases, the informed distortion for strong
state approaches to the pure distortion. On the other hand,
weak state can still figure that the state is less likely to remain
valid because of its probabilistic semantics. As a result, the
informed distortion is significantly lower than strong state if
the same refresh rate is used and a target distortion can be
achieved using a lower refresh rate and hence less overhead.

VI. CONCLUSION

In this paper, we have studied the consistency of indirections
performed with weak state which is a novel concept that we
have proposed in a recent work [1]. Weak state is characterized
by local updates and probabilistic semantics unlike traditional
strong state where the information is regarded as absolute
truth. If the state provides information about a dynamic
process, strong state quickly becomes invalidated. On the other
hand, weak state is more stable and consistent. In order to
evaluate the consistency, we use two metrics: pure distortion
and informed distortion. Pure distortion quantifies the average
difference between the actual state value and value maintained
at the remote node. Protocols that rely on weak state on the
other hand also utilize the information about the confidence
in the state value. Even if the pure distortion is large, a

communication protocol that utilizes weak states can take the
necessary steps to improve the performance if the confidence
is low. Given the confidence value, the protocol can make
informed decisions. We capture this effect using the informed
distortion metric.

We present an analysis to compare/contrast weak state and
strong state in terms of pure and informed distortion metrics
with respect to the parameters of the signaling mechanism as
well as the properties of the process that we use to model the
state information. Our analysis and simulation results mono-
tonically show that weak state, yielding information about a
dynamic process, reduces both pure distortion and informed
distortion significantly if the same state refresh rate is used.
Even without the information about the process, weak state
reduces the informed distortion. In other words, weak state can
achieve the a target distortion with a smaller refresh rate and
lower overhead. On the other hand, if they contain rather static
information, the distortion weak state causes can be larger than
that of strong state. Hence, weak state is particularly useful for
modeling dynamic information that needs to be refreshed at a
rate that is lower than it changes due to network conditions.

In this paper, we do not propose a particular protocol that
interprets the confidence in the state value. Even though the
information weak state contains is more consistent than that of
strong state, it is not exact. The way the protocol chooses the
deal with the confidence value lays down tradeoffs in various
ways. In the future work, we plan to identify and investigate
such tradeoffs. In this paper, we assumed that the lifetime of
the state is infinity. With this scenario, state is never removed
from the sender and the state at the receiver never models an
nonexisting state. In other words, the state does not become
orphaned. Our plans also include to investigate where this
situation can also occur.

REFERENCES

[1] U. G. Acer, S. Kalyanaraman, and A. A. Abouzeid, “Weak State Routing
for Large Scale Dynamic Networks,” MobiCom ’07: Proceedings of the
13th Annual ACM International Conference on Mobile Computing and
Networking, pp. 290–301, 2007.

[2] D. D. Clark, “The Design Philosophy of the DARPA Internet Protocols,”
in SIGCOMM, 1988, pp. 106–114.

[3] A. Lindgren, A. Doria, and O. Schelen, “Probabilistic Routing in In-
termittently Connected Networks,” Service Assurance with Partial and
Intermittent Resources. First International Workshop, SAPIR 2004. Pro-
ceedings (Lecture Notes in Comput. Sci. Vol.3126), pp. 239 – 54, 2004.

[4] A. Kumar, J. Xu, and E. W. Zegura, “Efficient and Scalable Query
Routing for Unstructured Peer-to-Peer Networks,” Proceedings of IEEE
INFOCOM, vol. 2, pp. 1162 – 1173, 2005.

[5] S. Keshav, “Efficient and Decentralized Computation of Approximate
Global State,” Computer Communication Review, vol. 36, no. 1, pp. 69
– 73, 2006.

[6] S. Raman and S. McCanne, “A Model, Analysis, and Protocol Framework
for Soft State-based Communication,” Computer Communication Review,
vol. 29, no. 4, pp. 15 – 25, 1999.

[7] P. Ji, Z. Ge, J. Kurose, and D. Towsley, “A Comparison of Hard-State and
Soft-State Signaling Protocols,” IEEE/ACM Transactions on Networking,
vol. 15, no. 2, pp. 281 – 294, 2007.

[8] A. Papoulis and U. S. Pillai, Probability, Random Variables and Stochastic
Processes. McGraw-Hill Science/Engineering/Math, December 2001.

[9] B. Liang and Z. J. Haas, “Predictive distance-based mobility manage-
ment for multidimensional pcs networks,” IEEE/ACM Transactions on
Networking, vol. 11, no. 5, pp. 718 – 732, 2003.


