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Abstract— In this paper, we address the issues associatedwith these link weights leads to desired routes [6]. An-
with the dynamic optimization of OSPF ngghts. For this other approach is to deploy the emerging MPLS technol-
work we have chosen the packet loss rate in the network as ogy which is not constrained by the shortest path nature
the optimization metric as it is a good indicator of conges- ¢, ting. Constraint-based routing can be used to com-
tion in the network and also impacts the performance of the pute routes in an MPLS network subject to QoS and policy

underlying applications. The packet loss rate has been for- ] ) L
mulated in terms of the link parameters, such as bandwidth constraints. However, increased communication and com-

and buffer space, and the parameters of the traffic demands. Putation overhead, increased routing table size and poten-
A GI/M/1/K queueing model has been used to compute the tial routing instability are some of the cons of constraint
packet drop probability on a given link in the network. We  based routing. Instead of using constraint based routing,

have developed a fast adaptive random search algorithm to an overlay approach may be used for establishing logical

address the issue of speed in the dynamic optimization prob- ~ynections between every source and destination.
lem. The proposed search algorithm has been compared to

the local search algorithm of [6] in terms of the number ofit-  The main issue with using existing OSPF routing for
erations needed to obtain a “good” link weight setting. Both traffic engineering is the shortest path nature of OSPF.
the piece-wise linear optimization function from [6] and the OSPF routes traffic on shortest paths based on the adver-
packet loss rate iq the network have been considered as thetjsed link weights. As a result, the link along the shortest
performance metrics. _ path between the two nodes may become congested while
Our results demonstrate that the adaptive random search the links on longer paths may remain idle. OSPF also al-

takes 50-90% fewer iterations as compared to the local . .
search [6]. The amount of impovement depends on the net- lows for Equal Cost Multi Path(ECMP) where the traffic is

work topology, traffic and the optimization metric. We have distributed equally among various next hops of the equal
also demonstrated impovements of the order of 30-60% in COst paths between a source and a destination [14]. This
the total packet loss rate in the network by dynamically op- is useful in distributing the load to several shortest paths.

timizing OSPF weights. However, the splitting of load by ECMP is not optimal as
Keywords— Traffic Engineering, OSPF, Optimization shown in [7]. Various methods have been proposed in lit-
erature to balance the traffic across the network in OSPF
|. INTRODUCTION routing framework. One of the earlier approaches was to

, _ . adapt link weights to reflect the local traffic conditions on
In this paper, we address the problem of traffic enginegrink or to avoid congestion ([11], [8], [13]). This is

ing in a network of OSPF routers. Traffic engineering ijeq adaptive routing or traffic-sensitive routing. How-
defined as the task of mapping traffic flows onto an existigge;  agapting link weights to traffic conditions leads to
physical topology. By evenly balancing the traffic acrogg,,ent route changes and is unstable (see [2], [17] for
the network, congestion caused by uneven distributions@fy;jiy analysis). The above schemes were based on the
traffic can be avoided. Traffic engineering is becoming §$z5; information and independent local decisions were
sential for ISPs due to an ever-increasing need to providge py the routers to change the link weights. Routers
a good _quallt)_/ of serwce_ to customers and to sustain Ia@%‘ﬁerally do not have any knowledge of the traffic load
growth in traffic. Two main approaches have been takeryip isiant links and therefore cannot optimize traffic al-
§o|ve the trafﬂ(_; engineering prob_lem m_the Internet. -_rn?cation. Though adaptive routing approach is fully dis-
first approach is to optimize the link weights of the exiskip e in nature, it suffers from the lack of traffic infor-
ing network (running OSPF) such that the OSPF routifgysio, - These drawbacks are alleviated in [6] when op-

This work was supported by the DARPA Contract No. F30602-00-§mum_OSPF link Weight settings are computed based on
0537 an estimate of the traffic demands. A local search algo-



rithm has been used to obtain the optimum link weighda important component for solving thignamic optimiza-
for all the links in the network. These link weights, whetion problem. However, issues associated with monitoring
deployed in the network, lead to the desired routing uraffic to obtain demand estimates is not a focus of this
der the shortest path framework of OSPF. In [6], authqraper and we do not discuss it further. We have assumed
demonstrate the concept of optimizing OSPF weights foat information about the mean and variance of the aggre-
a piece-wise linear objective function. They show that fgate traffic from every source to every destination router
the proposed AT&T WorldNet backbone, OSPF can yielslavailable to us periodically. The underlying assumption
a routing that is within few percent of the optimal general any dynamic optimization problem is that the traffic is
routing. It may be noted that optimal general routing gaiasi-stationary i.e. the traffic parameters vary on longer
the best that can be achieved by carefully setting up ntirhe scales as compared to the time required for optimiza-
tiple Label Switched Paths (LSPs) in MPLS. Hence thien.
question is: Is the OSPF performance close enough to therimarily, following components are needed in order
optimal general routing? This question has been answeagtedolve the problem oflynamic optimization of OSPF
in [6]. The answer is “yes”, though the difference in peyweights. Firstly, an automatic network management tool
formance depends on the network topology and the tigfneeded to both monitor the traffic to obtain the demand
fic demand. In [6], authors have shown that even for thetimates and to deploy the optimal link weight settings
randomly generated network topologies, 50%-110% mafehe network (this may be done using SNMP). Secondly,
demand can be supported by using optimal OSPF weighicheme needs to be developed to search large parame-
setting as compared to setting link weights based on sagtespaces to obtain link weight settings for improved per-
standard heuristic. formance. It has been pointed out in [16], [10] that local
The optimization problem considered in [6] is, what weearch schemes are not efficient in high-dimensional opti-
call a static optimization problem. They have chosen aization problems and are alsosceptible to noise in the
link penalty function which reflects the idea that it is cheabjective function. Hence, the local search scheme pro-
to send a flow over a link with small utilization, whereaposed in [6] cannot be used for dynamic optimization be-
it is expensive to send a flow over heavily loaded linksause of itsnefficiency.
Hence, minimization of the penalty function would avoid The main contribution of this paper is to demon-
any links from being overloaded. The penalty functigirate substantial improvement in performance in terms
is chosen such that for offered load greater than 100%fahe packet loss rate by dynamic optimization of OSPF
heavy penalty is paid and for loads greater than 110%, Wsights. Another contribution is to propose a fast search
penalty is so high that this should never occur. In looséheme and to demonstrate substantial improvement in the
terms, their goal was to avoid any link in the network fl’O@’peed of optimization by using the proposed scheme. We
being overloaded. The goal of their work was to demadfdrmulate the optimization metric as the packets dropped
strate the concept of optimization of OSPF weights for bai-the network in terms of the estimated mean and variance
ancing traffic when the network demands are known. dfthe traffic demands. The packet drop probability for
the best case, their scheme may be used a few times @aeh link is computed using a GI/M/1/K queueing model.
ing the day for optimizing the weights. We have used a Generalized Exponential(GE) distribution
In this paper, we considerdynamic optimization prob- to model the general inter-arrival process. We justify the
lem where periodic information about the traffic demandBoice of GE distribution in Section Ill. Also, we have de-
is available, either by monitoring the traffic at the edgeeloped a fast adaptive random search algorithm for global
routers or by the information about service level agremptimization problems with large number of parameters.
ments (along with some policing at the ingress routerd)e have compared the performance of our adaptive ran-
This information about the traffic demands is used to asm search algorithm with the local search algorithm in
tain the optimal link weight setting for the current traffif6]. Throughout this paper, we refer to the search scheme
conditions. Issues related to estimating the demands fgooposed in [6] as the local search scheme. We have
a source-destination level) by monitoring the traffic at tdemonstrated that adaptive random search is more suitable
ingress routers has been studied in [5]. It is more sersi-finding improved OSPF weights falynamic optimiza-
ble to collect the flow-level statistics instead of the packébn as it can find a “good” parameter setting much faster
level statistics. The flow-level statistics of aggregate tréfian the local search scheme. Improved OSPF weights can
fic may be monitored at the ingress [3], [9]. In [19] alsde deployed in the real network dynamically by using the
authors discuss the issues of online traffic modeling a@ddline Simulation (OLS) framework. OLS framework is
workload generation for simulations.Traffic monitoring & general framework for automatic network management



that can be used for tuning the parameters of network gray the following equation.
tocols and is not specific to OSPF. The OLS framework
has been further described in Section IV-A. P(Ng = K) = P(Nyo = K) @)

This paper is organized as follows. Section Il derives P(N < K)

the objective function to minimize the packets dropped il genotes the number of packets in the finite buffered
the network. Section Il formulates the optimal routing FRieue, whereasy,, denotes number of packets in the in-

anon-linear programming problem for the general routifigite puffer GI/M/1 queue. The queue length distribution
and discusses the equivalent problem for the OSPF ryjt/vm/1 queue is given by [4];

ing. Throughout this paper, we use the term general opti-

mal routing to represent routing where there is no limita- P(Ny = j) = Aw’ ! (j > 0) (3)
tion on the way a flow is split among multiple paths avail-

able between a source and destination. Section IV highean be obtained by solving the following equation dor
lights the issues associated with dynamic optimization att A is the normalization constant.

describes our solutions. Section V presents the simulation

results and finally, Section VI presents the conclusions and w=7((1—-w)p) 4)

future work.
v(s) is the Laplace transform of the arrival process and

is the service rate. For a linke L, the service ratg is
given by%. In order to solve (4) fow, we need to as-

sume a distribution for the arrival process. Let us consider

Our goal 'S to minimize the pgckets dropped in the nﬁqe Generalized Exponential (GE) distribution for model-
work for a given mean and variance of the aggregate de

S ing the arrival process to first two moments. We discuss
mands between each source and destination routers.

_ " below the reason for choice of GE distribution. The pdf of
Let us consider a network represented by a direcigg yistribution is given by

graphg=(N,L), whereN and L represent respectively the

set of routers and links in the network. Each link £ has g(z) = (1 — p)6(0) + pae™ ™ (5)

bandwidth denoted b¥; and a buffer space df; packets.

We assume that packets arriving when the buffer spac&aking the Laplace transform, we get,

alink is full are dropped and there is no other active queue

management algorithm running at the routers. In addition Gs)y=1-p+ pa (6)

to the knowledge of bandwidth and buffers at all the links, sta

we assume that an estimate of the mean and varianca®tan be seen from (5), a GE process is characterized

the aggregate demand from each sourte destinationt by two parametersy anda. GE distribution is a special

is known. LetD, V denote the mean and variance matrpase ofH, distribution and can be used to model general

of the estimated aggregate demands. inter-arrival processes that are more bursty as compared to
Let P, denote the packet drop probability ahgdo? de- the Poisson process. For a Poisson process the variance is

note the mean, variance of the offered load to a liskC equal to the square of mean. Hence, GE distribution may

in packets per second. The objective to minimize padle used to model the first two moments of processes with

ets dropped in the network may formulated as a non-lingariance greater than the square of mean. If the arrival pro-

I[I. OBJECTIVE FUNCTION

programming problem as follows. cess is represented by a GE distribution, then, with prob-
ability p the inter-arrival time is exponentially distributed
min ® — Z AP, 1) with meana and with probabilityl — p, the inter-arrival

time is zero. Hence, this distribution represents a batch ar-
rival process with geometrically distributed batch size and

In order to find a closed-form expression for the packeé{ponentially distributed inter-batch arrival times. For a

drop probability on linki, B, let us assume an exponenink I € £, p; = % a; = piA; represent the param-
tially distributed packet size with meaa. However, we eters of the GE distribution representing the arrival pro-
consider a general arrival process. We compute the paciess. The merging of N independent @lz(;) processes
drop probability at a linki using a GI/M/1/K queueingis a bulk-arrival Poisson process with mean arrival kate
model. The drop probability of a finite GI/M/1/K has beeequal ttoV:1 a; andp equal toa/ ) ;‘7 Similarly, split-
approximated by an infinite buffer GI/M/1 queue [12] using of a GE(p,a) process into N streams according to a

lel



packet size and parameters associated with a link. Now
let us consider a network of links with the matricesand
V denoting the mean and variance of the estimated de-
mand. We now obtain expressions to compute the packet
drop probability for a linkl € L, given the demand pa-
rameters. We also formulate the optimal routing problem
to minimize the total packets dropped in the network.
Using the expression for packet drop probability in (8),
the objective function is given by

Probabifty of Packet Drop
o
I}
N
(]
T

min® = Z NP 9)

Fig. 1. Figure showing packet drop probability as a function of leL

offered load for a GE/M/1/20 queue for different values ofhjs js a constrained optimization problem with the flow
variance constraints at each routgrfor each demand(s, ¢) be-
tween source and destination. If ff’t) denotes the frac-

Bernoulli fiter 7, ...y, the parameters of th pro- o ot the demand(s, t) on link I, then the flow balance

cess arg; = ﬁ a; = ria. Reader may refer to .o <traints are given by
[15], Section 1.4 for more details.
The packet arrival process of a single TCP flow is bursty —D(s, t) ifj=s
in nature with a “bulk” of packets arriving every round- Z Z f { (s,t) ifj=t
trip time. The model that we have considered implies that; ;) Eg i, ,)Eg 0 Otherwise
we have “bulk” arrivals (in form of bursts of packets from (10)

competing TCP sources) of varying sizes arriving into a

queue. Our model does not capture the feedback effectlog total mean packet arrival rate to a linis given by
packet drops on TCP flows because we have considered (5.0

the aggregate traffic arriving at an OSPF router as our de- Al = Z e (11)
mand estimate. (s;)EN XN

Solving (4) forw for the GE arrival process given by (S)I' he parametep for the GE process used to fit the demand
gives
D(s,t) is given by

w=p+(1- 7
P ( p) ( ) p(s,t) _ 2D(8,t)2 (12)
where.p = ¢. F i — aoX i D(Sat)z +V(35t)
p =4 Fora linkl € L, p = B Using (2), (3),

(4) and (6), we get,

Let rl(s’t) denote the probability with which the demand

(i —p)(p+1—p)™ ) D(s,1) is sent on link. Thenr{*" is given by

1= (o + 1 —pfett

In summary, (8) represents the closed form expression of rl(s’t) =
packet drop probabilitys, on a single linkl as a func-
tion of mean, variancey, o7 of the arrival process, mear‘\_et
packet sizeX, link bandwidth B; and buffer spacek;. _ ()
Figure 1 shows the drop probability as a function of tﬁ@“tt'”g the demand(s, ) with probability ;™. Then
offered load for difference values of variance of the interrs’t denotes the parameteof the GE process represent-
arrival time for a buffer size of 20 packets. As expectedlg the flow £ *"). The parametes|*" is given by

higher drop probability is observed when the arrival pro-

cess has a high variance i.e. when the incoming traffic is (s,t) _ pl

p =
more bursty. ! pled) (1 — Tz(s’t)) N Tl(s,t)

P =

8

fl(sat)
D(s,t)

(13)

) denote the parameterof the GE process after

s,t)

(14)

. OPTIMAL ROUTING PROBLEM The total offered load on link is given by ) (11), the

In Section Il, we had obtained the expression fparametep of the assomated GE distribution may be ob-
packet drop probability given the arrival process, metained by merging the flowﬁ gomg throughl. If p,



denotes the parameteiof the GE process associated witlveights to minimize the packets dropped in the network.

the aggregate traffic on link thenpy is given by We use Online Simulation (OLS) framework for automatic
network management. Section IV-A describes the OLS

=N Z fl‘s’t’pES’t’)‘l (15) framework. In IV-B we discuss the issues governing the
(s;)EN XN speed of search algorithms for large-dimensional parame-

_ N _ - ter spaces and describe a new search algorithm for obtain-
If p; is equal to’;%ll, then, using (8), the probability Ofing “good” parameter setting fast.
packet dropped at linkis given by

( Vi + 1 ) K A. Online Smulation Framework
bt — pu)\pi —Di
= 1—(p+1—p)Katt (16)  The online simulation architecture is an automatic net-

work management framework. In particular, OLS does not
The optimal general routing problem is given by (9hterfere with the packet-by-packet data of the network.
subject to the constraints given by (11), (12), (13), (14)e term this as*second-order” control over network
(15), (16). It may be noted that we are casting the traffihctions. The OLS architecture is mainly composed of
according to the routing in order to obtain the mean aggtonomous online simulators which continuously moni-
variance of the total offered traffic to ea¢he £. How- tor and model the network conditions and topology. Based
ever, we are not iterating to obtain the equilibrium traffigoon the online model of traffic and topology, the simula-
parameters. Essentially, we are using the upper bounddig can execute simulations or other programs to evaluate
the packet drop probability in (9). the performance of the network for a given set of proto-
In order to obtain the value o for a given OSPF co| parameters. For the problem of dynamic optimization
weight setting, we run modified Floyd Warshall's algf OSPF weights, the protocol parameters that we con-
rithm (modified to obtain equal cost paths also) to obtaijer are link weights and the performance metric is the
the routing. Then the traffic is cast to obtain parameters@fal packets dropped per second. However, online sim-
the aggregate packet arrival process and drop probabilition framework may be used to “tune” parameters of
for every linkl € £ using (11), (12), (13), (14), (15) anchny network protocol. The underlying assumption is that
(16). the performance is sensitive to the parameter settings and a
“good” parameter setting depends on the network topology
and current traffic conditions. [18] demonstrates the use of
The general optimal routing problem, defined by (9BLS to improve the end-to-end performance by “tuning”
(16), can be solved fofl(s’t)Vl € L by using non-linear the parameters of RED and adaptive routing. The OLS
programming techniques. However, due to the shortegstem uses fast search schemes to obtain better parame-
path nature of OSPF and the equal cost multi-path, findieg settings for the current traffic and topology conditions.
link weight settings that minimize the packet drop probbr other words, the simulation system can support contin-
bility given by (8) is a NP-hard problem. In [7], authorgous “tuning” of the network based upon the online traf-
have proved the result for a linear objective function. fit modeling, parameter search and simulation capabilities.
is straightforward to show, by proceeding along the saifige online simulation scheme uses a best-effort parameter
lines, that our problem is also NP-hard. Moreover, the atgarch strategy whose emphasis is not on “full” optimiza-
jective function is unknown in the sense that we do rain, but on continuously and increasingly moving the sys-
know the packet drop probability in terms of the OSREmM towards a “better” operating point. The OLS may be
link weight settings. Hence, we use a fast global seatdlygered either periodically or by a substantial change in
algorithm to find “good” OSPF link weight setting. the network load. However, a limit may be imposed on
Dynamic optimization of OSPF weights demands fastw frequently OLS is triggered for the optimization of
search algorithms and automatic network managemtaet OSPF weights.
tools. Since the objective function is non-linear and multi- Figure 2 shows the OLS architecture for automatic net-
modal, this is a global optimization problem, rather thavork management. The reader may refer to [18] for more
a local optimization problem. However, when we cowletails on the OLS architecture.
sider the dynamic optimization problem, issues of scalaSpeed is an important issue for the effectiveness of OLS
bility and number of iterations needed to obtain a “goods it decides the response time of OLS. The OLS can only
operating point gain foremost importance. In the next tw@spond to changes in traffic which occur at a rate slower
sub-sections we describe our solution to the problemtloin the OLS response time. Hence, in some cases it may
dynamic global optimization problem of optimizing OSPBe important to obtain “good” results as soon as possible,

IV. DYNAMIC OPTIMIZATION OF OSPFWEIGHTS
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rather than to obtain “optimal” results after a long delgyaq. More precisely, weights of a subset of the links leav-
The methods described above were designed to speegigiy routerr are changed to create equal cost paths for
each experiment (iteration). However, we also needdgne destination. In order to avoid the search froex-
minimize the number of iterations needed to find & gogRhiting a local minima, if a better solution is not obtained
solution. Therefore, we designed a new random search@hog jterations, the current solution is randomly per-
gorithm. 1V-B describes the new scheme and argues Wiihed uniformly between (-10%,10%) of maximum link
random search schemes are more effective in optimiza;j\%'ghtsl In their search method, tabu technique [1] has
problems with large parameter space and analytically Yaen used to prevent the search from revisiting the previ-
known objective function. We also analyze the convejys |ink weight setting. Basically, they use a hash table

gence properties of the proposed adaptive random seggCkiore the setting already visited and make this table a

scheme. tabu list to avoid revisits. However, the problem with us-

. . ing tabu lists with hashing is that some link weight setting
B. Adaptive Random Search Algorithm which is good and has not been visited before may also
As discussed earlier, the design goal of the seatlmhprevented from visiting. Therefore, in [7], authors have
scheme is not to search for the optimum parameter settstgted that the hashing method must be selected carefully

but to find a better parameter setting within a limited time minimize the effect of this problem.
frame. The high efficiency requirement is also due to theThe above local search method has been used in [6],
fact that the simulation of a complex network is often vefy] to demonstrate that OSPF weight settings can be
time-consuming and therefore it is necessary to minimfoeind which yield performance very close to the opti-
the number of function evaluations. Second requirememim achieved by the general optimal routing. However,
is that the search algorithm must be able to handle a laitge scheme cannot be used for the dynamic optimization.
number of parameters. This is because a network wotilte main reason for this is that local search schemes are
often have a large parameter space, e.g. in our caseyvérg inefficient for high-dimensional optimization prob-
size of the parameter space is same as the number of llekss [16], [10]. Also, they are susceptible to the effect of
in the network. Another issue that needs to be considengike in the objective function. We have designed an adap-
for designing a search algorithm is that the network sitive random search scheme for use in the OLS architecture.
ulation only provides us with approximate estimation @ur algorithm is based on the high efficiency of random
network performance. This means that the objective fusampling at initial steps and it does not use any traditional
tion in our problem is superimposed with small randolocal search method, such as pattern search, hill climbing,
noises due to inaccuracy in network modeling, simulatiatc.. Therefore, it is more robust to noises in function eval-
etc. uations and more scalable to high dimensional problems
In [6], [7], authors have proposed a local search schewithout sacrificing efficiency.
to optimize the OSPF weights. If vecterdenotes the vec- The basic idea of our algorithm is to first do a ran-
tor of link weightsw;, VI € L, then they find a neighbordom sampling of the entire parameter space to identify a
w' of w by using one of the two operations. First opergromising region, then start another random sampling in
tion is single weight change, where the link weight of only the promising region. The sample space is shrunk and re-
one link is changed to a value that has not been evaluatkghed based on these samples. The shrink-and-re-align
yet. Second operation ivenly balancing flows, where process continues until it finally converges to a local opti-
they try to generate equal cost paths in order to balancerthen. Then the whole process is repeated until the stop-



We can have the value efindicating ther-percentile re-

gion thatx”., will reach with probabilityp
Rz\Rg\ R4/ R, (1)
tﬂf} r=1-—(1-p)/" (20)
c é, For any probabilityp < 1, » will tend to 0 with increas-

ing n. This is the global convergence guarantee of ran-
Fig. 4. Shrink and re-align procedure of Adaptive Randogiom sampling scheme. From (20), we can also see that
Search random sampling is highly efficient at initial steps since
r decreases exponentially with increasimgand its inef-
ficiency is from later samples. Figure 3 shows the con-
vergence curve of random sampling with a probability of
0.99. We can see that it takes only 44 samples to reach a
point in Ap(0.1) area whereas all samples after the first
44 can only improve value ofxf,, at most by 0.1. We
just make use of these first part of high-efficiency samples
to identify promising areas and shrink and re-align sample
space.
! The complete search process of the adaptive random
] search scheme has been illustrated in Figure 4. First we
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Real Network take a number, say, of random samples from the param-
Fig. 5. Overall dynamic optimization setup using the Onlingter SPace, ar\d take the pest point as the certteof the.
Simulation architecture promising regionk; which is further explored. The point

Cy will fall in Ap(r),r = 1 — (1 — p)*/™ with probabil-

ping criteria is satisfied. Random sampling is very efficie'F?f p- The size of the promising region is taken to t_)e the
in identifying a good point close to the promising areas$if€ 0fAn(r) s0 as to to cover at least one local optimum
its initial steps. Letf () denote the objective function and 0 () With a high probability. Then we take anothier
D denote the parameter space. To illustrate the efficiefid{)dom samples from;. Herel should be much less than

of random search in initial steps, we first define a meastjr&iNCe NOW We are in a promising area and expecting to
ép(yr) given by find better points quickly. If we find a better point within

thesel samples, we move the center of the sample space
m({xeD| f(x)<yr}) to this point and keep the size unchanged. As shown in
¢p(yr) = m(D) (17) Figure 4, we move the center &, use regionR, as the
next sample space. If we cannot find any better poirit in
wheremy(-) is Lebesgue measure. Then we can define asamples, it suggests that the center is close to the local op-
r-percentile region in the parameter spate timum and most points in the region are not as good as the
center. Therefore we reduce the size of sample space by
Ap(r) ={x€D|f(x) <yr} (18) half and keep the center unchanged to explore the neigh-
borhood of the center more carefully. As shown in Figure
4, we useR3 as next sample space afteunsuccessful
ép(y,) =r, r€[0,1] samples inR,, and keep the cente&r, unchanged. This
shrink-and-re-align procedure is repeated until the size of
yr is calledr-percentile of the objective function value.the region is reduced below a threshold, then we restart the
Note thatAp(1) is just the whole parameter spabeand above search process.
lim,_,o Ap(e) will converge to the global optimum. Sup-

where

pose the sample sequence generatech Isteps of ran- V. SIMULATION RESULTS

dom §ampllng is given by, i = 1” angl X(y = Figure 5 shows the functional block diagram of the over-
arg mini<i<y f(x;), then the probability ok, in Ap(r)  all dynamic optimization setup using OLS. The OLS mon-
IS: itors the traffic and models it to provide mean and variance

of the demand estimates to the adaptive random search.

P(xfy € Ap(r)) =1—-(1-r)" (19) Adaptive random search obtains a link weight setting for



(a) ARPANET Topology (b) MCI Topology (c) Randomly Generated Topology
Fig. 6. Figure showing the network topologies used in simulation

alllinks in the network, the performance of this link weightumberC;,, ,y € [0, 1] was generated. IA denotes the
setting is computed using the analytic results obtaineddrgest Eucledian distance between any pair of nodes and
section Il. Based on the packet drop rate obtained from the denotes a constant, the average demand betweaad
analysis, the search scheme comes up with another iing given by

weight setting. This process is repeated until the stopping

criteria is met or a timeout occurs. This timer may be used D(u,v) = aoupvc(u,v)ef‘;ﬁl’“)

to put an upper bound on the response time of the OLS.

The new link weight settings may be deployed in the reghere,j(u, v) denotes the Eucledian distance between the
network only if it results in substantial improvement in theodesu andv. This method of generating random traffic

performance. It may be noted that we do not use pack@ie terme 24" ) ensures more traffic for source destina-
level or flow level simulation to estimate the packet loggn pairs that are closer to each other. Since a product of
rate in the network. Instead we use an analytic approagiee random variables is taken to generate the demands,
outlined in Section lll, that is considerably faster. Als@mere is actually a large variation in the traffic demands.
our search scheme has been designed to be robust terffg€ratio of square of mean to the variance was assumed
noise in the objective function. to be a uniformly distributed random variable]in1]. The

In this section we present two sets of simulation resultisean and variance of the traffic demands are generated
One is to demonstrate that the adaptive random searsimg the above procedure. A traffic generator was im-
scheme obtains better OSPF link weight settings in fevpdemented over UDP, ins, to generate bursty traffic with
iterations than the algorithm proposed in [6]. Another sstponentially distributed mean burst inter-arrival time and
of results demonstrate the improvement in end-to-end ggremetric burst size distribution. Essentially, the traffic
formance (in terms of the loss rate) by dynamic optimizaas generated at according to the GE arrival process with
tion of OSPF weights. a given mean and variance. All the links in the network

We have considered three network topologies, showdl#/e€ 1Mbps bandwidth with a buffer size of 50 packets.
Figure 6, to demonstrate our results. Two are well-knowhe packet size was chosen to be exponentially distributed
ARPANET topology and MCI topology. The ARPANETWith mean packet size of 200 bytes.
topology consists of 48 routers and 140 simplex links EacHn the simulation results presented in this paper, we do
link in the network is assumed to consist of two simplét verify the traffic modeling assumptions as this is not a
link whose weights may be set independently. MCI topdfcus of this paper. The performance results shown in V-A
ogy consists of 19 routers and 62 simplex links. We ha#€ the average results from ten simulation runs. Average

also considered a randomly generated topology with @zmultiple simulation runs is presented as we compare the
routers and 60 simplex links. performance of two stochastic search algorithms.

Random amount of traffic was sent from every node Cormparison of convergence
to every other node in the network. This random traf-
fic was generated using the method outlined in [6]. Forln this section, we present the results of comparison
each nodeu, two random numbers are generated D,, of adaptive random search scheme with the local search

€ [0,1]. For each pair of nodes:(v) another random scheme proposed in [6], [7]. The comparison is done in
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Fig. 7. Figure showing the piece-wise linear metric as a function of number of iterations for the (a) ARPANET (b) MCI (c)
Randomly generated network topology

terms of the number of iterations because, as noticed ear-

lier, the main computation time is to evaluate the optimiza-

tion metric for a given link weight setting. Our assump-

tion was that the computation time per iteration is approx-

imately the same for both the schemes. This is not ex-

actly true because in [6], authors have used lazy shortest

path computations to improve the speed of search as very -
few link weights change from one iteration to the next in '
their local search scheme. However, adaptive local search ) ) , ]
is a general search scheme for large dimension param@%lr&d Figure showing the link cost as a function of offered
spaces. Hence, we cannot utilize the knowledge that faster o

function computations can be achieved by changing onl

a few link weights. In [7] authors have reported 15% infol: We use the metric used in [6]. In this subsection, we
provements on an average by using the lazy Dijkstra’s Résent the comparison results for the piece-wise linear op-
gorithm. However, their search scheme needs informatiBRization metric used in [6]. Figure 8 shows the link cost
about path weights to a destination for #wenly balanc- @S @ function of offered load, as used in [6]. The optimiza-
ing flows step. This may need additional computationQ‘P” function is to minimize the sum of link costs, summed
depending on the implementation. Hence, we do not cof¥er alll € L.

pare the two search schemes in terms of the absolute tinfélgure 7 shows the piece-wise linear optimization
taken to find a “good” parameter setting. Instead, we cofjetric value as a function of iteration number for
pare the two schemes in terms of the number of iteratidi8 ARPANET, MCI and Randomly generated network
needed. Loosely, we refer to the number of iterations taPologies respectively. For the sake of comparison, these
quired to obtain a “good” parameter setting as the speed@Phs also show the optimization metric value when all
convergence (to the “good” parameter setting). A fgoogwe links’ weights are set to unity. Figure 7 shows that
parameter setting has been defined earlier as the OSPHIigk@daptive random search scheme out-performs the local
weight setting that give metric value lower than that @earch scheme in terms of the number of iterations needed
setting all link weights equal to unity (called unit OSPHP find a “good” parameter setting for all the three network
This definition is just for the purpose of comparison. Qpologies. These results have been tabulated in Table I.
“good” parameter setting may have been defined alternalt may also be noted that maximum improvement is ob-
tively as the link weight setting to achieve performané&grved for the case of ARPANET topology. The reason

metric equal to, say, 80% of the unit OSPF. for this, we believe, is that ARPANET has the maximum
number of links among the three network topologies for
A.1 Heuristic Piece-Wise Linear Metric which the results have been demonstrated. The gain by

using adaptive random search increases with the number
In order to compare the speed of convergence of afidimensions of the search space (number of links in the
search scheme with the local search scheme proposetkeiwork).
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1000

0

L
0 100 200

L
300 400

Number of Experiments

(b)

Scheme ARPANET | MCI | Random
Local Search 932 433 322
ARS 350 183 9
Improvement| 62.4% 57.7%| 97.2%
TABLE |

TABLE COMPARING THE NUMBER OF ITERATIONS NEEDED
TO OBTAIN A “GOOD” PARAMETER SETTING FOR
PIECEWISE LINEAR OBJECTIVE FUNCTION

A.2 Packet Loss Rate Metric
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B. Impact of dynamic optimization on end-to-end perfor-
mance

Figure 10 shows total packet drop rate in the network as
a function of time. The traffic was generated in the same
way as outlined in the beginning of section V. However,
every 200 seconds the traffic pattern was changed in or-
der to create a dynamic scenario. The results of the adap-
tive random search were deployed after 100seconds of the
traffic change. This was done to clearly demonstrate the
improvement in the performance by dynamic optimization
of OSPF weights using OLS. In these results, the traffic
conditions are assumed to be known to the OLS. Table
Il summarizes the maximum improvement in packet loss

In this section we present the comparative results for thees for different topologies. These results are only for the
packet loss metric (16). Figure 9 shows the comparisonmgsults presented in Figure 10. More improvements or less

sults of metric value as a function of iteration number. Thaprovements may result depending on the topology and
results clearly show that the adaptive random algorithraffic conditions.

significantly out-performs the local search algorithm. Ta-
ble 1l shows that for the packet drop rate metric also, our
adaptive random search scheme took 50% or fewer iterd4ax. Improvement
tions to obtain a “good” OSPF link weight setting. Again,
more improvement is observed for the ARPANET topol-

ogy due to the large size of the search space.

Scheme ARPANET | MCI | Random
Local Search 882 469 372
ARS 210 232 130
Improvement, 76.1% | 50.5%| 64.5%
TABLE Il

TABLE COMPARING THE NUMBER OF ITERATIONS NEEDED
TO OBTAIN A “GOOD" PARAMETER SETTING PACKET DROP

RATE METRIC

ARPANET | MCI | Random
31.8% 60.2%| 35.7%
TABLE Il

TABLE SUMMARIZING THE MAXIMUM PERCENTAGE

IMPROVEMENT IN THE PACKET LOSS RATES OBTAINED FOR

DIFFERENT TOPOLOGIES FOR THE RESULTS SHOWN IN
FIGURE 10

VI. CONCLUSIONS ANDFUTURE WORK

In this paper we have solved some of the problems as-
sociated with the dynamic optimization of OSPF weights.
Total packet drop rate in the network was analytically com-
puted using GI/M/1/K queueing model. Dynamic opti-
mization problem was formulated where total packet drop
rate was chosen as the optimization criteria. Fast adap-
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