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Abstract

In this paper, we present an OSPF weights optimization scheme using a general automatic network management

framework proposed in [1], i.e., on-line simulation framework. We have chosen the packet drop rate in the network as

the optimization metric as it is a good indicator of congestion in the network and also impacts the performance of the

underlying applications. The packet drop rate has been formulated in terms of the link parameters, such as bandwidth

and buffer space, and the parameters of the traffic demands. A GI/M/1/K queuing model has been used to compute the

packet drop probability on a given link. We have also developed a fast recursive random search algorithm to address

the issues associated with network optimization problems. The search algorithm has been compared to the local search

heuristic of [4] in terms of the number of function evaluations needed to obtain a “good” OSPF link weight setting.

Our results demonstrate that the recursive random search takes 50-90% fewer function evaluations to find a “good”

setting. The amount of improvement depends on the network topology, traffic conditions and optimization metric. We

have simulated the proposed OSPF optimization scheme inns[19] and the results indicated improvements of the order

of 30-60% in the total packet drop rate.

Index Terms

Traffic Engineering, OSPF, Optimization



2

I. INTRODUCTION

In this paper, we address the problem of traffic engineering in a network of OSPF routers. Traffic engineer-

ing is defined as the task of mapping traffic flows onto an existing physical topology to meet the objectives

of network operators. Two main approaches have been taken to solve the traffic engineering problem in the

Internet. One approach is to deploy the emerging MPLS technology which is not constrained by the shortest

path nature of routing. Constraint-based routing can be used to compute routes in an MPLS network sub-

ject to QoS and policy constraints. Another approach is to adjust the link weights of the existing network

(running OSPF) such that the OSPF routing with these link weights leads to desired routes [4].

The main issue with using existing OSPF routing for traffic engineering is its shortest path nature. OSPF

routes traffic on shortest paths based on the advertised link weights. As a result, the link along the shortest

path between the two nodes may become congested while the links on longer paths may remain idle. OSPF

also allows for Equal Cost Multi Path(ECMP) where the traffic is distributed equally among various next

hops of the equal cost paths between a source and a destination [14]. This is useful in distributing the

load to several shortest paths. However, the splitting of load by ECMP is not optimal as shown in [5].

Various methods have been proposed in literature to balance the traffic across the network in OSPF routing

framework. One of the earlier approaches was to adapt link weights to reflect the local traffic conditions

on a link or to avoid congestion ([11], [6], [13]). This is called adaptive routing or traffic-sensitive routing.

However, adapting link weights to local traffic conditions leads to frequent route changes and is unstable

(see [2], [17] for stability analysis). Additionally, adaptive routing is based on the local information and

therefore cannot optimize traffic allocation from the viewpoint of the overall network. These drawbacks are

alleviated in [4] where the traffic demand of the network is used to estimate the offered load for each link

and then a local search heuristic is deployed to find “good” OSPF link weight settings which optimize the

traffic load allocation across the network.

Basically, authors in [4] have modeled the optimum setting of OSPF weights as a global optimization

problem. They have chosen a heuristic cost function which is piecewise linear with offered load. By using
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such a cost function, they can model the optimal general routing as a linear programming problem and solve

for the exact solution. Here the optimal general routing represents routing where there is no limitation on the

way a flow is split among multiple paths available between a source and destination. The optimal general

routing is the best that can be achieved by carefully setting up multiple Label Switched Paths (LSPs) in

MPLS. Authors in [4] have shown that for the proposed AT&T WorldNet backbone, OSPF with optimized

link weights can yield a routing with a performance within few percent of the optimal general routing and

even for the randomly generated network topologies, 50%-110% more demand can be supported than link

weight setting based on some standard heuristic.

Essentially, [4] has demonstrated the conception of optimization of OSPF weights for balancing the traf-

fic. In fact, as long as the performance of a network protocol is sensitive to its parameter setting, we can

always optimize it for a certain performance objective. In [1], we have proposed an on-line simulation frame-

work(OLS) for general automatic network management by tuning the parameters of network protocols. The

basic idea is illustrated in Figure 1. The on-line simulation architecture continuously collects concerned

network information, such as, traffic conditions and topology. Based upon this information, the OLS can

evaluate the network performance for a given set of protocol parameters and use a search algorithm to opti-

mize its parameter setting to current network conditions. The underlying assumption is that the network is

quasi-stationary, i.e., the network conditions vary on longer time scales as compared to the time required for

optimization.

In the OLS scheme, a “black-box” approach has been adopted, i.e., the optimization of network protocols

is modeled as a general “black box” problem where the objective function is unknown but can be evaluated

through simulations. The advantage of this approach is that it makes the OLS a veryflexible system whose

use isnot restricted in one specific protocol or one performance objective.

In [1], we have demonstrates the use of OLS to optimize the parameters of RED. In this paper, we will

apply it to the optimization of OSPF link weights. We have chosen the total packet drop rate in the net-

work as the optimization metric since it is a more accurate to indicate the congestion in the network than
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Fig. 1. On-line simulation architecture for automatic network management

the heuristic metric in [4] and it also has great impacts on the performance of some underlying protocols,

such as TCP. The packet drop rate for one set of link weights can be estimated using packet-level or flow

level simulation. However, in this paper, we use an analytic approach to calculate the packet drop rate by

using a GI/M/1/K queuing model. This is considerably faster than the simulation approach. Also, we have

developed a fast recursive random search algorithm(RRS) for “black-box” optimization problems with large

number of parameters. As pointed out in [10], [16], local search schemes are lacking in efficiency for high-

dimensional optimization problems and are also susceptible to noises in the objective function since they are

biased too much on the local features of the objective function. Without using any traditional local search

methods, our search scheme is more suitable than the local heuristic proposed in [4] for network optimiza-

tion, where there may exist hundreds of parameters and inaccuracies in measurement and modeling may also

introduce random noises into the objective function. Our simulation results demonstrated that that recursive

random search can find a “good” parameter setting much faster. We have also simulated the overall OSPF

optimization scheme withns simulator[19] and found that the network packet drop rate can be lowered

significantly.

The rest of the paper is organized as follows. Section II derives the link packet drop rate from the offered

load and formulates our optimization problem. Section III describes our approach of using on-line simulation

framework for OSPF optimization. Section IV presents the simulation results and finally, Section V presents

the conclusions and future work.
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II. THE OBJECTIVE FUNCTION

Our goal is to minimize the packet drop rate in the network for a given mean and variance of the aggregate

demands between each source and destination routers. Let us consider a network represented by a directed

graphG=(N ,L), whereN andL represent respectively the set of routers and links in the network. Each

link l � L has bandwidth denoted byBl and a buffer space ofKl packets. We assume that packets arriving

when the buffer space at a link is full are dropped and there is no other active queue management algorithm

running at the routers. In addition to the knowledge of bandwidth and buffers at all the links, we assume

that an estimate of the mean and variance of the aggregate demand from each sources to destinationt is

known. LetD, V denote the mean and variance matrix of the estimated aggregate demand. In practice, all

such information can be obtained using the tools described in [8], [9].

In the following, we will first show how to derive the drop probability for one link based on the offered

load. Then we will formulate the optimal general routing problem which aims to optimize the overall packet

drop rate for the network. Note that the OSPF optimization problem is just the optimal general routing

subject to the shortest path constraint.

A. Link Drop Probability

Let P denote the packet drop probability on a link,�, �� denote the mean, variance of the offered load

to this link in packets per second, andB, K denote its bandwidth and buffer space respectively. In order to

find a closed-form expression for the packet drop probabilityP , let us assume an exponentially distributed

packet size with mean�X. However, we consider a general arrival process. We compute the packet drop

probability at the link using a GI/M/1/K queuing model. The drop probability of a finite GI/M/1/K has been

approximated by an infinite buffer GI/M/1 queue [12] using the following equation.

P �NK � K� �
P �N� � K�

P �N� � K�
(1)
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NK denotes the number of packets in the finite buffered queue, whereas,N� denotes number of packets in

the infinite buffer GI/M/1 queue. The queue length distribution of GI/M/1 queue is given by [3]:

P �N� � j� � A�j�� �j � �� (2)

whereA is the normalization constant and� is a constant depending on the arrival process and service rate.

� can be obtained by solving the following equation:

� � � ���� ���� (3)

where��s� is the Laplace transform of the arrival process and� is the service rate which is given byB�X . In

order to solve (3) for�, we need to assume a inter-arrival time distribution for the arrival process. Let us

consider the Generalized Exponential (GE) distribution for modeling the arrival process to first two moments.

We discuss below the reason for choice of GE distribution.

The pdf of GE distribution is given by

g�x� � ��� p���x� � pae�ax (4)

where��x� is the delta function,p anda two constant parameters. As can be seen from (4), a GE process is

characterized by two parameters,p anda. GE distribution is a special case ofH� distribution and can be used

to model general inter-arrival processes that are more bursty than Poisson process. For a Poisson process the

variance is equal to the square of mean. Hence, GE distribution may be used to model the first two moments

of processes with variance greater than the square of mean. If the arrival process is represented by a GE

distribution, then, with probabilityp the inter-arrival time is exponentially distributed with meana and with

probability� � p, the inter-arrival time is zero. Hence, this distribution represents a batch arrival process

with geometrically distributed batch size and exponentially distributed inter-batch arrival times. For a link

with �, � as its mean and variance of the offered load, we can have the parameters of the GE distribution

representing the arrival process:

p �
���

�� � ��
anda � p� (5)
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The merging ofN independent GE(pi,ai) processes is a bulk-arrival Poisson process with mean arrival ratea

equal to
PN

i�� ai andp equal toa�
P

ai
pi

. Similarly, splitting of a GE(p,a) process intoN streams according

to a Bernoulli filterr�� r�� 			rN , the parameters of theith process are

pi �
p

p��� ri� � ri
andai � ria	 (6)

Reader may refer to [15], Section 1.4 for more details.

The packet arrival process of a single TCP flow is bursty in nature with a “bulk” of packets arriving every

round-trip time. The model that we have considered implies that we have “bulk” arrivals (in form of bursts

of packets from competing TCP sources) of varying sizes arriving into a queue. Our model does not capture

the feedback effect of packet drops on TCP flows because we have considered the aggregate traffic arriving

at an OSPF router as our demand estimate.

Taking the Laplace transform of (4), we get,

G�s� � �� p�
pa

s� a
(7)

Then substitute it into (3) and solve it for� for the GE arrival process gives

� � 
� ��� p� (8)

where,


 �
a

�
�
a �X

B
	 (9)

Finally, using (1), (2), (3) and (7), we get the packet drop probability

P �
�p� 
��
� �� p�K

�� �
� �� p�K��
(10)

In summary, (10) represents the closed form expression of packet drop probability,P , on a single link as a

function of mean, variance�� �� of the arrival process, mean packet size�X, link bandwidthB and buffer

spaceK. Figure 2 shows the drop probability as a function of the offered load for difference values of

variance of the inter-arrival time for a buffer size of 20 packets. As expected, higher drop probability is

observed when the arrival process has a high variance, i.e., when the incoming traffic is more bursty.
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Fig. 2. Packet drop probability as a function of offered load for a GE/M/1/20 queue for different values of variance

B. The Optimal General Routing

Using link packet drop probabilities obtained from (10), we can formulate the optimal general routing

problem as:

	 �
X
l�L

�lPl (11)

where�l is the arrival rate for linkl andPl is its drop rate calculated by (10). This is a constrained opti-

mization problem with the flow constraints at each routerj for each demandD�s� t� between sources and

destinationt. If f �s�t�l denotes the fraction of the demandD�s� t� on link l, then the flow balance constraints

are given by

X
i��i�j��L

f
�s�t�
�i�j� �

X
i��j�i��L

f
�s�t�
�j�i� �

�������
������

�D�s� t� if j � s

D�s� t� if j � t

� Otherwise

(12)

The mean packet arrival rate to a linkl, �l, is given by

�l �
X

�s�t��N�N

f
�s�t�
l (13)

The parameterp�s�t� for the GE process used to fit the demandD�s� t� is given according to (5):

p�s�t� �
�D�s� t��

D�s� t�� � V�s� t�
(14)

Let r�s�t�l denote the probability with which the demandD�s� t� is sent on linkl. Thenr�s�t�l is given by

r
�s�t�
l �

f
�s�t�
l

D�s� t�
(15)
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Let p�s�t�l denote the parameterp of the GE process after splitting the demandD�s� t� with probabilityr�s�t�l .

Thenp�s�t�l denotes the parameterp of the GE process representing the flowf�s�t�l . The parameterp�s�t�l is

given according to (6):

p
�s�t�
l �

p�s�t�

p�s�t���� r�s�t�l � � r�s�t�l

(16)

The total offered load on linkl is given by�l (13), the parameterp of the associated GE distribution may

be obtained by merging the flowsf �s�t�l going throughl. If pl denotes the parameterp of the GE process

associated with the aggregate traffic on linkl, thenpl is given by

pl � �l�
X

�s�t��N�N

f
�s�t�
l p

�s�t�
l ��� (17)

If 
l is equal to�lpl
�X

Bl
, then, using (10), the probability of packet dropped at linkl is given by

Pl �
�pl � 
l��
l � �� pl�

Kl

�� �
l � �� pl�Kl��
(18)

The optimal general routing problem is given by (11), subject to the constraints given by (13), (14), (15),

(16), (17), (18). It may be noted that we are casting the traffic according to the routing in order to obtain

the mean and variance of the total offered traffic to eachl � L. However, we are not iterating to obtain the

equilibrium traffic parameters. Essentially, we are using the upper bound on the packet drop probability in

(11).

III. OPTIMIZATION OF OSPFWEIGHTS USING ON-LINE SIMULATION

The general optimal routing problem, where the objective function is completely defined by (11)-(18),

may possibly be solved forf �s�t�l �l � L by using some non-linear programming techniques. However, under

constraints of OSPF routing, the relation between the link weights and optimization metric can no longer

be analytically defined. Hence, the optimal routing in OSPF becomes a “black box” optimization problem

which may be defined as:

min	�w� (19)
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wherew is the vector of network link weights and	��� the objective function, which is unknown. Basically,

in order to obtain the value of	 for a given OSPF weight setting, we run modified Floyd Warshall’s algorithm

(modified to obtain equal cost paths also) to obtain the routing. Then the traffic is cast to obtain parameters

of the aggregate packet arrival process and drop probability for every linkl � L using (13), (14), (15),

(16), (17) and (18). Finally the value of	 may be calculated by (11). In [5], authors have proved that it

is NP-hard to find OSPF link weight settings for an optimization metric piecewise linear in offered load. It

is straightforward to show, by proceeding along the same lines, that our problem, i.e., minimize the packet

drop rate given by (11) is also NP-hard.

For such NP-hard problems, heuristic optimization algorithms are usually used to search for approximate

solution. In the context of network optimization, we need a highly efficient search algorithm to find “good”

OSPF link weight setting quickly since the network is a dynamic system and network conditions may change

significantly from time to time. In other words, our emphasis is not on full optimization butobtaining a

practically usable solution within a limited time frame. Furthermore the search algorithm should bescalable

to high-dimensional problems since there may be hundreds of parameters in a network. Another issue that

needs to be considered is that network simulation only provides us with approximate estimation of network

performance. This means that the objective function in our problem is superimposed with small random

noises due to inaccuracies in network modeling, simulation, etc. To address these issues, we have designed

a recursive random search scheme. The details of our algorithm are presented in a separate paper[18]. We

summarize the algorithm here for the purpose of completeness.

Basically, the algorithm is based on the high-efficiency feature of random sampling at initial steps. To

illustrate this property, we first define a goodness measuremD��� for a given function value� when given

an objective function as (19) and a parameter spaceD:

mD��� �
V �fw � D j 	�w� � � g�

V �D�
(20)

whereV ��� is Lebesgue measure of a set. Note thatmD��� is a monotonously increasing function with�.

When� approaches the minimum function value,mD��� tends to 0. With a probabilityp, n random samples
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can find a solution whosemD is:

�� ��� p���n (21)

For any probabilityp � �, the above value will tend to 0 with increasingn. This is the global convergence

property of random sampling. Figure 3 shows a convergence curve of random sampling with a probability of

�	

. We can see that at initial iterations of random sampling, themD of the solution decreases rapidly, and

the inefficiency of random sampling is from later samples. For example, in Figure 3 it only takes only 44

random samples to improve themD of the solution from 0.99 to 0.1 whereas all samples after that can only

improve it at most by 0.1. The basic idea of our algorithm is to use the first part of high-efficiency samples

to identify promising areas then start recursive random sampling processes in these areas which shrink and

re-align the sample space to local optima.

An example search process of RRS is illustrated in Figure 4. First we take a number, sayn, of random

samples from the parameter spaceD, and take the best point as the centerC� of the promising regionR�

which will be further explored. The size ofR� is taken to be themD value ofC�. Then we take another
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l random samples fromR�. Herel should be much less thann since now we are in a promising area and

expecting to find better points quickly. If we find a better point within thesel samples, we move the center of

the sample space to this point and keep the size unchanged. As shown in Figure 4, we move the center toC�,

use regionR� as the next sample space. If we cannot find any better point inl samples, it suggests that the

center is close to the local optimum and most points in the region are not as good as the center. Therefore we

reduce the size of sample space by half and keep the center unchanged to explore the neighborhood of the

center more carefully. As shown in Figure 4, we useR	 as next sample space afterl unsuccessful samples in

R�, and keep the centerC� unchanged. This shrink-and-re-align procedure is repeated until the size of the

region is reduced below a threshold, then we restart the above search process.

We have tested this algorithm on a suite of difficult benchmark functions. The results have shown that

our algorithm is consistently more efficient than other search algorithms using traditional local search tech-

niques, such as multi-start hillclimbing. The reader may refer to [18] for more details and results.

IV. SIMULATION RESULTS

In this section we present two sets of simulation results. One is to demonstrate that the recursive random

search scheme obtains better OSPF link weight settings with fewer function evaluations than the algorithm

proposed in [4]. Another set of results demonstrate the improvement in end-to-end performance (in terms of

the drop rate) by dynamic optimization of OSPF weights.

We have considered three network topologies, shown in Figure 5, to demonstrate our results. Two are

well-known ARPANET topology and MCI topology. We couldn’t include AT&T topology used in [4] since

it is not publicly available. The ARPANET topology consists of 48 routers and 140 simplex links Each

link in the network is assumed to consist of two simplex link whose weights may be set independently.

MCI topology consists of 19 routers and 62 simplex links. We have also considered a randomly generated

topology with 22 routers and 60 simplex links.

Random amount of traffic was sent from every node to every other node in the network. This random

traffic was generated using the method outlined in [4]. For each nodeu, two random numbers are generated
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Fig. 5. Figure showing the network topologies used in simulation

Ou, Du � ��� ��. For each pair of nodes (u� v) another random numberC�u�v� � ��� �� was generated. If

denotes the largest Eucledian distance between any pair of nodes and if denotes a constant, the average

demand betweenu andv is given by

D�u� v� � OuDvC�u�v�e
���u�v�

��

where,��u� v� denotes the Eucledian distance between the nodesu andv. This method of generating random

traffic (the terme
���u�v�

�� ) ensures more traffic for source destination pairs that are closer to each other. Since

a product of three random variables is taken to generate the demands, there is actually a large variation in

the traffic demands. The ratio of square of mean to the variance was assumed to be a uniformly distributed

random variable in��� ��. The mean and variance of the traffic demands are generated using the above

procedure. All the links in the network have 1Mbps bandwidth with a buffer size of 50 packets. The packet

size was chosen to be exponentially distributed with mean packet size of 200 bytes.

In the simulation results presented in this paper, we do not verify the traffic modeling assumptions as

this is not a focus of this paper. The performance results shown in IV-A are the average results from ten

simulation runs. Average of multiple simulation runs is presented as we compare the performance of two

stochastic search algorithms.
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A. Comparison of Search Schemes

In this section, we present the results of comparison of recursive random search scheme with the local

search scheme proposed in [4]. In optimization literatures, the comparison between algorithms is usually

done in terms of the number of function evaluation instead of the absolute time taken to find a “good” pa-

rameter setting. This is because the computation time is considerably dependent on many other factors, such

as, implementation efficiency, testing platform, etc.. Considering the main computation time is for function

evaluations, the number of function evaluation is a more appropriate performance metric under the assump-

tion that the computation time per function evaluation is approximately the same for both schemes. Note

this assumption is not exactly true in the context of our problem, where one function evaluation represents

one optimization metric computation for a specific set of link weights. In [4], authors have used incremental

shortest path computations to improve the speed of search as very few link weights change from one iter-

ation to the next which is reported to have 15% improvements on an average. In spite of this, we still use

the number of function evaluations as our algorithm performance metric for the reasons mentioned above

and the consideration that our algorithm is designed to be a general “black-box” search algorithm where no

problem-specific is available. It should be noted that even if taking 15% improvement for the local search

scheme of [5] into consideration, the test results still show that our algorithm is significantly faster.

Loosely, we refer to the number of function evaluations required to obtain a “good” parameter setting as

the speed of convergence. A “good” parameter setting has been defined as the OSPF link weight setting that

give metric value lower than that by setting all link weights equal to unity (called unit OSPF). This definition

is just for the purpose of comparison. A “good” parameter setting may have been defined alternatively as

the link weight setting to achieve performance metric equal to, say, 80% of the unit OSPF.

1) Heuristic Piecewise Linear Metric: In order to compare the speed of convergence of our search

scheme with the local search scheme proposed in [4], we use the same metric used in [4], which is piecewise

linear with the link offered load. Figure 6 shows the cost for one link as a function of offered load. The

optimization objective is to minimize the sum of link costs, summed over alll � L.
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Fig. 6. Figure showing the link cost as a function of offered load

Figure 7 shows the optimization convergence curves for the ARPANET, MCI and Randomly generated

network topologies respectively. For the sake of comparison, these graphs also show the optimization metric

value when all the links’ weights are set to unity. It can be seen that the recursive random search scheme

outperforms the local search scheme in terms of the number of function evaluations needed to find a “good”

parameter setting for all three network topologies. These results have been tabulated in Table I.
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Fig. 7. Figure showing the convergence curves of piecewise linear metric for (a) ARPANET (b) MCI (c) Randomly generated network topology

Scheme ARPANET MCI Random
Local Search 932 433 322

RRS 350 183 9
Improvement 62.4% 57.7% 97.2%

TABLE I
TABLE COMPARING THE NUMBER OF FUNCTION EVALUATIONS NEEDED TO OBTAIN A“ GOOD” PARAMETER SETTING FOR PIECEWISE

LINEAR METRIC

2) Packet Drop Rate Metric: In this section we present the comparative results for the packet drop metric

defined in (18). Figure 8 shows the comparison results of the optimization convergence speed. The results
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Fig. 8. Figure showing the convergence curve of total packet drop rate for (a) ARPANET (b) MCI (c) Randomly generated network topology

clearly show that the recursive random algorithm significantly outperforms the local search algorithm. Table

II shows that for the packet drop rate metric, our recursive random search scheme took 70% or fewer function

evaluations to obtain a “good” OSPF link weight setting.

Scheme ARPANET MCI Random
Local Search 882 469 372

RRS 210 125 54
Improvement 76.1% 73.3% 85.5%

TABLE II
TABLE COMPARING THE NUMBER OF FUNCTION EVALUATIONS NEEDED TO OBTAIN A“ GOOD” PARAMETER SETTING PACKET DROP

RATE METRIC

B. Optimizing OSPF for improving packet drop rate

Now we describe the simulation showing how the network performance can be improved by our OSPF

optimization scheme. Figure 9 shows the functional block diagram of the overall setup of this simulation.

Compute Shortest Paths

Cast Traffic

Fit a Model

Monitor Network Traffic

Recursive Random Search

Network Management Tool

SNMP etc.

Online Simulation
Real Network

Φw

Compute λ, Φ

Fig. 9. Overall OSPF optimization setup using on-line simulation architecture
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Fig. 10. Figure showing total packet drop rate as a function of time for the (a) ARPANET (b) MCI (c) Randomly generated network topology.
Traffic pattern was changed at times 0, 200, 400..., the optimized OSPF weights were deployed at times 100, 300,...

The OLS monitors the traffic to provide the estimates of mean and variance of the traffic demand for perfor-

mance evaluation of link weights. Recursive random search is then be used to search for better link weight

setting for the network. When a certain stopping criteria is met, for example, the time limit is reached, the

best-so-far link weight setting found by RRS may be deployed in the real network if it results in substantial

improvement in the performance.

We usedns[19] to simulate the real network running OSPF. The traffic in the network was generated in

the same way as outlined in the beginning of this section. However, every 200 seconds the traffic pattern

(the mean and variance of demand matrix) was changed in order to create a dynamic scenario. The traffic

generator is implemented over UDP to generate bursty traffic with the GE inter-arrival distribution described

in (4). In our simulation, we assume OLS has a complete knowledge of necessary network information, such

as, traffic demands, network topology, etc.. Whenever a change of traffic pattern happens, the OLS runs the

recursive random search for a certain iterations to obtain a better parameter setting. If the optimized setting

is much better than the original, it will be deployed at 100 seconds after the traffic change. The 100-seconds

time difference is used because we want to observe the performance difference between before optimization

and after optimization. Note that here we assume the running time of the search algorithm is faster than the

traffic change period, i.e., the search algorithm has finished running at 100 seconds after the traffic change.

The actual packet drop rates are collected during the simulation for all the traffic sinks in the network

and then summed together to get the total packet drop rate. Figure 10 shows total packet drop rate in the
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network as a function of time. Table III summarizes the maximum improvement in packet drop rates for

different topologies. Note that more or less improvements may result depending on the topology and traffic

conditions.

ARPANET MCI Random
Max. Improvement 31.8% 60.2% 35.7%

TABLE III
TABLE SUMMARIZING THE MAXIMUM PERCENTAGE IMPROVEMENT IN THE PACKET DROP RATES OBTAINED FOR DIFFERENT

TOPOLOGIES FOR THE RESULTS SHOWN INFIGURE 10

V. CONCLUSIONS AND FUTURE WORK

In this paper we investigated the problems associated with the optimization of OSPF weights using on-line

simulation framework. The optimization problem was formulated where total packet drop rate was chosen as

the optimization criteria. According to the offered load on each link, total packet drop rate was analytically

computed using GI/M/1/K queuing model which is more general than Poisson model for allowing burstiness

in traffic, and is also mathematically tractable. A fast recursive random search algorithm was used to address

the issues in network optimization. Performance results demonstrate that our search algorithm took 50-90%

fewer function evaluations to find a good OSPF weights “setting” as compared to the local search algorithm

of [4]. The simulation results of our OSPF optimization scheme also demonstrate improvements of the order

of 30-60% in the total drop rate in the network. Future work includes demonstration of dynamic optimization

of OSPF weights in a real network. Investigating the issues associated with traffic monitoring and modeling

and its impact on the performance of dynamic optimization will be another goal for future work.
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