
ORMCC - Multicast Congestion Control Based on
Output Rate Feedback

Jiang Li, Shivkumar Kalyanaraman
Rensselaer Polytechnic Institute
110 8th Street, Troy, NY 12180

Abstract— There are two categories of multicast conges-
tion control: multi-rate and single-rate. The former can
adapt the transmission rate to heterogeneous receivers but
requires layered transmission. The latter is simple to imple-
ment and deploy, and thus at least suitable for some situa-
tions. In this article, a new single-rate scheme ORMCC is
proposed. It requires very simple support from receivers,
which distinguishes it from other schemes in this category,
e.g. PGMCC [11], TFMCC [12] and MDP-CC [8]. Simula-
tions on ns-2 [1] show that the scheme is TCP-friendly and
does not suffer from drop-to-zero problem.

Index Terms— Multicast, congestion control, single-rate,
drop-to-zero, TCP friendliness

I. INTRODUCTION

IP multicast is efficient for transmitting bulk data to
multiple receivers. There are two categories of multicast
congestion control. One of them is single-rate, in which
the source controls the data transmission rate; the other
is multi-rate (a.k.a layered multicast congestion control),
in which receivers join just enough layers in the form of
multicast groups to retrieve as much data as it can.

Ideally, the multi-rate multicast congestion control can
satisfy heterogeneous receivers because each of them re-
ceives data at its own rate. The most noticeable among
them are recently developed Fine-Grained Layered Multi-
cast [2] and STAIR [3]. However, the multi-rate schemes
are closely coupled with routing and IGMP, which implies
some potential problems. For example, different groups
for layers could follow different routes [9]. Aggregated
multicast trees [4] do not necessarily prune trees dynam-
ically and hence break the assumptions of the multi-rate
schemes. The slackness of response to congestion due
to long leave latency continues to be an issue. Besides,
frequent group joins and leaves can introduce significant
load to routers. On the contrary, the single-rate category is
easy to implement and deploy, because it does not require
support from intermediate nodes. The recently published
work includes PGMCC [11], TFMCC [12] and MDP-CC
[8]. Although such schemes do not scale as well as multi-
rate ones, they are at least suitable for some situations, e.g.
the multicast in a not-so-heterogeneous environment, or

bulk data transfer without concerns over delay. With net-
work support [7], we can also emulate multi-rate schemes
by deploying single-rate schemes on intermediate nodes.

The scheme we propose in this paper falls into the
single-rate category. The key observation in this pa-
per is that, with some concise and easily measured yet
more meaningful feedback information from receivers,
rather than with one-bit feedbacks such as simple ACKs
or NAKs, we can reduce both the state and computation
complexity at source to

�������
.

The feedback information is the output rate at receivers’
end (� in Figure 1), sent in Congestion Indication (CI)
packets1 . Using this information, the source selects the
slowest receiver as the Congestion Representative (CR)
and adapts the transmission rate correspondingly. Notice
that in our scheme, (1) CI carrying receiver-end output
rate is the only support required from receivers,2 and (2)
The traffic between source and receivers is conventional,
i.e. data packets from source and CIs from receivers (See
Figure 1). This simplicity distinguishes our work from
previous ones like PGMCC [11], TFMCC [12] and MDP-
CC [8]. Recall that all these three schemes choose repre-
sentatives according to a metric based on TCP throughput
formula [10]. Besides, they all demand additional traffic:
(1) PGMCC maintains ACK traffic between source and
ACKER, (2) TFMCC requires additional traffic for RTT
measurement at receiver side, and (3) MDP-CC needs
control messages multicasted to receivers.3 Because our
scheme is based on output rates, we named it ORMCC.
Note that it handles congestion control only, and does not
take charge of data reliability.

As usual, we need to deal with the Drop-to-Zero and
TCP-friendliness problem. The former can happen if
the transmission rate is reduced more than necessary and�

CI packets are those packets sent at least once per RTT by receivers
to source indicating packet losses and thus congestion. They can be,
but not necessarily limited to, NAKs.	

As in other schemes, sequence number of lost packets are also put
into CIs for RTT estimation. Since it is conventional, we don’t list it
as a special support from receivers.

MDP-CC also maintains a pool of representative candidates while
our scheme does not.

µ)CI(µ)CI(

µ)
C

I(

D
at

a
Pa

ck
et

s

’s from CRµ
S

R2
Path 2 Path 2

...

...

Data Packets Packets
DataPath 1

R3

The most c
ongested path

R1 (CR)
Source
Receiver

CI: Congestion Indication
Output Rateµ:

CR: Congestion Representative

Adapts rate according to

Fig. 1. ORMCC MODEL

beaten down, when multiple paths in the multicast tree ex-
perience asynchronous congestion. The latter is whether
the multicast flow can compete for bandwidth fairly with
TCP flows on a common bottleneck. We have also done
some initial study on the performance with lower rate of
feedback (at most one CI per RTT) when feedback sup-
pression is needed to avoid implosion. In the following
sections, we will first describe the scheme, followed by
simulation results. At the end, we will briefly discuss our
future research.

II. ORMCC

In single-rate multicast congestion control, the trans-
mission rate should be set to the fair rate on the most con-
gested path (e.g. �
����� � in Figure 1). Such a path can be
allocated by correctly selecting the slowest receiver (e.g.� �

in Figure 1), which in our scheme is detected by using
output rate feedbacks from receivers. The whole scheme
will be described in details in this section. In the follow-
ing context, we are going to refer to the selected slowest
receiver as Congestion Representative (CR).

A. Issues to Solve and Solutions

Even if the motivation of selecting CR is straight-
forward, there are two issues to solve: (1) How do we keep
track of CR? The CR should be valid, i.e. be the slow-
est receiver, and the choice of CR should not be switched
back and forth too often, since that may affect the rate
adaption negatively. (2) How do we adapt the transmis-
sion rate? There should not be Drop-to-Zero problem,
and the scheme should be TCP friendly. To solve these
two issues, we have to provide solutions for the following
sub-problems.

What information is required from receivers?
From our previous work on multicast congestion avoid-
ance [5], we realize that output rate at receiver side can
convey enough information and is easy to measure. That
is the only support from receivers. The way for a receiver
to measure the output rate in our implementation is to cal-
culate ��������� , where � is the number of packets, � is the

packet size, � is the time needed to get � packets. �����
in our simulations.

How to refine the choice of CR?
The network condition can change, and thus the current
CR may no longer be the slowest receiver. Or, the initial
CR chosen upon the first CI’s arrival (Algorithm line 8� 12) may not be good. If that happens, we will have
to switch to another suitable receiver. For example, in
Figure 1, if �
� ���"! becomes the most congested path,

� !
should be chosen as the new CR. (For this problem, we
assume that no current or potential CR will go offline.)

We check two situations: (1) The most congested path
improves and is no longer the most congested. (2) Another
path worsens and becomes the new most congested path.
For that, �$#&% , �$')(+* and ,-'+(+* are maintained at source. �.#&%
is the EWMA (exponentially weighted moving average)
of the � ’s (output rates) from the current CR, �/')(+* and
, '+()* are respectively the EWMA and estimated standard
deviation of the � ’s from all receivers. If � #0%21 � '+()*43
!5, '+()* , either the first or the second situation is true, and
we are ready to switch CR upon receipt of � from the new
slowest receiver (Algorithm line 13 � 17, 22 � 27). If
�768� '+()*:9 ��, ')(+* , the second situation is true, CR is
switched right away (Algorithm line 28 � 35). The ��, '+()*
deviation from mean implies that the new feedback should
be significantly lower in order to result in CR switching.

How to keep the CR choice stable if there are multiple
candidates for CR?
There may be multiple slowest receivers under certain
situations. All of them are qualified for CR (e.g.

� �
and�
;

in Figure 1). In spite of that, after we pick one of
them as CR, as long as we follow the rules in the above
problem, the choice of CR should be stable.

How to update CR if the current CR goes offline?
If the current CR goes offline, the source will no longer
receive CIs from it and be unaware of congestion. There-
fore, the source should be able to detect that situation and
switch CR. We set a response interval threshold < in terms
of packets. According to the throughput formula in [10],=>@?BADCFEHGJIKILENM O�PQCSRUTWVXO�M R+PQCSY�P-ENVZT[R�O�P]\)^N^_^

(where `a is
the throughput rate, � is the packet size, b is the loss event
rate), we calculate 4 < as <c� � �)b[� � `a � �4dLd �5� �fe , omit-
ting some negligible terms. If there has not been CIs from
the current CR within the most recent interval of length < ,
it is deemed offline and the source will switch CR (Algo-
rithm line 36 � 42). The detailed derivation can be found
in our technical report [6].

How to measure RTT?g
In our algorithm, we use hjick)l�m in place of nh . Please refer to the

algorithm for the definitions of h and l�m .

When a receiver gets a packet of sequence number o , if
it detects packet losses, it sends a CI packet to the source
with o . Upon the arrival of this CI packet, the source mea-
sures a RTT sample

�4dpdrq
as the difference between the

current time and the transmission time of the packet with
sequence number o . With

�4dLd q
, the RTT is updated as�4dpd �tsF�5uj� �4dpd 3 � �5uv� �4dpd$q .

How to reduce the transmission rate?
Upon receipt of � ’s from the CR, the transmission rate w
is updated as w�xzy�{}| � w$~��$� � , and there is at most one
rate reduction per RTT. � can affect the fairness between
flows. In our simulations, �����Q��s5� works well.

How to increase the transmission rate?
Usually, we increase the rate by ���F� �4dpd per SRTT
where � is the data packet size and � �4dpd � �4dpd 3 ��, .
Since the RTT samples measured by CIs include the full
queue delay, the RTT is thus actually the upper-bound of
the real round trip time. Therefore, we use RTT instead of
SRTT for the rate increment purpose.

B. Algorithm

With the clues above, we designed the algorithm at the
source. It is executed whenever the source gets a CI.
Variables:

bad cr : Binary variable indicating whether the
current CR is no longer qualified.� : Output rate in CI�

: The receiver which sent this CI�����_� : EWMA of all � ’sl ���_� : Standard deviation of all � ’s����� : EWMA of � ’s from CR�
: Transmission rate���
: The transmission rate at last reductionh : EWMA of the throughputlFm : Standard deviation of the throughput�
: Expected largest interval between two

neighboring CIs from CR

Subroutine: CutRate ()
if The transmission rate has been cut within the most

recent RTT or
�4�:� � then

Return
else���)����� � i ���+�0���U� hh � h�i¡ p¢ ���)� (£¥¤�¦�§ ¨ in our implementation)l5m � lFm©i¡ �&ª ���«��ª � lFm� ���0� h¬i:k)lFm � ¢ �.­$­ ��®+� 	� � � � (¯°¤c¦�§ ±�¨ in our implementation)� � � �
endif

Main Algorithm:
1

���)�/� � � �����N�
2 � ���N� � � ���_� i³²
¢ ���«� (´p¤¡¦�§¶µ e ¨ in our implementation)
3 l ���_� � l ���N� i¡² �&ª ���«��ª � l ���N� �
4 if The CI is from the current CR then
5

���)��� � � � �·�

6 ����� � ���·� i³²j¢ ���«�
7 endif
8 if The CI is the very first one then
9 Set CR to

�
10 Do CutRate ()
11 Return
12 endif
13 if ����� � �����_� i � l ���_� then
14 Reset bad cr flag
15 else
16 Set bad cr flag
17 endif
18 if The CI is from the CR then
19 Do CutRate ()
20 Return
21 endif

/* Now the CI is NOT from the CR */
22 if bad cr flag is set and � � � ���N� then
23 Update CR to

�
24 ����� � �
25 Do CutRate ()
26 Return
27 endif
28 if � � �����N� �¬¸ l ���_� then
29 if ��¹:� �·� or with probability º then
30 Update CR to

�
31 ����� � �
32 Do CutRate ()
33 Return
34 endif
35 endif
36 if There has no CI from the current CR within
37 the most recent interval

�
then

38 Update CR to
�

39 ����� � �
40 Do CutRate ()
41 Return
42 endif

III. SIMULATION RESULTS

We investigated the behavior of our scheme under con-
trolled situations by running simulations on ns-2 [1]. The
simulations include (1) Simple Multicast Configuration,
(2) Simple Multicast Configuration with Changing Bot-
tlenecks (with normal and lower CI rates), (3) Multiple
Bottlenecks (Linear Network), (4) Drop-to-Zero Avoid-
ance Test, (5) TCP-Friendliness Test (with drop-tail and
RED queues). In those simulations, the data packet size
is 1000 bytes, the bottleneck buffer size is 50K bytes, the
initial RTT is 200 milliseconds.

A. Simple Multicast Configuration

This simulation on topology (Figure 2 (a)) tests the ba-
sic behavior of our scheme. At time 0, there is only one
multicast flow, with the source on Node 1, two receivers
on Node 2 and 3 respectively. At 50th and 100th second
respectively, two multicast flows are added with the same
source-receiver set. In the result (Figure 3 (a)), the aver-
age rate between time [0, 50) is around 0.9Mbps, those be-
tween [50, 100) are around 0.9 / 2 = 0.45 Mbps, and those

between [100, 400) are around 0.9 / 3 = 0.3 Mbps. Con-
clusively, the multicast flows shared the bottleneck fairly.

B. Simple Multicast Configuration with Changing Bottle-
necks

We ran this simulation to verify that our scheme can
detect CR’s absence and switch CR in time. Again we
used the topology in (Figure 2 (a)), but varied the band-
widths according to the following table. (Link 1 is be-
tween Router and Node 2, Link 2 is between Router and
Node 3). It is equivalent to the scenario that: at time 0,
only Node 2 is in the multicast group; at 50th second,
Node 3 joins and Node 2 leaves; at 100th second, Node
2 joins and Node 3 leaves; at 150th second, Node 3 joins.

[0,50) [50,100) [100,150) [150,400]
Link 1 0.9Mbps 3Mbps 0.9Mbps 0.9Mbps
Link 2 3Mbps 0.9Mbps 3Mbps 0.9Mbps

The vertical lines in Figure 3 (b) show that the source
switched CR at around 60th and 110th second as expected.
There was no CR switch after 150th second, which is de-
sired because the current CR is enough to convey the con-
gestion information for all the bottlenecks and it is not
necessary to switch. Note that because it took time to de-
tect CR’s absence, the source reacted to congestion a little
late. However, as shown in the figure, the over-congestion
is insignificant and transient.

We also did the simulation on this configuration for a
slightly modified scheme. In that version, each receiver
sent at most one CI per RTT, resulting in over 90% less
CIs. The modification does not affect the performance
much, as shown in Figure 3 (c).

C. Multiple Bottlenecks (Linear Network)

Different notions of fairness define how the bottleneck
bandwidth is shared by through traffic. To check the fair-
ness our scheme can achieve, we ran a simulation on Fig-
ure 2 (b). RED queues are used on the routers to eliminate
the effect of RTT estimation. There is one multi-receiver
multicast flow from Node 1 to Node 4 and 5, two uni-
receiver multicast flows from Node 2 to Router 2 and from
Node 3 to Node 4 respectively. Proportional fairness im-
plies that the long (multi-receiver multicast) flow should
get one-third of the bottleneck bandwidth whereas Max-
min fairness suggests a share of one-half. The average
rates 5 in Figure 4 show that in our scheme, the long flow
got a share between that suggested by Proportional fair-
ness 0.33 Mbps and that by Max-min fairness 0.5 Mbps.»

Average rate at time ¼ = 1/ ¼-¢ The data sent between time 0 and ¼ .

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250 300 350 400

A
ve

ra
ge

 R
at

e
(M

bp
s)

Time (s)

Multi-receiver multicast flow
Uni-receiver multicast flow 1
Uni-receiver multicast flow 2

Fig. 4. MULTIPLE BOTTLENECKS SIMULATION RESULT

D. Drop-to-Zero Avoidance Test

Our scheme won’t reduce the transmission rate more
than necessary at the presence of asynchronous conges-
tion and is thus immune from Drop-to-Zero problem. The
simulation was run on the star topology Figure 2 (c).
There is a background traffic flow of uni-receiver mul-
ticast between each pair of Node ½ and Node ¾ 3 ½
(½°� � �D�D�«¾�~+¾¿� �SÀ

). Half of the links between Router
and Node ¾ 3 �

to !5¾ have bandwidth of 0.9Mbps, the
other half 1Mbps. There is also a multi-receiver multi-
cast flow with its source on Node 1 and receivers on Node
¾ 3 �

to !5¾ . It is expected that the multi-receiver flow
shares the 0.9Mbps bottlenecks equally with those uni-
receiver flows. The result (Figure 5) confirms that.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250 300 350 400

S
am

pl
ed

 In
st

an
ta

ne
ou

s
R

at
e

(M
bp

s)

Time (s)

Multi-receiver flow
Uni-receiver flow behind 1Mbps bottleneck

Uni-receiver flow behind 0.9Mbps bottleneck

Fig. 5. DROP-TO-ZERO AVOIDANCE TEST RESULT (Uni-

receiver flows are randomly chosen. Sample interval = 2 seconds.)

E. TCP-Friendliness Test

As mentioned in the introduction, our scheme should
compete for bandwidth fairly with TCP. Again we used
the star topology (Figure 2 (c)), but replaced uni-receiver
multicast flows with TCP flows. We ran two simulations,
one with drop-tail queues on routers, the other with RED
6. Both results in Figure 6 and Figure 7 show that the mul-
ticast flow and TCP flows preformed very closely. The
RED result is a little better because the random early drop
lets our scheme get CIs before the router queue is full and
thus have smaller RTT estimation.

IV. CONCLUSIONS

We have presented a single rate source-based multicast
congestion control scheme. The only support from re-
ceivers is output rates at their ends. Based on the outputÁ

For RED, the minimal and maximum threshold are 5 and 15 respec-
tively, and the queue weight is 0.002.

0.9Mbps, 10ms

1Mbps, 10ms

3Mbps, 10ms

Node 3Node 2

Node 1

Router

Node 1

Node 2

Node 3

Node 4 Node 5

3Mbps, 10ms

3Mbps, 20ms

3Mbps, 20ms
Router 2

Router 1

1Mbps, 10ms 3Mbps, 10ms

1Mbps, 10msBottleneck 1

Bottleneck 2

Node N

Node 1

Node 0

Node N+1

Node 2N

Router

1Mbps, 10ms

0.9Mbps, 10ms

3Mbps, 10ms

3Mbps, 10ms

(a) Simple Multicast Configuration (b) Multiple Bottlenecks (c) Star Topology

Fig. 2. SIMULATION TOPOLOGIES

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300 350 400

In
st

an
ta

ne
ou

s
R

at
e

(M
bp

s)

Time (s)

Multicast flow 1
Multicast flow 2
Multicast flow 3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300 350 400

In
st

an
ta

ne
ou

s
R

at
e

(M
bp

s)

Time (s)

Multicast flow

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300 350 400

In
st

an
ta

ne
ou

s
R

at
e

(M
bp

s)

Time (s)

Multicast flow

(a) Basic (b) With Changing Bottlenecks (c) With Changing Bottlenecks
(No Changing Bottlenecks) (Normal CI rate) (Lower CI rate)

Fig. 3. SIMPLE MULTICAST SIMULATION RESULTS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 50 100 150 200 250 300 350 400

S
am

pl
ed

 In
st

an
ta

ne
ou

s
R

at
e

(M
bp

s)

Time (s)

Multi-receiver flow
TCP flow behind 1Mbps bottleneck

TCP flow behind 0.9Mbps bottleneck

Fig. 6. TCP-FRIENDLINESS TEST (DROP-TAIL) RESULT (TCP

flows are randomly chosen. Sample Interval = 2 seconds.)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 50 100 150 200 250 300 350 400

S
am

pl
ed

 In
st

an
ta

ne
ou

s
R

at
e

(M
bp

s)

Time (s)

Multi-receiver flow
TCP flow behind 1Mbps bottleneck

TCP flow behind 0.9Mbps bottleneck

Fig. 7. TCP-FRIENDLINESS TEST (RED) RESULT (TCP flows are

randomly chosen. Sample interval = 2 seconds.)

rate feedbacks, the source chooses one of the slowest re-
ceiver as Congestion Representative (CR), then adapts the
transmission rate correspondingly. We have designed sev-
eral mechanisms to keep the CR choice stable and valid,
and checked the performance of the whole scheme with
simulations. The simplicity and the way to choose CR
distinguish our scheme from previous work e.g. PGMCC
[11], TFMCC [12] and MDP-CC [8]. Our scheme han-
dles congestion control only, thus can be used in com-

bination with other (e.g. reliability) schemes. Due to its
simplicity, it can also be potentially deployed on gateways
to separated a multicast tree into different segments, each
of which can have its own rate, so that heterogeneous re-
ceivers may get data at their individually desired rates.

REFERENCES

[1] S. Bajaj, et al, “Improving Simulation for Network Research”, Technical
Report 99-702b, University of Southern California, March 1999, revised
September 1999, to appear in IEEE Computer

[2] J. Byers, M. Luby, M. Mitzenmacher, “Fine-Grained Layered Multicast”,
Infocom 2001

[3] J. Byers, G. Kwon, “STAIR: Practical AIMD Multirate Multicast Con-
gestion Control”, NGC 2001

[4] A. Fei, J. Cui, M. Gerla, M. Faloutsos, “Aggregated Multicast: an Ap-
proach to Reduce Multicast State”, Globecom 2001

[5] J. Li, S. Kalyanaraman, “MCA: A Rate-based End-to-end Multicast Con-
gestion Avoidance Scheme”, ICC 2002, April 2002.

[6] J. Li, S. Kalyanaraman, “ORMCC - Multicast Congestion Control Based
on Explicite Rate Feedback”, Technical Report of CS, RPI, 2002. Avail-
able at http://www.cs.rpi.edu/ Â lij6/Research /my papers/ormcc-tr.ps.gz.

[7] J. C. Lin, S. Paul, “RMTP: A reliable multicast transport protocol”, Info-
com 1996, March 1996

[8] J. Macker, R. Adamson, “A TCP Friendly, Rate-Based Mechanism for
Nack-Oriented Reliable Multicast Congestion Control”, Globecom 2001

[9] T. Nguyen, K. Nakauchi, M. Kawada, H. Morikawa, T. Aoyama, “Ren-
dezvous Points Based Layered Multicast”, IEICE Trans. Commun., Vol.
E84-B, No. 12, Dec. 2001.

[10] J. Padhye, V. Firoiu, D.F. Towsley and J.F. Kurose, “Modeling TCP Reno
Performance: A Simple Model and Its Empirical Validation”, IEEE/ACM
Transactions on Networking, 8(2): 133-145, April 2000.

[11] L. Rizzo, “PGMCC: A TCP-friendly Single-Rate Multicast Congestion
Control Scheme”, SIGCOMM ’00, Aug ’00.

[12] J. Widmer, M. Handley, “Extending Equation-based Congestion Control
to Multicast Applications”, SIGCOMM 2001, Aug 2001

