
1

On Impact of Non-Conformant Flows on a Network
of DropTail Gateways

K. Chandrayana and S. Kalyanaraman
ECSE Dept., Rensselaer Polytechnic Institute

Abstract—In this paper we evaluate rate distributions between compet-
ing flows in a network of DropTail queues. Specifically we look at the case
when some of the flows are non- conformant or mis-behaving and it’s effect
on conformant flows. Our results show in a network of DropTail queues
mis-behaving flows can have significantly higher bandwidth allocations at
the cost of conformant flows. Further this unequal sharing worsens in a
multi-bottleneck scenario where conformant flows may consistently time-
out. However the distribution of rates improves if RED is used at the bot-
tleneck thus suggesting deployment of RED.

In this paper we also look at the fairness from the network’s perspective
rather then end-user’s. As such we propose an analytical model for man-
aging non-conformant or mis-behaving flows by manipulating congestion
penalties conveyed to them. We show that this penalty transformation can
map a user’s utility function, Us, to any objective utility function, Uobj .
These penalty transformation modules can be completely implemented at
the edge and can also work with Droptail queues. We have analyzed the
framework and evaluated it for both single and multi bottleneck scenarios.

I. INTRODUCTION

This paper evaluates the impact of mis-behaving flows on the
rate allocations in a network of DropTail queues and proposes an
edge-based re-marking framework to manage this misbehavior.
Recently congestion control schemes have been evaluated and
proposed using optimization frameworks [6], [7], [8]. These
framework show that the equilibrium rate allocation is depen-
dent on the utility function the user chooses to maximize. This
coupling of equilibrium rate allocation with the utility function
might prompt sources to choose a utility function which yields
them higher rate allocations. Thus from a network’s perspective
this creates the problem of “unfair” rate allocations.

Till now the Internet has been running on DropTail queues
and though many Active Queue Management (AQM) schemes
[5] have been suggested they haven’t been deployed for a va-
riety of reasons. Our simulation results show that the prob-
lem of unfair rate allocations is specifically severe in a network
of DropTail queues. Mis-behaving flows can force conformant
flows to consistently timeout, thus grabbing the entire network
bandwidth. However, we could avoid shutting out of conformant
flows by deploying Random Early Drop (RED) gateways in the
network. Though RED gateways can reduce the number of time-
outs for a conformant flow, it still does not address the problem
of unfair rate allocations. This is because AQM schemes try to
manage the congestion and do not differentiate between flows.
As such the mis-behaving flows are not penalized sufficiently.
In this paper we propose an edge-based re-marking framework
to manage mis-behaving flows which can work with both Drop-
Tail queues and a network of AQM schemes. However a lim-
itation of our work is that we consider only responsive flows,
i.e. flows which react to congestion notification by cutting down
their rates.

Suppose the network assumes that all the users are maximiz-

���
���
���

���
���
���

�����
�����
�����

���
���
���

Edge Nodes (Ingress)

Sources

Destinations

Dropping/ECN Supported
Sitting on the Reverse Path

Remarking Agents 
Remarking Agents 

Sitting on the Forward Path

Can be conformant 
or Mis-Behaving

Remarkers (Assign higher penalty to Mis-Behaving Sources)
They either remark ACKs or remark Packets

Edge Node (Egress)

For Remarking Packets
For Remarking ACKs

Core Network

Fig. 1. Model for policing Non-conformant users through Penalty Transforma-
tion.

ing the utility function, Uobj and derive their rate control from
it. We call, all the users who are actually maximizing Uobj

as conformant users. On the other hand, users who choose
to maximize a utility function, Us i.e. Us 6= Uobj are called
non-ocnformant or mis-behaving users. In this paper we show
through analysis that by transforming the penalty function of
the mis-behaving users we can make these sources to behave
as if they are conformant sources. Specifically, we propose a
modification to the dual formulation [8] to map a user’s utility
function, Us, to the network’s objective utility function, Uobj

by conveying a price U ′

s(U
′
−1

obj (p)) to the non-conformant user.
These penalty transformation agents can be placed on the net-
work edges and we can choose to re-mark either the packets or
acks. Figure 1 shows the model for the remarking framework.

The model presented in this paper can also be thought of as
a class of traffic conditioning framework, which can be used to
decouple the equilibrium rate allocation of the user and the util-
ity function he chooses to maximize. Also by mapping different
sets of flows to a range of target utility function differential ser-
vice to users can be provided in this framework.

Scheduling algorithms can also achieve the task of disassoci-
ating the fairness property from the user’s rate control scheme.
However, this choice would require placement of schedulers
throughout the network. Clearly, this is not a readily deploy-
able solution. Hence we need to look at schemes which can
disassociate fairness from user’s rate control scheme and which
require minimal upgrades.

We implemented this framework in NS with the penalty func-
tion transformation agents placed in the forward path to re-mark
(or drop) the packets. We evaluated it for various single and
multi-bottleneck topologies. Our results show that the frame-
work can “re-map” any non-conformant user to co-operative
user for any network scenario, if the utility function of the user
is known to the network. Further, the framework is robust and
works well even in the presence of background web-traffic and
reverse-path congestion.



2

0

50

100

150

200

0 150 300 450 600 750 900 1050 1200

Number of Roundtrip Times

Th
rou

gh
pu

t in
 pa

ck
ets

/se
c

Misbehaving Flow

TCP-Friendly Flow 

Fig. 2. Single Bottleneck: Throughputs (in pkts/sec) for two competing flows,
one is TCP Friendly while the other is Mis-behaving.

Number of Round Trip Times

T
hr

ou
gh

pu
t i

n 
P

ac
ke

ts
/S

ec

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200

Mis−Behaving Flows

TCP−Friendly Flow

Number of Round Trip Times

T
hr

ou
gh

pu
t i

n 
pa

ck
et

s/
se

c

0

50

100

150

200

250

0 200 400 600 800 1000 1200

Mis−Behaving Flows

TCP−Friendly Flow

(a) (b)

Fig. 3. Multi-bottleneck: Throughputs (in pkts/sec) for two competing flows,
one is TCP Friendly while the other is Non-conformant with and without
Re-Marking.

The rest of the paper is arranged as follows. In Section II
we first describe conformance and then show the impact of non-
conformant flows on a network of droptail queues. In Section
III we present the re-marking model for managing the non-
conformant flows. We present the simulation setup in Section
IV, results in Section V and discussions on merits and draw-
backs of the scheme in Section VI. Finally we present the con-
clusions and future work in Section VII.

II. NON CONFORMANT FLOWS AND DROP TAIL GATEWAYS

In this section we show the impact non-conformant flows
have on rate allocations in a network of DropTail queues. But
before we begin our discussion we first relate rate control
schemes to utility functions and use it to define and generate
non-conformant flows. Let x represent the rate. Then we could
identify the utility function of any increase/decrease based rate
(or window) control scheme with the following relationship

U ′(x) =
1

Rxf(x)g(x)
: f(x) ≥ 0, 0 ≤ g(x) ≤ 1 (1)

Further the increase policy, I, and decrease policy, D, of such
a scheme can be identified as I : 1

f(x) , D : g(x). Binomial
Congestion Control Scheme (BCCS) proposed in [1] is one spe-
cial case of the above model and is given as I : α/xk, D : βxl

where α, β, k, l define the Binomial Algorithm. Because of the
simplicity of implementation and understanding, for this work
we used BCCS to generate non-conformant flows. In this paper
we fixed the values of α, β as 1 and 0.5 respectively. The utility
function for a binomial scheme can be approximately calculated
as Us(xs) = −1

xk+l .
In this paper we have defined flows which are TCP Friendly

[3], i.e. k+l = 1 as conformant. In this case, the non-conformant
flows are defined by k+l < 1. This is because network allocates
more resources to flows which have higher marginal utility, U ′

s.
Henceforth, in this paper, we will use the k and l values to iden-
tify non-conformant flows. However we need to point out that

Router Router

x Mbps 20 ms

10 x Mbps 10 x Mbps

5ms 5ms

S1

S2

Sn

D1

D2

Dn

RouterRouter

������������������������

�������
� ����

20ms 
Router

D1

5ms 

S1

Dn

S3

D3

D4

Sn

S4

5ms 

5ms 

5ms 

5ms 5ms 

5ms 

0.8 Mbps

20ms 

0.8 Mbps

5ms

8 Mbps

8 Mbps

8 Mbps

8 Mbps

(a): Single Bottleneck (b): Multi-Bottleneck

Fig. 4. Topologies used in the Simulations.

TCP Friendliness is just one special case of conformance in this
framework as the network may choose any other model of con-
formance as described in detail in our techreport [2].

In figures 2 and 3 we plot the throughputs for flows compet-
ing on a single and multi-bottleneck topologies respectively. We
first present the result with a single bottleneck (4 a) of 0.8Mbps
and access links of 8Mbps for 2 competing flows. One of the
flows is TCP-Friendly while the other is misbehaving flow (k=0,
l=0.5). Both the flows have same RTT of 60ms. It can be
seen from the figure 2 that in absence of re-marking the non-
conformant flow gets most of the bottleneck share. Moreover it
beats the TCP-Friendly flow comprehensively.

Figure 4 b) show a multi-bottleneck topology with a TCP-
Friendly flow traversing both the bottlenecks while one short
mis-behaving flow (k=0, l=0.5), each going through one bottle-
neck. It can be seen from figure 3 a) TCP-Friendly is almost
shut out by the mis-behaving flows, who now get all the band-
width. Not only is the TCP-Friendly flow is forced into mul-
tiple timeouts (23 for this case) but these timeouts occur with
very small windows and are often back to back. Similar re-
sults were obtained with a higher multiplexing (of flows) but
due to space constraints are not reported here. In summary, with
DropTail queues mis-behaving flows may get significant share
of the bandwidth, almost to the extent of shutting out confor-
mant flows.

Figures 3 b) also plot the throughput when instead of Drop-
Tail queues we used RED queues at the bottleneck. (The reader
is referred to Section IV for RED settings.) It can be con-
cluded from the figures that though RED improves the shares of
TCP-Friendly flow, the unfair rate allocations because of mis-
behavior of flows persist. This is because the final rate alloca-
tions are dependent on the utility function used by the user’s
and as such an different choices of utility funciton can cause un-
fair sharing of the bottleneck. Now we outline our re-marking
framework through which we can re-map any utility function,
US to a network’s target utility function Uobj and thus ensure
fair sharing of bottleneck, even with DropTail queues.

III. RE-MARKING FRAMEWORK FOR MANAGING

NON-CONFORMANT FLOWS

Consider a user s, who is described with the help of his rate,
xs, a utility function Us and the Set of links which he uses,
L(s). Let the network be identified with links l of capacity Cl

and the set of users using a link, l, be given by S(l). Further,
assume that the rates are bounded and that the utility functions
are increasing with rates and strictly concave. Then the flow
optimization problem is defined as [8]:

maximize
∑

s∈S

Us(xs) (2)



3

subject to
∑

s∈S(l)

xs ≤ Cl, ∀l (3)

for all xs ≥ 0. The solution to this problem is given by the
following update rules

xs(t) = U
′
−1

s (
∑

l

pl) (4)

pl(t + 1) = [pl(t) + γ(
∑

s∈S(l)

xs − Cl)]
+ (5)

where pl are the dual variables of the problem and can be iden-
tified as penalties, price or link loss probability [8], [7], [6].

Assume, that the network decides that the final equilibrium
rate allocation should be, as if every user chose to maximize a
utility function of Uobj . Now, if we communicate a link price
f(pl), instead of pl, then the user-rate updation algorithm is

xs(t) = U
′
−1

s (
∑

l∈L(s)

f(pl))

Further, if we choose f(pl) : f(pl) ≥ 0, ∀pl, f(0) = 0 and the
following condition holds true

∑

l∈L(s)

f(pl) = U
′

s(U
′
−1

obj (
∑

l∈L(s)

pl)) = g(
∑

l∈L(s)

pl) (6)

the the user’s rate adaptation will appear as

xs = U
′
−1

s (
∑

l

f(pl)) = U
′
−1

obj (pl) (7)

which suggests that the user’s now seems to be maximizing a
utility function of Uobj (instead of Us. In other words, it shows
that we can map the utility function Us to Uobj . Now consider
the following update rules

pl(t + 1) = [pl(t) + γ(
∑

s∈S(l)

xs − Cl)]
+ (8)

xs(t + 1) = U
′
−1

s (
∑

l

f(pl(t))) (9)

Proposition 1: Given the non-negativity constraint on xs and
strictly concave utility functions Us and Uobj , the update rule
defined in equation (8,9) maximizes a flow optimization prob-
lem where every user has a utility function of Uobj .
Proof: See Appendix VII.

The above link price update rule shows that the price being com-
municated to the user can be updated at the edge. We now state
the algorithm for the edge re-marker as
Edge Marker’s Algorithm:
• For each source, receive from the network the total price for
the source’s traffic as ps(t) =

∑

l∈S(l) pl(t).
• Recalculate (or Re-mark) the new price for the source as

ps
new =

∑

l∈S(l)

pnew
l (t) = g(

∑

l∈S(l)

pl(t)).

• Communicate this re-marked price, ps
new to the source.

0

50

100

150

200

0 150 300 450 600 750 900 1050 1200

TCP-Friendly Flow (No Remarking)
Misbehaving Flow (No Remarking)

TCP-Friendly Flow (With Remarking)
Misbehaving Flow (With Remarking)

Number of Roundtrip Times

T
hr

ou
gh

pu
t i

n 
pa

ck
et

s/
se

c

50

60

70

80

90

100

110

120

130

140

0 200 400 600 800 1000 1200 1400

TCP Friendly (Remarked)

TCP Friendly (No Remarking)
Mis-Behaving Flow (No Remarking)

Mis-Behaving Flow (Remarked)

Number of Round Trip Times 

T
hr

ou
gh

pu
t i

n 
pa

ck
et

s/
se

c

(a): DropTail Queues (b): RED Gateways

Fig. 5. Single Bottleneck: Throughputs (in pkts/sec) for 2 competing flows on
a network of DropTail and RED queues with and without Re-Marking. One
flow is TCP Friendly while the other is Non-Conformant (k=0,l=0.5).

IV. IMPLEMENTATION

We implemented the edge based re-marker in the NS (Net-
work Simulator). The edge based re-marker was placed on
the forward path and re-marked (or dropped) the packets. The
edge re-marker also estimated the loss rate for each flow and
subsequently used it for re-marking. For the purposes of esti-
mating losses, we used Exponential Weighted Moving Average
(EWMA) and the Weighted Average Loss Indication (WALI)
methods of Equation-based rate control algorithm [4]. We up-
dated these loss indications every RTT and we have assumed
that the network knows the RTT of the flows. We also assumed
that we know the utility functions of all the flows. In this paper
we present the results for EWMA based loss-estimator. Similar
results were obtained with WALI based estimator. For EWMA
based system we gave 60% weight to the history, while with the
WALI based estimator we measured samples over 8 windows to
estimate losses. A more detailed discussion on the merits and
demerits of these schemes can be found in [4].

For our simulation we used the congestion control and loss
recovery mechanisms of TCP New Reno. The maximum adver-
tised window is set sufficiently high so that it does not constrain
the actual window. The simulation time for each setup was 1500
seconds and the packet size was 500B. We plot the throughput of
competing flows in packets/sec, averaged over 20 RTT. We as-
sumed that all the flows have infinite data to transfer. The RED
queues were setup with min thresh and max thresh set as buffer/3
and 0.8*buffer respectively, where buffer is the total bottleneck
buffer length. For the RED queues the dropping probability was
set to 0.1 .

V. SIMULATION RESULTS

In the following section we present the results of the simu-
lation for single bottleneck and multiple bottleneck topologies.
We evaluate both these setups for different bottleneck link ca-
pacity and different type of non-conformant flows. We also val-
idate the robustness and correctness of the scheme with back-
ground and cross traffic. We first present the results for single
bottleneck topology and follow it with other results in subse-
quent sections.

A. Single Bottleneck

We present the result with a single bottleneck of 0.8Mbps
and access links of 8Mbps for 2 competing flows. This is the
same setup as discussed in Section II. We sampled the packet-
stream at the egress router and placed the re-marker there. The
re-marker in this case conveyed the transformed penalties to the
mis-behaving flows by dropping its packets. Figure 5 shows the



4

Number of Round Trip Times

T
hr

ou
gp

ut
 in

 p
ac

ke
ts

/s
ec

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200

Mis−Behaving Flow

TCP−Friendly Flow

Number of Round Trip Times

T
hr

ou
gh

pu
t i

n 
pa

ck
et

s/
se

c

0

50

100

150

200

250

0 200 400 600 800 1000 1200

Mis−Behaving Flows

TCP−Friendly Flow

(a): DropTail Queues (b): RED Gateways

Fig. 6. Multi Bottleneck: Throughputs (in pkts/sec) for 2 competing flows on
a network of DropTail and RED queues with and without Re-Marking. One
flow is TCP Friendly while the other is Non-Conformant (k=0,l=0.5).

Number of Round Trip Times

T
hr

ou
gh

pu
t i

n 
pa

ck
et

s/
se

c

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800

TCP Friendly Flow

Mis−Behaving Flow

Number of Round Trip Times

T
hr

ou
gh

pu
t i

n 
pa

ck
et

s/
se

c

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800

Mis−Behaving Flow

TCP−Friendly Flow

(a): No Re-Marking (b): Re-Marking

Fig. 7. Background Traffic:Throughputs (in pkts/sec) for 10 competing flows
in a single bottleneck topology, where 7 flows are TCP Friendly while the
other 3 are Non-Conformant with (k=0, l=0.5) with 65% noise.

results of with and without the re-marking framework. It can
be seen from the figure 5 that in absence of re-marking the non-
conformant flow gets most of the bottleneck share. Moreover
it beats the TCP-Friendly flow comprehensively as against the
same simulation setup with RED queues (as shown in figure 5
b). However, when we start re-marking the misbehaving flows
this bias against the TCP-Friendly is reversed. But, it can be
seen from the figure 5 that now TCP-Friendly flow gets a better
share of the bottleneck. This is because unlike marking, drop-
ping is a stricter means to convey congestion notification as it
can lead to timeouts. As such the misbehaving flow suffers.

Figure 5 a) shows the results for a similar setup but with RED
queues. When we do not re-mark the non-conformant flow,
it garners more bandwidth than the TCP friendly flow. How-
ever, re-marking the non-conformant flow makes the two flows
to share the bandwidth equitably. Similar results were obtained
with higher order of flow multiplexing but are not reported here
for the reasons of space constraints.

B. Multi Bottleneck

In Section II we saw that the effect of mis-behavior was
more pronounced in the case of multi-bottleneck as the non-
conformant flows were trying to shut out the TCP friendly flow.
In figure 6 a) and b) we plot the results with re-marking en-
abled in the network, with DropTail and RED queues respec-
tively. Our results suggests that when re-marking is enabled on
a network of DropTail queues we can significantly improve the
sharing of the bottleneck. On a network of RED queues with re-
marking enabled the results are even more appealing thus point-
ing to virtues of deploying RED in the network.

C. Background Traffic

In this section we evaluate the framework in presence of
noise-like mice traffic. HTTP sources were added to the persis-
tent non-Conformant and conformant sources. Each http page
sends a single packet request to the destination, which then
replies with a file of size which was exponentially distributed

Flow DropTail RED
Type No-Rem Rem No-Rem Rem

TCP-Frndly 55 85 100 200
Non-Conformant 450 400 400 325

TABLE I

CROSS TRAFFIC: COMPARISON OF THROUGHPUT (PACKETS/SEC) FOR

NETWORK WITH DROPTAIL AND RED QUEUES WITH AND WITHOUT

RE-MARKING.

with 12 1Kb packets. After a source completes this transfer it
waits for a random time, which was exponentially distributed
with a mean of 1 second and then repeats the process.

We used a single bottleneck topology and used different level
of flow multiplexing to evaluate the effect of background traffic
on the performance of a droptail queue network with and with-
out re-marking. However we report results for one case where
there were 10 persistent and of these, 7 flows were TCP Friendly
while the remaining 3 where non-Conformant (k=0,l=0.5). The
bottleneck bandwidth for this simulation was 10Mbps and a
buffer of size 150 packets. Also in this setup we increased the
noise sufficiently high to validate the robustness of the scheme
in presence of many flows and noise. Figures 7 a) and 7 b) plot
the results for the cases where the noise traffic is 65% (or 80 http
sources), i.e. mice traffic occupied 65% of the bandwidth. Fig-
ure 7 b)shows the robustness of the scheme when sufficiently
high (65%) noise is present in the network and the re-marker
still manages to efficiently patrol non-Conformant users.

D. Cross Traffic

In this section we present the results for our penalty function
transformer when two way traffic is present. We evaluate this
scenario with the multi-bottleneck topology, where we have 5
TCP Friendly long flows and 5 non-Conformant (k=0, l=0.5)
short flows on each bottleneck. Additionally, on the reverse
path, there are 5 TCP Reno flows on each bottleneck. The bottle-
neck bandwidth for this simulation was 10Mbps and a buffer of
size 250 packets. Re-Marking, once again achieves fair sharing
of the bottleneck (as shown in Table I). However, it can be seen
from the results that DropTail queues perform poorly in compar-
ison to RED queues. This further suggests that deployment of
RED will help in improving overall network performance, espe-
cially in presence of non-conformant flows.

VI. DISCUSSION

In this paper we have proposed an abstract model for mod-
eling and managing non-conformant flows. We believe this is
the first work in this direction and an area which needs to be ex-
plored further. In this section we will debate the merits and the
limitations of the model.

In this paper we have modeled the utility function of non-
conformant flows as strictly increasing and concave. Clearly,
this is just one part of the non-conformant flows, for CBR flows,
pseudo-concave utility functions etc would complete the non-
conformant flow realm. CBR sources could be modeled as sat-
uration functions (as used in control systems). The model pro-
posed in this paper, would still be valid for inelastic utility func-
tion provided that they are strictly increasing in their argument.

The scheme proposed in this paper is sensitive to loss and



5

utility function estimation. Techniques for loss estimation have
been discussed in detail in [4]. Estimation of utility function also
has a significant impact on the performance of the re-marking
framework. In [2] we have outlined Linear Minimum Mean
Squared Error (Linear MMSE) and Non-Linear MMSE meth-
ods for estimating the utility function. Both these techniques
work well if there are sufficient number of samples, specifically
loss samples. However, if there are fewer loss samples then we
would have to weigh the samples appropriately such that we dis-
count the samples where we dont have any or one loss.

Despite these limitations, we believe our work is a first step
in modeling and managing non-conformant flows. The incen-
tives for such an approach are clearly high. We have showed in
this paper that we can effectively decouple the fairness criteria
from the user’s rate control algorithm. The solution proposed
in this paper can be implemented at the network edges. Further
we have a flexibility of choosing either to re-mark the packets
or acks. In cases where we do not have access to the packet-
stream we can re-mark the ack-stream and achieve the goals of
the model. Packeteer boxes, deployed widely on the Internet, al-
ready do a similar work by accessing the ack-stream and pacing
the acks [9] and work well with even 20,000 flows.

In this paper we have presented only a section of simula-
tion results. We refer the reader to our techreport [2] where
we provide results for other interesting scenarios. Specifically,
we would like to point out the results of our estimation of utility
function and a sensitivity analysis of the re-marking framework.

This framework can also provide more robust and fair usage
based and flat rate pricing strategies. The reader is referred to [2]
for a more detailed discussion on the achievable pricing strate-
gies within this framework.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we looked at the impact of non-conformant
flows (or mis-behaving flows) on a network of Droptail and
RED queues. Our results show that on a network of Drop-
Tail queues non-conformant flows get a large (unfair) share of
the bandwidth. Further on multi-bottleneck scenarios the non-
conformant flows can almost shut out the conformant flows by
pushing them into timeouts. However, on a network of RED
queues though the non-conformant still share the bottleneck un-
fairly but the conformant flows are not shut out. In other words
the mis-behavior has a significant impact on a network of Drop-
tail queues than RED queues thus motivating for use of RED.

In this paper we have also proposed an abstract model for
modeling and managing non-conformant flows. Specifically we
propose a framework to map a user’s utility function, Us, to
any objective utility function, Uobj , by manipulating conges-
tion penalties. These penalty transformation agents can be com-
pletely implemented at network edges. This framework can be
used for decoupling fairness from user’s rate control schemes
and providing more robust usage and flat rate pricing schemes.

We have analyzed the framework and evaluated it for various
single and multi-bottleneck scenarios. The model is robust and
works well even in presence of high background (web) traffic
and reverse path congestion. We are currently working on ways
to estimate the utility function of the sources.

APPENDIX

I. PROOF FOR RE-MAPPING NON-CONFORMANT FLOWS

FRAMEWORK

We assume that the Utility functions are continuous, strictly
concave and increasing in their arguments. Further the rates are
bounded by I: [ms, Ms].
Proposition: Given the non-negativity constraint on xs and
strictly concave utility functions Us and Uobj , the update rule
defined in equation (8,9) maximizes a flow optimization prob-
lem where every user has a utility function of Uobj .

Proof: The re-mapping function, U ′

s(U
′
−1

obj (p)), can also be ex-
plained as the solution to the following set of equations:

∑

s∈S(l)

xs ≤ Cl, ∀l (10)

pl(
∑

s∈S(l)

xs − Cl) = 0 (11)

U
′

s(xs) = g(
∑

l∈L(s)

pl) (12)

and p, x ≥ 0, which are in turn the KKT conditions for the
following strictly concave maximization problem

max
︸︷︷︸

x

∑

s∈S

∫ xs

0

F (U
′

s(ys)) dys (13)

∑

s∈S(l)

xs ≤ Cl, ∀l, x ≥ 0 (14)

F =
(

U
′

s

(

U
′
−1

obj (xs)
))−1

(15)

Now differentiating the objective function (as defined in equa-
tion (13) twice with respect to xs we get

∂2
∫ xs

0 F (U
′

s(ys)) dys

∂x2
s

= F ′(U ′

s(xs)) U
′′

s (xs) = U
′′

obj(xs)

(16)
Then using assumption we conclude that the objective function
(equation 13) is indeed strictly concave. Further it can be con-
cluded that the optimization problem is presented as if all flows
have a utility function of Uobj .

REFERENCES

[1] D. Bansal and H. Balakrishnan. Binomial Congestion Control Scheme.
Proc. of IEEE INFOCOM, Tel-Aviv, Israel, March 2000.

[2] K. Chandrayana and S. Kalyanaraman. An Edge-Based Re-Marking Frame-
work for Managing Non-Conformant Flows in Congested Inter-Networks.
RPI ECSE Techrepot, ECSE-NET-2003-1, Feb 2003.

[3] S. Floyd and K. Fall. Promoting the Use of End-to-end Congestion Control
in the Internet. IEEE/ACM Trans. on Networking, 7(4):458-472, 1999.

[4] S. Floyd, etal. Equation-Based Congestion Control for Unicast Applica-
tions. In Proc. of ACM SIGCOMM, Aug 2000.

[5] S. Floyd and V. Jacobson. Random early detection gateways for congestion
avoidance. IEEE/ACM Trans. on Networking, 1(4):397–413, Aug 1993.

[6] F. Kelly, A. Maulloo and D. Tan. Rate control in communication networks:
shadow prices, proportional fairness and stability. Journal of the O.R. Soci-
ety, 49 (1998) 237-252.

[7] S. Kunniyur and R. Srikant. End-To-End Congestion Control: Utility Func-
tions, Random Losses and ECN Marks., Proc. of INFOCOM , Mar 2000.

[8] S. H. Low, D. E. Lapsley. Optimization Flow Control, I: Basic Algorithm
and Convergence. IEEE/ACM Trans. on Networking, 7(6):861-75, 1999

[9] Packeteer. http://www.packeteer.com


