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Abstract— In this paper we propose an analytical model
for managing non-cooperative or mis-behaving flows in the
Internet by manipulating congestion penalties conveyed to
them. We show that a penalty transformation derived from
the Duality formulation of Utility Maximization problem
can map a user’s utility function, ��, to any objective utility
function, ���� . These penalty transformation modules can
be completely implemented at the edge and require (Explicit
Congestion Notification) ECN support. We have analyzed
the framework and evaluated it for both single and multi
bottleneck scenarios. This framework can also be used for
providing more robust usage and flat rate pricing schemes
and also for disassociating the fairness from user’s rate con-
trol schemes.

I. INTRODUCTION

Recently congestion control schemes have been evalu-
ated and proposed using optimization frameworks [5], [6],
[7]. In these papers, the resource allocation problem is
proposed as 1) individual users maximizing their utility
functions and 2) network maximizing every user’s utility
function given the network capacity constraints.

A significant result of these works is that they show the
existence of stable rate adaptation schemes. The analy-
sis also shows that the equilibrium rate allocation is very
closely tied with the utility function the user chooses to
maximize. This association of equilibrium rate allocation
with the utility function might prompt sources to choose a
utility function (and hence an aggressive congestion con-
trol scheme) which yields them higher rate allocations
than other competing sources. Such a choice of utility
function will still optimize the network and keep it stable,
though at the cost of unfair allocations amongst users.

Further the Active Queue Management (AQM) schemes
try to manage the congestion and thus do not differentiate
between flows. As such the rate allocations in the network
can be unfair, if all the users choose to maximize different
utility functions. Therefore, Can the fairness criteria be
decided by the network irrespective of the utility function
users choose to maximize? We call this problem of unfair
rate allocation as Non-Cooperative Congestion Control.

Constant Bit Rate (CBR) sources also pose the problem
of unfair allocations. However CBR sources do not re-
act to congestion indications hence we would need some
sort of active policing mechanism like packet dropping,
shaping etc. Further quite a few sites block UDP connec-
tions, as such it is imperative to look out for other possible
forms of selfish rate-control schemes. Hence in this work
we concentrate on patrolling the mis-behavior of selfish re-
sponsive flows, i.e. flows which react to loss or congestion
indications by cutting down their rates. These flows can be
obtained by small modifications to TCP’s rate control al-
gorithm. Thus they can go through any network and their
selfish behavior poses a problem in the network. Now we
outline the non-cooperative congestion control problem.

Suppose the network assumes that all the users are max-
imizing the utility function, ���� and derive their rate con-
trol from it. We call, all the users who are actually max-
imizing ���� as cooperative or conformant users. On the
other hand, users who choose to maximize a utility func-
tion, �� such that �� �� ���� are called non-cooperative
users. Specifically, we call all the users who have higher
marginal utility than ���� (i.e. �

�

� � �
�

���) as non-
cooperative. This is because, the network allocates more
resources to users who have higher marginal utility.

In this paper we show how a utility function can be
mapped to a family of congestion control schemes, and
thus define non-cooperative realms. Then once these non-
cooperative sources have been identified, we show through
analysis that by transforming their penalty function we can
make these sources to behave as if they are conformant
sources, i.e. map �� to ���� . In summary, we propose a
framework for policing non-cooperative flows in the Inter-
net by conveying a higher penalty to them. Specifically,
we propose a modification to the dual formulation [7] to
map a user’s utility function, ��, to the network’s objec-
tive utility function, ���� . Further, these penalty transfor-
mation agents can be placed on the network edges and we
can choose to re-mark either the packets or acks. (Function
similar to re-marking the ack stream is already being done
[9]. Packeteer boxes pace the ack stream and are widely



2

��
��
��
��

��
��
��
��

Edge Nodes (Ingress)

Sources

Destinations

ECN Supported
Sitting on the Reverse Path

Remarking Agents 
Remarking Agents 

Sitting on the Forward Path

Can be conformant 
or Mis-Behaving

Remarkers (Assign higher penalty to Mis-Behaving Sources)
They either remark ACKs or remark Packets

Edge Node (Egress)

For Remarking Packets
For Remarking ACKs

Core Network

Fig. 1. Model for policing Non-Cooperative users through
Penalty Transformation.

deployed over the Internet.) Figure 1 shows the model for
policing non-cooperative users.

Through this utility function transformation we can dis-
associate the fairness criteria from the user’s rate control
scheme. So now the network provider can choose the
fairness criteria he wants to deploy on his network, find
a utility function which achieves it and then map every
flow to that utility function. Also, this could lead to devis-
ing schemes wherein we can restrain the more aggressive
flows and have some form of social optimum. This frame-
work could also find application in pricing especially those
of usage based or flat rate pricing. By having all users
conform to a particular rate control scheme, the network
ensures that it is fair to all users and hence makes usage
based or flat rate billing more meaningful.

The model presented in this paper assumes that the util-
ity functions are strictly concave and increasing or elas-
tic. However, the model will also hold for strictly increas-
ing pseudo-concave functions. Also re-marking packets
(acks) is used as method of conveying penalties in this
model, which might be extended to dropping packets. We
haven’t evaluated dropping as a means of conveying penal-
ties. In cases where a flow uses a single exit (or entry)
router the model is immune to path-asymmetry. However
for all other cases path-asymmetry needs to be explored
further. In spite of these limitations we believe this is a first
step to modeling and managing non-cooperative flows.

Scheduling algorithms can also achieve the task of dis-
associating the fairness property from the user’s rate con-
trol scheme. However, this choice would require place-
ment of schedulers throughout the network. Clearly, this
is not a readily deployable solution. Hence we need to look
at schemes which can disassociate fairness from user’s rate
control scheme and which require minimal upgrades.

We implemented this framework in NS with the penalty
function transformation agents placed in the reverse path
to re-mark the ACKs. We evaluated it for various sin-
gle and multi-bottleneck topologies. Out results show that

the framework can “re-map” any non-cooperative user to
co-operative user for any network scenario, if the utility
function of the user is known to the network. Further,
the framework is robust and works well even in the pres-
ence of background web-traffic and reverse-path conges-
tion. However, when the utility functions of the user are
not precisely known (or the utility function estimation er-
ror is more than 5%) the model cannot fully re-map the
utility functions. In cases where we under-estimate the
aggressiveness of non-cooperative flow the selfish user is
not sufficiently marked and hence still grabs more band-
width. However in spite of these estimation errors, these
shares are still more fair than the case when there was no
re-marking present.

The rest of the paper examines the policing of non-
cooperative sources in detail. In Section II we first describe
the system and discuss the dual formulation [7]. In Sec-
tion III we present the non-cooperative congestion model.
We present the simulation setup in Section IV, results in
Section V and discussions on merits and drawbacks of the
scheme in Section VI. Finally we present the conclusions
and future work in Section VII.

II. LITERATURE SURVEY

Recently, quite a few optimization models have been
proposed for network flow optimization. In [5] the authors
analyze the stability and fairness of network under primal
and dual formulation. The dual formulation has also been
discussed in [7] where gradient projection method is used
to solve the problem. A penalty function approach to solv-
ing the network problem has been suggested by the authors
in [6]. Also, the current TCP implementations have been
mapped to optimized rate control algorithm in [8] [6].

In these optimization models a user s, is described with
the help of it’s rate, ��, a utility function �� and the set
of links which he uses, L(s). It is further assumed that the
rates bounded i.e., �� � �� � ��. It is assumed that
the utility functions are increasing with rates and strictly
concave. The network is identified with links l of capacity
��. The set of users using a link, l, is given by S(l).

The optimization problem can then be defined as user’s
trying to maximize their individual utility functions and
the network trying to maximize the resource allocation
subject to link capacity constraints. Thus the primal prob-
lem can be defined as:

�������	
�
���

������ (1)


��	�� ��
�

������

�� � ��� �� (2)

for all �� � �. The dual formulation, D(p), for the above
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problem was defined by Low in [7] as:

���� � �������
���

�
���

��������
�
�

����� �
�
�

���� (3)

The authors in [7] show that using the Karush Kuhn Tucker
(KKT) conditions and gradient projection algorithm the
dual yields the following update algorithm

����� � �
���
� �

�
�

��� (4)

����� �� � ������ � ��
�

������

�� � ����
� (5)

Since the primal is strictly concave and the constraints are
linear, there is no duality gap and hence dual optimal is
also primal optimal. Further the strict concavity entails
an unique global optimum, (���� �

��) where �� �
�

� ��.
Also though the primal optimal, ��� is unique, we may not
have a unique dual optimal ��� but instead we have a unique
optimum end-to-end loss probability for every source, ���.

III. NON-COOPERATIVE CONGESTION CONTROL

FRAMEWORK

From the discussion in the previous section we can con-
clude that both the rate control algorithm and the equilib-
rium rate can be associated with the utility function user
chooses to maximize (equation (4,5)). However, given the
same price being communicated by the network, the equi-
librium rates can be unequal. Thus even though the net-
work doesn’t desire to be perceived unfair, a bias in equi-
librium rates can be created by choosing two different util-
ity functions. We illustrate this through an example from
[6].

Consider a bottleneck link where two set of rate control
schemes compete for the bandwidth. The utility function
for set 1 is given by ������ � ��������� and that for set
2 is given by ������ � ����

��
� , where �� represents the

weight assigned to the flow. Let there be 50 sources each
in Set 1 and Set 2. Assume that the link capacity to be 300,
weights to be 1, the round-trip time (RTT) for all sources to
be same. Then the throughput seen by each source can be
obtained by solving the following optimization problem:

���
���
���

����� �
����
����

�

��
(6)


��	�� ��
���
���

�� �
����
����

�� � 	�� (7)

and ��� �� � � ��� . Solving this problem yields �� �

��� � � ��� ���� ��� and �� � ����  � ���� ���� ����. Thus

even though the network is fair, the equilibrium rate de-
pends on the rate control algorithm chosen by the sources.

Thus the sources can choose rate control schemes which
yield higher rate allocations. Another important point to
note is that even though the sources are cooperative (i.e.
they react to congestion indication) they still can be un-
fair. Therefore it is desirable to move the fairness criteria
away from the user’s rate control scheme to the network.
That way the network not only has the flexibility of be-
ing fair, but more importantly it can choose the fairness
criteria it wants to provide. Now we shall describe the
non-cooperative congestion control framework.

Consider the network model as described in Section II
where the user’s are maximizing the utility function ��.
Assume, that the network decides that the final equilibrium
rate allocation should be, as if every user chose to maxi-
mize a utility function of ���� . The rate updation algo-
rithm (and thus equilibrium rates) of the users is given by
equation (4). Now, if we communicate a link price �����,
instead of ��, then the user-rate updation algorithm will be

����� � �
���
� �

�
��	���

������

Further, if we choose �����  ����� � �, ���, f(0) = 0 and
the following condition holds true�

��	���

����� � �
�

���
���
��� �

�
��	���

���� � ��
�

��	���

��� (8)

then the rate updation algorithm algorithm becomes

�� � �
���
� �

�
��	���

������ (9)

� �
���
� ��

�

���
���
��� ������ (10)

� �
���
��� ���� (11)

where �� �
�

��	��� ��. From the above equation it is
easy to see that by communicating a different price we
have transformed the user’s utility function from ����� to
�������. This transformation can be explained by the fol-
lowing modified dual:

���� �
�
���

�������
�
�

������
�

������

�� � ��� (12)

where ����� is defined by equation 8. Now if, ����� is an
increasing function in �� and is always greater than 0; then
this function will not change the minima (because �����
satisfies all the properties of Lagrangian multipliers).
Proposition 1: Given the non-negativity constraint on ��
and �� and strictly concave utility functions �� and ���� ,
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the function ��
�

������ ���, ����� as defined in (8) are non-
negative and strictly increasing in their argument.
Proof: See Appendix VIII-A

Using the KKT conditions and the gradient projection
method we get the following rate and price updation rules

�� � �
���
� �

�
�

������ (13)

����� �� � ������ � �
�

���
������

�
������

�� � ����
� (14)

The above formulation is however impractical to imple-
ment because it requires per-flow queuing and that too in-
side the network. Since upgrades in the network are hard
to achieve consider the following update rule.

����� �� � ������ � ��
�

������

�� � ����
� (15)

����� �� � �
���
� �

�
�

��������� (16)

Proposition 2: Given the non-negativity constraint on ��
and �� and strictly concave utility functions �� and ���� ,
the new update algorithm as defined in equation (15,16)
still converges to the optimal point.
Proof: See Appendix VIII-B

Thus this update rule does not change the network ob-
jective, but still minimizes the dual function and con-
verges asymptotically. The above update rule also does
not change the core network, as we retain the price update
rule as proposed in [7]. Further, the price being communi-
cated to the user can be updated at the edge. We now state
the algorithm for the edge re-marker as
Edge Marker’s Algorithm:
� For each source, receive from the network the total price
for the source’s traffic as ����� �

�
������ �����.

� Recalculate (or Re-mark) the new price for the source as

��
�� � ��
�

������

�������

� Communicate this re-marked price to the source.
The update algorithm for the network and the source are
given by equation (15) and (16) respectively.
Theorem 1: Assume that utility functions, ��, are increas-
ing, strictly concave and continuously differentiable, and
their curvature is bounded away from 0. Then starting
from any initial rates in the interior of X and prices p(0)
� 0, every accumulation point (��� ��) of the sequence
(x(t), p(t)) generated by the above algorithm and equations
(15,16) is primal dual optimal.
Proof: See Appendix VIII-E.

IV. IMPLEMENTATION

We implemented the edge based re-marker in the NS
(Network Simulator). The edge based re-marker was
placed on the reverse path (i.e. on the reverse access link
of the user) and re-marked the ACKs. The edge re-marker
also estimated the loss rate for each flow and subsequently
used it to re-mark the ACKs. For the purposes of esti-
mating losses, we used Exponential Weighted Moving Av-
erage (EWMA) and the Weighted Average Loss Indica-
tion (WALI) methods of Equation-based rate control algo-
rithm [4]. We updated these loss indications every RTT
and we have assumed that the network knows the RTT of
the flows. We also assumed that we know the utility func-
tions of all the flows. In this paper we present the results
for EWMA based loss-estimator. Similar results were ob-
tained with WALI based estimator. For EWMA based sys-
tem we gave 60% weight to the history, while with the
WALI based estimator we measured samples over 8 win-
dows to estimate losses. A more detailed discussion on the
merits and demerits of these schemes can be found in [4].

For our simulation we used the congestion control and
loss recovery mechanisms of TCP New Reno. Also in this
paper, we disabled the delayed acknowledgments option.
For simulating non-cooperative flows we used the Bino-
mial Congestion Control scheme (BCCS) proposed in [1].
The window increase for BCCS is defined as

��� 	� � ��� �
 �� �� ��

 (17)
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��Æ 	� � �� �
 �� ��

 (18)

where �� ��  � � define the Binomial Algorithm. In this pa-
per we fixed the values of �� � as 1 and 0.5 respectively.
The throughput of Binomial Algorithm can be calculated
to be as � 
 �

�
�

�����

where x represents the throughput

and p represents the loss or mark rate. But from equation
(4), the marginal utility for a binomial scheme can be ap-
proximately calculated as �

�

����� 
 � 
 �
������

Also, it
follows from the above discussion that any utility function
which is defined as ���� 
 ��

��
can be mapped to a fam-

ily of binomial schemes such that k+l=n. This provides a
way to map quite a few utility functions to a window based
congestion control algorithm.

Therefore we use binomial schemes to generate non-
cooperative traffic sources. Further in this paper we have
defined the flows which are TCP Friendly [3], i.e. k+l =
1 as cooperative while the flows which beat TCP Friendly
flows are called non-cooperative. From the above discus-
sion it follows that non-cooperative flows can be generated
by choosing  � � ! �. Henceforth, in this paper, we will
use the k and l values to identify non-cooperative flows.
However we need to point out that TCP Friendliness is
just one special case of cooperation in this framework as
the network may choose any other model of cooperation,
i.e., any other choice of the ���� .

Figure 2(a) shows the single bottleneck topology used
in the simulations. The access links were configured at
a rate 10 times greater than that of the bottleneck link.
All the links use Random Early Drop (RED) queues with
min thresh and max thresh set as buffer/3 and 0.8*buffer
respectively, where buffer is the total bottleneck buffer
length. Further, the weight was set as 0.002 and the mark-
ing probability for RED was set to 0.1. The RTT was 60ms
and the packet size 500B.

Figure 2(b) shows a multi-bottleneck topology used in
the simulation. The bottleneck buffer was set to 25 pack-
ets. We also evaluated our framework for another multi-
bottleneck setup of bottleneck link of 10 Mbps, access link
of 100 Mbps and a buffer of 250 packets. The link de-
lays were kept the same. RED minimum and maximum
threshold settings were similar to those of single bottle-
neck. Also for all the simulation setups (single or multi-
bottleneck) the access link rate are always 10 times greater
than that of the bottleneck link.

The maximum advertised window is set sufficiently
high so that it does not constrain the actual window. The
simulation time for each setup was 1500 seconds. We plot
the throughput of competing flows in packets/sec, aver-
aged over 20 round-trip times. We assumed that all the
flows have infinite data to transfer.

V. SIMULATION RESULTS

In the following section we present the results of the
simulation for single bottleneck and multiple bottleneck
topologies. We evaluate both these setups for different bot-
tleneck link capacity and different type of non-cooperative
flows. We also validate the robustness and correctness of
the scheme with background and cross traffic. We first
present the results for single bottleneck topology and fol-
low it with other results in subsequent sections.

A. Single Bottleneck

In figure 3 a) we present the throughputs of two com-
peting flows on a single bottleneck of 0.8 Mbps with a
buffer of 25 packets. Here, one of the flows is TCP, while
the other is non-cooperative and is defined by  � � and
� � ���. As the figure 3 a) shows, when we do not re-
mark the non-cooperative flow, it garners more bandwidth
than the TCP friendly flow. However, re-marking the non-
cooperative flow makes the two flows to share the band-
width equitably. Figure 3 b) show similar results where
the non-cooperative user is defined by  � �, � � ���.

Figure 4 shows the results for a set of 10 competing
flows on a 10Mbps bottleneck and 150 packet buffer. The
flow set comprises of 7 TCP Friendly flows while the re-
maining 3 flows are non-cooperative and are defined by
 � � and � � ���. The bandwidth is shared equitably
in presence of re-marking, however in absence of it mis-
behaving flows easily beat the TCP Friendly flows.

We also evaluated our scheme when every flow has a
different utility function. Figure 5 shows the result for one
such setup for a bottleneck bandwidth of 0.8 Mbps. In this
simulation setup we have three flows, one TCP-Friendly
flow and the others are defined as (k=0, l=0.5) and (k=0,
l=0.2). We can see from the figure 5 that in the absence of
re-marking, non-cooperative flows beat the TCP friendly
flow; however when we re-mark the non-cooperative flows
the bandwidth is shared fairly.

B. Multi Bottleneck Topology

In this section we present the results for multi-
bottleneck topology (figure 2 b)). We define long flow as
a flow which traverses both the bottleneck, whereas the
short flows are defined as flows traversing only one bottle-
neck. In this simulation setup (0.8Mbps, 25 packet buffer),
we first measured the optimal rate allocations when all the
flows (long and short) are TCP friendly and plot them in
6 a). As expected, the short flows grab more share of the
bottleneck because they have smaller RTTs and go through
a single bottleneck as compared to the long flow. We then
changed the short flows to be non-cooperative (k=0, l=0.5)
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0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400

TCP Friendly Flows (7 in all)

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

Number of Round Trip Times

Mis-Behaving Flows (3 in all)

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000 1200 1400

Number of Round Trip Times
Th

ro
ug

hp
ut

 in
 p

ac
ke

ts/
se

c

Mis-Behaving Flows (3 in all)

TCP Friendly Flows (7 in all)

(a) No Re-Marking (b) Re-Marking the Non-Cooperative Flow

Fig. 4. Single Bottleneck: Throughputs (in pkts/sec) for ten competing flows, where seven flows are TCP Friendly while three are
Non-Cooperative (k=0, l=0.5) with and without Re-Marking.

0

20

40

60

80

100

0 200 400 600 800 1000 1200

Mis-Behaving Flow (k=0,l=0.5)

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

Number of Round Trip Times

TCP Friendly Flow

Mis-Behaving Flow (k=0,l=0.2)

0

20

40

60

80

100

0 200 400 600 800 1000 1200

Mis-Behaving Flow (k=0,l=0.5)
TCP Friendly Flow 

Mis-Behaving Flow (k=0,l=0.2)

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

Number of Round Trip Times

(a) No Re-Marking (b) Re-Marking the Non-Cooperative Flows

Fig. 5. Single Bottleneck: Throughputs (in pkts/sec) for three competing flows, where one flow is TCP Friendly while the other
two are Non-Cooperative with (k=0, l=0.5) and (k=0, l=0.2) resp., with and without Re-Marking.

and plot the result in 6 b). The effect of mis-behavior is
more pronounced in this case as the non-cooperative flows
are trying to shut out the TCP friendly flow. However,
when we used our model to re-mark the non-cooperative
flows we see that (figure 6 c)) the flows now share the
bandwidth fairly. More importantly, we see that the result
in figure 6 c) is very similar to 6 a), i.e., we have success-
fully mapped the utility function of the non-cooperative
flows. We also simulated the scenario where the long flows
were non-cooperative and short flows TCP-Friendly. How-
ever due to space constraints we do not show those results
here. There too our model was successful in mapping the
utility function of non-cooperative flows.

In figures 6 d), e) and f) we plot the results for a multi-
bottleneck topology (10Mbps, 250 packets buffer) where

on each bottleneck there are 5 TCP Friendly flows and 5
non-cooperative flows (k=0, l=0.5). Figure 6 (d) plots the
throughput of long and short flows, if they all were TCP
Friendly. As expected the longer flows get a smaller share
of the bottleneck than the shorter flows. In Figure 6 (e), we
changed the shorter flows to act as non-cooperative flows
and plot the throughput, and it can be seen that the non-
cooperative shorter flows conveniently beat down the TCP
friendly flows. However, in presence of re-marking, (Fig-
ure 6 (f)) the non-cooperative flows are conveyed higher
price by the edge-re-marker and hence now share the bot-
tleneck more favorably with the longer flows. Once again,
we see that re-marking tends to achieve the same perfor-
mance as those as if all the flows were TCP Friendly.
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Fig. 6. Multi Bottleneck: Throughputs (in pkts/sec) for competing flows (2 and 10), where the long flows are TCP Friendly while
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flows are plotted in figures (a) and (d) respectively.
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Fig. 7. Background Traffic: Throughputs (in pkts/sec) for two competing flows in a single bottleneck topology, where one flow
is TCP Friendly while the other is Non-Cooperative with (k=0, l=0.5). Also there is web-traffic in the background.

C. Background Traffic

In this section we evaluate the framework in presence of
noise-like mice traffic. HTTP sources were added to the
persistent non-cooperative and conformant sources. Each
http page sends a single packet request to the destination,

which then replies with a file of size which was exponen-
tially distributed with 12 1Kb packets. After a source com-
pletes this transfer it waits for a random time, which was
exponentially distributed with a mean of 1 second and then
repeats the process.

Two sets of simulations were conducted for the single
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Fig. 8. Background Traffic: Throughputs (in pkts/sec) for 10 competing flows in a single bottleneck topology, where 7 flows are
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0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400

Th
ro

ug
hp

ut
 in

 p
ac

ke
ts/

se
c

Number of Round Trip Times

TCP Friendly Flows (7 in all)

Mis-Behaving Flows (3 in all)

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400

Number of Round Trip Times
Th

ro
ug

hp
ut

 in
 p

ac
ke

ts/
se

c

TCP Friendly Flows (7 in all)

Mis-Behaving Flows (3 in all)

(a) No Re-Marking (b) Re-Marking

Fig. 9. Background Traffic:Throughputs (in pkts/sec) for 10 competing flows in a single bottleneck topology, where 7 flows are
TCP Friendly while the other 3 are Non-Cooperative with (k=0, l=0.5) with 65% noise.

bottleneck case. In the first simulation, there were two
persistent flows (one non-cooperative and the other TCP
Friendly) competing for a bottleneck of 0.8 Mbps. 2 and
4 http sources were added to generate 15% and 25% noise
(ie the http sources occupied 15% and 25% of the bottle-
neck bandwidth). The results for this simulation are plot-
ted in figure 7. Again, it can be seen that the re-marking
works well in the presence of noise and the bottleneck is
shared equitably. In another simulation we increased the
number of competing persistent flows to 10 and of these,
7 flows were TCP Friendly while the remaining 3 where
non-cooperative (k=0,l=0.5). The bottleneck bandwidth
for this simulation was 10Mbps and a buffer of size 150
packets. Also in this setup we increased the noise suffi-
ciently high to validate the robustness of the scheme in
presence of many flows and noise. Figures 8 and 9 plot the
results for the cases where the noise traffic is 20% (25 http
sources) and 65% (80 http sources) respectively. Figure 9
shows the robustness of the scheme when sufficiently high
(65%) noise is present in the network and the re-marker
still manages to efficiently patrol non-cooperative users.

D. Cross Traffic

In this section we present the results for our penalty
function transformer when two way traffic is present. We
evaluate this scenario with the multi-bottleneck topology,
where we have 5 TCP Friendly long flows and 5 non-

cooperative (k=0, l=0.5) short flows on each bottleneck.
Additionally, on the reverse path, there are 5 TCP Reno
flows on each bottleneck. The bottleneck bandwidth for
this simulation was 10Mbps and a buffer of size 250 pack-
ets. Re-Marking, once again achieves equitable sharing of
the bottleneck (as shown in Figures 10 (a) and (b)).

E. Effect of Inaccurate RTT Estimate

In this section we investigate the effect of inaccurate
RTT estimates. In all our previous simulations we as-
sumed that the network knows the RTT of the flows. We
used these RTT estimates to update our congestion indica-
tion estimations. For the results presented in this section
we looked at two cases, one when we under-estimated the
RTT and the other when we over-estimated it. We present
the results with a single-bottleneck of 0.8Mbps, 25 packet
buffer and 2 competing flows.

Figure 11 a) shows the results when the RTT was under-
estimated as 0.05 (instead of 0.06). Figure 11 b) shows
similar results when we over-estimated the RTT as 0.07.
The figures suggest that inaccuracy in RTT estimates alters
the convergence speed to the optimal point; a larger value
of RTT will slow down the convergence while a smaller
value will increase the convergence. However, from both
the results its easy to see that the effect of inaccurate RTT
estimation is not pronounced and the model works well.
We ran simulations with higher degree of multiplexing and
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came to a similar conclusion. Due to reasons of space con-
straints we do not present those results here.

F. Effect of Inaccurate Utility Function Estimate

Till now we have assumed that the network knows the
utility function of the flows. Since utility functions are not
being explicit conveyed to the network therefore we will
need to estimate them. Thus we need to explore the effect
of inaccurate utility function estimates. In this section we
evaluate the model’s sensitivity to utility functions; when
the utility functions are under-estimated and second when
they are over-estimated. Under-estimation here refers to
the case when we estimate the utility function to be less
aggressive than it really is, i.e. when  � � values are re-
ported to be larger than the actual values. Over-estimation
refers to the case where we report the flow to be more ag-
gressive than it really is, i.e.  � � values are reported to be
smaller than the actual values. We present the results with
a single-bottleneck topology (figure 2 a)) for 2 flows.

Figure 12 a) shows the results when the utility function
was under-estimated as 0.6 (instead of 0.5). Figure 12 b)
shows similar results when we over-estimated it as 0.4. It
can be seen from the results that the model is sensitive to
inaccurate estimate of utility functions. When we under-
estimated the utility function ( �� � ���) the model didn’t
penalize the mis-behaving flow much, and as such it still
garners more bandwidth than the TCP flow. In the case

of over-estimation ( � � � ��
) we see that the network
penalizes the mis-behaving flow more and consequently
brings it share down below the TCP Friendly flow.

However, the estimation errors pointed out in the sim-
ulation are large (the error is 20% since we estimate the
 � � values as 0.5�0.1). We evaluated the model for two
other error estimates, 10% and 5% and report the result for
the 5% error case in figure 13. As expected, as the esti-
mation error decreases the model starts to get better. Fur-
ther we found that for estimation errors of more than 5%
the model does not penalize (or over penalizes) the mis-
behaving flow much and it consequently has a larger (or
smaller) share at the bottleneck. However in spite of these
estimation errors, these shares are still more fair than the
case when there was no re-marking present. For estima-
tion errors of less than or equal to 5% the model worked
well (figure 13). We evaluated the model for different sim-
ulation setting where we had 10 flows (5 mis-behaving, 5
friendly) and came to a similar conclusion.

VI. DISCUSSION

In this paper we have proposed an abstract model for
modeling and managing non-cooperative flows. We be-
lieve this is the first work in this direction and an area
which needs to be explored further. In this section we will
debate the merits and the limitations of the model.

In this paper we have modeled the utility function of
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non-cooperative flows as strictly increasing and concave.
Clearly, this is just one part of the non-cooperative flows,
for CBR flows, pseudo-concave utility etc would complete
the non-cooperative flow realm. CBR sources could be
modeled as saturation functions (as used in control sys-
tems). However these sources do not react to marks and
as such we would need to look at dropping as the means
of penalty. Since dropping is an irreversible function, the
penalty function transformers should be placed on the for-
ward path, at the egress nodes. But then path-asymmetry
issues can complicate the placement of the penalty func-
tion transformers. We leave the policing of CBR sources
as future work. Real time application needs are often mod-
eled using pseudo-concave functions. The model proposed
in this paper, would still be valid for inelastic utility func-
tion provided that they are strictly increasing in their argu-
ment and pseudo concave.

We have assumed in this paper that the utility function of
the user is known. Though not a trivial problem, this is cer-
tainly achievable. Given the knowledge of RTT of a flow,
sampling window growth and then using Maximum Likeli-
hood Estimators can help track the window scaling param-
eters, k, l. Recently, studies have been made in this direc-

tion, though it still lacks a comprehensive analytical and
experimental solution. In [10] the authors have evaluated
different TCP flavors of web-servers, chiefly TCP Tahoe,
Reno, New Reno and Sack. This tool’s, TBIT (TCP Be-
havior Inference Tool [10]) architecture can be leveraged
to estimate the scaling parameters of TCP like rate control
schemes. The scheme proposed in this paper is sensitive to
loss-estimation. Techniques for loss estimation have been
discussed in detail in [4]. However, these techniques are
still empirical at best and need to to be evaluated further.

Path asymmetry is another issue which we need to look
in detail. If a single exit router is used by the flow then the
model is immune to path-asymmetry problems in the net-
work. In this case, the penalty function transformers can
be placed at that exit router and it can re-mark the flow.
The same observation holds true if there exists a single
ingress router for a flow. Both unique entry or exit routers
is generally true in the present Internet. However, if differ-
ent exits and entry routers are used for any flow then we
need to study the effect of path-asymmetry.

Despite these limitations, we believe our work is a first
step in modeling and managing non-cooperative flows.
The incentives for such an approach are clearly high. We
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have showed in this paper that we can effectively disasso-
ciate the fairness criteria from the user’s rate control algo-
rithm and move it to the network. The solution proposed
in this paper can be implemented at the network edges and
requires ECN support. Further we have a flexibility of
choosing either to re-mark the packets or acks. In cases
where we do not have access to the packet-stream we can
re-mark the ack-stream and achieve the goals of the model.
(Packeteer boxes, deployed widely on the Internet, already
do a similar work by accessing the ack-stream and pacing
the acks [9]). For cases where we have access to the packet
stream the model could be extended to use dropping as a
means of communicating penalties. In such a scenario this
model could work without ECN support or i.e. with a net-
work of Drop Tail queues only.

This framework can also provide more robust and fair
usage based and flat rate pricing strategies. In the ab-
sence of a framework that protects sources against non-
cooperative users, both these schemes fall short. If a non-
cooperative user is priced for connection duration, he gets
to use the same resource at a much cheaper price. Simi-
larly, charging based on traffic volume does not take care
of fairness in the network. However, with this model we
can protect flows from selfish users. The reader is referred
to [2] for a more detailed discussion on the achievable pric-
ing strategies within this framework.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed an abstract model for
modeling and managing non-cooperative flows. Specifi-
cally we propose a framework to map a user’s utility func-
tion, ��, to any objective utility function, ���� , by manipu-
lating congestion penalties. These penalty transformation
agents can be completely implemented at network edges
and require ECN support from the network. This frame-
work can be used for managing selfish flows, providing
more robust usage and flat rate pricing schemes and disas-
sociating fairness from user’s rate control schemes.

We have analyzed the framework and evaluated it for
various single and multi-bottleneck scenarios. In the cases
where the network has precise estimate of source’s utility
function (or the estimation error is less than 5%) the sim-
ulation results match the analysis and the model re-maps
the mis-behaving source’s utility function fully. Then the
mis-behaving and the compliant flows share the bottleneck
fairly. Further the model is robust and works well even in
presence of high background (web) traffic and reverse path
congestion. Also inaccurate RTT estimates do not have
a very profound effect on the model’s correctness. How-
ever when the utility function estimation errors were more
than 5% the model does not fully correct the mis-behaving

flow(s), but still considerably improves the fairness at the
bottleneck (as compared to the scenario when there was no
remarking).

We are currently working on ways to estimate the util-
ity function of the sources by sampling either the packet-
stream or ack-stream. Also we are working to extend the
model to use dropping as a means of communicating con-
gestion penalties.

VIII. APPENDIX

The assumptions used in the paper are as follows
� A1: The Utility functions are continuous, strictly con-
cave and increasing in their arguments. Further the rates
are bounded by I: [�����].
� A2: The curvature of �� are bounded away from 0 on I,
i.e. ��

��

� ���� � ���� " �.

A. Proposition 1: Under assumptions A1,A2 the function
��
�

������ ���, ����� as defined in equation (8) are non-
negative and increasing in their argument.

Proof: Define �� �
�

������ ��. Note ����� �

�
�

���
���
��� �����. Recognizing that �

���
��� ���� is just �� from

equation (4), we can rewrite ����� as ����� � �
�

������
���.

Since ������ is increasing and strictly concave in its argu-
ments hence �

�

����� � �. Hence, ���
�� is greater than 0.

Let’s define # ���� � �
�

�����
�� and it’s inverse as $���� �

#������. Therefore, $�# ����� � ��.
Now differentiating both sides with respect to �� we get,

$
�

�# ����� � #
�

���� � � (19)

�% ��
���
��� ���

�

�
�

�
��

�����
��
� (20)

Now, differentiating ����� with respect to �� we get

�
�

���� � �
��

� ��
���
��� ��������

���
��� �����

�

� �
��

� �����
���
��� ����

�

� (21)

Since �� and ���� are strictly concave therefore
�

��

� ��� �
��

����� ! � and from equation (20) we conclude that

�
�

���� is greater than 0. Combining �
�

���� " � and the
definition of ����� (equation 8) we conclude �

�

���� " �.

B. Proposition 2: Under assumptions (A1, A2), the new
update algorithm as defined in equation (15,16) still
converges to the optimal point.

Using the equation 12 and differentiating it with respect
to time we get

&
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Since, �
�

���� " � and � " � we can establish that D(��(t))
is a decreasing function in t. Also since D is convex (see
Proposition 4), there exists a minima, and �

�
������� � �

implies convergence to the optimal point.

C. Proposition 3: Under Assumptions (A1, A2) ���� is
Lipschitz.

Proof: Define by A the incidence matrix where )�� is 1
if source s uses link l and 0 otherwise. Further let the total
number of links used by any source be bounded by L and
the total number of sources by S. Then using equations
(16,21) we can get the following (after some simplifica-
tion)

�����

��
� &���

�
�

�
��

����������

�
)� (22)

Also from equation (12) we get � � �
�

����� � )��.
Differentiating it again with respect to �� we get

�� � �
��

������)�� � �
�

�����)
�����

��
� (23)

After some simplification �
��

��� can be calculated as

�
��

��� �
�	�

� ������

���
�

��

�	�

���������
(24)

Since the Utility functions are strictly increasing in their
arguments hence they will be rightly skewed, i.e. �	�

� is
bounded away from 0. Further since the rate are bounded
by I (Assumption A1) the second derivative of f(p) will be
bounded, let us say that this bound is F. After some sim-
plification the bound on �

�

�����)�����
��

� can be calculated
as �LS (for some � " � and � function of ��). Using the
capacity constraint we conclude that � will be Lipschitz
with the following bound

���*������� � �#� � �+,� �* � ��

D. Proposition 4: Under assumption (A1, A2) D(p) is
lower bounded, continuously differentiable and con-
vex.

Proof: By Assumption (A1), �� is bounded and contin-
uously differentiable thus �

���
� (and f(p)) exist and is also

bounded and continuously differentiable. Therefore, D(p),
as defined in equation (12) is also lower bounded and con-
tinuously differentiable.

Further from the assumption A1 (strictly increasing and
strictly concave utility function) and equation (5) �

��

���
(as defined in equation (24)) will be greater than 0. Using
this knowledge and the capacity constraint the first term
in equation (23) is always greater than or equal to 0. The
second term of equation (23) is

�
�

�����) &���

�
�

�
��

����������

�
)� �

also strictly positive because from Proposition 1, �
�

��� is
always greater than or equal to 0, the incidence matrix is
a 0-1 matrix and the utility functions are strictly concave.
Thus we can say that equation (23) is greater than or equal
to 0. Or ����� � � and D(p) is convex.

E. Proof of Theorem 1

By Propositions 3 and 4 the dual objective function D(p)
is convex, lower bounded and ���� is Lipschitz, then
any accumulation point �� of the sequence �p(t)� gener-
ated by the gradient projection algorithm is dual optimal
[7]. Moreover, the constraints are linear and the primal
problem is strictly concave hence there is no duality gap.
Therefore dual optimal is also primal optimal.
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