
MCA: An End-to-end Multicast Congestion

Avoidance Scheme with Feedback Suppression

Jiang Li, Shivkumar Kalyanaraman

{lij6@cs, shivkuma@ecse}.rpi.edu
Rensselaer Polytechnic Institute, Troy, NY 12180

Abstract

In this paper, we propose MCA, an end-to-end multicast congestion avoidance
scheme with feedback suppression. Congestion avoidance [7] is different from conges-
tion control in the sense that our scheme detects and responds to network congestion
without necessarily inducing packet loss. Our scheme is a single-rate scheme and op-
erates end-to-end, i.e. the sending rate is controlled by the source based on feedback
from the most congested receiver and does not expect packet marking or other sup-
port from intermediate nodes. We design it to be robust under both lossless and lossy
situations. Congestion is detected at receivers using the concept of “accumulation”
(the number of buffered bits of a flow inside the network) and simple thresholding
techniques proposed in our recent unicast work [22]. For the purposes of choosing
representative (the most congested receiver) by the source and suppressing feedback
by receivers, each receiver maintains its Good Throughput Rate At Congestion (G-
TRAC) (the product of receiving rate during congestion epochs and 1− f , where f
is congestion occurrence frequency). In this way, receivers do not need to continu-
ously (either densely or sparsely) exchange packets with the sender (e.g. to measure
RTT). Therefore, MCA is scalable for large-size groups. We evaluate the design and
demonstrate the performance of MCA using detailed ns-2 simulations.

Key words: Multicast, congestion avoidance, feedback suppression, G-TRAC

1 Introduction

Multicast is the preferred transport mechanism for simultaneously transferring
bulk data to multiple receivers. Numerous applications such as content distri-
bution, streaming, multi-player games, multimedia multi-user chat/telephony,

1 Jiang Li is now with Howard University

Preprint submitted to Elsevier Science 23 March 2004

distance education can greatly benefit from multicast. In this paper, we pro-
pose MCA, an end-to-end rate-based multicast congestion avoidance scheme
with feedback suppression. Congestion avoidance [7] is different from conges-
tion control in the sense that our scheme detects and responds to network
congestion without necessarily inducing packet loss. Our scheme is a single-
rate scheme, i.e., the sending rate is regulated by the most congested receiver.
There was a previous single-rate multicast congestion control scheme by DeLu-
cia et al [9] that provides some preliminary congestion avoidance functions,
as it uses the congestion detection mechanism proposed in TCP Vegas [3].
However, in that scheme, incipient congestion is only measured at source side
for the paths between the source and representative receivers, while other re-
ceivers still detect congestion on other paths by packet loss. Therefore, it is a
mixture of congestion control and avoidance, whereas our scheme offers pure
congestion avoidance. Other examples of single-rate multicast congestion con-
trol schemes include PGMCC [18], TFMCC [20], our earlier work GSC [14] and
LE-SBCC [19] and references within. These schemes are “congestion control”
schemes in the sense that receivers wait for packet loss which is signalled back
to the source as congestion indications. If bottlenecks provide packet marking
support (similar to TCP-ECN [17]), packet loss may be avoided in the above
schemes, albeit special support (i.e. packet marking) is necessary. There ex-
ist another distinct class of congestion control schemes which are multi-rate
(eg: RLC, FLID-DL, FGLM, STAIR [21,6,4,5]). Since multi-rate schemes are
greatly different from single-rate ones, we are not going to discuss them here,
although we could extend the single-rate work to the multi-rate area in the
future.

In brief, MCA has the following features:

(1) It is an end-to-end scheme, i.e. it does not require special support from
inside the network, such as packet marking.

(2) It uses a new concept of accumulation instead of packet loss to detect
congestion, and thus can react to incipient congestion.

(3) It provides efficient non-timer-based feedback suppression.
(4) State and computation complexity at both source and receiver side are

O(1).

In more details, MCA uses a new concept of “accumulation” and simple thresh-
olding techniques proposed in our recent unicast work [22] to achieve conges-
tion avoidance on a purely end-to-end basis, i.e., it does not require packet
marking support from interior bottlenecks. Accumulation is the number of
buffered bits of a flow inside the network. Our congestion model uses accumu-
lation to detect congestion end-to-end as real queues are being built up. It is
a generalization of TCP Vegas’s [3] congestion detection technique.

Like Vegas [13,12], MCA is inherently incompatible with the TCP, because

2

MCA reduces sending rate upon incipient congestion when there may not be
packet loss yet, while TCP reduces sending rate upon serious congestion when
packets are lost. Therefore, it is very likely that when MCA reduces sending
rate, TCP still tries to consume more bandwidth. At last, the sending rate
MCA will be kept at an abnormally low level. One way to ensure compatibility
is to have a packet marking scheme at bottlenecks that indicates congestion
as queues build up [11]. Or, if routers can support multiple-class traffic by
leveraging the “type of service” field in IPv4 header [16] or the “traffic class”
field in IPv6 header [10], our scheme can be used with TCP in parallel. Con-
sequently, the target networks of MCA are those can be configured to allow
separate queues in routers, such as campus networks and intranets.

In this scheme, we use a representative for the rate control purpose at the
source 2 side. That is, at any time, the source keeps record of the slowest
(i.e. the most congested) receiver (named Congestion Representative (CR)),
and adjusts the sending rate according to that receiver’s feedback. At the
same time, receivers themselves also suppress their feedback if necessary so
as not to overwhelm the source. Both mechanisms make use of a new metric
Good Throughput Rate At Congestion (G-TRAC). G-TRAC is defined as r(1−
f), where r is the receiving rate during congestion epochs, f is congestion
occurrence frequency (to be discussed later). The receiver with the lowest
average G-TRAC is chosen as the slowest receiver, i.e. CR. Other receivers
suppress their feedback if their average G-TRACs are higher than that of CR.
By using G-TRAC, receivers no longer need to continuously (either densely or
sparsely) exchange packets with the sender (e.g. to measure RTT).

Congestion
response

Data
Pkt

Data
Pkt

Congestion
detection

���
���
���

���
���
���CI

CI

CI filtering

Receiver

(Feedback suppression)

���
���
���

���
���
���

CI filtering

CICI

CI: Congestion indication

Sender

Other receivers

Other receivers

Network

Fig. 1. MCA MODEL

MCA consists of four key building blocks (Figure 1), two at receivers and two
at the source. The first block detects congestion at the receiver side using accu-
mulation and possible (though rare) packet loss. The second block at the source

2 In this paper, we use the terms source and sender interchangeably.

3

side responds to congestion. It implements an AIMD rate increase/decrease
policy based on the CR’s feedback. The third block, a filtering block at the
receiver side, blocks Congestion Indications (CIs) generated by the congestion
detection block if necessary. That is, it suppresses feedback. The fourth block,
also a filtering block but at the source side, only allows CIs from CR through.
All blocks only require small constant number of states and light computation.

Simulations show that MCA achieves high bottleneck utilization, while avoid-
ing Drop-to-Zero problem [20,18,1]. Drop-to-Zero is the problem that reacting
to more feedback than necessary leads to a beat-down of the multicast flow’s
rate[20,18,1]. This occurs because the multicast flow generates feedback on
multiple paths and may not have them filtered sufficiently. Besides, there is
the TCP-unfriendliness problem, which is the problem of reacting to less feed-
back than a hypothetical TCP flow would do on the worst loss path [2,18,20].
Since the congestion detection model is incompatible with that of TCP, we
won’t directly demonstrate the fairness with TCP. However, we demonstrate
the fairness between multi-receiver and single-receiver MCA flows.

2 Concepts And Model

In MCA, congestion detection is based on the accumulation concept. In this
section we define the accumulation concept using a bit-by-bit fluid model [8]
[15], and develop an algorithm for measuring it in the multicast context at
receiver side.

2.1 Accumulation

The concept of accumulation was first developed in our earlier unicast work
[22]. We summarize the core ideas here. The discussion below assumes unicast
fluid flows, but we extend it to multicast in a later section.

Consider an ordered sequence of FIFO nodes (routers) {R1, . . . , Rj, Rj+1, . . . , RJ}
along the path of a unidirectional flow i in Figure 2(a). The flow comes into
the ingress node R1 and, after passing some intermediate nodes R2, . . . , RJ−1,
goes out from the egress node RJ . At time t in any node Rj (1 ≤ j ≤ J), flow
i’s input rate is λij(t), output rate µij(t). The propagation delay from node
Rj to node Rj+1 is dj.

We define the arrival curve Aij(t) of a flow i at a node Rj as the number of
bits from that flow which have cumulatively arrived at the node up to time
t, and similarly the service curve Sij(t) as flow i’s bits cumulatively serviced

4

other

flows

time

Aij(t)

Sij(t)

queue

delay

bit

t2t1

b1

b2

(c) Arrival and Service Curves
)(ttai

)(1
f

ii dtq

),(tdtI f

ii

)(
1J

jk

kij dtq

jd)(tqiJ

),(ttOi

)(tai

f

id

t

time axis

… …

flow i

d j

µij i,j+1i µ i

RJR j R j+1R1

(a) Network Model

(b) Accumulation

ingress

node
egress

node

Fig. 2. NETWORK FLUID MODEL: ACCUMULATION CONCEPT

at node Rj [8] [15], drawn in Figure 2(c). For any FIFO node Rj, both Aij(t)
and Sij(t) are continuous 3 and non-decreasing functions. If there is no packet
loss, then at any time t, by definition, flow i’s buffered bits qij(t) in node Rj

is the difference between Aij(t) and Sij(t), as shown in Figure 2(c):

qij(t) = Aij(t)− Sij(t). (1)

The change of flow i’s queued bits at node Rj is,

∆qij(t) = qij(t+∆t)−qij(t) = (λij(t, ∆t)−µij(t, ∆t))×∆t = Iij(t, ∆t)−Oij(t, ∆t)
(2)

where Iij(t, ∆t) and Oij(t, ∆t) are incoming and outgoing bits of flow i at
node Rj during the time interval [t, t + ∆t]; λij(t, ∆t) and µij(t, ∆t) are the
correspondent average input and output rates, respectively.

Now consider the flow’s queueing behavior at a sequence of FIFO nodes. Define
flow i’s accumulation as a time-shifted, distributed sum of the queued bits in
all nodes along its path from the ingress node R1 to the egress node RJ , i.e.,

ai(t) =
J∑

j=1

qij(t−
J−1∑

k=j

dk) (3)

which is shown as the solid slant line in Figure 2(b). Note this definition
includes only those bits backlogged inside the node buffers, not those stored
on transmission links. With the definitions of

λi(t) = λi1(t), µi(t) = µiJ(t) (4)

3 This is strictly true if we accept that a bit is infinitely small.

5

we calculate flow i’s accumulation change as follows:

∆ai(t) = ai(t + ∆t)− ai(t)

=
J∑

j=1

∆qij(t−
J−1∑

k=j

dk)

= [λi(t− df
i , ∆t)− µi(t, ∆t)]×∆t

= Ii(t− df
i , ∆t)−Oi(t, ∆t) (5)

where df
i =

∑J−1
j=1 dj is the forward direction propagation delay of flow i from

node R1 all the way down to node RJ . Similar to Equation (2), Ii(t− df
i , ∆t)

and Oi(t, ∆t) are flow i’s bits coming into and going out of network during two
different time intervals of length ∆t each; while λi(t − df

i , ∆t) and µi(t, ∆t)
are the correspondent average ingress and egress rates. The result, illustrated
in Figure 2(b), shows the change of a flow’s accumulation on its path is only
related to its input and output at the ingress and egress nodes. That means
it is possible to control accumulation at only the ingress and egress nodes.

Given a time sequence {t1, t2, . . ., tk, . . .}, denote ai(tk) as ai(k), λi(tk−df
i , ∆t)

as λi(k), and µi(tk, ∆t) as µi(k), according to Equation (5), we have,

ai(k + 1) = ai(k) + (λi(k)− µi(k))(tk+1 − tk)

It shows that accumulation can be measured by using correlated periods, e.g.
[tk, tk+1] at egress and [tk−df

i , tk+1−df
i] at ingress. This can be done by sending

synchronization data “out-of-band,” i.e., the synchronization data experience
only the fixed one-way delays and not the queueing delays.

Given the fluid flow assumption, denoting the queue length of node j at time
tk −∑J

(x=j+1) dx as qj(k), accumulation also satisfies the following property:

ai(k) > 0 ⇔ ∃j qj(k) > 0 and ai(k) = 0 ⇔ ∀j qj(k) = 0 (6)

In other words, for a network of fluid flows a zero-threshold for the per-loop
accumulation measure is equivalent to a zero-threshold on the real queue at
some bottleneck. The properties are rigorously developed in reference[22].

In summary, accumulation and output rate are quantities that can be measured
with only per-flow information. That allows us to build a fully distributed,
transparent closed-loop congestion avoidance mechanism. In particular, a sim-
ple congestion avoidance approach would be:
a) Use simple thresholding techniques on the accumulation measure to detect
epochs of congestion.

6

b) Use feedback to guide the congestion response policy to achieve fine-grained
control over input rate dynamics.

While the above discussion referred to unicast, the same approach can be
applied to multicast if the machinery for accumulation measurement can be
instrumented, which is the focus of the following sub-sections.

2.2 Accumulation Measurement

Propagation
delay

Time

In

Out In − Out
= Accumulation

Actual arrival time of CP 1 with queueing delay

CP 0 CP 1

CP: In−band Control Packet

τ

Data packets

Expected arrival time of CP 1 without queueing delay

Fig. 3. ACCUMULATION WITH IN-BAND CONTROL PACKETS

To perform end-to-end accumulation measurement in real world, we relax three
key assumptions made in the previous section. First, we send synchronization
packets (a.k.a control packets)“in-band” instead of “out-of-band”. Therefore,
these packets experience both variable queueing delay and fixed propagation
delay. Second, we send packets instead of bit-by-bit fluid. Therefore, to ac-
count for the randomness introduced, the thresholding procedure has to be
amended and a new re-synchronization procedure is performed at the end of
each congestion epoch. Third, we develop the scheme for multicast, i.e., we
divide functionalities between the source and receivers to minimize the reverse
control traffic. Forward control traffic is multicast to all receivers. Note that
the first release of assumption is the major reason of approximate accumula-
tion measurement. Again, as we describe in the introduction (Section 1), our
aim is to react to congestion as early as possible so as to avoid unnecessary
packet loss and increase bottleneck utilization. Therefore, the measurement
approximation is acceptable.

Figure 3 illustrates the measurement of accumulation using in-band control
packets. 4 Assume that the first control packet (CP0) sees no queue and hence
arrives at receivers after exact propagation delay. The second control packet

4 By control packet, we actually mean a data packet with some one-bit flag turned

7

(CP1) is multicast after the measurement interval τ . A receiver measures
“out”, the number of bytes received during the period of τ since the receipt
of CP0. After CP1 arrives, the receiver knows how much the sender has sent
during the period of τ , i.e. “in”. in − out is then the accumulation. Observe
that this measure works correctly in a rate-based system where packets are
sent uniformly and the input burstiness is controlled by a rate-shaper.

Figure 3 still assumed a fluid model. Packetization introduces randomness and
burstiness in the system. In particular, even for a perfectly smoothed packe-
tized transmission, an underloaded bottleneck can have an average steady state
queue of half a packet and a maximal queue of one packet for each flow going
through it. Therefore, the fluid flow formula (6) that implies a zero-threshold
on accumulation no longer holds. In our simulation, we use the following hys-
teresis technique: declare congestion if accumulation becomes larger than two
packets, and subsequently declare end of congestion when accumulation falls
below one packet. If there are other sources of noise that affects accumulation
(eg: scheduling noise at operating systems or at bottlenecks), the thresholds
should be set higher. This technique is hence conservative in detecting con-
gestion, i.e., a receiver may unilaterally detect congestion even if there is no
network congestion (eg: in multi-bottleneck cases). Higher thresholds reduce
the probability of such errors, at the price of larger worst-case queues. We find
through simulations that the settings above work very well.

TT T T T T

CP: Control Packet
DP: Data Packet

delay
Propagation

data packets between them
Actual CP behavior with

Receiver

CP 2 CP 3 CP 5 CP 6CP 4Source

CP0 CP 2 CP 3 CP 4

CP0 CP 1

CP 1 CP 5 CP 6

CP Interval

of CPs without queueing delay
Expected pattern

Time

Synchronization point

Synchronization
point

Receiver

Source

Data packets arrive Data packets arrive
with queueing delay.

Queueing delay

without queueing delay.

Fig. 4. CONGESTION EPOCHS: SYNCHRONIZATION POINTS AND ACCU-
MULATION

on and with its sending time in the optional field. If this bit is turned off and no
sending time is carried, the data packet is then simply a normal data packet.

8

Again because a bottleneck may have a steady state queue even when under-
loaded, the initial control packet (CP0 in Figure 3) may not see zero queueing
delay. In other words, our assumption of synchronization at the first con-
trol packet arrival may be erroneous. Also, as a side effect of the hystere-
sis scheme described above, a receiver could end a congestion epoch with
non-zero accumulation. To counter these issues, we introduce the notion of
“re-synchronization” as illustrated in Figure 4. We begin with the default
assumption that we have synchronized correctly at CP0, and then measure
accumulation during successive intervals based upon this assumption. If a
control packet arrives at the receiver before its expected arrival time, we re-
synchronize (not shown in the figure) and set accumulation to zero. Also, if
we detect the end of a congestion epoch, we re-synchronize. 5 Figure 4 shows
a case when the re-synchronization happens perfectly, i.e., accumulation is
zero, and the re-synchronization point overlaps the expected arrival time of
a control packet without queueing delay. In practice, any residual positive
accumulation is carried over to the next epoch.

It should be noticed that if the route between source and receiver changes
to be longer, re-synchronization requires more effort. There are two possible
solutions: (1) The source keeps reducing the sending rate until it reaches zero,
and receivers re-synchronize at that point. (2) Out-of-band packets can be used
to monitor the shortest end-to-end delay and help adjusting re-synchronization
points. However, in our targeted networks mentioned in the introduction, route
change rarely happens and thus is ignored in our design.

3 MCA: Scheme Description

First, for clarity, we list the acronyms in the following:

CI stands for congestion indication. It is a packet conveyed by receiver to
inform the source of congestion.

CR stands for congestion representative. It is the slowest receiver. The source
makes rate adjustment decisions solely based on its CIs.

G-TRAC stands for good throughput rate at congestion. It is defined as the
product of receiving rate during congestion epochs and (1 − f), where f
is congestion occurrence frequency. It will be explained in more details in
Section 3.1.3.

Generally, in MCA, the sender keeps multicasting data and control packets to
receivers, and receivers detect congestion upon receipt of control packets by

5 Believing that the intervals between synchronizations won’t be long, we assume
that clock skew can be ignored.

9

measuring accumulation and checking packet loss. When there is not conges-
tion, the sender does not receive any CI, and keeps increasing sending rate
periodically. If there is congestion, receivers convey the information to the
source by sending CIs, given that these CIs pass a carefully designed suppres-
sion filter. When CIs arrive at the sender, another filter is applied to choose
the particular CIs from the CR. The sender then reduces the transfer rate
based on those chosen CIs.

Therefore, MCA operations can be divided into two categories: those done
by the source operations and those by receivers. Details are presented in the
following.

3.1 Source Operations

The major task of the source is to adjust sending rate according to the conges-
tion information sent back by receivers. Our approach is to adapt the sending
rate to the slowest receiver, called CR in this paper. If there are CIs from
the CR, the sending rate is reduced, otherwise the rate is increased once per
estimated RTT. Consequently, the source needs to provide solutions to the
following problems:

(1) RTT estimation
(2) Rate adaptation
(3) CR switching
(4) CI filtering

Among the solutions, RTT estimation provides estimated RTT for rate adap-
tation and CI filtering, CI filtering dictates CR switching (i.e. selecting the
right CR), and CR switching provides CR for rate adaptation. The key oper-
ations are shown in the flow chart of Figure 5, and are explained below.

3.1.1 RTT estimation

RTT is a parameter that affects rate adaptation in several ways as well as CR
switching (the effect of RTT on rate adaptation will be presented in next sub-
section). A sample of RTT is obtained whenever a CI arrives at the source. Its
value is the time difference between the CI arrival time and the departure time
of the packet triggering the CI. Given a sample value s, the RTT is smoothed
using EWMA (exponential weighted moving average), i.e. SRTT = 7/8 ·
SRTT+1/8·s. The deviation is calculated as σ = 7/8·σ+1/8·(|SRTT−s|−σ).

10

CI(u,d)
arrives from R

No CR?

R is CR?

u < U−d?Rate cut in
recent SRTT

Decrease
rate

Transfer timeout

Rate increment
timeout

Increase rate
from V to V’

No
V<U+4d ?

V’>=U+4d ?

Yes
No

Yes
Start CR check

CR check timer
times out Idle

Send a packet

U: Average G−TRAC of CR
D: Standard deviation of G−TRAC of CR
CI(u,d): Congestion indication packet with

average G−TRAC u, standard deviation d.

No

No

Yes

Yes

Yes

check timer
Stop CR

Set U,D,CR
to u,d,R

No No

Yes

Set CR
to none

?

timer of 4 SRTT

Judgement

Operation

State

Fig. 5. SOURCE OPERATION FLOW

3.1.2 Rate adaptation

MCA adopts AIMD (additive increase and multiplicative decrease) rate adap-
tation policy. If no CI arrives, at the end of each period of SRTT + 4σ, the
source increases the transfer rate in order to send one more packet during
next period. If a CI arrives and it is from the CR, the source needs to check
whether the rate has been reduced during the most recent SRTT +4σ. If not,
the rate is reduced. This is to guarantee that at most one rate reduction is
performed per RTT like TCP does.

In each CI, a single-bit flag indicates whether the CI is triggered by accumu-
lation over threshold or by packet loss. If it is the former, the rate is reduced
by 10%; if the latter, the rate is reduced by 25%, since packet loss means
more severe congestion. The percentages of cutting rate are subject to heuris-
tic choices. Generally, if they are set higher, congestion will be cleared more
quickly while bottleneck utilization may decrease; if set lower, there is more
risk of persistent congestion while bottleneck utilization may increase.

3.1.3 CR Switching

Since network condition keeps changing, the choice of CR must be updated
accordingly so that the sending rate can always be adapted to the most con-
gested bottleneck. There are mainly two reasons to change CR: (1) The current
CR is still active but another receiver becomes the new slowest one, (2) The

11

current CR is absent (e.g. going offline). We have two different techniques to
cope with these two situations respectively.

An important metric used in both techniques (as well as receiver-side feedback
suppression to be described later) is Good Throughput Rate At Congestion (G-
TRAC), which is used to measure the congestion level on the path between
the source and a receiver. The larger the G-TRAC value is, the lower is the
congestion level. G-TRAC is composed of two parts. The first part TRAC is
the receiving rate a receiver measures when it detects congestion. To avoid
the random error due to burstiness, TRAC is averaged over a short period,
for example, the most recent RTT. The second part congestion occurrence
frequency (f), also measured by receivers, is the number of CIs (either sent or
suppressed) divided by the total number of packets sent by the sender over
a certain period (e.g the period between two congestion epochs). G-TRAC
is then the TRAC weighted by (1 − f). Every receiver in a multicast session
measures its own G-TRAC and maintains the average and deviation, which
are sent in CIs. It should be noticed that congestion occurrence frequency is
not equivalent to the commonly known “packet loss probability”. There are
two reasons: (1) Since MCA is a congestion avoidance scheme, at times of
incipient congestion when no packets are lost yet, CIs can still be sent. (2)
Even when packets are lost, if several consecutive packets are lost, only one
CI is sent.

For CR initialization (when there is no CR yet), the source simply chooses
the receiver whose CIs arrive at the source first. It will then keep tuning up
the choice using the following two techniques.

As shown in Figure 5, when the source receives a CI, it checks the G-TRAC
average in the CI. If it is lower than U −D (where U and D are the G-TRAC
average and deviation of the current CR respectively), the receiver sending this
CI will be chosen as the new CR, and U and D are updated with the values in
the CI. We use U −D as the lower bound on the basis of assuming G-TRAC
is a random variable. If another receiver has an average G-TRAC lower than
U − D, it is very likely that the receiver is behind a more congested path
than the current CR. By using U − D, we are conservative and bias toward
the current CR to avoid unnecessary oscillation. Generically, U − kD can be
used as the lower bound, where k decides on how quickly CR is updated and
thus the level of oscillation. Also, more complicated formulas can be used for
comparing G-TRAC’s. We choose to use the simple form in order to allow
easy implementation for deployment in real networks.

While the source has a choice of CR, it needs to continuously check whether
the CR is still alive. The method is, at the moment when the sending rate
becomes greater than or equal to U ′ + 4D′, the source starts to count. U ′

and D′ are the mean and standard deviation of TRAC (Maintaining these

12

two values does not require much more computation because TRAC is part
of G-TRAC). If there is no CI coming from the CR within n(SRTT + 4σ)
after that, the source deems the CR absent, thus resets the choice of CR, and
requests CIs from other receivers. U ′ + 4D′ as the upper bound is used under
the assumption that TRAC is a random variable. If a new value of TRAC is
larger than U ′ + 4D′, according to Chebychev Inequality, it is very likely that
some extraordinary event happens. We then wait for an additional period
to further confirm the irregularity. n = 4 is the heuristic value used in our
simulations. Setting n too large will result in delay of detecting CR absence,
while setting n too small can result in erroneous judgments of CR absence.

3.1.4 CI filtering

Basically, only CIs from the CR are accepted. A special situation worth at-
tention is that a CI may trigger CR switching, as discussed in the previous
section 3.1.3. If that happens, the choice of CR will be updated. Therefore,
that particular CI is now from the CR and hence accepted by the source.

It should be mentioned that most CIs from non-CR receivers have already
been suppressed by receivers themselves (to be discussed in Section 3.2.2).
Nonetheless, sometimes the source can still receive CIs from multiple receivers
during (potential) CR transitions (e.g. several receivers competing for the CR).
Therefore, source-side filtering is necessary.

3.2 Receiver Operations

Receivers need to detect congestion and convey the information to the source
for it to adjust sending rate. At the same time they should suppress their feed-
back (CIs) whenever necessary, so that the source won’t suffer from feedback
implosion. Therefore, two major tasks are performed by receivers,

(1) Congestion detection
(2) Feedback suppression

The operations are explained by Figure 6 and the following specifications.

3.2.1 Congestion detection

Detecting congestion by means of accumulation have been well explained in
Section 2.2, so we skip it here. In addition to accumulation, packet loss is also
considered in case some extraordinary events occur. That is, whenever packet
loss is detected, a CI is also sent. There is an one-bit flag in CI indicating

13

R is CR?

Send
CI(u,d)

Measure
Accumulation

?
accu >

threshold

Synchronize

Packet
lost ?

Packet
lost ?

Measure
Accumulation

?
accu >

threshold

accu <= min?

accu <= min?

P is a
ctrl pkt ?

P is a
ctrl pkt ?

U/u: Average G−TRAC of CR/this receiver
D/d: Standard deviation of G−TRAC of CR/this receiver
P(U,D,CR): Packet with U,D,and CR.
CI(u,d): Congestion indication packet with u,d

No

P(U,D,CR) arrives

u<U−D?

No

Yes

Update
u,d

Yes

Yes

Yes

No

Yes

No

P(U,D,CR) arrives

Yes

Yes

Yes

No

No

Yes

No

No

No

No congestion

State

Judgement

Operation

Congestion

Fig. 6. RECEIVER OPERATION FLOW

whether the congestion is detected by accumulation or by packet loss. The
source adjusts the sending rate differently according to this bit (Section 3.1.2).

3.2.2 Feedback suppression

Even if a receiver detects congestion, it does not send CIs if its average G-
TRAC (u) is less than U − D, where U and D (the G-TRAC average and
deviation of the CR) are multicast to receivers by source. If CIs were sent,
they would be discarded by the source anyway (Section 3.1.4). The value of
U −D is used for the same reason presented in the discussion of CI switching
(Section 3.1.3).

14

By this simple mean, a very large proportion of CIs are suppressed. Note that
the feedback suppression here is non-timer-based, thus different from those
timer-based mechanisms (e.g. the one used in TFMCC [20]). In timer-based
feedback suppression mechanisms, feedback packets are scheduled upon de-
tected congestion and then suppressed(canceled) upon packet arrivals from
the source. On the contrary, in our scheme, feedback packets are decided to
be sent or not as soon as congestion is detected. Therefore, no packets are
stored in a schedule list.

As we can see, both source operations and receiver operations are simple, and
require only small constant number of states. That means MCA is easy to
implement and deploy.

4 Simulations

We ran several ns-2 simulations to verify the performance of our scheme. The
simulations include,

(1) Section 4.1: To verify the correctness of MCA using a simple topology.
(2) Section 4.2: To test the fairness between different MCA sessions in a

linear network with multiple bottlenecks.
(3) Section 4.3: To verify that MCA is immune to Drop-to-Zero problem and

effective at feedback suppression, and test the fairness between MCA
sessions with multiple receivers and those with single receivers.

(4) Section 4.4: To verify that the source of MCA always adapts the sending
rate to the most congested bottleneck.

(5) Section 4.5: To test the performance of MCA in a heterogeneous and
dynamic network.

In these simulations, the data packet size is 1000 bytes, initial RTT is 0.1 sec-
ond. We used different bottleneck queue capacities to test MCA performance
under situations with or without packet loss. To show the results clearly, we
average the sending rates, the utilization rates and queue lengths over one-
second periods.

4.1 Basic Test on Simple One-Bottleneck Configuration

We first verify MCA performance on the simple topology in Figure 7. During
different periods, there are 10 multicast flows from each source node to all 16
receiver nodes. The flows originated at Src 1 start at the beginning and end

15

Src 3

Src 2

Src 1

16 receivers
10Mbps,5ms

100Mbps 5ms 100Mbps 5ms

100Mbps 5ms100Mbps 5ms

Fig. 7. ONE-BOTTLENECK CONFIGURATION WITH 16 RECEIVER NODES

at 500th second, those originated at Src 2 start at 100th second and end at
400th second, those originated at Src 3 start at 200th second and end at 300th
second. Therefore, in different periods, there may be 10, 20 or 30 flows sharing
the 10Mbps bottleneck. The simulation time is 500 seconds.

The bottleneck queue capacity was set to 200 packets for lossless situation and
50 packets for lossy situation. As shown in Figure 8, under both situations,
the transfer rates adapts to the bottleneck situation, while maintaining high
bandwidth utilization and short queue. In reality, bottleneck queue capacity
can be much larger than 200 packets. However, in terms of no packet loss, a
200-packet queue is equivalent to any larger queue. On the other hand, the
50-packet queue is just used to guarantee packet loss in order to check the
performance of our scheme under extreme situations. The same philosophy
applies to the following simulations.

We notice that there are several spikes in the plots of average queue length.
That is because ten flows are introduced into the network at those moments.
Over a short period, before MCA can react, the total amount of traffic in-
creases significantly, and therefore, more packets are buffered. However, the
spikes disappear quickly because congestion is detected and sending rates of
all flows are properly adjusted according to MCA.

We also notice that the average queue lengths are not zero. As we discussed
in Section 2.2, even an underloaded bottleneck can have an average steady
state queue of half a packet and a maximal queue of one packet for each
flow going through it. Since we have at least ten flows on each bottleneck,
it is expected that the average queue lengths are larger than zero. In fact,
by doing simple calculation, we can see that the average accumulation (in
packets) maintained by each flow is very low. The same explanation applies
to the following simulations.

4.2 Fairness Test with Multiple Bottlenecks (Linear Network)

To check how MCA flows compete with each other when they pass different
number of bottlenecks and what kind of fairness MCA can achieve, simulations
were run on a multiple bottleneck topology (Figure 9).

16

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300 350 400 450 500

R
at

e
(M

bp
s)

Time (sec)

Sending Rates of One-Bottleneck Configuration (w/o Packet Loss)

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400 450 500

R
at

e
(M

bp
s)

Time (sec)

Sending Rates of One-Bottleneck Configuration (w/ Packet Loss)

Rate (w/o packet loss) Rate (w/ packet loss)

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300 350 400 450 500

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

Time (sec)

Average Bottleneck Queue Length of One-Bottleneck Configuration (w/o Packet Loss)

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300 350 400 450 500

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

Time (sec)

Average Bottleneck Queue Length of One-Bottleneck Configuration (w/ Packet Loss)

Average Queue Length (w/o packet loss) Average Queue Length (w/ packet loss)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

Q
ue

ue
 U

til
iz

at
io

n

Time (sec)

Bottleneck Utilization of One-Bottleneck Configuration (w/o Packet Loss)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

Q
ue

ue
 U

til
iz

at
io

n

Time (sec)

Bottleneck Utilization of One-Bottleneck Configuration (w/ Packet Loss)

Bottleneck Utilization (w/o packet loss) Bottleneck Utilization (w/ packet loss)

Fig. 8. IN ONE-BOTTLENECK CONFIGURATON, MCA ADAPTS TO BOT-
TLENECK CHANGE WITH HIGH BANDWIDTH UTILIZATION AND LOW
AVERAGE QUEUE LENGTH.

17

10ms
10Mbps

10ms
10Mbps

10ms
10Mbps

10ms
10Mbps

(16 Receivers)
Group 2

(16 Receivers)
Group 3

(16 Receivers)
Group 4

100Mbps
1ms

100Mbps
1ms

100Mbps
1ms

100Mbps
1ms

(16 Receivers)
Group 1

Btnk 3Btnk 1 Btnk 2 Btnk 4

Src 1
Src 2 Src 3 Src 4

Fig. 9. LINEAR NETWORK: MULTIPLE BOTTLENECKS CONFIGURATION

In this topology, there are four 10Mbps bottlenecks. Other links are 100Mbps.
To reduce the effect of RTT, we set the bottleneck delays to 10 milliseconds
and others to 1 millisecond. There are three types of flows: one-hop flows
(i.e. flows going through one bottleneck), two-hop flows and four-hop flows,
as shown in Figure 9. Among them, for i = (1, 2, 3, 4), 10 one-hop flows start
at Src i and end at all the 16 receivers in Group i; for i = (1, 3), 10 two-
hop flows start at Src i and end at Group i + 1; and there are 10 one-hop
flows going from Src 1 to Group 4. Therefore, each bottleneck is shared by 30
flows. Bottleneck buffer size is set to 200 and 40 packets for lossless and lossy
situation respectively. The simulation time is 400 seconds.

The average rates 6 in Figure 10 show that the one-hop flows used approxi-
mately 2.5 times as much bandwidth as that by two-hop flows, while the two-
hop flows used almost twice as much bandwidth as that by four-hop flows,
which is close to what proportional fairness suggests theoretically. Again, the
bottleneck queue length is low, and the utilization is high, confirming the good
performance of MCA. 7

4.3 Test of Drop-to-Zero Avoidance, Friendliness to Unicast Flow and Feed-
back Suppression

It is critical for a multicast congestion avoidance/control scheme to avoid re-
acting to more feedback than necessary, otherwise the source will reduce the
sending rate too often and therefore keep it very low or even zero, which is
known as the Drop-to-Zero problem. We designed a star topology in Figure 11

6 Average rate at time t is defined at the amount of data sent during [0, t] divided
by t.
7 The results are of one randomly chosen bottlenecks. The situations of other bot-
tlenecks are similar.

18

Four−hop flows

Two−hop flows One−hop flows

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250 300 350 400

R
at

e
(M

bp
s)

Time (sec)

Over−time Average Rates of Multiple Bottleneck Configuration (w/o Packet Loss)

One−hop flows Two−hop flows

Four−hop flows

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250 300 350 400

R
at

e
(M

bp
s)

Time (sec)

Over−time Average Rates of Multiple Bottleneck Configuration (w/ Packet Loss)

Rate (w/o packet loss) Rate (w/ packet loss)

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350 400

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

Time (sec)

Average Bottleneck Queue Length of Multiple Bottleneck Configuration (w/o Packet Loss)

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350 400

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

Time (sec)

Average Bottleneck Queue Length of Multiple Bottleneck Configuration (w/ Packet Loss)

Average Queue Length (w/o packet loss) Average Queue Length (w/ packet loss)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

B
ot

tle
ne

ck
 U

til
iz

at
io

n

Time (sec)

Bottleneck Utilization of Multiple Bottleneck Configuration (w/o Packet Loss)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

B
ot

tle
ne

ck
 U

til
iz

at
io

n

Time (sec)

Bottleneck Utilization of Multiple Bottleneck Configuration (w/ Packet Loss)

Bottleneck Utilization (w/o packet loss) Bottleneck Utilization (w/ packet loss)

Fig. 10. IN MULTIPLE BOTTLENECK CONFIGURATON, MCA ACHIEVES
APPROXIMATELY PROPORTIONAL FAIRNESS.

to generate asynchronous congestion on 64 different bottlenecks and checked
the performance of MCA. Bottlenecks of 1Mbps bandwidth and 5 millisec-
ond delay are the links between the router and receivers. Between each pair
of Source i and Receiver i (i = 1 . . . 64), there are three unicast MCA flows
(i.e. MCA flows with only one receiver). Also, there is a multicast MCA flow
going from Source 65 to all 64 receivers. In consequence, each bottleneck is
shared by four flows, which congest the link in an asynchronous manner. Bot-
tleneck buffer size is set to 200 and 10 packets for lossless and lossy situation

19

Router

1Mbps, 5ms10Mbps,5ms

Receiver 2

Source 65

Source 1

Source 2

Source 63

Source 64

Receiver 1

Receiver 63

Receiver 64

Fig. 11. 64-RECEIVER STAR TOPOLOGY

respectively. The simulation time is 400 seconds.

The over-time average sending rates (the mean and confidence interval of
unicast flow rate are calculated with the samples of all 192 unicast flows)
in Figure 12 show that the throughputs of the multicast MCA flow and the
unicast flows are almost the same, no matter there is packet loss or not. The
high bottleneck utilization and low average queue length shown in the figures
are of one of the bottlenecks. Results of other bottlenecks are very similar.

In this simulation, under the lossy situation, the total number of feedback
packets (CIs) sent by the multicast receivers is 5444, while the average number
of CIs which would have been sent per receiver without feedback suppression is
4978, and the average number of CIs sent by unicast flow receivers is 5057. We
can see that the amount of CIs sent in the multicast session is very close to that
by a unicast receiver, which indicates that the feedback suppression mechanism
in MCA is highly efficient. For reference, under the lossless situation, the three
numbers are 5605, 5135 and 5147 respectively, again close to each other.

4.4 Test of Tracking The Most Congested Bottleneck

In this simulation, we changed the most congested bottleneck in a pre-defined
pattern, and check whether the choice of CR can be correctly updated as the
most congested bottleneck changes. There is a multicast MCA flow from the
source to all 32 receivers (Figure 13). During the whole simulation, one unicast
MCA flow exists between the source and each receiver. At 200th, 400th and
600th second, we introduce 2, 3, 4 unicast MCA flows to the links between the
source and Receiver 2, 3, 4 respectively. At 800th, 1000th and 1200th second,
we stop the added flows in the reverse order. As the result, the most congested
bottlenecks during different periods are as shown in Table 1. The bottleneck
buffer size is set to 200 packets and 8 packets respectively for lossless and lossy
situations.

Rate changes plotted in Figure 14 indicate that the multicast MCA flow always

20

0

0.05

0.1

0.15

0.2

0.25

0.3

0 50 100 150 200 250 300 350 400

O
ve

r-
tim

e
A

ve
ra

ge
 R

at
e

(M
bp

s)

Time (sec)

Over-time Average Rates of Drop-To-Zero and Friendliness Test w/o Packet Loss

Multicast MCA+ flow rate
Mean of unicast MCA+ flow rates w/ 95% conf. itvl.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 50 100 150 200 250 300 350 400

O
ve

r-
tim

e
A

ve
ra

ge
 R

at
e

(M
bp

s)

Time (sec)

Over-time Average Rates of Drop-To-Zero and Friendliness Test w/ Packet Loss

Multicast MCA+ flow rate
Mean of unicast MCA+ flow rates w/ 95% conf. itvl.

Rate (w/o packet loss) Rate (w/ packet loss)

0

2

4

6

8

10

0 50 100 150 200 250 300 350 400

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

Time (sec)

Average Bottleneck Queue Length of Drop-to-Zero and Friendliness Test (w/o Packet Loss)

0

2

4

6

8

10

0 50 100 150 200 250 300 350 400

Q
ue

ue
 L

en
gt

h
(p

ac
ke

ts
)

Time (sec)

Average Bottleneck Queue Length of Drop-to-Zero and Friendliness Test (w/ Packet Loss)

Average Queue Length (w/o packet loss) Average Queue Length (w/ packet loss)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

Q
ue

ue
 U

til
iz

at
io

n

Time (sec)

Bottleneck Utilization of Drop-to-Zero and Friendliness Test (w/o Packet Loss)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400

Q
ue

ue
 U

til
iz

at
io

n

Time (sec)

Bottleneck Utilization of Drop-to-Zero and Friendliness Test (w/ Packet Loss)

Bottleneck Utilization (w/o packet loss) Bottleneck Utilization (w/ packet loss)

Fig. 12. MULTICAST MCA FLOW GETS APPROXIMATELY THE SAME
THROUGHPUT AS UNICAST FLOWS DO. THEREFORE, MCA IS IMMUNE
TO DROP-TO-ZERO PROBLEM AND IS FRIENDLY TO UNICAST FLOWS.

21

Source

Router

Receiver 31
Receiver 1 Receiver 32

Receiver 2

1Mbps, 5ms 1Mbps, 5ms

10Mbps, 5ms

Fig. 13. 32-RECEIVER TREE TOPOLOGY

Table 1
DYNAMICS OF MOST CONGESTED BOTTLENECK

Periods Most Congested Link

[0, 200) and [1200, 1400] Link 1

[200, 400) and [1000, 1200) Link 2

[400, 600) and [800, 1000) Link 3

[600, 800) Link 4
(Link i is the link between Router and Receiver i.)

tracked the most congested bottleneck, showing the effectiveness of mecha-
nisms that control CR switching. There are more oscillations between 400th
and 1000th second than other time. It is because within that period the situ-
ations of the most congested bottleneck and the not-so-congested bottlenecks
are close, and there are some back and forth CR switching. We focus on CR
switching in this simulation, therefore we don’t show the bottleneck utilization
and queue length figures.

4.5 Test of Performance in Dynamic Network

It is also desirable to test the performance of MCA with random traffic pat-
terns. We designed a network with heterogeneous delays, as shown in (Fig-
ure 15). Each link has 2Mbps bandwidth. Among all the links, 2 links at the
first level, 4 links at the second level, and 8 links at the third level have 200ms
delay, while all other links have 20ms delay. We arrange the links so that
on any path between the source and a receiver, there is at most one link of

22

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400

R
at

e
(M

bp
s)

Time (sec)

Sending Rates of Bottleneck Tracking Test (w/o Packet Loss)

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400

R
at

e
(M

bp
s)

Time (sec)

Sending Rates of Bottleneck Tracking Test (w/ Packet Loss)

Rate (w/o packet loss) Rate (w/ packet loss)

Fig. 14. THE SENDING RATE OF MCA ALWAYS ADAPTS TO THE MOST
CONGESTED BOTTLENECK.

32 receivers

8 layer−1 routers

16 layer−2 routers

Source

Fig. 15. HETEROGENEOUS DYNAMIC NETWORK

200ms delay. Furthermore, we generate dynamic traffic in this network. On
each link, three unicast MCA flows are randomly turned on and off according
to Pareto distribution with average period length of 60 and 30 seconds re-
spectively. Moreover, all receivers except one in the multicast session join and
leave randomly, again according to Pareto distribution. The average in-session
time is 60 seconds and average out-of-session time is 30 seconds. We keep one
receiver always in the session so that feedback always exists and the sending
rate won’t increase infinitely. Bottleneck buffer sizes are set to 50 packets.

We ran the simulation for ten times. The average throughput of the multicast
MCA flow is 232 Kbps, with standard deviation of 10 Kbps, which shows that
MCA works well in a heterogeneous and dynamic environment. The average
number of total feedback packets received by the multicast source is 3009,
with standard deviation of 777, again showing the effectiveness of feedback
suppression.

23

5 Conclusion

We have proposed MCA, an end-to-end rate-based multicast congestion avoid-
ance scheme. This scheme leverages the concept of accumulation (the number
of buffered bits of a flow inside the network) developed in our recent work [22].
Using accumulation measurement extended to multicast, receivers detect con-
gestion without necessarily inducing packet loss. Upon congestion, receivers
send congestion indications (CIs) back to source for the purpose of rate con-
trol. Non-timer-based feedback suppression is invoked before CI sending. At
the other side, the source keeps a record of the slowest receiver as conges-
tion representative (CR), and only accepts its CIs for adapting the transfer
rate according to AIMD rate control policy. Both CR switching and feedback
suppression make use of a new metric, Good Throughput Rate At Congestion
(G-TRAC) (defined as the product of receiving rate during congestion epochs
and 1 − f , where f is congestion occurrence frequency). Receivers do not
need to continuously exchange packets with the source. Feedback implosion is
therefore avoided.

We evaluate MCA with detailed simulations in ns-2. Regardless of bottleneck
buffer size (that may or may not be large enough to prevent packet loss),
the scheme (1) does not suffer from the Drop-to-Zero problem, and, (2) is
friendly to unicast flows, (3) achieves high bottleneck utilization and low av-
erage queues, (4) is approximately proportionally fair. Due to its congestion
avoidance nature, MCA is not compatible with traditional TCP doing con-
gestion control. Therefore, we expect it to be deployed in networks under full
control of their administration authorities where multicast efficiency is de-
sired. The authorities can introduce congestion avoidance flows by configuring
routers to separate them from congestion control flows. Campus networks or
intranets are in the scope. Internet2 is also a possibility because routers in it
usually support multicast and are more open to configuration than those in
the traditional Internet.

References

[1] S. Bhattacharyya, D. Towsley and J. Kurose, “The Loss Path Multiplicity
Problem in Multicast Congestion Control,” INFOCOM, March 1999.

[2] S. Bradner et al, “IETF criteria for evaluating reliable multicast transport and
application protocols,” RFC 2357, June 1998.

[3] L. Brakmo and L. Peterson, “TCP Vegas: End to End Congestion Avoidance
on a Global Internet,” IEEE JSAC, Vol 13, No. 8, October 1995.

24

[4] J. Byers, M. Luby, M. Mitzenmacher, “Fine-Grained Layered Multicast”,
INFOCOM, April 2001.

[5] J. Byers, G. Kwon, “STAIR: Practical AIMD Multirate Multicast Congestion
Control”, NGC, November 2001.

[6] J.W. Byers, et al, “FLID-DL Congestion Control for Layered Multicast,” NGC,
November 2000.

[7] D. Chiu and R. Jain, “Analysis of the Increase/Decrease Algorithms for
Congestion Avoidance in Computer Networks,” Journal of Computer Networks
and ISDN, Vol. 17, No. 1, June 1989, pp. 1-14.

[8] R. Cruz, “Quality of Service Guarantees in Virtual Circuit Switched Networks,”
IEEE Journal on Selected Areas in Communications, 13(6):1048-1056, August
1995.

[9] Dante DeLucia, Katia Obraczka, “A Multicast Congestion Control Mechanism
for Reliable Multicast”, Proceedings of the IEEE ISCC’98, August 1997.

[10] S. Deering, R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification,” RFC
2460, December 1998.

[11] S.H. Low, “A Duality Model of TCP and Queue Management Algorithms,”
Proceedings of ITC Specialist Seminar on IP Traffic Measurement, Modeling
and Management, September 2000.

[12] S.H. Low, L.L. Peterson, and L. Wang, “Understanding Vegas: A Duality
Model,” Proceedings of ACM SIGMETRICS, June 2001.

[13] J. Mo, R. La, V. Anantharam and J. Walrand, “Analysis and Comparison of
TCP Reno and Vegas,” Proc. INFOCOM’99, March 1999.

[14] N. Natu, P. Rajagopal, S. Kalyanaraman, “GSC: A Generic Source-based
Congestion Control Algorithm for Reliable Multicast,” Journal of Computer
Communications, Vol 24, No. 5-6, pp. 575-589, March 2001.

[15] A. Parekh and R. Gallager, “A Generalized Processor Sharing Approach to Flow
Control in Integrated Services Networks: The Single-Node Case,” IEEE/ACM
Trans. on Networking, 1(3):344–357, June 1993.

[16] Jon Postel, “INTERNET PROTOCOL,” RFC 791, September 1981.

[17] K. Ramakrishnan, S. Floyd, “A Proposal to add Explicit Congestion
Notification (ECN) to IP,” RFC 2481, January 1999.

[18] L. Rizzo, “PGMCC: A TCP-friendly Single-Rate Multicast Congestion Control
Scheme,” SIGCOMM, August 2000.

[19] Puneet Thapliyal, Sidhartha, Jiang Li, Shivkumar Kalyanaraman, “LE-SBCC:
Loss-Event Oriented Source-Based Multicast Congestion Control”, Multimedia
Tools and Applications, Vol. 17, No. 2-3, pp. 257-294, July - August 2002.

25

[20] Jorg Widmer, Mark Handley, “Extending Equation-based Congestion Control
to Multicast Applications”, SIGCOMM 2001, August 2001.

[21] L. Vicisano, L. Rizzo and J. Crowcroft, “TCP-like congestion control for layered
multicast data transfer,” INFOCOM, April 1998.

[22] Y. Xia, et. al, “Accumulation-based Congestion Control,”, submitted
work, 2002. Available at http://www.ecse.rpi.edu/Homepages/shivkuma/
research/papers-rpi.html.

26

