
1

An End-to-End Transport Protocol for Extreme
Wireless Network Environments

Vijaynarayanan Subramanian,
ECSE Dept, RPI,
subrav@rpi.edu

Shivkumar Kalyanaraman,
ECSE Dept, RPI,
kalyas@rpi.edu

K.K. Ramakrishnan,
AT&T Labs Research,

kkrama@research.att.com

Abstract—
As the Joint forces move towards the vision of network-centric

warfare (NCW), it is extremely important that the network ser-
vices be reliable and dependable, even under degraded network
conditions. Tactical wireless and satellite based networks are
prone to disruptions over multiple time-scales: bursty bit errors
and packet loss (small time-scale), interference, jamming and cap-
ture effects (medium time-scale) and long-term path disruptions
due to persistent channel impairments and mobility (large time-
scale). TCP does not work well over such channels because it mis-
interprets erasure for congestion. TCP’s throughput suffers sig-
nificantly, particularly when there are disruptions. Large round-
trip-times (RTT) as in satellite networks, and uncoordinated op-
timizations at multiple layers (PHY, MAC and transport) lead to
poor performance.

In this paper we describe LT-TCP, an enhancement to TCP
whick makes it robust and applicable for extreme wireless envi-
ronments including a mix of ad-hoc meshed networks (MANETs),
airborne networks and satellite networks. LT-TCP uses an adap-
tive, end-to-end hybrid ARQ/FEC reliability strategy and exploits
ECN for incipient congestion detection. The novelty lies in our
adaptive methods that respond to learning about the underlying
random packet loss and disruption process. The overhead of FEC
or smaller segments is imposed just-in-time and targeted to maxi-
mize the performance benefit (measured as improved goodput and
timeout reduction) even when the path characteristics are uncer-
tain. We show that LT-TCP substantially improves performance
over regular TCP even for packet loss rates of up to 40% - 50%,
thus substantially extending the dynamic performance range of
TCP over lossy wireless networks.

I. INTRODUCTION

An example of the widespread use of wireless links in the
current framework for information sharing in the DoD con-
text is the communication among satellite relays, UAV/aircraft
relays, ad-hoc microwave relays and ground stations/vehicles.
Unlike organized commercial wireless networks, such networks
are formed rapidly in battle conditions and therefore will face
considerable uncertainty in terms of operating conditions (e.g.:
RF environment, interference, jamming, capture effects, chan-
nel impairments). As a result of rapid and ad hoc deployment,
the realized capacity compared to potential available capacity
on such links may be unsatisfactorily low. Path disruptions
could occur over multiple time-scales: small time-scales (bit or
packet erasures), medium time-scales (interference, jamming,
capture effect), long time-scales (persistent jamming, channel
impairments, longer-term link failures). There are also situa-
tions where even when the path is functional without suffering

This work was funded by AT&T Labs Research, MIT Lincoln Labs/AFOSR
Grant Letter No. 14-S-06-0206 and NSF-ITR 0313095.

a temporary disruption, end-to-end performance (capacity, de-
lay, loss) could be highly volatile.

In such environments, performance variability is the norm:
TCP will see variable capacity and unpredictable residual
packet erasure rates (PER). Seamless communication under
such conditions requires tolerance of such performance vari-
ability, especially packet erasures.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20 25 30 35 40 45 50

G
o

o
d

p
u

t
(M

b
p

s)

Packet Error Rate(%)

Degradation of SACK Performance with PER
RTT: 6ms

RTT: 24ms
RTT: 104ms

Fig. 1. TCP-SACK Degradation with Increased Erasure Rate and RTT (Uni-
form Loss Probabilities, 10 Mb/s Capacity, 1 flow)

TCP depends on packet loss to respond to congestion, and
its drawbacks over lossy wireless links are well-known. A
key issue is TCP’s inability to distinguish between losses due
to channel errors and congestion, leading to significant under-
estimation of the available capacity. This behavior only wors-
ens as the channel error rate increases. It is important to sep-
arate TCP’s response to congestion from packet erasures. As
seen in Fig. 1, the performance of SACK deteriorates sharply
as the error rate goes up. In practice, even an error rate of 5% is
sufficient to cause a SACK connection to collapse. This behav-
ior only worsens as the RTT increases.

Explicit Congestion Notification (ECN) is a mechanism that
can be used to unambiguously indicate incipient congestion [8]
and in conjunction with TCP’s congestion avoidance mecha-
nisms, it can reduce congestion loss (due to buffer overflow).
ECN thus allows us to interpret and isolate packet losses as be-
ing primarily due to channel errors. The packet erasures due
to errors on wireless channels still extract a substantial perfor-
mance toll through TCP timeouts. In this paper, we re-examine

2

TCP’s behavior in ECN-enabled networks and propose adaptive
mechanisms that allow robust performance even under heavy
and persistent erasure conditions (e.g., up to 50% erasure rates).
We propose a package of complementary mechanisms (adap-
tive MSS and proactive/reactive FEC) to recoup TCP’s perfor-
mance.

An interesting question is: Why end-to-end mechanisms
for erasure tolerance over-and-above link-level error protection
mechanisms? First, link level mechanisms may not be suffi-
cient. Recently, studies by a group of researchers showed sub-
stantial residual performance variability (e.g., 10-50% packet
erasure rates) in 802.11b mesh networks [5]. Emerging
high speed LAN standards like 802.11n use adaptive mod-
ulation/coding techniques (i.e., variable capacity) targeting a
packet error rate of 10%, but these techniques are triggered by
low SNR events (i.e., bursty packet erasures). The efficacy of
ARQ persistence in 802.11x is countered by exponential back-
off timers, leading to substantial variability in capacity and de-
lay.

Barakat et al. [1], [3] study TCP over links with just FEC
or hybrid ARQ/FEC. They find a pure FEC strategy ineffec-
tive. Pure ARQ is also shown to fail for high erasure conditions,
despite persistent retries. Though link-level hybrid ARQ/FEC
is better than either FEC or ARQ alone, its performance also
significantly degrades for higher loss rates (5% or more) de-
spite high amounts of ARQ retries, fragmentation of IP packets,
FEC overhead and buffering (see Fig. 15/16 in [3]). The situ-
ation is complicated further because different link layer stan-
dards/implementations have different erasure resilience capa-
bilities.

Second, any appreciable residual erasures may have a dispro-
portionate impact on TCP depending upon which packets are
lost (e.g., data, acks, or retransmissions). Erasures of retrans-
missions or segments when TCP’s window is small raise the
risk of timeouts. In addition, information about the current win-
dow size, loss rate and packet size (MSS) can be exploited by
TCP to provide the correct and variable amount of error protec-
tion when needed. Of course, our design (guided by the end-to-
end design principle) does not preclude general-purpose error
mitigation schemes at the link layer, and we remain cautiously
optimistic about the potential of link-layer hybrid ARQ.

TCP Performance Enhancing Proxies (PEPs) [6] are TCP-
aware mechanisms placed on boundaries where network char-
acteristics change dramatically. PEPs maintain per-flow state
and perform layer violations (with implications for security,
mobility and scalability). The TCP-PEP technique is less appli-
cable for the emerging regime of variable-performance, high-
erasure, highly multiplexed, meshed wireless links.

Baldatoni et al. [9] proposed a version of TCP with FEC (but
without adaptivity) that works with small error rates. Rizzo
showed the feasibility of transport-layer high-speed FEC com-
putation[14]. Although [14] mentions the idea of FEC in TCP,
a specific scheme has not been studied and subsequent re-
searchers’ focus has been on multi-cast transport protocols [7],
[11]. Bestavros et al. [4] propose a scheme called TCP Boston
that aims to be tolerant to fragmentation in ATM networks by
adding redundancy on a per-segment basis. Recent attempts at
adding FEC to TCP have met with limited success [2] (for less

than 10% erasure rates). Success with higher erasure rates have
not been reported to the best of our knowledge. TCP Westwood
[10] uses an estimate of output rate to guide congestion con-
trol, and has been effective for low erasure rates (under 5%).
Presumably all these schemes encounter the risk of increased
timeouts mentioned earlier. Overall, despite growing interest,
there has been no clear baseline proposal that offers a signif-
icant increase in TCP performance over a wide range of era-
sure rates. Powerful and efficient error correction techniques
have been proposed recently ([7]) that enable such operations
to be done efficiently. In this work, we assume the use of Reed-
Solomon codes [13] as the FEC mechanism.

In our scheme, called Loss-Tolerant TCP (LT-TCP), we
provision proactive FEC in the original window as a function
of the estimate of the actual packet erasure rate. Subsequently,
reactive FEC is used to mitigate the effect of erasures, during
the retransmission phase. An adaptive maximum segment size
(MSS) component provides a minimum granularity (a mini-
mum number of packets) in the TCP window, again seeking
to reduce the risk of timeouts. We seek to adaptively balance
the FEC and packetization overhead while reducing the risk of
timeouts and also rapidly recovering erased packets. In par-
ticular, when the end-to-end path has little or no loss/erasure,
LT-TCP introduces minimal overhead. At the same time, we
seek to significantly improve the performance of TCP and chan-
nel utilization even under packet erasure rates as high as 50%
. An earlier version of LT-TCP and its performance evaluation
appeared in [12]. We also evaluate the fairness of LT-TCP co-
existing with TCP-SACK in this paper.

The rest of this paper is organized as follows. Section II de-
scribes the scheme. Performance results (ns-2 simulations) are
presented in Section III. Section IV presents our conclusions
and future work.

II. SCHEME DESCRIPTION

LT-TCP design focuses on the following key issues:
� Congestion Response: How should TCP respond to con-

gestion, but not respond to packet erasures. What is the
appropriate signal of congestion in an error-prone environ-
ment?

� Mix of Reliability Mechanisms: What mix of TCP repair
mechanisms (ARQ, FEC) should be used to achieve the
TCP reliability objectives and how should they be struc-
tured?

� Timeout Avoidance: Timeouts are a final fall-back mech-
anism under significant congestion loss, but truly wasteful
otherwise. How can the mix of TCP repair mechanisms be
set up to reduce the timeout risk ?

Congestion Response: Our answer to this issue is simple:
react based only upon ECNs, not on detection of packet loss.
This solution would obviously work only in an ECN-enabled
network. However, despite this simplifying assumption, time-
out risk reduction poses further challenges as discussed below.

Reliability Mix: Error correction packets (a.k.a. FEC pack-
ets) have a property unlike regular data packets: if any

�
(out of

�
) packets are received, then it does not matter which

�
pack-

ets are received. A unique FEC packet can repair any one data

3

��

���
���
��
��

������������������������

Window Size
Granulated

MSS Adaptation

Loss Estimate/ Block Loss Feedback

Block
Parameters

(n,k)

Application Data

Data Packets

Window Size

Block

Reactive FEC

FEC Computation
to send

type of
Determine

packet

Proactive FEC

Scheduler

Fig. 2. LT-TCP Big Picture: PFEC and RFEC help in the recovery of data.
PFEC operates in conjunction with Adaptive MSS and is determined by the
current estimate of loss rate. RFEC is computed based on feedback from the
receiver and the loss rate estimate. Incoming acks clock Data, PFEC and RFEC
packets. The receiver can reconstruct the data packets as soon as any 	 out of
 packets arrive at the receiver.

packet. In contrast, TCP uses SACK or 3-dupacks to iden-
tify and retransmit a packet with a specific sequence number.
This sequence-agnostic property for FEC-based repair allows
a unique FEC packet to be used either in the original window
(i.e., in a proactive manner, called PHASE 1) or in the retrans-
mission process (i.e., in a reactive manner, called PHASE 2).
If the cumulative number of FEC and data packets in PHASE 1
and PHASE 2 do not meet the threshold of

�
(out of N), we will

fallback to traditional retransmission or timeout. Our mix will
first have adaptive amounts of proactive and reactive FEC repair
packets, extending the traditional TCP mechanisms (SACK, du-
packs, timeouts, retransmissions).

Timeout avoidance: Timeouts occur for the following
key reasons that are exacerbated in a high packet erasure
environment:
a) All packets in a window are lost.
b) Three dupacks do not reach the source (to trigger SACK-
based repair).
c) One or more of the retransmitted packets are lost (because
dupacks stop arriving).
To overcome each of these issues related to timeout avoidance,
we propose to:
i) Granulate the TCP window more finely to increase the
number of segments in a window that (due to the self-clocking
nature of TCP) are spread over an RTT. Smaller packets also
reduce the impact of bit errors (which translate to smaller
packet error rates).
ii) Use proactive FEC packets in the window based upon an
estimate of current erasure rate to reduce the need for dupacks
and reduce the burden on SACK retransmissions for recovering
lost packets.
iii) Use reactive FEC repair packets triggered by dupacks to
complement and protect SACK retransmissions.

Overview: Fig. 2 provides an overview of the LT-TCP
scheme. Application data is broken down into TCP segments
where the MSS is chosen to accommodate proactive FEC
(PFEC) packets in the window. Reactive FEC (RFEC) pack-
ets are computed at the same time and held in reserve. Feed-
back from the receiver provides not only the loss estimate but
also information (e.g., SACK blocks) that can be used to com-
pute the number of reactive FEC packets to send for each block.
When the sender receives acks, it determines the type of packet
to send (Data/PFEC/RFEC) and transmits them. This provides
self-clocking and follows the semantics of TCP behavior. LT-
TCP comprises the following building blocks that complement
each other and extend SACK to provide resilience.

ECN-Only: Congestion response only to ECN, since it is a
definitive signal of congestion in ECN-enabled networks.

Per-Window Erasure Rate Estimate (�): Since the amount
of FEC overhead to include proactively depends upon the statis-
tics of the loss process, we use an exponentially weighted mov-
ing average (A) of loss rate samples:

�������������������� �"!#�$� �%�"�
(1)

The erasure rate estimation can be performed equally conve-
niently at either the receiver or the sender. The receiver can use
the information from the packets received to estimate � while
the sender can use information in the acks to do the same.

Proactive FEC: The number of FEC packets per window
(&) used in PHASE 1 (i.e., Proactive FEC) is a function of the
erasure estimate, i.e., & ('*) �,+ . The MSS is adjusted to al-
low the desired number of FEC packets in the window (while
maintaining sufficient window granulation). For example, if the
estimated loss rate is 0.1, 10% of the packets in the following
window are chosen to be PFEC packets. The remaining packets
are data packets.

Adaptive MSS: Granulate the congestion window to have
at least - (set to 10) packets, subject to limits of a minimum
and maximum MSS (.0/1/32�465 and .0/1/32�798). Depending on
the window size in bytes, the MSS is adjusted to accommodate
the required number of FEC packets while providing adequate
erasure protection.

Thus, the adaptation of the MSS is governed by the following
factors:

� The window must be divided into MSS-sized segments
while maintaining the minimum granularity, - .

� The window should be able to accommodate at least
'*) �,+

proactive FEC packets while providing adequate erasure
protection for the estimated erasure rate, � .

� The MSS chosen must be bounded by the .0/1/ 2�4:5 and
.0/1/ 2;7<8 values. Our current values are 200 and 1500
bytes respectively.

Reactive FEC: Reactive FEC packets are scheduled based
on feedback present in incoming acks similar to data and proac-
tive packets. Moreover, feedback from the receiver indicates the
number of holes in each relevant block (alternatively, we could
compute this using SACK blocks). This indicates the number of
packets still needed at the receiver to decode packets from that
block. The number of reactive packets scheduled is determined
by the current loss estimate, number of holes the sender knows

4

TCP TCP TCP FECFEC

ACK ACK

Node
 N0S3

S2

S4

S5

Source 1

S1

Wireless Link (10 Mbps / 20 ms)

Node
 N1

Sink 1

Sink 10

D1

D2

D3

D4

D5

D10

ACK

S10

Source 10

10 TCP flows

Access Link
 (40 Mbps)

maxthresh (500)

RED Queue

Maximum Queue limit (500)

TCP FEC

Access Link
 (40 Mbps)

minthresh (10)

Fig. 3. Single Wireless Bottleneck Setup: RED AQM with ECN. 10 Mb/s bottleneck, 20 millisec. one-way delay, 10 TCP flows

about and the number of PFEC packets already sent. Reactive
FEC packets thus scheduled are sent out in response to incom-
ing acks. The specific type of packet sent (data /PFEC/RFEC) is
determined by a transmission scheduler (see Fig 2). Moreover,
following a timeout, sending RFEC packets before data allows
the receiver to recover the block faster and protects data pack-
ets more efficiently. The reactive FEC packets complement and
protect data in PHASE 1 and SACK retransmissions in PHASE
2.

The sender module is responsible for adaptive MSS adjust-
ment (i.e., window granulation), computing proactive and re-
active FEC packets, and the appropriate transmission of FEC
packets.

The receiver implements packet reconstruction (using FEC
if and when necessary) and per-window loss-rate estimation.
The FEC overhead (proactive and reactive) is computed on a
per-window basis using shortened Reed-Solomon (R-S) codes
(similar to the method used in CD-ROMs). The proactive FEC
is transmitted in the window, but the inventory of excess FEC
packets is stored for potential use as reactive FEC.

The trade-offs of our mechanisms are as follows. Adaptive
MSS uses smaller segments when windows are small and there-
fore the header (or packetization) overhead is larger, but dimin-
ishes as window sizes grow. Proactive FEC may lead to a small
dead-weight goodput degradation due to over-estimation of era-
sure rate. However, since these mechanisms are all adaptive
(i.e., they become more active only during higher erasure rate
conditions), we argue that the trade-offs are worth making as
they achieve a significant improvement in performance, and en-
ables a wider dynamic range of applicability of TCP. The trans-
mission of all the packets (DATA/PFEC/RFEC) is governed by
the principles of self-clocking and LT-TCP adheres to the se-
mantics of TCP in this regard.

III. PERFORMANCE RESULTS

In this section, we present the performance of LT-TCP com-
pared with TCP-SACK (with ECN) and the performance of
individual LT-TCP components. We also study fairness is-
sues among TCP-SACK and LT-TCP flows. We use a single-

bottleneck test case (see Fig. 3) with 10 flows and erasure rates
varying from 0% to 50%. Hosts are ECN-enabled, bottlenecks
implement RED/ECN on a 250 KB buffer (i.e., upto 500 packet
of size 500-bytes).

���������	� � �
�
and

� ������	� � �
�
values are as

shown. The results are based upon an average of 6 simulations,
with each run lasting for 100 seconds of data-transfer to mini-
mize effects of transients. The 95% confidence intervals (CIs)
are also shown for key metrics. To assess the contribution of
LT-TCP components, we use a 30% PER test case. Metrics in-
clude aggregate throughput, goodput, number of timeouts and
congestion window dynamics. We account for all packet header
overheads.

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50

G
oo

dp
ut

 (
M

bp
s)

Packet Error Rate(%)

Degradation of LTTCP Performance with PER
RTT: 6ms

RTT: 24ms
RTT: 104ms

Fig. 4. LT-TCP performance with Increased Erasure Rate and RTT (Uniform
Loss Probabilities, 10 Mb/s Capacity, 1 flow)

Error Models: We consider both a Uniform loss process and
a two-state loss process with deterministic error periods (called
Gilbert model) to test our scheme. We vary the average PER
from 0-50% under both these loss models. We assume that the
average erasure rate (

�
) is applied at the granularity of each

packet. The ON and OFF periods have an erasure rate of � ���*� �
and

�����*� �
. For

�
= 50% the ON-OFF period loss rates are 75%

5

and 25% respectively. This bursty model can be simplified to
the uniform per-packet erasure model by setting the loss rates
to be the average PER in both the ON and OFF states. In our
simulations, the bursty loss model has ON/OFF periods with a
mean of 10 ms, randomized over a small range (9-11ms).

A. LT-TCP vs TCP-SACK

Both TCP-SACK and LT-TCP perform well without packet
erasures. But TCP-SACK’s performance drops quickly for PER
of 10% and higher. In practice, an error rate of around 5 %
is sufficient to cause a single TCP-SACK connection to break
down due to repeated timeouts. The number of timeouts expe-
rienced by SACK is much higher than with LT-TCP. With TCP-
SACK, as the error rate goes beyond 40 %, while the number
of timeouts decreases, the actual penalty is higher because re-
peated timeouts and timer back-off mechanisms cause timeout
periods to increase exponentially. Fig. 4 shows the performance
of a single LT-TCP flow at different error rates for a number of
RTT scenarios. It can be seen that compared to the performance
of TCP-SACK (Fig. 1), the degradation in performance is lin-
ear. LT-TCP manages to achieve better performance even at
high packet error rates by avoiding timeouts and recovering lost
packets using proactive and reactive FEC. Even when the RTT
increases, LT-TCP achieves good performance, without the se-
vere degradation observed with TCP-SACK.

Fig 5 shows the comparative performance with 10 flows for
the Uniform and Gilbert loss processes. Multiplexing gains
due to multiple flows enable SACK to obtain a goodput of
around 3.02 Mb/s at 10 % PER (Uniform loss process) but
performance beyond this error rate is dismal. In contrast, LT-
TCP outperforms TCP-SACK by a wide margin and its abso-
lute performance (goodput) is good up to about 50% PER. The
sender-side throughput is close to the maximum achievable of
10 Mb/s. This improvement is in part due to the reduction in
timeouts leading to smaller idle time. Moreover, the degrada-
tion in LT-TCP goodput is linear and it does not collapse as
the error rate goes up. For example, at 10 % PER, we could
potentially obtain a goodput of 9 Mb/s. LT-TCP manages to
obtain around 6.49 Mb/s (for the Uniform loss process). The
need to accommodate a minimum window granulation causes
the header overhead in LT-TCP to increase compared to TCP-
SACK. This overhead is due to multiplexing which reduces the
available window size per LT-TCP flow. As the available band-
width per flow increases, this overhead comes down. For ex-
ample, with a single LT-TCP flow, the goodput is the same as
that of SACK at 0% PER since LT-TCP can use full-sized seg-
ments while maintaining granulation. When the loss pattern is
random and the number of PFEC/RFEC packets needed cannot
be predicted perfectly, some amount of wastage of PFEC and
RFEC occur.

B. LT-TCP Component Performance

The LT-TCP components are evaluated in the following (cu-
mulative) order:

1) TCP-SACK.
2) TCP-SACK with ECN-only (i.e., RED/ECN at the bot-

tleneck and congestion response only to ECN marks).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50

T
C

P
 G

oo
dp

ut
 (

M
b/

s)

Average Packet Error Rate (%)

TCP Goodput v/s PER
LTTCP (Gilbert Model)

LTTCP (Uniform Model)
SACK (Gilbert Model)

SACK (Uniform Model)

Fig. 5. LT-TCP and TCP-SACK performance with Increased Erasure Rates
(Gilbert and Uniform Loss Probabilities, 10 Mb/s Capacity, 10 flows)

3) TCP-SACK with ECN-only and adaptive MSS.
4) TCP-SACK with ECN-only, adaptive MSS and reactive

FEC (no proactive FEC).
5) TCP-SACK with ECN-only, adaptive MSS and proactive

FEC (no reactive FEC).
6) Full LT-TCP scheme with TCP-SACK, ECN-only, adap-

tive MSS, proactive and reactive FEC.
The average goodput for the different component bundles is

shown in Fig. 6(a) for a scenario with an error rate of 30% and
an RTT of 50ms. The addition of each component to TCP-
SACK consistently improves performance with the major gains
being provided by the Proactive FEC protection. The final
goodput for LT-TCP is several times the goodput achieved by
TCP-SACK. The number of timeouts also decreases with the
addition of each component. As mentioned earlier, while the
number of timeouts with TCP-SACK is low, the length of each
timeout increases exponentially, leading to low performance.
With LT-TCP, timeouts are few and smaller in duration.

C. Fairness Among LT-TCP and TCP-SACK flows

We now evaluate the fairness of LT-TCP towards other TCP-
SACK flows. Since TCP-SACK is unable to perform well (e.g.,
leaves the channel idle during timeouts) at even relatively small
error rates (� 5%), the available bandwidth in high loss scenar-
ios may be utilized by LT-TCP. However, the comparison in the
lossless scenario where the PER is 0% is also important. We
test the fairness by sharing the bottleneck among 5 TCP-SACK
and 5 LT-TCP flows. LT-TCP obtains an average goodput of
0.81 Mb/s while TCP-SACK obtains 1.10 Mb/s. Since the av-
erage packet size with LT-TCP is lower due to packetization
overhead, LT-TCP’s goodput is slightly lower. Overall, LT-TCP
behaves fairly towards other TCP-SACK connections.

To determine the dynamic response of TCP-SACK when op-
erating in conjunction with LT-TCP, we now look at the time it
takes for TCP-SACK to recover from a timeout in this mixed
scenario. On an otherwise lossless path, we experience a loss
burst for a small 100 ms interval at time t=50 seconds, where
the PER is 50%. This leads to a single timeout at TCP-SACK

6

ECN
ECN+AMSS

ECN+AMSS+RFEC

ECN+AMSS+PFEC

FULL LT−TCP

TCP−SACK

�� ���� ������ ������ 	�	
	�		�	
	�		�	
	�		�	
	�		�	
	�	

 ����������

����������
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5 6 7

LT−TCP Component Contribution

T
ra

ns
po

rt
 G

oo
dp

ut
 (

M
b/

s)

(a) Goodput Comparison

TCP−SACK

ECN+AMSS

ECN+AMSS+RFEC

ECN+AMSS+PFEC

FULL LT−TCP

ECN

������������ ���
������
��������� ��

��
��
��
�

��
��
��
��
�

������
������
������
������

��
��
��
��

������
������
������
������

��
��
��
��

��
 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7

N
um

be
r

of
 T

im
eo

ut
s

LT−TCP Component Contribution

(b) Timeout Comparison

Fig. 6. Figures 6(a) and 6(b) show the LT-TCP Component contributions at a packet error rate (PER) of 30 %.

just after this loss interval. The cumulative goodputs (measured
as the goodput from the start of the simulations) in Fig 7(a)
converge to give both flows an almost equal share of the band-
width. The instantaneous goodput (measured for every 100ms
window) in Fig 7(b) obtained by TCP-SACK dips sharply just
after 50 seconds. However, TCP-SACK is able to recover from
this timeout quickly. This is indicative of the fact that LT-TCP
follows TCP semantics and TCP-SACK flows do not suffer due
to LT-TCP. We see from Fig 7(c) that following the timeout, the
congestion window is able to rise rapidly and reach its former
level within a few RTTs. Although the LT-TCP connections
experience losses, they do not suffer a timeout (see Fig 7(d)).

In summmary, LT-TCP’s robustness does not lead to unde-
sired aggressiveness and unfairness toward other flows. At high
loss rates, where TCP-SACK is unable to perform, LT-TCP
uses the available bandwidth. Under benign conditions, LT-
TCP shares the bandwidth fairly with TCP-SACK connections.

IV. SUMMARY AND CONCLUSIONS

Transport protocols such as TCP have traditionally suffered
poor performance in environments with lossy end-end paths.
Wireless links in extreme environments such as military sce-
narios may experience jamming, interference and small/large
time-scale outages leading to high end-end loss rates. To ac-
commodate heterogeneity in links, multiple wireless hops and
provide redundancy over longer time-scales, it is valuable to
have a loss-tolerant transport layer that is not solely dependent
on link layer mechanisms. Performance-enhancing proxies and
other non-end-end solutions may be inapplicable in situations
where security is a concern. At the same time, the transport
protocol should not introduce overhead when it is unnecessary.
These issues are currently relevant because of the growing use
of meshed wireless networks and MANETs, beyond their ini-
tial niches, as an integral part of the future communications
infrastructure.

Since TCP is the dominant reliable transport protocol used
in the Internet, we have designed a loss-tolerant TCP (LT-TCP)
which introduces additional mechanisms in an adaptive man-
ner. Our enhancements allow good performance even under de-
manding conditions through the recovery of lost packets with
Proactive and Reactive FEC packets that help avoid timeouts.
In our performance evaluation, we demonstrated that LT-TCP
improves the performance of TCP-SACK, for end-end packet
error rates of even up to 50% while being fair to concurrent
TCP-SACK flows . What is attractive about LT-TCP is that the
achieved goodput shows a relatively smooth and linear decrease
with increasing error rates, even with substantial end-end round
trip times.

In our future work, we plan to complete our experimentation
with LT-TCP in non-ECN environments, demonstrate backward
compatibility as well as examine ways to make the protocol
suite robust to longer time-scale outages while achieving rea-
sonable goodput. We also propose to investigate link-level pro-
tocols that can help LT-TCP by performing local recovery and
exporting a lower end-end loss rate. Such link-level protocols
need to reduce the error rate while maintaining low latency
(limited ARQ). Multi-hop paths with significant error rates on
each link still pose a challenge and support from link-level pro-
tocols may be needed. We plan to investigate the division of
mechanisms (between transport and link layers) to counter high
loss paths in extreme networks and the performance of LT-TCP
in conjunction with such link-level protocols, especially over
multi-hop wireless networks. We also plan to explore the rela-
tive roles of link layer versus transport layer mechanisms, and
where the balance, flexibility and cross-layer optimization op-
portunities exist for customizing our findings for specific DoD
tactical network scenarios.

REFERENCES

[1] C. Barakat and E. Altman. Bandwidth Tradeoff Between TCP and Link-

7

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80 90 100 110

C
um

ul
at

iv
e

G
oo

dp
ut

 (
M

b/
s)

Time (Seconds)

Fairness Comparisons
Cumul Goodput for TCP-SACK

Cumul Goodput for LT-TCP

(a) Cumulative Goodput

 0

 0.5

 1

 1.5

 2

 2.5

 3

 40 42 44 46 48 50 52 54 56 58 60

In
st

an
ta

ne
ou

s
G

oo
dp

ut
 (

M
b/

s)

Time (Seconds)

Fairness Comparisons
Inst Goodput for TCP-SACK

Inst Goodput for LT-TCP

(b) Instantaneous Goodput

Timeout Event and Recovery

 0

 5000

 10000

 15000

 20000

 25000

 30000

 46 47 48 49 50 51 52 53 54

C
W

N
D

 (
in

 b
yt

es
)

Time (Seconds)

Congestion Window for TCP−SACK (Zoomed in)
CWND for TCP−SACK

(c) Congestion Window for TCP-SACK (Zoomed in)

Loss Event but no Timeout

 0

 5000

 10000

 15000

 20000

 25000

 30000

 46 47 48 49 50 51 52 53 54

C
W

N
D

 (
in

 b
yt

es
)

Time (Seconds)

Congestion Window for LT−TCP (Zoomed in)
CWND for LT−TCP

(d) Congestion Window for LT-TCP (Zoomed in)

Fig. 7. The zoomed-in congestion windows (in bytes) for 1 TCP-SACK connection and 1 LT-TCP connection are also shown in the scenario where we have
5 connections of each type operating in a lossless environment. A 100ms loss period (PER of 50%) at 50 seconds causes a timeout in TCP-SACK. We plot the
cumulative (measured from the start of the simulation) and instantaneous goodputs (measured in intervals of 100ms) obtained by the TCP-SACK and LT-TCP
connections.

level FEC. Computer Networks, 39(2):133–150, June 2002.
[2] T. Anker, R. Cohen, and D. Dolev. Transport Layer End-to-End Error

Correcting. Technical report, The School of Computer Science and Engi-
neering , Hebrew University, 2004.

[3] C. Barakat and A. Fawal. Analysis of Link-level Hybrid FEC/ARQ-SR
for Wireless Links and Long-lived TCP Traffic. volume 57, pages 453–
476, Amsterdam, The Netherlands, The Netherlands, 2004. Elsevier Sci-
ence Publishers B. V.

[4] A. Bestavros and G. Kim. TCP Boston: A Fragmentation-Tolerant TCP
Protocol for ATM Networks. In INFOCOM ’97: Proceedings of the IN-
FOCOM ’97. Sixteenth Annual Joint Conference of the IEEE Computer
and Communications Societies. Driving the Information Revolution, page
1210, Washington, DC, USA, 1997. IEEE Computer Society.

[5] S. Biswas G. Judd D. Aguayo, J. Bicket and R. Morris. Link-level Mea-
surements from an 802.11b Mesh Network. In SIGCOMM, August 2004.

[6] J. Griner G. Montenegro J. Border, M. Kojo and Z. Shelby. Perfor-
mance Enhancing Proxies Intended to Mitigate Link-Related Degrada-
tions. IETF RFC 3135, June 2001.

[7] M. Mitzenmacher J. W. Byers, M. Luby and A. Rege. A Digital Fountain
Approach to Reliable Distribution of Bulk Data. In SIGCOMM, pages
56–67, Aug-Sep 1998.

[8] K.K. Ramakrishnan, S. Floyd, D. Black. RFC 3168 - The Addition of
Explicit Congestion Notification (ECN) to IP, Sep 2001.

[9] L. Baldantoni and H. Lundqvist and G. Karlsson. Adaptive End-to-End

FEC for Improving TCP Performance over Wireless Links. In ICC, June
2004.

[10] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang. TCP
Westwood: Bandwidth Estimation for Enhanced Transport over Wireless
Links. In Mobile Computing and Networking, pages 287–297, 2001.

[11] J. Nonnenmacher and E. Biersack. Reliable Multicast: Where to Use
FEC. In Protocols for High-Speed Networks, pages 134–148, 1996.

[12] O. Tickoo and V. Subramanian and S. Kalyanaraman and
K.K.Ramakrishnan. LT-TCP: End-to-End Framework to Improve
TCP Performance over Networks with Lossy Channels. In Thirteenth
International Workshop on Quality of Service (IWQoS 2005), Passau,
Germany, June 2005.

[13] I. Reed and G. Solomon. Polynomial Codes Over Certain Finite Fields.
Journal of the Society for Industrial and Applied Mathematics, 8:300–
304, June 1960.

[14] L. Rizzo. On the Feasibility of Software FEC. DEIT Technical Report
LR-970131. Available as http://www.iet.unipi.it/ luigi/softfec.ps.

