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Abstract. One of the key issues for implementing congestion pricing is the pricing granularity (i.e. pric-
ing interval or time-scale). The Internet traffic is highly variant and hard to control without a mechanism
that operates on very low time-scales, i.e. on the order of round-trip-times (RTTs). However, pricing natu-
rally operates on very large time-scales because of human involvement. Moreover, structure of wide-area
networks does not allow frequent price updates for many reasons, such as RTTs are very large for some
cases. In this paper, we investigate the issue of pricing granularity and identify problems. We first focus
on how much level of control over congestion can be achieved by congestion pricing. To represent the
level of control over congestion, we use correlation between prices and congestion measures. We develop
analytical and statistical models for the correlation. In order to validate the correlation model, we develop
packet-based simulation of our congestion pricing scheme Dynamic Capacity Contracting. We then present
the fit between simulation results of the pricing scheme and the correlation model. The correlation model
reveals that the correlation degrades at most inversely proportional to an increase in the pricing interval. It
also reveals that the correlation degrades with an increase in mean or variance of the traffic. Secondly, we
discuss implications of the correlation model. According to the model and simulation results, we find that
control of congestion by pricing degrades significantly as pricing granularity increases.
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Introduction

As the Internet grows in size and heterogeneity, the need increases for new economic
models and inter-domain services as well as new tools and techniques for managing con-
gestion. Technical tools such as differentiated services [Blake et al., 1], TCP/IP improve-
ments like SACK [Mathis et al., 17], over-provisioned ISP cores have been developed
and deployed in the Internet. However, economic tools, such as dynamic pricing, auc-
tioning of bandwidth, proper accounting, have been proposed but not deployed [Clark, 3;
Gupta et al., 9; Kelly et al., 11; MacKie-Mason and Varian, 16].

In this paper, we focus on dynamic pricing which is a method of controlling varying
network conditions. Among benefits of dynamic pricing, particularly congestion pric-
ing, is to increase provider’s revenue while maximizing total utility of the system. It has
been shown in [Kelly, 10; Gibbens and Kelly, 8; Kelly et al., 11] that congestion-based
prices can be used as Lagrange multipliers to break the problem of utility maximiza-
tion into subproblems of user’s utility maximization and provider’s revenue maximiza-
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tion. By having flexibility of changing the prices dynamically, the providers can adapt
to (i) changes in the network’s congestion level and achieve better congestion control,
(ii) changes in the user demand and achieve better fairness, and (iii) changes in the cost
structure and achieve higher revenues.

To achieve the above-mentioned benefits of dynamic pricing, many proposals have
been made to implement dynamic pricing over wide area networks and the Internet
[Clark, 3; Gupta et al., 9; Kelly et al., 11; MacKie-Mason and Varian, 16; MacKie-
Mason et al., 14; Wang and Schulzrinne 25–27; Semret et al., 22, 21; Orda and Shimkin,
20; Yuksel and Kalyanaraman, 28]. Most of these schemes aimed to employ congestion
pricing, which is one of the proposed methods for controlling congestion in wide area
networks [Cocchi et al., 4; MacKie-Mason and Varian, 15]. The main idea of congestion-
sensitive pricing is to update price of the network service dynamically over time such
that it increases during congestion epochs and causes users to reduce their demand. This
gives the network provider a knob to indirectly control users’ demand and achieve bet-
ter congestion control. Also, through congestion pricing, the network provider sells the
service to only those users with high enough willingness-to-pay, because only the users
with higher reservation prices will keep using the service when the price increases dur-
ing congestion epochs. In other words, congestion pricing provides an indirect selection
mechanism that only allows the users with higher need and demand to use the network
service. This increases provider’s revenue as well as users’ total utility.

Implementation of congestion-sensitive pricing protocols (or any other dynamic
pricing protocol) makes it necessary to change the price after some time interval, what
we call pricing interval. Clark’s expected capacity [Clark, 3] scheme proposes long-term
contracts as the pricing intervals. Kelly’s packet marking scheme [Kelly et al., 11] pro-
poses shadow prices to be fed back from network routers which has to happen over some
time interval. MacKie-Mason and Varian’s smart market scheme [MacKie-Mason and
Varian, 16] proposes price updates at interior routers which cannot happen continuously
and have to happen over some time interval. Wang and Schulzrinne’s RNAP [Wang and
Schulzrinne, 27] framework proposes to update the price at each service level agreement
which has to happen over some time interval. Hence, congestion-sensitive pricing can
only be implemented by updating prices over some time interval, i.e. pricing interval.

It has been realized that there are numerous implementation problems for dynamic
or congestion-sensitive pricing schemes, which can be traced into pricing intervals. We
can list some of the important ones as follows:

• Users do not like price fluctuations. Currently, most ISPs employ flat-rate pricing
which makes individual users happy. Naturally, most users do not want to have a
network service with a price changing dynamically. In [7], Edell and Varaiya proved
that there is a certain level of desire for quality-of-service. However, in [18, 19],
Odlyzko provides evidence that most users want simple pricing plans and they easily
get irritated by complex pricing plans with frequent price changes. So, it is important
that price updates should happen as less as possible. In other words, users like a
service with larger pricing intervals.
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• Control of congestion degrades with larger pricing intervals. Congestion level of the
network changes dynamically over time. So, the more frequent the price is updated,
the better the congestion control. From the provider’s side, it is easier to achieve
better congestion control with smaller pricing intervals.

• Users want prior pricing. It is also desired by the users that price of the service must
be communicated to them before it is charged. This makes it necessary to inform the
users of the network service before applying any price update. So, the provider has
to handle the overhead of that price communication. The important thing is to keep
this overhead as less as possible, which can be done with larger pricing intervals.

Hence, length of pricing intervals is a key issue for the implementation of
congestion-sensitive and adaptive pricing protocols. In this paper, we focus on mod-
eling and analysis of pricing intervals to come up with a maximum value for it such that
the level of congestion control remains in an acceptable range. Beyond this range, pric-
ing could be used to regulate demand, but it becomes less useful as a tool for congestion
management.

The rest of the paper is organized as follows. In section 1, we first explore steady-
state dynamics of congestion-sensitive pricing with a detailed look at the behavior of
prices and congestion relative to each other. We then develop and discuss an approximate
model for the correlation of prices and congestion measures in section 2. In section 3,
we validate the model by simulation experiments and present the results. Finally, in
section 4 we discuss the implications of the work and possible future work.

1. Dynamics of congestion-sensitive pricing

This section explains the behavior of congestion-sensitive prices and congestion mea-
sures relative to each other in a steady-state system. A sample scenario is described
in figure 1. The provider employs a pricing interval of T to implement congestion-
sensitive pricing for its service. The customer uses that service to send traffic to the des-
tination through the provider’s network. The provider observes the congestion level c

in the network core and adjusts its advertised price, p, according to it. Note that c

and p are, in fact, functions of time (i.e. c(t) and p(t), where t is time), but we use
c and p throughout the paper for simplicity of notation. It is a realistic assumption to

Figure 1. A sample customer-provider network.
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Figure 2. Congestion measure relative to congestion-sensitive prices in a steady-state network being priced.

say that the provider can observe the network core over small time intervals, i.e. a few
round-trip-times (RTTs). To understand the effect of pricing interval on the dynamics of
congestion-sensitive pricing, we look at the relationship between c and p over time.

Assuming that we have continuous knowledge of congestion level c we can rep-
resent the dynamics of congestion-sensitive pricing as in figure 2. Figure 2 represents
the relationship between c and p for two different pricing interval lengths, T1 > T2. For
both lengths, the steady-state behavior of congestion-sensitive pricing is represented.
The advertised price p, varies around an optimum price p∗.

When the provider sees that the congestion level has been decreasing, it decreases
the advertised price such that the network resources are not under-utilized. Then the
customer starts sending more traffic in response to the decrease in price, and congestion
level in the core starts increasing accordingly. The congestion level continues to increase
until the price is increased by the provider at the beginning of the next pricing interval.
When the provider increases price because of the increased congestion in the last pricing
interval, the customer starts sending less traffic than before. Then congestion level starts
decreasing. This behavior continues on in steady-state. This explains how congestion-
sensitive prices can control the congestion in a network. The important difference is
that with a larger pricing interval the congestion level oscillates larger as represented in
figure 2.

Another important characteristic of congestion-sensitive pricing is that the price
must be oscillating around an optimum price p∗ to guarantee both congestion control
and high utilization of network resources. In other words, the average of advertised
prices must be equal to the optimum price value. Notice that the customer will send
less traffic which will under-utilize network resources when p > p∗, and the customer
will send excessive traffic than the network can handle which will cause uncontrolled
congestion when p < p∗. So the provider needs to satisfy the condition that the average
of advertised prices equals to the optimum price.

The important issue to realize is that congestion control becomes better if the sim-
ilarity between the advertised price and congestion level is higher. Because of the above
explained implementation constraints, the advertised price cannot be updated continu-
ously. This results in dissimilarity between the price and congestion level. Intuitively,
if the correlation between the advertised prices and the congestion measures is higher,
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fidelity of control over congestion becomes higher. Again by intuition, the correlation
becomes smaller if the pricing interval is larger.

Another important issue is the price oscillation caused by the discontinuous price
updates. As the pricing intervals get larger, the oscillation in price also gets larger. This
in effect leads to oscillation in user demand (i.e. traffic) correspondingly. So, larger
oscillations in price are expected to cause larger oscillation and higher variance in in-
coming traffic. Then, more oscillated traffic causes more oscillated congestion level.
This behavior is represented in figure 2 with the case that �c1 > �c2 and �p1 > �p2.

In the next section, we will develop approximate models of correlation between
the advertised prices and congestion measures, and find the largest value for the pricing
interval such that the system functions at a desired level of control fidelity.

2. Model for correlation of prices and congestion measures

2.1. Assumptions and model development

Assume the length of pricing interval stays fixed at T over n intervals. Also assume
the provider can observe the congestion level at a smaller time scale with fixed obser-
vation intervals t . Assume that T = rt holds, where r is the number of observations
the provider makes in a single pricing interval. Assume that the queue backlog in the
network core is an exact measure of congestion [Low and Lapsley, 13].

We assume that the customer has a budget D for network service and he/she sends
traffic according to a counting process, which is a continuous time stochastic process
A(τ), τ � 0 with first and second moments of λ1(p) and λ2(p) respectively where p

is the advertised price to the customer. So, in reality, λ1(p) is not fixed, because the
customer responds to price changes by changing its sending rate λ1(p). Let mij be the
number of packet arrivals from the customer during the j th observation interval of ith
pricing interval, where i = 1..n and j = 1..r. So the total number of packet arrivals
during the ith pricing interval is

mi =
r∑

s=1

mis. (1)

Also assume that the packets leave after the network service according to a count-
ing process, which is a continuous time stochastic process B(τ), τ � 0 with first and
second moments of µ1(p) and µ2(p), respectively. Let kij be the number of packet de-
partures during the j th observation interval of ith pricing interval, where i = 1..n and
j = 1..r. So the total number of packet departures during the ith pricing interval is

ki =
r∑

s=1

kis . (2)

Assuming that no drop happens in the network core, the first moments of the two
processes are approximately equal in steady-state, i.e. λ1(p) = µ1(p), other than a
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Figure 3. Prices and congestion measures for subsequent observation intervals.

time delay between them. Because, whatever arrives comes into the network will have
to depart. However, the second moments are not equivalent.

As represented in figure 3, let pi be the advertised price and cij is the congestion
measure (queue backlog) at the end of the j th observation in the ith pricing interval. In
our model we need a generic way of representing the relationship between prices and
congestion. We assumed that the congestion-sensitive pricing algorithm calculates the
price for the ith pricing interval according to the following formula1

pi = a(t, r)c(i−1)r , (3)

where a(t, r), pricing factor, is a function of pricing interval and observation interval
defined by the congestion pricing algorithm. We assume that a(t, r) is only effected
by the interval lengths, not by the congestion measures. Notice that this assumption
does not rule out the effect of congestion measures on price, but it splits the effect of
congestion measures and interval lengths to price. We will use a instead of a(t, r) for
notation simplicity.

Within this context, the following equations hold:

cij = c0r +
i−1∑
u=1

(mu − ku) +
j∑

s=1

(mis − kis), (4)

cir = c0r +
i∑

j=1

(mj − kj ), (5)

where i � 1. Reasoning behind (4) and (5) is that the queue backlog (which is the
congestion measure) at the end of an interval is equal to the number of packet arrivals
minus the number of packet departures during that interval.

Let the average price be p and the average queue backlog be c. By assuming that
the system is in steady-state we can conclude that the following equation is satisfied

p = a(t, r)c. (6)

Since the system is assumed to be in steady-state, we can assume the initial (right before
the first pricing interval) congestion measure equals to the average queue backlog, i.e.

c0r = c. (7)

1 Note that this is a simplifying formula for tractability, and cannot capture all aspects of congestion pricing.
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We want to approximate the model of correlation between p and c according to
the above assumptions. We can write the formula for correlation between p and c over
n pricing intervals as

Corrn = En[(c − c)(p − p)|m, k]√
En[(c − c)2|m, k]En[(p − p)2|m, k] (8)

assuming that total of m packet arrivals and k packet departures happen during the
n rounds.

We can calculate the numerator term in (8) as follows:

En

[
(c − c)(p − p)|m, k

] = 1

rn

n∑
i=1

r∑
j=1

(pi − p)(cij − c). (9)

By applying (3), (6) and (7) into (9) we can get

En

[
(c − c)(p − p)|m, k

] = 1

rn

n∑
i=1

r∑
j=1

(ac(i−1)r − ac0r )(cij − c0r ). (10)

Then by applying (4) and (5) into (10), we get the following:

En

[
(c − c)(p − p)|m, k

] = a

rn

n∑
i=1

r∑
j=1

(
H1 +

i−1∑
θ=1

(mθ − kθ)

j∑
s=1

(mis − kis)

)
(11)

where H1 = ∑
u(mu−ku)

2+∑
u

∑
v �=u 2(mu−ku)(mv−kv), u = 1..i−1 and v = 1..i−1.

Similarly, we can derive the variance of congestion measures as follows:

En

[
(c − c)2|m, k

] = 1

rn

n∑
i=1

r∑
j=1

(
H1 + H2 + 2

i−1∑
u=1

(mu − ku)

j∑
s=1

(mis − kis)

)
, (12)

where H2 = ∑
s(mis − kis)

2 + ∑
s

∑
z �=s 2(mis − kis)(miz − kiz), s = 1..j , z = 1..j .

Again through similar derivations, the variance of price will be as follows:

En

[
(p − p)2|m, k

] = a2

n

n∑
i=2

H1. (13)

Now we can relax the condition on m and k by summing out conditional probabil-
ities on (11), (12), and (13). Specifically, we need to apply the operation

En[x] =
∞∑

mij =0

∞∑
kij =0

En[x|m, k]Pmij ;kij
(14)

for all i = 1..n and j = 1..r, where Pmij ;kij
is P {A(t) = mij ;B(t) = kij }. This opera-

tion is nontrivial because of the dependency between the processes A(τ) and B(τ), and
it is not possible to reach a closed-form solution without simplifying assumptions. After
this point, we develop two approximate models by making simplifying assumptions.
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2.1.1. Model-I
Although the arrival and departure processes are correlated, there might also be cases
where the correlation is negligible. For example, if the distance between arrival and
departure points is more, then the lag between the arrival and departure processes also
becomes more which lowers the correlation between them. So, for simplicity, we assume
independence between the arrival and departure processes and derive an approximate
model. The independence assumption makes it very easy to relax the condition on m

and k, since the joint probability of having A(t) = mij and B(t) = kij becomes product
of probability of the two events. After the relaxation, we then substitute µ1(p) = λ1(p)

because of the steady-state condition, and get the followings:

En

[
(c − c)(p − p)

] = atr

2
(n − 1)

(
λ2(p) + µ2(p) − 2tr

(
λ1(p)

)2)
, (15)

En

[
(c − c)2

] = t

2

(
λ2(p) + µ2(p)

)
(rn + 1) − t2

(
λ1(p)

)2(
1 + r − r2 + r2n

)
, (16)

En

[
(p − p)2

] = a2tr

2
(n − 1)

(
λ2(p) + µ2(p) − 2tr

(
λ1(p)

)2)
. (17)

Let σ 2
A be the variance of the arrival process and σ 2

B be the variance of the departure
process. By substituting (15), (17), and (16) into (8) we get the correlation model for the
first n rounds as follows:

Corrn =
√

r(n − 1)(σ 2
A + σ 2

B + 2(λ1(p))2 − 2tr(λ1(p))2)

(σ 2
A + σ 2

B + 2(λ1(p))2)(rn + 1) − 2t (λ1(p))2(1 + r − r2 + r2n)
. (18)

2.1.2. Model-II
To make a more realistic model, we try to develop a model where the arrival and depar-
ture processes are not considered independent. We consider the system as an M/M/1
queueing system with a service rate of µ. Notice that µ is different from the parameters
µ1(p) and µ2(p) which are first and second moments of B(τ). We now try to derive the
joint probability as follows:

Pmij ;kij
= Pmij

∗ Pkij |mij
, (19)

where Pmij
= P {A(t) = mij } and Pkij |mij

= P {B(t) = kij |A(t) = mij }. Notice that
Pmij

is probability of having mij events for the Poisson distribution with mean λ1(p)t .
However, it is not that easy to calculate Pkij |mij

, since probability of having kij departures
depends not only on the number of arrivals mij but also the number already available in
the system which is ci(j−1). Let N be the random variable that represents the number of
packets available in the system, then we can rewrite Pkij |mij

as follows:

Pkij |mij
=

∞∑
ci(j−1)=kij −mij

Pkij |mij ;ci(j−1)
∗ Pci(j−1)

, (20)
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where Pci(j−1)
= P {N = ci(j−1)}. Observe that the minimum value of ci(j−1) can be

mij − kij , because the condition kij � mij − ci(j−1) must be satisfied for all time in-
tervals. In (20), Pci(j−1)

is known for a steady-state M/M/1 system. Let ρ = λ1(p)/µ,
then Pci(j−1)

= (1 − ρ)ρci(j−1) [Kleinrock, 12]. However, calculation of Pkij |mij ;ci(j−1)
is

not simple, because the mij arrivals may arrive such that there is none waiting for the
service. Fortunately, this is a very rare case for a loaded system. So, we can formulate
Pkij |mij ;ci(j−1)

for the usual case as if all the mij arrivals happened at the beginning of the
interval t . Within this context, we now derive Pkij |mij ;ci(j−1)

.
Let E(µ) be an exponential random variable with mean 1/µ, and Er(k, µ) be an

Erlangian random variable with mean k/µ. Then, we can formulate the probability of
having k > 0 departures in time t as follows:

Pk>0 in t =
∫ t

0
P

{
Er(k, µ) < x

}[
1 − P

{
E(µ) < t − x

}]
dx. (21)

Since P0 in t = 1 − P [E(µ) < t], we can derive the CDF and pmf of Pkij |mij ;ci(j−1)
as

follows:

P
{
B(t) � kij |mij ; ci(j−1)

} = P0 in t +
kij∑
k=1

Pk>0 in t

= e−µt + 1

µ

(
kij − e−µt

kij∑
i=1

i∑
j=0

(µt)j

j !

)
(22)

Pkij |mij ;ci(j−1)
= P

{
B(t) � kij |mij ; ci(j−1)

} − P
{
B(t) � kij − 1|mij ; ci(j−1)

}
= 1

µ

(
1 − e−µt

kij∑
i=0

(µt)i

i!

)
. (23)

Afterwards, we apply the operation in (20), and derive Pkij |mij
as follows:

Pkij |mij
= 1

µ

(
λ1(p)

µ

)(kij −mij )
[

1 − e−µt

kij∑
i=0

(µt)i

i!

]
. (24)

Even though we have found a nice solution to Pkij |mij
as in (24), it does not allow us

to get a closed-form model for the correlation after the relaxation operation in (14). In or-
der to get a closed-form correlation model, we approximated the summation term in (24).
Notice that the term with summation is equivalent to ratio of two Gamma [Childers, 2]
functions, i.e.:

e−µt

kij∑
i=0

(µt)i

i! = �(kij + 1, µt)

�(kij + 1)
.

In appendix, we approximated the ratio �(x, y)/�(x) and used that method
to approximate the term with summation in (24). After the approximation, we did
get a closed-form correlation model. But, it is not possible to provide it in hardcopy
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format2 because it is a very large expression. However, we will provide numerical re-
sults of the model later in section 3.

2.2. Model discussion

Since model-II is a very large expression, we only discuss model-I. Assuming that the
other factors stay fixed, the correlation model in (18) implies three important results:

1. The correlation degrades at most inversely proportional to an increase in pricing
intervals (T ). For the smallest n value (i.e. 1), denominator of (18) will have r + 1
as a factor which implies linear decrease in the correlation value while the pricing
interval T = rt increases linearly. Notice that its effect will be less when n is larger.

2. Increase in traffic variances (σ 2
A and σ 2

B) degrades the correlation. From (18), we can
observe that the correlation decreases when the variance of the incoming or outgoing
traffic increases.

3. Increase in traffic mean (λ1(p)) degrades the correlation. Again from (18), we can
see that the correlation decreases while the mean of the incoming traffic increases.

These above results imply that lower pricing intervals must be employed when
variance and/or mean of the traffic starts increasing. We validate these three results in
section 3 by experiments. Also, observe that the model incorporates not only the effect
of pricing intervals on the correlation, but also the effects of statistical parameters (e.g.,
traffic mean and variance).

Interestingly, the model reveals non-intuitive effect of traffic mean on the correla-
tion. The reason behind such an effect is that a traffic flow with higher rate will make
larger oscillations than the one with smaller rate when encountered by destabilizing
effects such as larger pricing intervals. This can be seen in the discussion made in sec-
tion 1, where �c for the higher rate flow will be larger than the one with smaller rate.

As previously mentioned, the correlation between prices and congestion measures
is a representation of the achieved control over congestion. Congestion-sensitive pricing
protocols can use such a model to maintain the control at a predefined level by solving
the inequality Corrn � Corrmin for r, which defines the length of the pricing interval. If
feedback from the other end (i.e. egress node in DiffServ [Blake et al., 1] terminology)
is provided, then such a model can be implemented in real-time. σ 2

B can be calculated by
using the feedbacks from the other end, and σ 2

A and λ1(p) can be calculated by observing
the incoming traffic.

3. Experimental results and model validation

3.1. Experimental configuration

We use Dynamic Capacity Contracting (DCC) [Singh et al., 23; Yuksel and Kalyanara-
man, 29, 30] as the congestion pricing protocol in our simulations. DCC provides a

2 Its softcopy is available upon request from authors.
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Figure 4. Topology of the experimental network.

contracting framework over DiffServ [Blake et al., 1] architecture. The provider places
its stations at edges of the DiffServ domain. The customers can get network service
through these stations by making short-term contracts with them. The stations provide
a variety of short-term contracts and customers select the contracts based on their utility.
During the contracts, the station observes congestion in network core. The station uses
that congestion information to update the price at the beginning of each contract. The
short-term contracts corresponds to the pricing intervals in our modeling.

Figure 4 represents the topology of network in our experiments in ns [24]. There
are 5 customers trying to send traffic to the same destination over the same bottleneck
with a capacity of 1 Mbps. Customers have equal budgets and their total budget is 150
units. We observe the bottleneck queue length and use it as congestion measure. The
observation interval is fixed at t = 80 ms and RTT for a customer is 20 ms. We increase
the pricing interval by incrementing the number of observations (i.e. r) per contract. We
run several simulations and calculate correlation between the advertised prices and the
observed bottleneck queue lengths during the simulations.

Customers send their traffic with a fixed variance but changing mean according
to the advertised prices for the contracts. We assume that the customers have fixed
budgets per contract with additional leftover from the previous contract. The customers
adjust their rate of CBR UDP traffic source according to the ratio B/p, where B is the
customer’s budget and p is the advertised price for the contract.3 Also, customers’ traffic
is composed of 1000 B packets of fixed size.

3.2. Results

In this section, we present several simulation results for validation of the model and the
three results it implies. The simulation results presented here are average of more than
20 runs of the configuration described in the previous section.

Figures 5(a) and (b) show mean and variance of the bottleneck queue length re-
spectively. We observe steady increase in mean and variance of bottleneck queue as

3 Note that x = B/p maximizes surplus for a customer with utility u(x) = B log(x).
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(a)

(b)

Figure 5. Statistics of bottleneck queue length: (a) mean (in packets); (b) variance.

the pricing interval increases. Furthermore, figure 6 shows the change in the coefficient
of variation for the bottleneck queue length as the pricing interval increases. Note that
an increase in the coefficient of variation means a decrease in the level of control. We
observe that coefficient of variation increases as the pricing interval increases until 10r,
and stays fixed there after. This is because the congestion pricing protocol looses control
over congestion after a certain length of pricing interval, which is 10r in this particular
experiment. These results in figures 5 and 6 validate our claim about the degradation of
control when pricing interval increases. Furthermore, they also show that dynamic pric-
ing does not help congestion control when the pricing interval is longer than a certain
length.

To validate the model, we present the fit between our correlation models and exper-
imental results obtained from simulations. Figures 7(a) and (b) represent the correlations
obtained by inserting appropriate parameter values to the model and corresponding ex-
perimental correlations, respectively for n = 15 and n = 25. We observe that model-II
fits better than model-I, since model-II considers the dependency between arrival and
departure processes. Notice that the model is dependent on the experimental results be-
cause of the parameters for incoming and outgoing traffic variances (i.e. σ 2

A and σ 2
B),
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Figure 6. Coefficient of variation, σ/µ, of bottleneck queue length.

(a) (b)

Figure 7. Fitting the correlation model to experimental results: (a) for 15 pricing intervals; (b) for 25 pricing
intervals.

pricing factor (i.e. a), and mean of the incoming traffic (i.e. λ1(p)). We first calculate
the parameters σ 2

A, σ 2
B , a (ratio of average price by average bottleneck queue length) and

λ1(p) from the experimental results, and then use them in the model.
We now validate the three results implied in section 2.2. Figures 7(a) and (b) show

that the correlation decreases slower than 1/r when r increases linearly. This validates
the first result. Figure 8(b) represents the effect of change in the variance of incoming
and outgoing traffic (i.e. σ 2

A and σ 2
B) on the correlation. The horizontal axis shows the

increase in variances of both the incoming and outgoing traffic. The results in figure 8(b)
obviously show that an increase in traffic variances causes decrease in the correlation.
This validates the second result.
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(a) (b)

Figure 8. Effect of traffic patterns to the correlation (for T = 800 ms and r = 10): (a) effect of traffic mean;
(b) effect of traffic variance.

Finally, for validation of the third result, we increased the customers’ total average
sending rate from 125 packet/s to 1000 packet/s. For these set of experiments only, we
set the bottleneck capacity to 8 Mbps. Figure 8(a) represents the effect of change in the
mean of the incoming traffic (i.e. λ1(p)) on the correlation. We can see that increase
in λ1(p) causes decrease in the correlation. Another important realization is that the
correlation is more sensitive to variance changes than mean changes as it can be seen by
comparing figures 8(a) and (b).

3.2.1. Is correlation a good parameter?
Before concluding disscussion of the results, we would like to stress on the relationship
between the correlation and the level of congestion control. As we previously stated,
figures 7(a) and (b) show the effect of increasing pricing intervals on the correlation for
different values of n. We can see that the correlation value stays almost fixed after the
pricing interval reaches to 10r. Also, figure 6 shows the coefficient of variation for the
bottleneck queue length. Remember that coefficient of variation for the queue length
represents the level of congestion control being achieved. We observe in figure 6 that
it reaches to its maximum value (approximately 1) when the pricing interval reaches to
10r, which is the same point where the correlation starts staying fixed in figures 7(a)
and (b). So, by comparing figure 6 with figures 7(a) and 7(b), we can observe that the
correlation decreases when the level of congestion control decreases, and also it stays
fixed when the level of congestion control stays fixed. This shows that the correlation
can be used as a metric to represent the level of congestion control.

4. Summary

We investigated steady-state dynamics of congestion-sensitive pricing in a customer-
provider network. With the idea that correlation between prices and congestion measures
is a measurement for level of congestion control, we modeled the correlation. We found
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that the correlation decreases at most inversely proportional to an increase in pricing
interval. We also found that the correlation is inversely effected by the mean and variance
of the incoming traffic. This implies that congestion-sensitive pricing schemes need to
employ very small pricing intervals to maintain fidelity of congestion control for traffic
with high variance.

From the model and also from the simulation experiments we observed that the
correlation between prices and congestion measures drops to very small values when
pricing interval reaches to 40 RTTs 4 even for a low variance incoming traffic. Currently,
we usually have very small RTTs (measured by milliseconds) in the Internet. This shows
that pricing intervals should be 2–3 seconds for most cases in the Internet, which is not
possible to deploy over low speed modems. This result itself means that deployment of
congestion-sensitive pricing over the Internet is highly challenging. As the link speeds
are getting higher and RTTs are getting smaller, it becomes harder to deploy congestion-
sensitive prices.

The results obviously show that there will be need for intermediate middle-ware
components (i.e. intermediaries) between individual users and ISPs, when ISPs deploy
congestion-sensitive pricing for their service. These middle-ware components will be
expected to lower price fluctuations such that price changes will be possible implement
over low speed modems. This scenario suggests that congestion-sensitive prices can be
implemented among ISPs to control congestion, but there has to be middle-ware compo-
nents which can handle the transition of the congestion-sensitive prices to the individual
customers in a smooth way. Alternatively, instead of using congestion-sensitive pricing
directly for the purpose of congestion control, it can be used to improve fairness of an
underlying congestion control mechanism. This way it will be possible to control con-
gestion at small time-scale, while maintaining human involvement to pricing at large
time-scale. We believe that the second approach is more realistic way of implementing
congestion-sensitive pricing over the Internet.

Another key implementation problem for congestion pricing is that current Internet
access is point-to-anywhere. It is not possible to obtain information about the exit points
of the traffic. However, it is not possible to determine congestion information and prices
without coordinating entry and exit points of the traffic. So, this particular aspect implies
that it is highly challenging to implement congestion pricing at individual user to ISP
level. But, if an ISP has enough control over the entry and exit points, then it is possible.
Alternatively, if ISPs of the current Internet collaborate on providing information about
the entry and exit points to each other, then again it will be possible.

Future work should include complex modeling of the dynamics of congestion-
sensitive pricing by relaxing some of the assumptions. For example, a model without
fixed arrival rate assumption would represent the behavior of the system more appropri-
ately. Also, better budget models are needed in the model.

4 Note that this number is specific to our simulation setup. Different numbers could be obtained for different
simulation setups. We attempted to create a simplistic but most representative simulation setup.
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Another important issue to explore is how much congestion control can be achieved
with exactly what level of correlation between prices and congestion measures. In this
particular modeling work we assumed that the correlation value is a direct representa-
tion of the level of congestion control that was achieved. Although we supported this
idea by providing the match between the correlation and the coefficient of variation in
section 3.2, this issue needs more investigation.
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Appendix A. Approximating ratios of complete or incomplete continuous Gamma
functions

A.1. The Gamma function and problem definition

Gamma function has two versions: complete, incomplete [Devore, 6]. Complete and
incomplete continuous Gamma functions are respectively as follows:

�(x) =
∫ ∞

t=0
e−t tx−1 dt, (A.1)

�(x, y) =
∫ ∞

t=y

e−t tx−1 dt. (A.2)

Discrete version of the complete Gamma function is a simple factorial:

�(x) = (x − 1)!. (A.3)

Let f be the function being integrated in the continuous Gamma functions, i.e.,

f (t, x) = e−t tx−1. (A.4)

Figure 9 shows plot of the function f (t, x) for various values of x. Notice that
the Gamma function is nothing but the area under the curve of f (t, x). Figure 10 il-
lustrates the difference between complete and incomplete Gamma functions in terms of
area under the curve of f (t, x). The area A + B corresponds to the complete Gamma
function �(x), and A corresponds to the incomplete Gamma function �(x, y).

Given the above information, we want to approximate ratio:

�(x, y)

�(x)
= A

A + B
. (A.5)
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Figure 9. The function f (t, x) for various values of x.

Figure 10. Visualization of complete and incomplete Gamma functions. The area B is �(x, y), and the area
A + B is �(x).

A.2. Approximation methodology

The intuition behind our approximations is the similarity of shape of f (t, x) to triangle.
Observe from figure 9 that as the parameter x gets larger the shape of f (t, x) is more
triangular. We use this similarity in approximating the ratio in (A.5). Figure 11(a)
shows an example triangle being matched to the f (t, x) function. In that example we
approximate the ratio of (A.5) as:

R = �(x, y)

�(x)
= A

A + B
∼= A′

A′ + B ′ .

Notice that the function f (t, x)’s maxima is the point at t = x −1, i.e. f (x −1, x).
Just to ease notation, let tm = x −1 and g(t) = f (t, x). Also, let’s call the smaller piece
of the triangle between t = 0 and t = x − 1 as left-piece triangle, and the other piece of
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(a) (b)

(c)

Figure 11. Three possible cases for approximation of ratio �(x, y)/�(x): (a) y = x − 1; (b) y > x − 1;
(c) y < x − 1.

it as right-piece triangle. So, the left-piece triangle will have coordinates: (0, 0), (0, tm),
(tm, g(tm)). For the right-piece triangle, we can consider various coordinates depending
how well we want to approximate. Actually, the problem is to identify where should the
hypotenus of the right-piece triangle intersect with f (t, x). Since the shape of f (t, x)

gets similar to an equisided triangle as x gets larger, we choose to select this intersection
point at t = 2tm = 2(x − 1), which will resemble it more to an equisided triangle. With
this consideration, we can calculate the coordinates of the right-piece triangle by simple
geometry rules: (0, tm), (tm, g(tm)), (tm(g(tm) − g(2tm))/(g(tm) − g(2tm)), 0).

Since we know the function f (t, x), we now can calculate areas A′ and B ′. How-
ever, this is dependent on whether y resides on the left of the right of tm = x − 1. So,
we need to consider three cases.

A.2.1. Case I: y = x − 1
This case is shown in figure 11(a). Calculations of the triangular areas in the figure will
be as follows:

A′ = tmg(tm)

2
,

B ′ = (tm + tmg(2tm)/(g(tm) − g(2tm)))g(tm)

2
.

So, the ratio R for this case will be

R1 = g(tm) − g(2tm)

3g(tm) − 2g(2tm)
.
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A.2.2. Case II: y < x − 1
This case is shown in figure 11(b). Calculations of the triangular areas in the figure will
be as follows:

A′ = yz1

2
,

B ′ = (2tm + tmg(2tm)/(g(tm) − g(2tm)))g(tm)

2
− yz1

2
,

where z1 = yg(tm)/tm. So, the ratio R for this case will be

R2 = y2

t2
m

g(tm) − g(2tm)

2g(tm) − g(2tm)
.

A.2.3. Case III: y > x − 1
This case is shown in figure 11(c). Calculations of the triangular areas in the figure will
be as follows:

A′ = (2tm + tmg(2tm)/(g(tm) − g(2tm)))g(tm)

2
− yz2

2
,

B ′ = yz2

2
,

where z2 = g(2tm). So, the ratio R for this case will be

R3 = 2tmg(tm)2 − (tm − y)g(tm)g(2tm) + yg(2tm)2

tmg(tm)(2g(tm) − g(2tm))
.

A.2.4. Integration of all cases
In order to calculate the ratio R = �(x, y)/�(x), we need to know if y is equal to, less
than, or greater than x − 1 as presented in the previous sections corresponding to each
case.

We can put together an integrated formula for R by considering probability of each
case happening. Let p1 be the probability of being y equal to x − 1 (i.e. case I), p2 be
the probability of being y less than x − 1 (i.e. case II). Then, an integrated formula for
R will be

R = p1R1 + p2R2 + (1 − p1 − p2)R3. (A.6)

Since p1 and p2 will depend on distribution of y, the integrated approximation
of R will change significantly based on that distribution. In modeling of the correlation
between prices and congestion measures, in section 2.1.2, we used the integrated formula
by calculating the probabilities p1 and p2 based on the Poisson distribution of the traffic.

Also note that in this particular appendix we only provided methodology for ap-
proximating the ratio �(x, y)/�(x). It is possible to use the ideas in this appendix for
approximating other possible ratios of Gamma functions, such as �(x, y1)/�(x, y2),
�(y)/�(x).
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