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Abstract— Several congestionpricing proposalshave beenmadein the
last decade. Usually, however, those proposalsstudied optimal strategies
and did not focuson implementation issues.Our main contribution in this
paper is to addressimplementation issuesfor congestion-sensitie pricing
over a single domain of the differ entiated-sevices (diff-serv) architecture
of the Inter net. We proposea new congestion-sensitie pricing framework
Distributed Dynamic Capacity Contracting (Distrib uted-DCC), which is
ableto provide arange of fairness(e.g max-min, proportional) in rate allo-
cation by using pricing asatool. Within the Distrib uted-DCC framework,
we develop an Edge-to-EdgePricing Schemeg(EEP) and presentsimulation
experimentsof it.

Keywords— Network Pricing, Congestion Pricing, Quality-of-Service,
Fairness Differ entiated-Sewices

|. INTRODUCTION

Implementationof congestionpricing still remainsa chal-
lenge, althoughseveral proposalshave beenmade,e.g. [1],
[2], [3]. Amongmary otherstwo majorimplementatiorobsta-
clescanbe defined:needfor timelyfeedbak to usersaboutthe
price, determinationof congestioninformationin an efficient,
low-overheadmanner

Thefirst problem,timely feedbackjs relatively very hardto
achieve in alarge network suchasthe Internet. In [4], the au-
thorsshavedthatusersdo needfeedbackaboutchaging of the
network service(suchas current price and prediction of ser
vice quality in nearfuture). However, in our recentwork [5],
we illustratedthat congestiorcontrol throughpricing cannotbe
achievedif price changesare performedat a time-scalelarger
thanroughly 40 round-trip-timegRTTs), which is not possible
to implementfor mary cases.We believe that the problemof
timely feedbackcanbe solved by placingintelligentintermedi-
aries(i.e. softwareor hardwareagentshetweerusersandser
vice providers. In this paperwe do not focuson this particular
issueandleave developmenbf suchintelligentagentdor future
research.

The secondproblem, congestioninformation, is also very
hardto do in a way that doesnot needa major upgradeat net-
work routers. However, in diff-serv[6], it is possibleto deter
mine congestiorinformationvia a goodingress-gresscoordi-
nation.So,thisflexible ervironmentof diff-servmotivatedusto
developa pricing schemeoniit.

In our previouswork [7], we presentec simplecongestion-
sensitve pricing framewvork, Dynamic Capacity Contracting
(DCC), for a single diff-serv domain (seeSectionlll). DCC
assumedbhat all the provider stations(that are placedat edge
routers)adwertisethe sameprice valuefor the contractswhich
is very costly to implementover a wide areanetwork. This is
simply becausehe price value cannotbe communicatedo all
stationsat the beginning of eachcontract. In this paper we re-
lax this assumptiorby letting the stationsto calculatethe prices
locally andad\ertisedifferentpricesthanthe otherstations.We
call thisnew versionof DCC asDistributed-DCC We introduce
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waysof managingheoverallcoordinatiorof the stationsor the
commonpurposef fairnessand stability. We thendevelopa
pricing schemeEdge-to-EdgéPricing (EEP). We illustrate sta-
bility of EEP by simulationexperiments. We addresdairness
problemsrelatedto pricing, and shov that EEP can achieve
max-minandproportionaffairnessy tuninga parametercalled
asfairnesscoeficient

Thepaperis organizedasfollows: In thenext sectionwe po-
sition our work andbriefly surwey relevantwork in the area.In
Sectionlll, we reviseoverall characteristicef DCC. In Section
IV, we developa simplemodelfor userbehaior andmake op-
timization analysisthatis basisto our framework, Distributed-
DCC.Then,in SectionV we describgropertiesof Distributed-
DCC framework, and investigatevariousissues,suchas price
calculation fairnessscalability Next in SectionVI, we develop
the pricing schemeEER In SectionVIl, we make experimental
comparatie evaluationof EER We finalize with summaryand
discussions.

Il. RELATED WORK

Therehasbeenseveralpricing proposalswhich canbeclassi-
fied in mary wayssuchasstaticvs. dynamic per-padet chag-
ing vs. per-contractchaging.

Althoughthereareopponentgo dynamicpricing in the area
(e.g. [8], [9]), mostof the proposalshave beenfor dynamic
pricing (specificallycongestiorpricing) of networks. Examples
of dynamicpricing proposalsare MacKie-Masonand Varian's
SmartMarket [1], Guptaet al’s Priority Pricing [10], Kelly et
al’sProportionaFair Pricing (PFP)[11], Semretetal.’s Market
Pricing[12], [3], andWangandSchulzrinnes Resourcé\Negoti-
ationandPricing(RNAP) [13], [2]. Odlyzko’sParisMetro Pric-
ing (PMP)[14] is anexampleof staticpricing proposal.Clark’s
ExpectedCapacity{15] andCocchietal’s EdgePricing[16] al-
low bothstaticanddynamicpricing. In termsof chaginggranu-
larity, SmartMarket, Priority Pricing,PFPandEdgePricingem-
ploy perpaclket chaging, whilst RNAP and ExpectedCapacity
do notemploy perpacketchaging.

SmartMarketis basedprimarily onimposingperpacletcon-
gestionprices. Since SmartMarket performspricing on per
paclet basis,it operateson the finest possiblepricing granu-
larity. This makes SmartMarket capableof makingideal con-
gestionpricing. However, SmartMarket is not deployable be-
causeof its perpacket granularityand its mary requirements
from routers.In [17], we studiedSmartMarket anddifficulties
of itsimplementatiorin moredetail. While SmartMarket holds
one extremein termsof granularity ExpectedCapacityholds
theotherextreme.ExpectedCapacityproposeso uselong-term
contractswhich cangive more clear performancexpectation,
for statisticalcapacityallocationandpricing. Pricesareupdated
atthe beginningof eachlong-termcontractwhich incorporates
little dynamismto prices. Our work, Distributed-DCC,is a
middle-groundbetweenSmartMarket and ExpectedCapacity
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Fig. 1. DCC framevork ondiff-servarchitecture.

in termsof granularity Distributed-DCCperformscongestion
pricing atshort-termcontractswhich allows moredynamismin
priceswhile keepingpricing overheadsmall.
Anotherclosework to oursis RNAP, which alsomainly fo-
cusedon implementationissuesof congestiorpricing on diff-
serv Although RNAP providesa completepicturefor incorpo-
ration of admissioncontrol and congestionpricing, it hasex-
cessve implementationoverheadsinceit requiresall network
routersto participaten determinatiorof congestiorprices.This
requiresupgradeso all routerssimilarto thecaseof SmartMar-
ket. Ourwork solvesthis problemby requiringupgrade®nly at
edgeroutersratherthanatall routers.

I11. DYNAMIC CAPACITY CONTRACTING (DCC)

DCC modelsa short-termcontractfor a giventraffic classas
afunctionof priceperunit traffic volume P,, maximumvolume
Vinae (Maximumnumberof bytesthat can be sentduring the
contract)andthetermof thecontractl’ (lengthof the contract):

(1)

Figure 1 illustratesthe big picture of DCC framework. Cus-
tomerscanonly accessietwork coreby makingcontractswith
theprovider stationsplacedat theedgerouters.Accesgo avail-
ablecontractscanbedonein differentways,whatwe call edge
strategy. Two basicedgestratgjiesare“bidding” (mary users
bidsfor anavailablecontract)or “contracting” (usersnegotiate
with the provider for an available contract). So, edgestratayy
is the decision-makingnechanisito identify which customer
getsanavailablecontract.

Stationscan perfectly adwertise congestion-basegrices if
they have actualinformation aboutthe congestiorlevel in the
network core. This congestiorinformationcancomefrom the
interior routersor from theegressedgeroutersdependingnthe
congestion-detectiomechanisnibeingused.DCC assumethat
the congestiordetectionmechanisnis ableto give congestion
informationin time scales(i.e. obsenation intervals) smaller
thancontracts.

In summary DCC framework hasbeendesignedo usepric-
ing and dynamic capacity contractingas a new dimensionin
managingcongestion,as well asto achieve simple economic
goals.Thekey benefitsof DCC are:

« acongestion-sensite pricing framevork employableon diff-
servarchitecture

« doesnot requireper-packet accounting(works at granularity
of contracts)

Contract = f(Py, Vimaz, T)

« doesnotrequireupgrade®r softwaresupportarywherein the
network excepttheedges

IV. USER ADAPTATION

In this sectionwe presenta simple optimization analysis
in order to help the readerunderstandour intuitions behind
Distributed-DCC.Pleasenote that the analysisin this section
assumes singlebottlenecknetwork andis far from addressing
all optimizationissues.

We modelcustomeri’s utility with the well-known function
ui(x) = w;log(z) * [11], [18], [19], [20], wherez is the allo-
catedbandwidthto thecustomemandw; is custometi’s sensitv-
ity to bandwidth. Then,supposep; is the price adertisedto a
particularuseri. Theuseri will maximizehis/hersurplus,S;,
by makingsurethathe/shecontractdor z; = w;/p;, i.e.:

max S; = II;B'LX{Ui(ﬂUi) — zipi}

Assumingthatthe customerbey this above procedurethe
provider of the network servicecannow figure out what price
to adwertiseto eachuserby maximizingthe socialwelfareW =
S + R, whereR is the provider revenue.Let K (z) = kx bea
linearfunctionandbethecostof providing 2z amountof capacity
to auser wherek is apositive constantThenthesocialwelfare,
W, will be:

n

W = Z [u,-(w,') — k.Z'z]

We maximizeW with the conditionthat} ", z; = C, whereC
is the total available capacity Notice thatto maximizeW all
theavailablecapacitymustbeallocatedo the usersbecausave
assumestrictly increasingutility .

Lagrangiarandits solutionfor thatsystenmwill beasfollows:

W = iul(mz) — kx; + )\(i z; — C)
i=1 i=1

N —k— D Wi
c
’U)j .
=—0C, j=1.n
2?21 Ww;

This resultshowvs thatwelfaremaximizationof the described
systemcanbedoneonly by allocatingcapacityto theuserspro-
portionalto their bandwidthsensitvity, w;, relative to total sen-
sitivity to bandwidth.So, any user: shouldbe givena capacity
of

T; =

(2)

_ Wi
2?21 w;
Sincewe shaved thatthe userwill contractfor z; = w;/p;

when adwertised a price of p;, then the optimum price for
providerto adwertise(i.e. p*) canbecalculatedasfollows:

* Z?:l w;

b =pi= C

This meanghatthe provider shouldadwertisethe sameprice
to all users.We canalsointerpretusers budget, b;, ashis/her

C

T; =

lwangandSchulzrinnentroduceda morecomple versionin [13].



sensitivityto bandwidth w;, sincea userwho is moresensite
to bandwidthis expectedto sparemorebudgetfor the network
service.So,wewill use“budget’insteadof “sensitvity to band-
width” for the restof the paper Assumingthatthe customers
hasa total budgetof B = _, b; for network serviceper unit
time andthe network hasa capacityof C' perunit time, we can
rewrite the optimumprice asfollows:

(3)

V. DISTRIBUTED-DCC: THE FRAMEWORK

Distributed-DCCis specificallydesignedor diff-serv archi-
tecture,becauseahe edgerouterscan performcomplex opera-
tions which is essentiato sereral requirementgor implemen-
tation of congestionpricing. Eachedgerouteris treatedasa
station of the provider. Each station adwertiseslocally com-
putedpriceswith informationrecevedfrom otherstations.The
main framework basicallydescribediow to presere coordina-
tion amongthe stationssuchthat stability and fairnessof the
overall network is presered. A Logical Pricing Server(LPS)
playsa crucial role in termsof functioningof the Distributed-
DCCframework. Figure2 illustrateshasicfunctions(which will
bebetterunderstoodn thefollowing sub-sectionspf LPSin the
framework.

The following sub-sectionsnvestigateand describeseveral
issues regardingthe framework.

A. Howto Calculatep;; ?

Eachingressstationi keepsa”current” pricevectorp;, where
pi; is the price for the flow from ingressi to egress;j. So,the
traffic usingflow ¢ to j is chagedthe pricep;;.

So, how do we calculatethe price-perflow, p;;? The in-
gressesnake estimationof budgetfor eachedge-to-edgdlow
passinghroughthemseles. Let b;; bethe currentlyestimated
budget from ingress: to egressj. Theingressesendtheir es-
timatedbudgetsto the correspondingegressegi.e. b;; is sent
from ingressi to egressj) ata deterministictime-scale.At the
otherside,the egresseseceie budgetestimationdrom all the
ingressesand alsothey make estimationof capacityfor each
particularflow, ¢;;. In otherwords,egress; calculates;; and
is informedaboutBij by ingressi. Theegressj, then,penalizes
or favorsflow 4 to j by updatingits estimatecbudgetvalue,i.e.
bij = f(bij, < parameters >) where< parameters > are
the other parametershat are usedfor decidingwhetherto pe-
nalizeor favor theflow. For example,if theflow i to j is passing
throughmorecongesteareashanthe otherflows, the egress;
canpenalizethis flow by reducingits budgetestimatiorb;;.

At anothertime-scalethe egresse&eepsendingnformation
to LPS (which canbe placedto one of the egresse®or canbe
implementedn a fully distributed manney seethe techreport
[21]). More specifically the egressj sendshe following infor-
mationto LPS:

1. the updatedbudget estimationof all flows passinghrough
itself, i.e. b;; for ¢ = 1..n ands # j wheren is the numberof
edgerouters

2Thereadercanfind moredetails(e.g. scalability)in ourtechreport[21].
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Fig. 2. Major functionsof LPS.

2. theestimatedtapacitiepleaseaeferto SectionVv-C for more
aboutcapacityestimation)f all flows passinghroughitself, i.e.
¢;; fori = 1..n andi # j wheren is thenumberof edgerouters

LPS receves information from egressesand calculatesal-
lowed capacityc;; for eachedge-to-edgdlow. Calculationof
¢;; valuesis acomplicatedaskwhich dependsn updatedoud-
getestimatiorof eachflow (i.e. b;;). In generaltheflowsshould
sharecapacityof the samebottleneckin proportionto their bud-
gets. We will later definea genericalgorithmto do capacity
allocationtask. LPS, then, sendsthe following informationto
ingressi:
1. thetotal estimatedhetworkcapacityC' (i.e. C'= >, >~ ¢5)
2. the allowed capacitiesto each edge-to-edgdlow starting
from ingressi, i.e. ¢;; for j = l.n andj # i wheren is
thenumberof edgerouters

Now, theingressi calculategrice for eachflow asfollows:

by
— v
Dij = —

Cij

(4)

Also, theingressi usesthe total estimatechetwork capacityC'

in calculatingthe V,,,4, contractparametedefinedin (1). Ad-

missioncontroltechniqueganbeusedto identify thebestvalue
for Ve We usea simple methodwhich doesnot put ary re-

strictionon Vyaz, i.€. Vimaz = C x T whereT is the contract
length. Notice thatwe allow flows to contractfor morethanthe
availablecapacity The availablecapacityfor flow i to j is nor-

mally the maximumof link capacitieson its route. However,

we needto allow flows to contractfor morethanthe available
capacityin orderto obsenre their actualdemandfor capacity
This way we candeterminewhich flow hashow muchbudget
(or willingness-to-pay)j.e. demandor capacity Of coursean
alternatve would be to requireusersto expresstheir budgets,
but indeedusersare non-cooperatie in this sense.So, asthe
providerwe aresupposedo determineusers realincentivesfor

network capacity

B. BudgetEstimationat Ingresses

In orderto determineusers realbudgetThe ingressstations
performvery trivial operationto estimatebudgetsof eachflow,
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b;;. Theingress; basicallyknowsits currentpricefor eachflow,
pij- Whenit recevesa pacletit just needsto determinewhich
egressstationthe pacletis goingto. Giventhattheingresssta-
tion hasthe addressesf all the egressstationsof the samediff-
servdomain, it canfind out which egressthe paclet is going
to. So,by monitoringthe pacletstransmittedfor eachflow, the
ingresscanestimatehe budgetof eachflow. Let z;; bethetotal
numberof pacletstransmittedor flow ¢ to j in unit time, then
the budgetestimatefor theflow ¢ to j is b;; = x;;p;;. Notice
thatthis operatiormustbedoneattheingressatherthanegress,
becausesomeof the pacletsmight be droppedbeforearriving
at the egress. This causese;; to be measuredess,and hence

causes%ij to belessthanit is supposedo be.
C. CapacityEstimationat Egresses

The crucial property of capacityestimationin Distributed-
DCCisthat,it canbemadecongestion-base#hichthenmalkes
the pricescongestion-sensitiveNotice thatthe price formulain
(4) is inverselyproportionalto the allowed capacityc;;. So, if
the network is congestedthenc;; will decreaseand this will
causepriceto increase By similar reasoningthe price will de-
creasevhenthereis no congestion.

With asimplemechanisnfisuchasmarkingof pacletsatinte-
rior routerswhencongested)it is possibleto detectcongestion
at the egressstation. So, for a particularedge-to-edgédraffic
flow, onecanmake the congestion-basethpacityestimatiorby
decreasinghe estimationwhen congestionis detectedand by
increasingvhencongestioris notdetectedor thatflow. In this
sense several capacityestimationalgorithmscanbe used,e.g.
Additive IncreaséAdditive Decreas€AlAD), Additive Increase
Multiplicative Decreas€AIMD). We will provideafull descrip-
tion of suchanalgorithmlaterin SectionVI.

D. CapacityAllocationto Edge-to-Edge Flows

LPSis supposedo allocatethetotal estimatedetwork capac-
ity C' to edge-to-edgéowsin suchaway thatthe flows passing
throughthe samebottleneckshouldsharethe bottleneckcapac-
ity in proportionto their budgets andalsothe flows thatarenot
competingwith otherflows shouldget all the available capac-
ity on their route. The complicatedissueis to do this without
knowledgeof the topologyfor network core. We now propose
a simpleandgenericalgorithmto performthis centralizedrate
allocationwithin Distributed-DCCframework.

First, at LPS, we introducea new information abouteach
edge-to-edgdlow f;;. A flow f;; is congestedif egressj has
beenreceving congestionindicationsfrom that flow recently
(wewill laterdefinewhat“recent”is).

At LPS, let K;; determinewhetherf;; is congestear not. If
K;; > 0, LPSdeterminesf;; ascongestedlf not, it determines
fi; asnon-congested.et’s call thetime-scaleatwhichLPSand
egressesommunicateasLPSinterval. At every LPSinterval t,
LPScalculatesk;; asfollows:
k,

) — fij wascongested att — 1
i) = { Kij(t—1) -1,

fij wasnon-congested att — 1

(5)

wherek is a positive integer Notice that k& parametedefines
how long aflow will stayin “congested’Stateafterthelastcon-
gestionindication. So, in otherwords, k definesthe time-line

to determinef a congestiorindicationis “recent” or not. Note
that insteadof setting K;; to &k at every congestiorindication,
several differentmethodscan be usedfor this purpose but we
proceedwith themethodin (5).

Giventhe abose methodto determinewhethera flow is con-
gestedor not, we now describethe algorithmto allocatecapac-
ity totheflows. Let F' bethesetof all edge-to-edgélowsin the
diff-servdomain,and F, be the setof congestededge-to-edge
flows. Let C, betheaccumulatiorof é;;swheref;; € Fi.. Fur
ther, let B, bethe accumulatiorof b;;s where f;; € F.. Then,
LPS calculatesheallowedcapacityfor f;; asfollows:

Cijz{

Theintuition is thatif aflow is congestedthenit mustbe com-
petingwith othercongestedlows. So, a congestedlow is al-
lowed a capacityin proportionto its budgetrelative to budgets
of all congestedlows. Sincewe assumeno knowledgeabout
theinterior topology, we canapproximatethe situationby con-
sideringthesecongestedlows asif they are passingthrough
a single bottleneck. If knowledgeaboutthe interior topology
is provided, one can easily develop betteralgorithmsby sub-
groupingthe congestedlows thatarepassinghroughthe same
bottleneck.

If aflow is not congestedthenit is allowed to useits own
estimatedcapacity which will give enoughfreedomto utilize
capacityavailable to that particularflow. The algorithm will
be understoodnoreclearly afterthe simulationexperimentsn
SectionVII.

bi;
FZCC, K,‘j >0

Cij, otherwise

E. Fairness

We examinethe issuesregardingfairnessn two main cases.
We first determinethesetwo casesandthen provide solutions
within Distributed-DCCframework.

E.1 Cases

« Single-bottlendc case: The pricing protocol shouldchage
the sameprice to the usess of the samebottlene&. In this way,
amongthe customersisingthe samebottleneck the oneswho
have morebudgetwill be givenmoreratethanthe others. The
intuition behindthis reasonings thatthe costof providing ca-
pacityto eachcustomels the same.

« Multi-bottlened case: The pricing protocol should charge
more to the customes whosetraffic passeshrough more bot-
tleneds and causemore coststo the provider. So, otherthan
proportionalityto customerbudgets,we alsowant to allocate
lessrateto the customersvhoseflows arepassinghroughmore
bottleneckghanthe othercustomers.

For multi-bottlenecknetworks, two maintypesof fairnesshave
beendefined:max-minfairnesq18], proportionalfairnesq11].
In max-minfair rateallocation,all flows getequalshareof the
bottleneckswhile in proportionalfair rate allocationflows get
penalizedaccordingo thenumberof traversedbottlenecksDe-
pendingon the coststructureandusers utilities, for somecases
the provider may wantto choosemax-minor proportionalrate
allocation. The readercan find canonicalexamplesfor such
casesn [21]. So,we would like to have ability of tuning the



pricing protocolsuchthatfairnessof its rateallocationis in the
way the providerwants.

E.2 Solutionswithin Distributed-DCC

In orderto achieve the objectvesmentionedn the previous
section,the pricing framevork mustgive the ability to chage
somecustomersequallywhile the ability to chaige someother
customerglifferently.

To achieve thefairnessobjectivesin Distributed-DCC we in-
troducenew parametersor tuning rateallocationto flows. In
orderto penalizeflow 4 to j, the egressj canreduceb;; while
updatingthe flow’s estimatecbudget. It usesthe following for-
mulato do so:

A »
b'i‘ = bi'a t sy Xy Tmin) = 2
g f( I 7.( ) wr ) Tmin + (Tz](t) - rmin) o

wherer;;(t) is the congestioncost causedby the flow i to j,
Tmin 1S the minimum possibleconggstiorcostfor the flow, and
o is fairnesscoeficient Insteadof b;;, the egressj now sends
b;; to LPS.Whena is 0, Distributed-DCCis employing max-
min fairnessAs it getslarger, the flow getspenalizednoreand
rateallocationgetscloserto proportionalfairness.However, if
it is toolarge,thentherateallocationwill getaway from propor
tionalfairnessLet o* bethea valuewheretherateallocationis
proportionallyfair. If theestimationr;;(t) is absolutelycorrect,
thena* = 1. Otherwisejt depend®n how accurate-;; () is.

Assumingthat eachbottleneckhasthe sameamountof con-
gestionandcapacity Then,in orderto calculater;; (t) andr i,
we candirectly usethe numberof bottlenecksheflow i to j is
passinghrough.In suchacasey,;, will belandr;;(¢) should
be numberof bottleneckghe flow is passinghrough.If thein-
terior nodesincrementa headeffield of the pacletsat the time
of congestior(i.e. whenits local queugpasses threshold)then
attheegressstationwe canestimaté the numberof bottlenecks
theflow is passinghrough.

V1. EDGE-TO-EDGE PRICING SCHEME (EEP)

One of the main purposedor congestionpricing is to con-
trol congestiorby makingthe pricescongestion-sensite. Sev-
eralstudies(e.g.[11]) shavedthatcongestion-sensite pricing
leadsto stability. Within the Distributed-DCCframework, there
areis oneissueto be addressedby a pricing scheme:how to
male estimatecapacityin a congestion-baseshanner?In this
section,we describehow EEPdoesthat.

In orderto make congestiondetectionat the egressstation,
we assumehattheinterior routersmarkthe pacletswhentheir
gueuepassesa threshold. When an egressstationreceies a
markedpaclet, it treatsit asa congestiorindication?

Giventhe above congestiordetectionrmechanismegresssta-
tionsmake acongestion-baseektimationof thecapacityfor the
flows passingthroughthemseles. Rememberthat estimated
capacity ¢;;, for eachflow is sentto LPSin Distributed-DCC

3Descriptionof afull algorithmfor thatestimationis availablein [21].

4Notice that this is only one particular way of detecting congestion.
Distributed-DCCdoesnot necessarilyneedthe interior routersto mark pack-
ets,aslong asotherwaysof detectingcongestiorareavailable.

framework. Egressstationsdividetimeinto deterministicobser
vation intervals andidentify eachobsenation interval as con-
gestedor non-congsted Basically an obsenation interval is
congestedf a congestionindication was receved during that
obsenationinterval. At theendof eachobsenationinterval, the
egressesipdateheestimatedapacity Then,egressj calculates
the estimateccapacityfor flow ¢ to j at the endof obsenation
interval t asfollows:

B * i (t),

A N congested
Cij (t) - { éij (t - 1) + Ag,

non-congested

whereg isin (0,1), u;5 (t) isthemeasuredutputrateof flow i to
j duringobsenationinterval ¢, andA¢é is apre-definedncrease
parameter This algorithmis a variantof well-known AIMD.
Also, notice that the above capacity estimationalgorithm is
congestion-baseakit is necessarfor thecongestion-sensitity
of Distributed-DCCframenork (seeSectionV-C). So,egresses
make capacityestimationfor eachflow accordingto the above
algorithm,andsendc;; (t) asthe currentestimateccapacityfor
flow i to 5.

VII. SIMULATION EXPERIMENTS AND RESULTS

We now presentns [22] simulationexperimentsof EEP on
single-bottlenecland multi-bottlenecktopology Our goalsare
to illustratefairnessandstability propertiesof the scheme.

The single-bottleneckopology hasa bottlenecklink, which
is connectedo n edgenodesateachsidewheren is thenumber
of users. The multi-bottlenecktopology hasn — 1 bottleneck
links, thatareconnectedo eachotherserially Thereareagain
n ingressandn egressedgenodes. Eachingressedgenodeis
mutually connectedo the beginning of a bottlenecklink, and
eachegressnodeis mutually connectedo the endof a bottle-
necklink. All bottlenecklinks have a capacityof 10Mb/sand
all otherlinks have 15Mb/s. Propagatiordelayon eachlink is
5ms,anduserssendUDP traffic with an averagepaclet size of
1000B.To easeunderstandinghe experimentsegachusersends
its traffic to a separateegress. For the multi-bottlenecktopol-
ogy, oneusersendshroughall the bottleneckgi.e. long flow)
while the otherscrossthat users long flow. The queuesat the
interior nodes(i.e. nodesthat standat the tips of bottleneck
links) markthe pacletswhentheir local queuesizeexceeds30
paclets. Buffer sizeis assumedo be infinite. In the multi-
bottleneckopologythey incrementaheadefield insteadof just
marking. Figure 3-a shaws a single-bottleneckopology with
n = 3. Figure3-b shavs multi-bottleneckopologywith n = 4.
Thewhite nodesareedgenodesandthe gray nodesareinterior
nodes. Thesefiguresalsoshow the traffic flow of userson the
topology

Theuserflow triesto maximizeits surplusby contractingfor
b/p amountof capacitywhereb is its budgetandp is price. The
flows’s budgetsare randomizedaccordingto Normal distribu-
tion with a givenmeanvalue. This meanvalueis whatwe will
referto asflows’s budgetin our simulationexperiments.

Ingressesendbudgetestimationgo correspondinggresses
at every observationinterval. LPS sendsinformation to in-
gresseatevery LPSinterval. Contractingtakesplaceat every
4s,obserationinterval is 0.8s,andLPSinterval is 0.16s. The
parametelk is setto 25, which meansa flow is determinedo
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benon-congestedt leastafter (pleaseseeSectionV-D) 25LPS
intervalsequivalentto onecontractingnterval.

The parameterA¢ is setto 1 paclet (i.e. 1000B),the initial
valueof ¢;; for eachflow f;; is setto 0.1Mb/s,andj is setto
0.95.

A. Experimenbn Single-bottlendcTopology

We run simulation an experimentfor EEP on the single-
bottlenecktopology, which is representeih Figure3-a. In this
experimentthereare3 userswith budgetsof 10, 20, 30 respec-
tively for usersl, 2, 3. Total simulationtime is 15000s,and
at the beginning only the user1l is active in the system. After
5000s,the user2 getsactive. Again after 5000sat simulation
time 10000 theuser3 getsactive.

In termsof results,eachflow’s rateis very important. Figure
3-c shows the flow ratesaveragedover 200 contractperiods.
We seethe flows are sharingthe bottleneckcapacityalmostin
proportionto their budgets. The distortionin rateallocationis
causedecausef theassumptionthatthegenericedge-to-edge
capacityallocationalgorithmmalkes(seeSectionV-D).

Figure 3-d shaws the price beingadertisedto flows. As the
new usersjoin in, EEPincreaseghe price in orderto balance
supplyanddemand.Also, we canseethe samedynamicasin
the volumeallocationgraphscausedy the capacityallocation
algorithm.

Figure3-eshavsthebottleneckgueuesize.Noticethatqueue
sizesmalke peakstransientlyat the timeswhennew usersgets
active. Otherwise the queuesizeis controlledreasonablyand
the systemis stable. The reasonbehindthe transientpeaksis
thattheparametel/,, ., is hotrestrictedwvhich causeshenewly
joining flow to contractfor alot morethantheavailablecapacity

During the simulation, averageutilization of the bottleneck
link wasmorethan90%,andno paclket dropswereallowed.

B. Experiment®n Multi-bottlened Topology

On a multi-bottlenecknetwork, we would lik e illustrate two
propertiedor EEP:

« Propertyl: provision of variousfairnessn rateallocationby

changingthe fairnesscoeficient o of Distributed-DCCframe-
work (seeSectionV-E.2)

« Property2: performancef the capacityallocationalgorithm
in termsof adaptvenesgseeSectionV-D)

In orderto illustrate Propertyl, we run a seriesof experiments
for EEP with differenta values. We use a larger version of

thetopologyrepresenteth Figure3-b. In the multi-bottleneck
topologythereare 10 usersand9 bottlenecklinks. Total simu-
lationtime is 10,000s.At the beginning, the userwith thelong

flow is active. After each1000s,0neof theseotherusersgets
active. So, asthe time passeshe numberof bottlenecksn the
systemincreasesincenew userswith crossinglowsjoin in. We

areinterestedn therateof thelong flow, sinceit is the onethat
causamorecongestiorcoststhanthe otheruserflows.

Figure 3-f shawvs the averagerate of the long flow versusthe
numberof bottlenecksn the system.As expectedthelong flow
getslessandlesscapacityas a increases.Whena = 0, the
schemeachivesmax-minfairness.Obsenre thatwhena = 1,
rate allocationgoesalong with proportionallyfair rate alloca-
tion. This variationin fairnessis basicallyachiesed by adver
tisementof differentpricesto the userflows. Figure3-g shovs
the averagepricethatis adwertisedto thelong flow asthe num-
ber of bottleneckdn the systemincreasesWe canseethatthe
priceadwertisedto thelong flow increasesisthenumberof bot-
tlenecksincreases.As a increasesthe schemebecomesnore
responsieto thelong flow by increasingts pricemoresharply

Finally, to illustrate Property2, we ran anexperimenton the
topologyin Figure3-bwith smallchangesWe increasedapac-
ity of the bottleneckatnodeD from 10 Mb/sto 15Mb/s. There
are four flows and three bottlenecksin the network as repre-
sentedn Figure3-h. Initially, all theflows have anequalbudget
of 10. Total simulationtime is 30000s. Betweentimes 10000
and20000,budgetof flow 1 is temporarilyincreasedo 20. The
fairnesscoeficient « is setto 0. All the otherparametersare
exactly the sameasin the single-bottleneclexperimentsof the
previoussection.

Figure3-h shows the givenvolumesaveragedover 200 con-
tractingperiods. Until time 10000sflows 0, 1, and2 sharethe



bottleneckcapacitiesqually presentinga max-minfair alloca-
tion becausex wassetto 0. However, flow 3 is gettingmore
thanthe othersbecausef the extra capacityat bottlenecknode
D. Thisflexibility is achievedby thefreedomgivento individual
flows by the capacityallocationalgorithm(seeSectionV-D).
Betweentimes10000and20000,flow 2 getsa stepincrease
in its allocatedvolumebecausef the stepincreasdn its bud-
get. In resultof this, flow 0 getsa stepdecreasén its volume.
Also, flows 2 and 3 adaptthemselesto the new situationby
attemptingto utilize the extra capacityleftover from the reduc-
tionin flow 0’s volume. So,flow 2 and3 getsa stepdecreasn
their volumes. After time 20000, flows restoreto their original
volumeallocationsijllustratingthe adaptivenesof thescheme.

VIII. SUMMARY

In this paper we presenteda new framework, Distributed-
DCC, for congestiorpricing in asinglediff-servdomain.Main
contribution of the paperis to develop an easy-to-implement
congestiorpricing architecturevhich providesflexibility in rate
allocation. We investigatedfairnessissueswithin Distributed-
DCC andillustratedwaysof achieving arange of fairnesstypes
(i.e. from max-minto proportional)throughcongestiorpricing
undercertainconditions. The factthatit is possibleto achieve
variousfairnesgypeswithin a singleframework is very encour
aging. We also developeda pricing scheme EER within the
Distributed-DCCframawvork, andpresentedeverealsimulation
experiments.

Futurework shouldincludeinvestigationof issuesrelatedto
extendingDistributed-DCCon multiple diff-servdomains.An-
otherfuture work item is to implementsoft admissioncontrol
techniguedn the framework by tuning the contractparameter
Vimaz- Currently V.. 1S setto total network capacity which
allows individual usersto contractfor significantlylargerthan
the network canhandle. Several otherimprovementsare pos-
sible to the framewvork suchasbettercapacityestimationtech-
nigues(seeSectionV-C), betterbudgetestimationtechniques
(seeSectionV-B).
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