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Abstract

Static optimization of networks by pricing has attracted
significant attention over the last decade. These studies as-
sumed concave utility functions for users and derived opti-
mal pricing strategies for the network provider. In this pa-
per, we consider effect of user’s elasticity to price and band-
width on optimality of pricing. We first derive optimal pric-
ing strategy for the case of logarithmic user utilities. Then,
we investigate two types of elasticity for users: Demand-
price elasticity and utility-bandwidth elasticity. By incorpo-
rating these two elasticities, we develop a non-logarithmic
utility function for users. Finally, we derive an optimal
pricing strategy for the non-logarithmic user utilities and
illustrate that pricing strategy should be more conservative
when the elasticities increase.

1 Introduction

Recently, optimization of networks by pricing has been
researched extensively [1, 2, 4, 3]. In [1], Kelly laid out
overall optimization problem for a network, that is maxi-
mizing total user utility. He divided the overall system prob-
lem into sub-problems of surplus maximization for the user
and revenue maximization for the provider. He showed that
network service prices can be used as Lagrange multipliers
between the user’s and the provider’s problems. Then in [2],
Kelly et al. provided centralized and decentralized pricing
algorithms that will converge the system to the optimal, i.e.
maximization of user utilities. Kelly and his co-workers, in
their analysis, used logarithmic utility functions for users.
They proved that optimal rate allocation will be weighted
proportional fair when users have utility function of form
���� � �������, where� is weight and� is sending rate
of the user.

Later in [4], Low et al. generalized the concepts to users
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with concave utility functions, not necessarily logarithmic.
They provided a family of distributed pricing algorithms
that optimizes the network with users having logarithmic
or non-logarithmic concave utilities.

One interesting issue that has not been investigated is
the effect of user’s elasticity on pricing strategies. In this
paper, we investigate this particular issue by providing an-
alytical arguments. We define two types of elasticity for
users: Utility-bandwidth elasticity and demand-price elas-
ticity. The latter one is the well-known elasticity in eco-
nomics, i.e. users’ demand elasticity to price. The for-
mer one is a new type of elasticity we define for users, i.e.
user’s utility elasticity to bandwidth. We formulate these
two elasticities and demonstrate analytical association be-
tween them. We illustrate that pricing strategy must be
more conservative in network resources (particularly capac-
ity) when any of the two user elasticities increase.

The paper is organized as follows: First in Section 2, we
define the optimization problem of total user utility max-
imization and split it into two sub-problems by following
Kelly’s [1] ideas. Next in Section 3, we solve the sub-
problems for the case of logarithmic user utility functions,
and derive optimal prices. Then we define utility-bandwidth
elasticity and its relationship to demand-price elasticity in
Section 4. In Section 5, based on the elasticity definitions
in Section 4, we define a general non-logarithmic utility
function which includes the elasticities as parameters. We
re-solve the optimization problem based on this new utility
function, and derive the optimal prices again. Finally, we
summarize the work in Section 6.

2 Problem Formulation

We now formulate the problem oftotal user utility max-
imization for a multi-user multi-bottleneck network.

Let � � ��� ���� �� be the set of flows and	 �
��� ���� 	� be the set of links in the network. Also, let	�
�
be the set of links the flow
 passes through and� ��� be
the set of flows passing through the link�. Let � � be the ca-



pacity of link �. Let � be the vector of flow rates and�� be
the rate of flow
 . We can formulate the total user utility
maximization problem as follows:
� ��� �
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�

�
�

�� ��� �

subject to�
��� ���

�� � ��� � � �� ���� 	 (1)

This problem can be divided into two separate problems by
employing monetary exchange between user flows and the
network provider. Following Kelly’s [1] methodology we
split the system problem into two:

The first problem is solved at the user side. Given accu-
mulation of link prices on the flow
 ’s route,�� , what is the
optimal sending rate in order tomaximize surplus.
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�� � � (2)

The second problem is solved at the provider’s side.
Given sending rate of user flows (which are dependent on
the link prices), what is the optimal price to advertise in or-
der tomaximize revenue.
������������ �� �
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�
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�
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������

����

subject to�
��� ���

�� � ��� � � �� ���� 	

over

� � � (3)

Let the total price paid by flow
 be�� �
�

������ ��.

Then, solution to�	��� ��
� � will be:

� �
� ��� � � ��

�� ��
� � � � ���

� ��� � (4)

When it comes to the������������ �� problem,
the solution will be dependent on user flows utility func-
tions since their sending rate is based on their utility func-
tions as shown in the solution of�	��� ��

� �. So, in the
following sections we will solve the������������ ��
problem for the cases of logarithmic and non-logarithmic
utility functions.

3 Optimal Prices: Logarithmic Utility Func-
tions

We model customer�’s utility with the well-known func-
tion1 [2, 3, 5, 4]

����� � �������� (5)

where� is the allocated bandwidth to the customer and� �

is customer�’s budget (or bandwidth sensitivity).
Now, we set up a vectorized notation, then solve the

revenue maximization problem������������ �� de-
scribed in the previous section. Assume the network in-
cludes� flows and� links. Let� be row vector of the flow
rates (�� for 
 � � ), � be column vector of the price at
each link (�� for � � 	). Define the� � � matrix � � in
which the diagonal element� �

�� is the aggregate price being
advertised to flow� (i.e. �� �

�
������ ��) and all the other

elements are 0. Also, let� be the� � � routing matrix
in which the element��� is 1 if �th flow is passing through
�th link and the element��� is 0, if not, be the column
vector of link capacities (�� for � � 	). Finally, define the
���matrix 	� in which the diagonal element	��� is the rate
of flow � (i.e. 	��� � ��) and all the other elements are 0.

Given the above notation, relationship between the link
price vector� and the flow aggregate price matrix� � can
be written as:

�� � � �! (6)

� � �	�!�� � !� 	�

where! is the column unit vector.
We use the utility function of (5) in our analysis. By

plugging (5) in (4) we obtain flow’s demand function in vec-
torized notation:

��� �� ��� ��� (7)

where� is row vector of the weights�� in flow’s utility
function (5). Similarly, we can write derivative of (7) as:

���� �� � �� �� ����� (8)

Also, we can write the utility function (5) and its deriva-
tive in vectorized notation as follows:

���� ������	�� (9)

� ���� �� 	��� (10)

The revenue maximization of (3) can be re-written as fol-
lows:

���
	
� � ���

1Wang and Schulzrinne introduced a more complex version in [8]. The
solutions we provide will be mainly similar even though we are using a
simpler version of the function.



subject to
�� �  � � (11)

So, we write the Lagrangian as follows:

	 � ��� 
 � � � ���" (12)

where" is column vector of the Lagrange multipliers for
the link capacity constrain.

By plugging (7) and (8) in appropriate places, the opti-
mality conditions for (12) can be written as:

	
 �  
� ��� ���� � � (13)

		� � �� �� ������ �!
�� ���!�� �� ������" � �
(14)

By solving (14) for� �, we obtain:

� � � � (15)

Now, solve (13) for� �:

� � � �� � ���� (16)

Apparently, the optimization problem has two solutions
as shown in (15) and (16). Since (15) violates the condition
in (3), i.e.� � �, we accept the solution in (16).

We finally derive� by using (6):

�� � � �! � �� � ����! (17)

� � � � ����! (18)

Since� � � �� ��� , we can derive another solution:

�� � � �! �� � ���� ! (19)

� � ���� � ���� ! (20)

Notice that the result in (18) holds for a single-bottleneck
(i.e. single-link) network. In non-vectorized notation, this
result translates to:

� �

�
��� ��

�

The result2 in (20) holds for a multi-bottleneck network.
This result means that each link’s optimal price is depen-
dent on the routes of each flow passing through that link.
More specifically, the optimal price for link� is accumula-
tion of budgets of flows passing through link� (i.e.� ���

in the formula) divided by total capacity of the links that are
traversed by the flows traversing the link� (i.e.��� �� in
the formula). In non-vectorized notation, price of link� can
be written as:

�� �

�
��� ������

��� ���

�
������ ��

2Note that the matrices� and� are not invertible. However, they can
be inversed by specific methods such as pseudo-inverse with certain condi-
tions. Since our aim is to observe general trends in the solutions, we do not
focus on identifying the conditions that make these matrices invertible. For
the rest of the paper, we will continue ignoring these restricting conditions
on the matrices.

4 Elasticity

The termelastic was first introduced to the networking
research community by Shenker [6]. Shenker called ap-
plications that adjust their sending rates according to the
available bandwidth as “elastic applications”, and the traffic
generated by such applications as “elastic traffic”. An ex-
ample of such traffic is the well-known TCP traffic, which is
adjusted according to the congestion indications represent-
ing decrease in the available bandwidth. Shenker, further,
called applications that do not change their sending rates
according to the available bandwidth as “inelastic”. So, this
interpretation ofelasticity is the same asadaptiveness, i.e.
an application is elastic if it adapts its rate according to the
network conditions, it is inelastic if it does not.

The concept of elasticity originates from the theory of
economics. In economics,demand-price elasticity3 (i.e.
demand elasticity according to price) is defined aspercent
change in demand in response to a percent change in price
[7]. In other words, demand elasticity is the responsiveness
of the demand to price changes. A formal definition of de-
mand elasticity can be written as [7]:

# �
�$���%$���

��%�
(21)

where� is price,�� is the change in the price,$��� is
user’s demand function, and�$��� is the change in user’s
demand. (21) can be re-written as:

# �
�

$���

&$���

&�
(22)

Given #, elasticity characteristic	� of user demand is
made according to the following functional definition [7]:

	� �

��
�

elastic, 	#	 � �
unit elastic, 	#	 � �

inelastic, 	#	 ' �

So, Shenker’s interpretation of elasticity for user utility
is actually different from the real meaning of elasticity in
economics. Note that Shenker defined elasticity of user util-
ity according to bandwidth (what we callutility-bandwidth
elasticity), let’s call it (. Let ���� be user’s utility if he is
given� amount of bandwidth. Then, following the argu-
ment in (22), we can write( as:

( �
�

����

&����

&�
(23)

According to Shenker’s interpretation, the functional
definition for	 (i.e. elasticity characteristic of user’s util-

3Note that demand elasticity can also be defined according to several
things other than price (e.g. time of service, delay of service).



ity according to bandwidth) will be as follows:

	 �

��
�

inelastic, ( � �
elastic, ( 
� � & user utility is concave

not defined, ( 
� � & user utility is convex

Obviously,	 is a lot different than	�. Basically,	� inter-
prets elasticity asresponsiveness while 	 does it asadap-
tiveness.

We can construct the relationship between( and#, given
that the user solves the well-known maximization problem:

���
�

������ ���

The solution to the above problem is� ���� � �. So, given
a price�, the user selects his demand such that his marginal
utility equals to�. Based on that relationship between the
utility function���� and the demand function$���, we can
construct the relationship between the demand-price elastic-
ity # and the utility-bandwidth( elasticity. In the next sub-
sections we will formulate the relationship between these
elasticities.

4.1 Utility-Bandwidth Elasticity (

For a user with demand-price elasticity#, the demand
function is in the form$��� � ��� where# 
� � and
# 
� ��. So, this user’s demand will be� when the price is
� � $����� � ���������. To determine the relationship
between user’s utility���� and the demand, we assume that
the user maximizes its surplus. So, the following relation-
ship holds:

� � ����� � ���������

By integrating�����, we obtain����:

���� � �����

�
�

#

 �

	
������ (24)

In 24, exponent of� is the utility-bandwidth elasticity of
the user. So,

( �
�

#

 �� # 
� � � # 
� ��

Figure 1-a plots( with respect to#.

4.2 Demand-Price Elasticity #

For a user with utility-bandwidth elasticity(, the utility
function is in the form���� � )� where( 
� �. As-
suming that this user maximizes its surplus, we can say that
����� � � must be satisfied. So, for such a surplus max-
imizing user, the relationship between the advertised price
and user’s utility will be as follows:

� � ����� � �(���

By solving� � �(��� for �, we obtain the user’s de-
mand function:

$��� �

�
�

�(

	 �

���

�
�

��� (25)

In 25, exponent of� is the demand-price elasticity of the
user. So,

# �
�

(� �
� ( 
� �

Figure 1-b plots# with respect to(.

5 Optimal Prices: Non-Logarithmic Utility
Functions

In Section 3, we derived optimal prices for the rev-
enue maximization problem������������ ��. In that
derivation, users demand-price elasticity# was -1 (see (7)),
which means users hadunit elastic demand. Now, we re-
perform the derivation by assuming that users have a utility-
bandwidth elasticity of(, where users’ demand-price elas-
ticity is # � �%�( � �� based on the study in the previous
section. Also,note that � ' ( ' � must be satisfied in order
to make sure concavity of the utility function.

First, let) be row vector of the weights that are different
for each flow’s utility function, and	) be an��� �� matrix
in which the element	)�� is the weight of flow� and all the
other elements are zero.

We use a generic utility function. The function and its
derivative is as follows:

���� � )	� (26)

� ���� � )(	��� (27)

According to the relationship between( and# described
in Section 4.1, we can write the demand function and its
derivative as follows:

��� �� � (��!� 	)��� �� (28)

Similarly, we can write derivative of (28) as:

���� �� � (��#!� 	)��� ���� (29)

For the revenue maximization problem, we again solve
the Lagrangian in (12) but for the new demand function of
(28). By plugging (28) and (29) in appropriate places, the
optimality conditions for (12) can be written as:

	
 �  
� � (��!� 	)��� ��� � � (30)

		� � (
��#!� 	)��� ������ �!��"�


(��!� 	)��� ��! � � (31)
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(a) Utility-bandwidth elasticity�. (b) Demand-price elasticity�.

Figure 1. Utility-bandwidth elasticity ( and demand-price elasticity # with respect to each other.

By solving (31) for� �, we obtain:

#!� 	)��� ������ �!��"� 
 !� 	)��� ��! � � (32)

� � �
�

(
�"!�� (33)

Now, apply (33) into (30) and solve for":

 � � (��!� 	)��

�
�

(
�"!��

	�

� (34)

�

(
�"!�� � (������ � �����!� ����� 	) (35)

Substitute (35) into (33) and we obtain� �:

� � � (������ � �����!� ����� 	) (36)

From (36) we obtain� :

�� � � �! � (������ � �����!� ����� 	)! (37)

� � (���������


� � ������

���

�!� ������ 	)! (38)

� � (���������


� � ������

���

�!� ������


	)���
������

! (39)

The result in (38) implies the same thing as in the case
of logarithmic utility functions except that the link capac-
ities must be taken more conservatively depending on the
elasticity (( or # by choice) of flows. Observe that as flows
demand-price elasticity# gets higher, the capacity must be
taken more conservatively based on the formula� � ������.
Also observe that as flows utility-bandwidth elasticity(
gets higher, the capacity must be taken more conservatively
based on the formula� � ������ � � � �����.

Based on (39) we can write the optimal price formu-
las for single-bottleneck and multi-bottleneck cases respec-
tively as follows in non-vectorized form:

� � (

��
��� �

���
�

�

�����

�� � (

� �
��� ����

���
��

��� ���

�
������ ��

�����

6 Summary

In this paper, we addressed the question of how should
user’s elasticity to price and bandwidth effect the pricing
strategy. We first formulated the optimization problem of
total user utility maximization. Based on logarithmic user
utility functions, we derived optimal prices.

Then, we revised the termelasticity in the area of net-
working, and defined utility-bandwidth elasticity. We also
determined relationship between utility-bandwidth elastic-
ity and the well-known demand-price elasticity. Based
on this investigation of elasticity, we then defined a non-
logarithmic form of utility function which include elastic-
ity as a parameter. Considering the newly defined non-
logarithmic and concave utility functions, we re-solved the
optimization problem of total user utility maximization.

We illustrated that elasticity should take a major role in
pricing, since the derived optimal price included elastic-
ity as power of available capacity. This means that pricing
strategy should be more conservative in using the available
capacity when user’s elasticity increases.



Several extensions to this work are possible. Based on
the ideas developed in this paper, one can develop dis-
tributed pricing algorithm that takes user’s elasticity into
consideration. Simulation studies of such a distributed pric-
ing algorithm would complete the work and show experi-
mental evidences to the ideas investigated in this paper.
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