
Pricing Granularity for Congestion-Sensitive Pricing �

Murat Yuksel and Shivkumar Kalyanaraman
Rensselaer Polytechnic Institute,

ECSE Department
110 8th Street, Troy, NY, 12180, USA.

yuksem@rpi.edu, shivkuma@ecse.rpi.edu

Abstract
One of the key issues for implementing congestion pric-

ing is the pricing granularity (i.e. pricing interval or time-
scale). The Internet traffic is highly variant and hard to
control without a mechanism that operates on very low
time-scales, i.e. on the order of round-trip-times (RTTs).
However, pricing naturally operates on very large time-
scales because of human involvement. Moreover, structure
of wide-area networks does not allow frequent price up-
dates for many reasons, such as RTTs are very large for
some cases. In this paper, we investigate the issue of pric-
ing granularity, identify problems, and propose solutions.

1 Introduction

One proposed method for controlling congestion in wide
area networks is to applycongestion-sensitive pricing [3],
which is a form of dynamic pricing. Many proposals have
been made to implement dynamic pricing over wide area
networks and the Internet [2, 6, 11, 10, 13]. Most of these
schemes aimed to employ congestion pricing. The main
idea of congestion-sensitive pricing is to update price of the
network service dynamically over time such that it increases
during congestion epochs and causes users to reduce their
demand. So, implementation of congestion-sensitive pric-
ing protocols (or any other dynamic pricing protocol) makes
it necessary to change the price after some time interval,
what we callpricing interval.

Clark’s Expected Capacity [2] scheme proposes long-
term contracts as the pricing intervals. Kelly’s packet mark-
ing scheme [6] proposes shadow prices to be fed back from
network routers which has to happen over some time in-
terval. MacKie-Mason and Varian’s Smart Market scheme
[9] proposes price updates at interior routers which cannot
happen continuously and have to happen over some time
interval. Wang and Schulzrinne’s RNAP [11] framework
proposes to update the price at each service level agreement
which has to happen over some time interval. Hence, con-
gestion pricing can only be implemented by updating prices
over some time interval, i.e. pricing interval.
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It has been realized that there are numerous implemen-
tation problems for dynamic or congestion-sensitive pricing
schemes, which can be traced into pricing intervals. We can
list some of the important ones as follows:

� Users do not like price fluctuations: Currently, most
ISPs employ flat-rate pricing which makes individual
users happy. Naturally, most users do not want to have
a network service with a price changing dynamically.

� Control of congestion degrades with larger pricing in-
tervals: Congestion level of the network changes dy-
namically over time. So, the more frequent the price
is updated, the better the congestion control. From the
provider’s side, it is easier to achieve better congestion
control withsmaller pricing intervals.

� Users want prior pricing: It is also desired by the users
that price of the service must be communicated to them
before it is charged. This makes it necessary to inform
the users of the network service before applying any
price update. So, the provider has to handle the over-
head of that price communication. The important thing
is to keep this overhead as less as possible, which can
be done withlarger pricing intervals.

Hence, length of pricing intervals is a key issue for the
implementation of congestion-sensitive and adaptive pric-
ing protocols. In this paper, we focus on modeling and anal-
ysis of pricing intervals to come up with a maximum value
for it such that the level of congestion control remains in an
acceptable range. Beyond this range, pricing could be used
to regulate demand, but it becomes less useful as a tool for
congestion management.

The rest of the paper is organized as follows: In Sec-
tion 2, we first explore steady-state dynamics of congestion-
sensitive pricing with a detailed look at the behavior of
prices and congestion relative to each other. We then de-
velop and discuss an approximate analytical model for the
correlation of prices and congestion measures in Section 3.
In Section 4, we validate the model by simulation experi-
ments and present the results. Finally, in Section 5 we dis-
cuss the implications of the work and possible future work.



Figure 1. A sample customer-provider net-
work.

Figure 2. Congestion measure relative to
congestion-sensitive prices in a steady-state
network being priced.

2 Dynamics of Congestion-Sensitive Pricing

This section explains the behavior of congestion-
sensitive prices and congestion measures relative to each
other in a steady-state system. A sample scenario is de-
scribed in Figure 1. The provider employs a pricing interval
of � to implement congestion-sensitive pricing for its ser-
vice. The customer uses that service to send traffic to the
destination through the provider’s network. The provider
observes the congestion level,�, in the network core and
adjusts its advertised price,�, according to it. Note that�
and� are in fact functions of time (i.e.���� and���� where
� is time), but we use� and� throughout the paper for sim-
plicity of notation. It is a realistic assumption to say that
the provider can observe the network core over small time
intervals, i.e. a few round-trip-times (RTTs). To understand
effect of pricing interval to the dynamics of congestion-
sensitive pricing, we look at the relationship between� and
� over time.

Assuming that we have continuous knowledge of con-
gestion level, �, we can represent the dynamics of
congestion-sensitive pricing as in Figure 2. Figure 2 rep-
resents the relationship between� and� for two different
pricing interval lengths,�� � ��.

When the provider sees that the congestion level has
been decreasing, it decreases the advertised price so that
the network resources are not under-utilized. Then the cus-
tomer starts sending more traffic in response to the decrease
in price, and congestion level in the core starts increasing
accordingly. The congestion level continues to increase un-
til the price is increased by the provider at the beginning
of the next pricing interval. When the provider increases

price because of the increased congestion in the last pric-
ing interval, the customer starts sending less traffic than be-
fore. Then congestion level starts decreasing. This behavior
continues on in steady-state. This explains how congestion-
sensitive prices can control the network congestion. The
important difference is that with a larger pricing interval the
congestion level oscillates larger as represented in Figure 2.

3 Analytical Model for Correlation of Prices
and Congestion Measures

3.1 Assumptions and Model Development

Assume the length of pricing interval stays fixed at�
over� intervals. Also assume the provider can observe the
congestion level at a smaller time scale with fixed observa-
tion intervals,�. Assume that� � �� holds, where� is the
number of observations the provider makes in a single pric-
ing interval. Assume that the queue backlog in the network
core is an exact measure of congestion. [8]

We assume that the customer has a fixed budget for net-
work service and he/she sends traffic according to a count-
ing process, which is a continuous time stationary stochas-
tic process����,� � � with first and second moments of
	� and	� respectively. In reality,	� is not fixed, because
the customer responds to price changes by changing its	 �.
However, since we assume steady-state and fixed budget for
the customer, it is reasonable to say that the customer will
send at a constant rate over a large number of pricing in-
tervals. Let
�� be the number of packet arrivals from the
customer during the� th observation interval of�th pricing
interval, where� � �

� and� � �

�. So the total number
of packet arrivals during the�th pricing interval is


� �

��
���


�� (1)

Also assume that the packets leave after the network ser-
vice according to a counting process, which is a continuous
time stationary stochastic process����,� � � with first and
second moments of�� and�� respectively. Let��� be the
number of packet departures during the�th observation in-
terval of �th pricing interval, where� � �

� and� � �

�.
So the total number of packet departures during the�th pric-
ing interval is

�� �

��
���

��� (2)

Assuming that no drop happens in the network core, the first
moments of the two processes are equal in steady-state, i.e.
	� � ��, but the second moments are not.

As represented in Figure 3, let�� be the advertised price
and ��� is the congestion measure (queue backlog) at the
end of the�th observation in the�th pricing interval. In our



Figure 3. Prices and congestion measures for subsequent observation intervals.

model we need a generic way of representing the relation-
ship between prices and congestion. We assumed that the
congestion-sensitive pricing algorithm calculates the price
for the �th pricing interval according to the following for-
mula1

�� � ���� �� ������� (3)

where���� ��, pricing factor, is a function of pricing inter-
val and observation interval defined by the congestion pric-
ing algorithm. We assume that���� �� is only effected by
the interval lengths, not by the congestion measures. Notice
that this assumption does not rule out the effect of conges-
tion measures on price, but it splits the effect of congestion
measures and interval lengths to price. We will use� instead
of ���� �� for notation simplicity.

Within this context, the following equations hold:

��� � ��� �

����
���

�
� � ��� �

��
���

�
�� � ���� (4)

��� � ��� �
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where� � �. Reasoning behind (4) and (5) is that the queue
backlog (which is the congestion measure) at the end of an
interval is equal to the number of packet arrivals minus the
number of packet departures during that interval.

Let the average price be� and the average queue backlog
be�. By assuming that the system is in steady-state we can
conclude that the following equation is satisfied

� � �� (6)

Since the system is assumed to be in steady-state, we can as-
sume the initial (right before the first pricing interval) con-
gestion measure equals to the average queue backlog, i.e.

��� � � (7)

We want to approximate the model of correlation be-
tween� and� according to the above assumptions. We can
write the formula for correlation between� and � over �
pricing intervals as

����� �
������ ����� ���
� ���

������ ����
� �������� ����
� ��
(8)

1Note that this is a simplifying formula for tractability, and cannot cap-
ture all aspects of congestion pricing.

assuming that total of
 packet arrivals and� packet depar-
tures happen during the� rounds.

We can calculate the numerator term in (8) as follows:
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By applying (3), (6) and (7) into (9) we can get
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Then by applying (4) and (5) into (10), we get the following
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Similarly, we obtain the variance of congestion measures

and the variance of prices as follows:
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Now we can relax the condition on
 and� by summing

out conditional probabilities on (11), (12), and (13). Specif-
ically, we need to apply the operation

����� �

��
	����

��

����

�����
� ���	�� �
�� (14)

for all � � �

� and� � �

�, where�	�� �
�� is ������ �

�� 	���� � ����. This operation is non-trivial because of
the dependency between the processes���� and����, and
it is not possible to reach a closed-form solution without
simplifying assumptions. After this point, we develop two
approximate models by making simplifying assumptions.



3.1.1 Model-I

Although the arrival and departure processes are correlated,
there might also be cases where the correlation is negligi-
ble. For example, if the distance between arrival and de-
parture points is more, then the lag between the arrival and
departure processes also becomes more which lowers the
correlation between them. So, for simplicity, we assume
independence between the arrival and departure processes
and derive anapproximate model. The independence as-
sumption makes it very easy to relax the condition on

and�, since the joint probability of having���� � 
 ��

and���� � ��� becomes product of probability of the two
events. After the relaxation, we then substitute�� � 	� be-
cause of the steady-state condition, and get the followings:
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Let ��� be the variance of the arrival process and� �
� be

the variance of the departure process. By substituting (15),
(17), and (16) into (8) we get the correlation model for the
first � rounds as follows:
����� ��

���� ������ � ��� � 	�� � ���	���

���� � ��� � �	������ � ��� ��	���� � � � �� � ����
(18)

3.1.2 Model-II

As a more realistic model, we develop a model where the
arrival and departure processes are not considered indepen-
dent. We consider the system as an����� queueing sys-
tem with a service rate of�. Notice that� is different from
the parameters�� and�� which are first and second mo-
ments of����. We now try to derive the joint probability
as follows:

�	�� �
�� � �	��
�
�� �	��

(19)

where�	��
� ������ � 
��� and�
�� �	��

� ������ �
��� ����� � 
���. Notice that�	��

is probability of hav-
ing
�� events for the Poisson distribution with mean	��.
However, it is not that easy to calculate�
�� �	��

, since prob-
ability of having ��� departures depends not only on the
number of arrivals
�� but also the number already avail-
able in the system which is�������. Let be the random
variable that represents the number available in the system,
then we can rewrite�
�� �	��

as follows:
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�
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where�
������ � �� � ��������. Observe that the mini-
mum value of������� can be��� �
��, because the condi-
tion ��� � 
�� � ������� must be satisfied for all time inter-
vals. In (20),�
������ is known for a steady-state�����
system. Let! � 	���, then�
������ � �� � !�!
������ .
[7] However, calculation of�
�� �	�� �
������ is not simple,
because the
�� arrivals may arrive such that there is none
waiting for the service. Fortunately, this is a very rare case
for a loaded system. So, we can formulate�
�� �	�� �
������

for the usual case as if all the
�� arrivals happened at the
beginning of the interval�. Within this context, we now
derive�
�� �	�� �
������ .

Let���� be an Exponential random variable with mean
���, and����� �� be an Erlangian random variable with
mean���. Then, we can formulate the probability of hav-
ing � � � departures in time� as follows:

�
�� �� � �
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�

������� �� " �� ��� ������ " �� ��� #�

(21)
Now, we can formulate the CDF of�
�� �	�� �
������ as:
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Notice that�� �� � � �� � ����� " ��. So, we use�� �� �

to derive CDF in (22). Then, we derive pmf. Afterwards,
we apply the operation in (20) and derive�
�� �	��

as:
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Even though we have found a nice solution to�
�� �	��
in

(23), it does not allow us to get a closed-form model for the
correlation after the relaxation operation in (14). In order
to get a closed-form correlation model, we approximated
the term with summation in (23). Notice that the term with
summation is equivalent to ratio of two Gamma [1] func-
tions, i.e.:

$���

���
���

�����

�

�

����� � �� ���

����� � ��

We approximated the ratio���� %������ by using geo-
metric methods which cannot be explained within the length
of this paper. After the approximation, we did get a closed-
form correlation model. But, it is not possible to provide it
in hardcopy format2 because it is a very large expression.
However, we will provide numerical results of the model
later in Section 4.

2Available upon request.



3.2 Model Discussion

Since Model-II is a very large expression, we only dis-
cuss Model-I. Assuming that the other factors stay fixed, the
correlation model in (18) implies three important results:

1. The correlation degrades at most inversely propor-
tional to an increase in pricing intervals (� ): For the
smallest� value (i.e. 1), denominator of (18) will have
� � � as a factor which implies linear decrease in the
correlation value while the pricing interval,� � ��, in-
creases linearly. Notice that its effect will be less when
� is larger.

2. Increase in traffic variances (��� and ���) degrades the
correlation: From (18), we can observe that the corre-
lation decreases when the variance of the incoming or
outgoing traffic increases.

3. Increase in traffic mean (	�) degrades the correla-
tion: Again from (18), we can see that the correlation
decreases while the mean of the incoming traffic in-
creases.

4 Experimental Results

4.1 Experimental Configuration

We use Dynamic Capacity Contracting (DCC) [12] as
the congestion pricing protocol in our simulations. DCC
provides a contracting framework over DiffServ [5] archi-
tecture. The provider places its stations at edges of the
DiffServ domain. The customers can get network service
through these stations by makingshort-term contracts with
them. During the contracts, the station observes conges-
tion in network core, and uses that congestion information
to update the price at the beginning of each contract. The
short-term contracts corresponds to the pricing intervals in
our modeling.

There are 5 customers trying to send traffic to the same
destination over the same bottleneck with a capacity of
1Mbps. Customers have equal budgets and their total bud-
get is 150 units. We observe the bottleneck queue length
and use it as congestion measure. The observation interval
is fixed at� � ��
� and RTT for a customer is��
�. We
increase the pricing interval by incrementing the number of
observations (i.e.�) per contract. We run several simu-
lations and calculate correlation between advertised prices
and observed bottleneck queue lengths during simulations.

Customers send their traffic with mean changing accord-
ing to the advertised prices for the contracts. We assume
that the customers have fixed budgets per contract with ad-
ditional leftover from the previous contract. The customers
adjust their sending rate according to the ratio��� where
� is the customer’s budget and� is the advertised price for
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Figure 4. Statistics of bottleneck queue.
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Figure 5. Fitting analytical model to experi-
mental results.

the contract3. Notice that since the customers’ budget is
fixed, theaverage sending rate of the customers is actually
fixed on long run, which fits to the fixed average incoming
traffic rate assumption in the model.

4.2 Results

In this section, we present several simulation results for
validation of the model and the three results it implies.

Figures 4-a shows mean of the bottleneck queue length.
We observe steady increase in mean and variance of bottle-
neck queue as the pricing interval increases. Furthermore,
Figure 4-b shows the change in the coefficient of variation
for the bottleneck queue length as the pricing interval in-
creases. Note that an increase in the coefficient of variation
means a decrease in the level of control. We observe that
coefficient of variation increases as the pricing interval in-

3Note that� � ��� maximizes surplus for a customer with utility
���� � � ������.
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Figure 6. Effect of traffic patterns to the cor-
relation (for � � ���
� and � � ��).



creases until���, and stays fixed there after. This is because
the congestion pricing protocol looses control over conges-
tion after a certain length of pricing interval, which is���
in this particular experiment. These results in Figures 4-a
and 4-b validate our claim about the degradation of con-
trol when pricing interval increases. Furthermore, they also
show that dynamic pricing does not help congestion control
when the pricing interval is longer than a certain length.

To validate the model, we present the fit between our
correlation models and experimental results obtained from
simulations. Figures 5-a and 5-b represent the correlations
obtained by inserting appropriate parameter values to the
model and corresponding experimental correlations, respec-
tively for � � �
 and� � �
. We observe that Model-II
fits better than Model-I, since Model-II considers the de-
pendency between arrival and departure processes. Notice
that the model is dependent on the experimental results be-
cause of the parameters for incoming and outgoing traffic
variances (i.e.��� and���), pricing factor (i.e.�), and mean
of the incoming traffic (i.e.	�). We first calculate the pa-
rameters���, ��� , � (ratio of average price by average bot-
tleneck queue length) and	� from the experimental results,
and then use them in the model.

We now validate the three results implied in Section 3.2.
Figures 5-a and 5-b show that the correlation decreases
slower than��� when� increases linearly. This validates
the first result. Figure 6-b represents the effect of change in
the variance of incoming and outgoing traffic (i.e.� �

� and
���) on the correlation. The horizontal axis shows the in-
crease in variances of both the incoming and outgoing traf-
fic. The results in Figure 6-b obviously show that an in-
crease in traffic variances causes decrease in the correlation.
This validates the second result. Finally for validation of the
third result, Figure 6-a represents the effect of change in the
mean of the incoming traffic (i.e.	�) on the correlation.
We can see that increase in	� causes decrease in the corre-
lation. Another important realization is that the correlation
is more sensitive to variance changes than mean changes as
it can be seen by comparing Figures 6-a and 6-b.

5 Summary

We investigated steady-state dynamics of congestion-
sensitive pricing in a customer-provider network. With the
idea that correlation between prices and congestion mea-
sures is a measurement for level of congestion control, we
modeled the correlation. We found that the correlation de-
creases at most inversely proportional to an increase in pric-
ing interval. We also found that the correlation is inversely
effected by mean and variance of the incoming traffic. This
implies that congestion pricing schemes need to employ
very small pricing intervals to maintain high level of con-
gestion control for the Internet traffic with high variance [4].

From the model and also from the simulation experi-
ments we observed that the correlation between prices and
congestion measures drops to very small values when pric-
ing interval reaches to 40 RTTs even for a low variance in-
coming traffic. Currently, we usually have very small RTTs
(measured by milliseconds) in the Internet. This shows that
pricing intervals should be 2-3 seconds for most cases in
the Internet, which is not possible to deploy over low speed
modems. This result itself means that deployment of con-
gestion pricing over the Internet is highly challenging.
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