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ABSTRACT

Several adaptive pricing proposals have been made in the last decade for the Internet.
Usually, however, those proposals studied optimal strategies and did not focus on
implementation issues. We address implementation issues for adaptive pricing over a
single differentiated-services (diff-serv) domain. We propose a new adaptive pricing
framework Distributed Dynamic Capacity Contracting (Distributed-DCC), which is
deployable over diff-serv architecture of the Internet. Essence of Distributed-DCC
is to employ edge-to-edge coordination along with techniques for estimation of user
willingness-to-pay (e.g. budget estimation). Particularly, congestion can be detected
on an edge-to-edge basis, which enables congestion-sensitive pricing at the edges.

Distributed-DCC is able to provide a range of weighted fairness types (i.e. from
max-min to proportional) in rate allocation by using pricing as a tool. The provider
can tune a parameter, fairness coefficient, to change fairness of the framework.

To illustrate possibility of congestion-sensitive pricing in the framework, we
develop a congestion-sensitive pricing scheme, Edge-to-Edge Pricing (EEP), within
the framework. We derive optimal prices for EEP and investigate effects of user’s
elasticity on these optimal prices.

We also investigate congestion control by pricing, especially in terms of time-
scale. We illustrate that control of congestion by pricing requires very small time-
scale pricing (i.e. frequent updates to prices), which complicates human involvement
into negotiations. To solve this time-scale problem, we propose two pricing architec-
tures: Pricing for Congestion Control (PFCC) and Pricing over Congestion Control
(POCC). PFCC uses small time-scale pricing directly for controlling congestion and
employs end-placed software/hardware agents which take inputs from human user at
large time-scale while negotiating with the provider at small time-scale on behalf of
the user. POCC uses an underlying edge-to-edge congestion control mechanism by
overlaying pricing on top of it. This way, POCC controls congestion at small time-
scales while allowing pricing at time-scales large enough for human involvement. We

also illustrate how to adapt Distributed-DCC to these architectures.

xiil



CHAPTER 1
INTRODUCTION

1.1 Importance of Network Pricing

As the Internet grows in size and heterogeneity, the need increases for new
economic models and inter-domain services as well as new tools and techniques for
managing congestion. Technical tools such as differentiated services [27], TCP/IP
improvements like SACK [56], over-provisioned ISP cores have been developed and
deployed in the Internet. However, economic tools, such as responsive pricing, auc-
tioning of bandwidth, proper accounting, have been proposed [19, 33, 42, 50] but
not deployed. Such economic tools are necessary building blocks in order to build
a superior economic model for the Internet and inter-domain services. Especially, a
flexible pricing framework, which can provide environment for a variety of pricing
techniques (i.e. static, dynamic, or hybrid), is a crucial building block.

A major impediment in the deployment process has been the minimal “best-
effort” service model of the IP, which does not provide a standard mechanism to
specify packet-forwarding behavior other than the best-effort service. In other words,
several of the proposed schemes have remained in the theoretical domain due to lack
of models for implementing them using IP. This scenario has recently changed as
the Internet Engineering Task Force (IETF) standardized two approaches to support
service differentiation: Integrated Services (int-serv) [12] and Differentiated Services
(diff-serv) [27]. Though the two approaches can coexist and inter-operate, it is ex-
pected that the latter (diff-serv) or its variants will be the choice of service providers.
Given this backdrop, it is important to develop better and flexible (i.e. that can
provide environment for both static and dynamic pricing) pricing architectures that
can work on diff-serv.

Also, one of the major problems in the Internet is controlling congestion.
Currently, the dominant congestion control algorithm in the Internet is TCP[3,
39]’s congestion control algorithm. Several improvements (RED [29], TCP-NewReno
(38, 28], Forward ACK [55], TCP-Vegas [13]) have been made to TCP’s congestion



control algorithm. These congestion control schemes reduce the sending rate, but
cannot control the increasing user demand. For example, during a congestion epoch,
a user transferring a large file generally does not stop the transfer, even though
underlying TCP reduces sending rate at the background. So, reducing the sending
rate is not enough to make sure that the service is good, since capacity of the
Internet generally is just not enough to satisfy the active user demand. To provide
good service in such cases, user demand must be reduced by causing some users to
stop using the network. So, although these congestion control schemes guarantee
stability of the network, they have no ability to reduce the user demand. As the
user demand and the number of active users increase, the service provided to each
user gets worse and worse. At some point the service gets so bad that, the users
who want better service stop using the network although they would be willing to
pay more for a better service. The fairer and more reasonable way to resolve such
a severe congestion epoch is to increase the price of the network service and cause
the users with lower willingness-to-pay to reduce their network usage. This way the
provider will gain more revenue, and moreover the social utility (welfare) will be
more.

The next major problem in the Internet is fairness among the users. One
obvious fairness problem is the fact that UDP [73] traffic beats down TCP traffic
because it does not have any congestion control algorithm. At the time of congestion,
TCP backs off while UDP does not. This causes unfair treatment of user applications
using TCP, relative to the ones using UDP. So there is a need to have control over
traffic regardless of the underlying transport protocol.

Again as a fairness issue, some applications require better treatment because
of their internal requirements. For example, some applications are very sensitive to
loss of their packets, while some other application is very sensitive to delay of their
packets. All these requirements lead to studies to differentiate services given to the
user applications. As we stated earlier, two important standardization happened to
accommodate needs of different types of user applications: Integrated Services [12],
Differentiated Services [27].

Currently, however, users do not have opportunity to express the value of the



application they are running. All the user applications are treated equally (other
than strict differentiation provided by diff-serv, RSVP, etc.) regardless of their
value to the user. All the users are charged flat-rate (other than strict differences,
e.g. cable users and dial-up users) and are provided approximately equal network
capacity. This strictly limits the amount of utility the user can get out of the network
service, especially that user is willing to pay significantly more for higher capacity.

So, although several improvements have been made to congestion control and
service differentiation techniques, the Internet is still missing three important fea-

tures especially at the time of severe congestion epochs:

e Mechanisms to reduce and control user demand
e Fairness
e Flexible economic models to increase providers’ revenue

One proposed method of controlling network conditions is to use pricing. By
adaptive pricing (or static pricing if user demand model is known), it is possible to
provide efficient techniques to resolve the above listed issues. Since user demand
model is unknown and Internet traffic is so bursty, static pricing is not a proper
solution.

As we stated earlier in this section, it is possible to increase the service price
during congestion epochs and reduce it otherwise. This way pricing can control the
user demand adaptively. If the Internet is left as it is without an adaptive pricing
architecture, it will always be possible to get into phases where the network service
gets terribly bad. However, when adaptive pricing is employed, increased prices will
make sure that the users with the higher willingness-to-pay will use the network.

Also, adaptive pricing will make sure that the users will express the value of
their applications. Without knowing the value of the applications to their owners
(as it is currently for the Internet), it is not possible to maximize or at least increase
total user utility. In terms of fairness, it will be possible to give more network
capacity to those users who have more willingness-to-pay for the network service.

As another fairness issue, the users who are causing more cost to the network

(congestion is also regarded as cost) than the others must be charged more. How-



ever, there is no way of doing that by currently used flat-rate pricing. We can give
a more solid example as follows: Consider two users A and B in New York. Suppose
both of these users are talking to their friends over the Internet. User A’s friend
is in Los Angeles whereas user B’s friend is in Phoenix. So, these two users are
basically running a voice-over-IP application from New York to different locations.
It is perfectly possible that the route between New York and Los Angeles is passing
through more congested areas than the route between New York and Phoenix. Cur-
rently, both of these users are being charged the same amount. However, a fairer
case would be to charge the user B more than the user A. Moreover, this situation
can change dynamically over time. At some time later, the route between New York
and Phoenix may become more congested than the route between New York and
Los Angeles. So, this requires the charging scheme to be adaptive.

In the next section we lay out the challenges for proper pricing of network
services, and then in Section 1.3 we present our approaches to these challenges.

Finally in Section 1.6, we outline the thesis.

1.2 Challenges of Network Pricing

Most of the challenges for adaptive pricing of network services are related to
implementation and structural obstacles. Several adaptive pricing schemes have
already been proposed, but none of them were able to provide an easy implemen-
tation. Implementation difficulties for adaptive pricing are because of the high
overhead caused by adaptiveness of the pricing scheme.

One important problem is that adaptive pricing needs to update price dynam-
ically over time. Frequency of these price updates are expected to be more when
the network gets congested or traffic is so bursty. However, each price update causes
extra overhead in terms of both accounting and control traffic. When the pricing
scheme updates the prices less frequently, it cannot adapt to the changing network
conditions and loose control over the user demand and network congestion. So,
there is a trade-off between being more adaptive and having less overhead.

Another important implementation difficulty for adaptive pricing is the fact

that users desire to know the price before using the service. Since adaptive pricing



aims to change the price dynamically over time, it becomes necessary to inform
the user about the new price. This introduces extra control traffic overhead to the
network, which is going to be proportional to the number of active users.

We now focus on challenges to provide three major purposes of an adaptive

pricing framework: better congestion control, better fairness, and more revenue.

1.2.1 Congestion Control Challenges

As we stated earlier in Section 1.1 one of the purposes of adaptive pricing is
to directly control or help controlling the network congestion by controlling user
demand through adaptive prices. In reality, time-scale of congestion control is much
smaller than time-scale of pricing. As the time-scale of pricing gets smaller, pricing
will directly contribute to congestion control more.

Adaptive pricing can help congestion control, but there are two major problems
regarding this issue. One is that the pricing scheme must be able to detect congestion
level and communicate this congestion information to corresponding nodes (the nodes
that need current congestion information to update the price) very quickly. This
requires robust and efficient congestion detection techniques that do not cause a lot
of implementation overhead.

The second problem is that the pricing scheme must update the price quickly
in order to have more control over congestion. However, frequent price updates
disturb users and also cause more overhead. So, the pricing scheme must balance

that trade-off.

1.2.2 Fairness Challenges

The pricing scheme should ensure the fairness of the network. For a network,
the most fair case is the case where the total user utility is maximized. Since
each user application has a different value to its owner, total user utility cannot
be maximized by always giving equal network capacity to the users. In general,
however, it has been argued that the network should give equal network capacity
to all users to maintain fairness. For example, TCP’s congestion control algorithm
gives the same share (proved in [17]) of the network capacity to the users. So, the

only fairness criteria for congestion control algorithms has been equal allocation



of network capacity to the users. This has been the case, because the congestion
control schemes do not have any controlled way of getting user’s willingness-to-pay,
i.e. value of the application to the user. This gap can only be filled by having an
adaptive pricing scheme that can estimate user’s willingness-to-pay.

We now give a counter example on the definition of fairness. Consider two
users A and B, whose traffic are going through the same bottleneck with a capacity
of c. Suppose that user B’s application is r times more sensitive to bandwidth than
user A’s application. So, user B is willing to pay r times more than user A. In other
words, user B’s budget for the network service per unit time is bg = rba, where by
is user A’s budget for the network service per unit time. Our question is what is
the most fair allocation of ¢ to these two customers?

Since our aim is to maximize the total user utility, we first need to represent
user A and B’s utility functions. Several studies showed that marginal user utility
decreases as the amount of bandwidth given to the user increases, similar to “di-
minishing rate of returns” phenomenon in economics. This implies that the utility
function should be a concave function. Although there are several different concave
functions, u(z) = logr has been commonly used in the area where z is the band-
width given to the user. A more general form would be to include a multiplicative
factor in order to represent user’s sensitivity to bandwidth. [58, 79] So, we represent

the utility functions of users A and B as follows:

ua(z) = balogz

up(z) = bplogx

where z is the bandwidth given to the user, b4 and bg are sensitivity to bandwidth
for users A and B respectively. Let x4 and g be amount of capacities given to
users A and B correspondingly. Since the total capacity given to the two users can

at most sum up to ¢, we can write that g = ¢ — 4. The total user utility will be:

U=wus(ra)+upglc—24)



To find the x4 value that maximizes U, we differentiate U with respect to x 4:

dU bA —TbA
="

dras T4 Cc—T4g
dU c—(r+1)za
oy A
dx 4 za(c— )

After solving £ = 0, we get the solution as follows:

1
T4 = c
A r+1
g = ! C
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So, this means that user B must be given r times more capacity than user
A in order to maximize the total user utility. Notice that the ratio of z4/c is the
same as the ratio of ba/(ba + bg). This implies that each user must be given rate in
proportion to his/her willingness-to-pay relative to willingness-to-pay of all users.
We prove this property for the general case of multiple users in Appendix A.

Notice that this above rate allocation is very much dependent on knowing
each user’s willingness-to-pay, in other words sensitivity to bandwidth. Congestion
control schemes do not have any way of determining this, whereas an adaptive
pricing scheme has by changing the price dynamically.

To summarize, an adaptive pricing scheme can provide better fairness than
congestion control schemes, since it can determine user’s willingness-to-pay. With
the knowledge of users’s willingness-to-pay, the pricing scheme must make sure that

1

the users causing the same amount of congestion costs ' are being priced equally.

This is hard to do in a wide area network because of delays, since price commu-

'In economics, three main type of costs, [23, 80], are defined: sunk, variable, marginal. For a
network, sunk costs are the costs of physically building the network in order to make it operational.
Variable cost of transferring a packet is the cost of allocating enough capacity for the transmission
of that packet. Finally, marginal cost of a packet is amount of disturbance that packet causes
on the other packets. In a network, disturbance is basically the congestion. Congestion cost of a
packet (or a user) refers to that packet’s (or that user’s) contribution to the congestion.

In pricing, sunk costs and variable costs are generally recovered by fixed prices, i.e. flat-rate pricing
or usage-based pricing. However, since marginal costs vary, dynamic pricing based on marginal
cost-prices is needed for recovering them. Notice that we mainly focus on congestion pricing.



nication among the nodes of a wide area network will have to include delays. So,
finding the optimum price (that maximizes total user utility) and communicating
it to several nodes of the provider’s network is a challenge for an adaptive pricing
scheme.

Also, the pricing scheme is supposed to make sure that the users causing more
congestion costs than the others must be priced proportionally higher. This is another
challenge, since identifying which user’s traffic is causing more congestion costs is
a non-trivial task for a wide area network. Congested areas in wide area networks
change dynamically over time. The level of congestion changes too. So, it is very
hard to determine congestion cost information for each traffic flow, since updates are
supposed to be done at the network edges or network ends for easy implementation

purposes.

1.2.3 Provider Challenges

Besides maximization of total user utility, the pricing scheme should be able to
advertise prices such that provider revenue is mazrimized. This includes consideration

of several issues, when advertising a price to a particular customer:

e Each customer has different type of utility function.

e Provision of capacity to each customer costs differently. Also, these costs

change dynamically according to the current conditions of the network.

So, the problem is not to only maximize total user utility, rather it is to
maximize social welfare, which is the sum of user surplus and provider revenue.
The question becomes what is the best way to allocate a capacity of ¢ to n users
such that the social welfare is maximized? We now make a simple analysis of the
situation to find out the best capacity allocation and the best prices that lead to
this allocation.

We assume that user’s utility function is in the form u;(x) = b;logxz. Suppose
p; is the price advertised to a particular user 7. The user i will maximize his/her

surplus by making sure that he/she contracts for z; = b;/p;, i.e. :

S = u;(x;) — zip;i
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Assuming that the customers obey this above procedure, the provider can
now figure out what price to advertise to each user by maximizing the social welfare
W = S + R, where R is the provider revenue. Let k(x) be a linear function and be

the cost of providing x amount of capacity to a user.

W = i [ui(w;) — z3p; + 30 — k(2;)]

W= iui(xi) — k(o)

Maximizing W with respect to x; is the same problem presented in Appendix
A. So, any user ¢ should be given a capacity of
bi
T = ———C¢C
?:1 bi
Since we assumed that the user will contract for b;/p; when advertised a price

of p;, then the provider should advertise:

b; b;

— = C

bi = 7?:1 b
C

This means that the provider should advertise the same price to all users.

However, notice that this above study assumed three major things:
e the cost of capacity provisioning to each user is the same
e all users have the same type of utility function, i.e. u(x) = blogz

e users are honest and do not play unexpected games
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1.3 Owur Approaches

Implementation difficulties caused by the nature of wide area networks make
it impossible to price optimally. We propose an adaptive pricing framework, Dy-
namic Capacity Contracting (DCC), to achieve most of the challenges mentioned in
the previous section. DCC is specifically designed for diff-serv architecture of the
Internet. Edge routers of a diff-serv domain are the stations of ISPs, at which cus-
tomers and the ISP can negotiate for the network service. At the end of negotiation
customer and the ISP decide the contract parameters (i.e. price, volume, length).
The ISP uses estimation techniques to determine user’s willingness-to-pay.

DCC relies on congestion detection techniques that can be implemented only
at the network edges, with very little support from interior nodes. Several different
congestion detection techniques can be used in order to provide necessary conges-
tion information to DCC. One simple method detecting congestion would be to use
ECN bit as the congestion indication bit. Interior routers can mark the packets by
updating the ECN bit at the time of congestion. The egress edge router can detect
the congestion after receiving the marked packet(s). This is a fast and efficient way
of detecting congestion in a wide area network, which is crucial for adaptive pric-
ing. In a recent work, [36], even the updating of ECN bits at interior nodes is not
required, which means edge-to-edge congestion detection can be achieved in several
ways, and hence DCC is plausible in this sense. Egresses can make estimation of
network capacity by using techniques like AIMD (Additive Increase Multiplicative
Decrease). We embed congestion pricing into the framework by making the ca-
pacity estimation at the egress intelligently. The egress edge router decreases the
estimated capacity when it receives a marked packet. Egress edge routers inform
the ingress edge routers about the estimated capacity by sending feedback packets.
The ingress edge routers can, then, use the estimated capacity and user’s estimated
willingness-to-pay to figure out optimal price.

We define two main architectures to use pricing for managing congestion con-

trol in a diff-serv network:

1. Pricing for congestion control (PFCC): In this pricing architecture,

provider attempts to solve congestion problem of its network just by con-
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gestion pricing. In other words, the provider tries to control congestion of its
network by changing service prices. The problem here is that the provider will
have to change the price very frequently such that human involvement into the
price negotiations will not be possible (we will prove that later in Chapter 5).
This problem can be solved by running intermediate software (or hardware)
agents between end-users and the provider. The intermediate agent receives
inputs from the end-user at large time-scales, and keeps negotiating with the
provider at small time-scales. So, intermediate agents in PFCC architecture

are very crucial in terms of acceptability by users.

If PFCC architecture is not employed (i.e. providers do not bother to employ
congestion pricing), then congestion control will be left to the end-user as it is
in the current Internet. Currently in the Internet, congestion control is totally
left to end-users, and common way of controlling congestion is TCP and its
variants. However, this situation leave open doors to non-cooperative users
who do not employ congestion control algorithms or at least employ congestion
control algorithms that violates fairness objectives. For example, by simple
tricks, it is possible to make TCP connection to capture more of the available

capacity than the other TCP connections.

The major problem with PFCC is that development of user-friendly intermedi-
ate agents is heavily dependent on user opinion, and hence requires significant
amount of research. A study of determining user opinions is available in [11].
In this thesis, we do not focus development of intermediate agents. But, in
Chapter 6, we will adapt our propsed framework Distributed-DCC to PFCC

architecture.

. Pricing over congestion control (POCC): Another way of approaching
the congestion control problem by pricing is to overlay pricing on top of con-
gestion control. This means the provider undertakes the congestion control
problem by itself, and employs an underlying congestion control mechanism
for its network. This way it is possible to enforce tight control on conges-

tion at small time-scales, while maintaining human involvement into the price
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negotiations at large time-scales.

So, assuming that there is an underlying congestion control scheme, the provider
can set the parameters of that underlying scheme such that it leads to fairness
and better control of congestion. The pricing scheme on top can determine
users’s willingness-to-pay and set the parameters of the underlying congestion
control scheme accordingly. This way, it will be possible to favor some traffic
flows with higher willingness-to-pay (i.e. budget) than the others. Further-
more, the pricing scheme will also bring benefits such as an indirect control on
user demand by price, which will in turn help the underlying congestion control
scheme to operate more smoothly. However the overall system performance
(e.g. fairness, utilization, throughput) will be dependent on the flexibility of

the underlying congestion control mechanism.

We will investigate POCC architecture in more detail later in Chapter 7, where

we adapt the Distributed-DCC framework to POCC architecture.

Given any edge-to-edge congestion detection mechanism, DCC allows both
of the above methods to be implemented. In the latter method, the only extra
requirement is to mapping DCC’s parameters to the parameters of the underlying
edge-to-edge congestion control mechanism.

One crucial aspect of DCC is that it imposes short-term contracts to accommo-
date adaptive pricing. The ISP can change the length of these contracts dynamically
depending on the current network and traffic conditions. Short-term contracts al-
low more frequent price updates, and hence more control over user demand can
be achieved. To reduce the overhead, DCC makes pricing at a granularity level of
contracts rather than packets. This reduces accounting overhead significantly by
sacrificing some optimality, amount of which is to be investigated.

Since network edges are the nodes with high computation power, we can per-
form several complex operations at these points. To address the fairness issues, DCC
makes estimation of each user’s willingness-to-pay for the network service and uses
that information during the price updates. In order to make sure fairness to the
users, the edge routers communicate these estimated willingness-to-pay information

to each other at a time-scale that is large enough (generally tens of round-trip-
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times) to accommodate within a wide area network. In this way, each edge router
has overall information about the users’s willingness-to-pay, which enables them to
figure out optimal prices. This willingness-to-pay communication makes sure that
the edge routers are advertising equal prices to those users causing the same amount
of congestion costs.

A very interesting aspect of DCC is that it provides flexibility to penalize
the traffic flows that are causing more congestion costs than the others. DCC can
achieve this by intelligently monitoring the edge-to-edge traffic. DCC can achieve
to determine the amount of congestion cost that a particular traffic flow is causing.
Determination of such information enables DCC to penalize those that cause more
congestion than the others by lowering the willingness-to-pay of the corresponding

flows.

1.4 Motivation

For our work, the main motivation is that the Internet lacks better economic
models and tools for the purpose of traffic engineering. Several technical tools (e.g.
TCP improvements, diff-serv) have been deployed in the Internet, but economic tools
such as adaptive pricing have not. Although several adaptive pricing proposals have
been made for the Internet, all of them stayed in theoretical domain.

Given efficient economic tools, better economic models can possibly be imple-
mented. Current economic model of the Internet is traditional wholesaler-retailer
(also known as 1-tier, 2-tier, ...) model. A better model would also include inter-
mediaries, exchanges? and similar types of components. Such new economic models
will provide opportunity for more optimization both in terms of network efficiency
and economic efficiency.

In order to implement such better economic models in the Internet, there is a
need for more flexible and more efficient economic tools to be deployed. Specifically,
the need for an adaptive pricing (which is mainly congestion-sensitive pricing in the
case of networks) tool is crucial as an economic tool. In large networks, deployment

of congestion-sensitive pricing is tough because it requires very recent information

2These type of components are already implemented in bandwidth market.
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short time-scale | Congestion effects

medium time-scale Routing effects

long time-scale Capacity effects

Figure 1.1: Pricing time scales depending on the major factors.

about the actual congestion level while this is very hard to do in large networks.
So, deployment of congestion-sensitive pricing schemes has been a major obstacle
for better economic models and optimization in the Internet.

Also, although sunk costs of bandwidth are large, the bandwidth has become
a commodity recently. Value of the network service lies in packaging and presenting
it to users rather than the main cost of bandwidth. So, the value mainly changes
at shorter time-scales especially with changes in congestion level. At the time of
congestion the value increases which should cause increase in price.

We can classify value changes according to their time-scales. Figure 1.1 rep-
resents three major time-scales at which value of network service changes. At long
time-scale, provisioned capacity can change and this causes changes in value. At
medium time-scale, routing can change and this causes changes in value. Finally
at short time-scale, congestion can change and this causes changes in value. Our
focus is mainly on pricing issues that can be addressed at short time-scales, i.e.
congestion-based. Notice that routes are fixed for short time-scale, so we do not try
to address pricing issues related to routing changes.

So, we can summarize our motivation in two main items that are needed in

the Internet:

1. Need for new economic models and tools in the Internet

In order to implement new economic models the followings are needed:

(a) More flexible pricing architectures: Current pricing architecture (i.e. frame-
work) does not allow adaptive pricing schemes to be implemented. So,
there is a crucial need for a more flexible pricing architecture that provides

environment for adaptive pricing. Specifically, it must obtain and provide
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recent congestion information for possible implementation of congestion-

sensitive pricing.

(b) Building blocks with a range of pricing capabilities: Given a flexible and
knowledgeable pricing architecture, there is also need for very flexible
economic tools that can support a range of pricing techniques. Such
building blocks will allow more optimization to be deployed. Examples
of these building blocks are billing techniques, accounting techniques,

pricing schemes.

2. Need for adaptive pricing

Adaptive pricing is specifically useful in the following manners:

(a) A way of controlling user demand and network congestion: For the pur-
pose better congestion control, adaptive pricing provides opportunity to

control user demand and hence help controlling congestion.

(b) Fairness: Another benefit of adaptive pricing is that it operates regardless
of the underlying transport protocol. For example in the Internet, UDP
traffic beats down TCP traffic because it does not back off at the time
of congestion. This causes TCP traffic to be treated unfairly compared
to UDP traffic. Adaptive pricing can control both UDP and TCP traffic

fairly since it can potentially treat them equally.

Also through adaptive pricing, provider can reflect cost differences to
users. Note that each traffic flow causes different amount of cost per
unit volume. This is mainly because of dynamic nature of the Internet.
Routes change dynamically, congestion costs change dynamically, and so

on.

1.5 Scope of Thesis
In this thesis, we mainly focus on developing a framework on which congestion-
sensitive pricing schemes can be implemented. Figure 1.2 represents scope of our

work among the related networking problems®. Figure 1.3 represents tree version of

3Note that sizes of the shapes does not represent sizes of research problems being represented.
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Figure 1.2: Scope of thesis among the networking problems.

scope definition for our work. The gray nodes in Figure 1.3 represents the problems
covered by the thesis.

The main problem being solved in the thesis is deployability of congestion-
sensitive pricing schemes. The thesis also tries to address congestion control and
fairness issues through adaptive pricing. Specifically, it determines ways of using
adaptive pricing to control congestion and to provide different types (i.e. propor-
tional, max-min) of fairness among traffic flows. Also, it focuses on providing more
optimization (i.e. utility maximization, social welfare maximization) within imple-

mentation constraints of adaptive pricing.

1.6 Thesis Outline

This thesis attempts to provide solutions to the problems identified in Section

1.2 within consideration of single diff-serv domain and single provider only. It de-
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Figure 1.3: Scope of thesis as tree representation.

velops basic building blocks that are necessary components in order to construct a
flexible economic model for the Internet and wide area networks.

In Chapter 2, we survey the literature in the area of network pricing and
pricing proposals for the Internet. We classify the pricing proposals into two main
classes: dynamic pricing schemes, static pricing schemes. We provide descriptions
of the pricing proposals in both classes along with evaluations of them according to
various criteria: deployability, network efficiency and Pareto efficiency.

For a good understanding of the dynamics of congestion-sensitive pricing, we
first study one of the primary pricing proposals in the area. In Chapter 3, we study
the well-known pricing proposal Smart Market, for the Internet. The importance
of the Smart Market lies behind the facts that it is the first pricing proposal for
the Internet and also it defines an optimal congestion pricing method. We lay out
implementation problems it has and propose an implementation strategy for the

Smart Market on diff-serv networks. We then develop a packet-based simulation of
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the Smart Market according to the implementation strategy we developed. We fi-
nalize our study of the Smart Market by presenting performance results and possible
future research on it.

In Chapter 4, we propose Dynamic Capacity Contracting (DCC) framework for
adaptive pricing within a single diff-serv domain. Customers perform short-term ne-
gotiations with the provider at the edges of the network. Since negotiations happen
at short-term intervals in DCC, the provider can employ congestion-sensitive pricing
by updating congestion condition of the network. We use edge-to-edge congestion
detection techniques to facilitate congestion-sensitive pricing in the framework. We
develop two pricing schemes within the DCC framework: Edge-to-Edge Pricing
(EEP) and Congestion Index. We assume that all the ingress edge routers advertise
the same price to their customers. By using the EEP pricing scheme, we develop
simulation of DCC and present initial performance results for proof-of-concept. We
also provide a comparative experimental evaluation of DCC and Smart Market. We
finalize the chapter by determining benefits and weaknesses of DCC. One of the
major implementation issues that raise about DCC is the question of how long can
the short-term negotiation intervals be? Another major deployment issue is to relax
the assumption of same prices being advertised at the ingress edge routers.

In Chapter 5, we attempt to answer the question about the length of negoti-
ation intervals (i.e. pricing intervals) which was raised in the previous chapter. As
the pricing intervals get larger, the control achieved on the network congestion by
adaptive prices reduces. We represent the level of control achieved by the prices by
the correlation between prices and congestion measurements in the network. We
then develop an approximate analytical model of the correlation, which includes
length of pricing intervals as a parameter. By using this model we derive three
major conclusions, and then we validate the model and the conclusions with exper-
imental results by using simulations of DCC with different pricing intervals. The
study of pricing intervals reveals that pricing-based congestion control deteriorates
very sharply as the pricing intervals get larger. According to our experimental work,
the level of congestion control achieved by congestion-sensitive prices vanishes when

pricing intervals exceed 40 round-trip-time (i.e. 2 or 3 seconds for the most cases in
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the current Internet) even under a traffic load with a low variance.

In Chapter 6, we relax the assumption of same price advertisement in DCC.
The ingress edge routers can now advertise locally computed prices, which requires
several updates to DCC framework. We call the updated version of DCC framework
as Distributed-DCC. Advertisement of locally computed prices makes it difficult to
maintain coordination among the edge routers. Because of this, we introduce a new
component, Logical Pricing Server (LPS), to facilitate the overall coordination of
the network. Although having different prices at each ingress makes it difficult to
coordinate the network, it provides a new ability of behaving differently to each edge-
to-edge flow. Because of this new ability, Distributed-DCC can provide a variety of
fairness (e.g. max-min, proportional) in rate allocation to edge-to-edge flows. We
describe the Distributed-DCC framework within the PFCC architecture, determine
related problems and their solutions. We also revise the EEP pricing scheme within
the context of Distributed-DCC framework. We finalize the chapter by presenting
performance results and determining problems with Distributed-DCC followed by
necessary future work for it.

In Chapter 7, we focus on the case where pricing is overlaid on top of an un-
derlying edge-to-edge congestion control scheme. We determine the issues raised
by overlaying pricing over congestion control, provide solutions to them within
Distributed-DCC framework. We simulate Distributed-DCC over Riviera [36, 37]
and present experimental results.

In Chapter 8, we show differences between Distributed-DCC and other con-
gestion pricing proposals in terms of calculation and optimality of prices. We also
provide theoretical proof for optimality of price calculations in the EEP pricing
scheme. We solve total user utility maximization problem, and show that the solu-
tion leads to EEP. We also investigate the term “elasticity” in the area of network-
ing. We mathematically define utility-bandwidth elasticity, which is the elasticity
known in networking area. Then, we determine relationship between the well-known
demand-price elasticity and utility-bandwidth elasticity.

In Chapter 9, we investigate theory behind Distributed-DCC’s ability to pro-

vide multiple fairness types in rate allocation. We derive all possible rate allocations
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in Distributed-DCC. This way, we show how one can achieve different fairness types
within Distributed-DCC framework. Finally, we investigate Distributed-DCC’s sen-
sitivity to several parameters, such as contract length, observation interval, and LPS
interval.

Finally in Chapter 10, we first summarize and list contributions of the thesis.

We then determine the possible future research agenda.



CHAPTER 2
BACKGROUND

2.1 Introduction

Internet pricing has drawn considerable interest of researchers from diverse
fields in the last ten years. The scope of the literature is wide-ranging. Pricing
can be used for several different purposes for the Internet: Increase revenue [9],
uniform users’ traffic by time-of-day pricing, reduce congestion epochs by congestion
pricing [51, 42], improve fairness [53], network management [34], etc. There are
many studies of pricing alternatives based on the existing Internet service model
(often referred to as the best-effort service model); since a particular user’s Internet
experience is often provided by the resources of several service providers, the multiple
provider Internet business model is certainly an important factor in analysing both
the provider-consumer and provider-provider pricing strategies. The most fervent
debates in Internet pricing, however, are driven by proposals tied to alternative
service models for the Internet, where different quality of service are provided when
network resources are limiting.

What have we learned from this large body of literature? This survey attempts
to provide a taxonomy, a classification, some digest and discussion of important
works, of course with author’s opinions interjected.

Broadly speaking, there are three types of pricing of Internet services: Flat-rate
pricing, usage-based pricing, and dynamic pricing. The first two are also regarded as
static pricing schemes, because price of transmitting unit amount of traffic is fixed.

Flat-rate pricing [26] is basically to charge the user with a fixed amount, py,
per unit time regardless of his/her usage and actual network conditions. This is the
most common mode of pricing to the retail customers currently for the Internet.
ISPs usually charge a fixed amount for a contract time period of a month.

Usage-based pricing is to charge the user with a fixed amount, p,, per unit
amount of usage. For the Internet, the amount of usage can be in two forms: traffic

amount or connection time. In the first one, p, is fixed for unit traffic amount (e.g.

21
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Py dollars per megabyte). In the second one, p, is fixed for unit amount of connection
time (e.g. p, dollars per one hour of connection). Notice that in the second one the
user is free to send/receive any amount of traffic up to a peak whereas in the first
one the user pays for every megabyte of traffic he/she caused to the Internet.

The first form of usage-based pricing is being employed in the Internet at ISP-
to-ISP level. [61] Usually, ISPs buy their connection from a carrier by defining a
fixed rate and a burstable rate. The charge for the fixed rate is flat but the excess
rate is charged per traffic amount. The burstable rate defines the maximum value
for the sum of fixed rate plus the excess rate that the ISP can use. The carriers
generally do not make an exact accounting of the excess rates, since it would be too
much of overhead to account. They, rather, sample the excess rates of the ISPs at
some reasonably large time intervals, and calculate the total amount of excess usage
for each ISP.

Currently in the Internet, the second form of usage-based pricing is employed
at customer level by some ISPs. Generally within a month, ISPs charge a flat price
(ps) for the first predefined number of hours, and then charge usage price (p,) per
extra hour of connection.

Dynamic pricing of networks is a more general case of usage-based pricing. It
is to charge the user with p,(t) per unit amount of usage, varying over time . py(?)
can be varied depending on the network conditions. Since the price value changes
according to the actual network conditions, it is also called as adaptive or responsive
pricing. Most of the research focused on varying py according to the congestion level
of the network and aimed to relieve the congestion in this way. This special case * of
dynamic pricing is called congestion-based pricing or congestion pricing. However,
because of high complexity of the proposed dynamic pricing schemes, none of them
has been employed in the Internet.

Most of the research on Internet pricing focus on development and implemen-
tation of dynamic (responsive) pricing schemes over the Internet. Since 1992, several

dynamic pricing schemes [50, 49, 33, 42, 59, 19, 79, 67] have been proposed. Among

4Notice that dynamic pricing can be based on several things other than congestion, e.g. number
of active users, level of utilization. However, the main part of marginal costs is from congestion.
Because of that research has been focused particularly on congestion-based pricing.
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those dynamic pricing schemes, most proposed congestion pricing that requires com-
plex pricing techniques, while some of them opposed complex pricing strategies and
supported either usage-based pricing or classified flat-rate pricing (e.g. dividing the
service into different classes and assigning a flat price to each class).

Evaluation of network pricing schemes can be done according to two major
metrics: Network efficiency, economic (Pareto) efficiency [75]. Conditions for net-
work efficiency are stability and high utilization. A network is stable if packet drop
rate is close to zero and queue lengths (and hence delay) are bounded. On the other
side, Pareto efficiency can be achieved by maximizing social welfare. A situation is
Pareto efficient if nobody can be better off without making somebody worse off [75].
For a network, this can be achieved by maximizing both the provider’s revenue and
the users’ total utility. Total utility of the users can only be maximized by fair rate
allocation to them, i.e. the network capacity should be given to the users accord-
ing to their willingness to pay. This way the users with more valuable traffic will
be given more network capacity since they have more willingness to pay than the
others. So, the pricing schemes are supposed to allocate the network capacity fairly
to the users while maximizing the provider’s revenue. Besides, they are supposed
to bound the network queues and lower the drop rate by uniforming users’ demand
over time. In this chapter, we will make overall evaluation of the pricing proposals
according to network and Pareto efficiency.

Although most of the Internet pricing research focus on dynamic and complex
pricing techniques, the discussion of whether the market desire such fancy pricing
plans or not still continues [60, 61, 25, 4, 65, 64, 45]. There is actually trade-
off between better quality-of-service (QoS) and simpler pricing plans. Better QoS
can be achieved by employing more complex pricing strategies while, on the other
hand, people do not want complex pricing plans. Most researchers, however, believe
that the Internet needs a pricing scheme better than the currently employed flat-
rate pricing because of its sub-optimality and non-adaptiveness to congestion. The
main discussion is on whether to employ complex dynamic pricing schemes or just
employ simpler pricing schemes such as usage-based pricing. We will return to this

discussion later in Section 2.3.
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Currently, flat-rate pricing makes the users not to restrict themselves which
increases traffic amount and usage significantly [61]. This unrestricted nature of the
flat-rate pricing eases market development, which is pleasing to the service providers.
When the usage increases a lot, however, it also causes congestion epochs to be more
severe and QoS to be very low. Flat-rate pricing has no contribution to the network
efficiency, rather it effects network efficiency negatively especially by putting no
constraint on the traffic at peak hours. Also, for the users who have more valuable
traffic there is no way to express their willingness to pay. Since there is no way
of differentiation in flat-rate pricing, the users with more valuable traffic have to
use best-effort traffic as the other users. Because of these reasons, flat-rate pricing
cannot achieve Pareto efficient Internet.

In the following survey of the existing work, we first consider the major works
on dynamic pricing, which are often combined with various proposals for new In-
ternet service models, new resource allocation algorithms, and protocols. In this
case, pricing is used as incentive to achieve better network efficiency, or optimality
of bandwidth usage on the basis of a relatively short window of time. These are
mostly proposals of dynamic pricing schemes. Then, we survey works that argue
against the use of dynamic pricing, for a variety of reasons; and other works that
analyze (mostly on economic basis) the pros and cons of flat-rate and usage-based
pricing.

The rest of the chapter is organized as follows: We first survey important
dynamic pricing schemes in Section 2.2. Then we survey major arguments against
dynamic pricing in Section 2.3. In Section 2.4, we survey static pricing schemes,
which are basically different compositions of flat-rate and usage-based pricing tech-
niques. Next in Section 2.5, we compare overall characteristics of the presented

pricing schemes. Finally, we conclude with conclusions and discussions.

2.2 Dynamic Pricing Schemes
2.2.1 Smart Market

The smart market [50] is one of the first proposed pricing schemes for the

Internet. The smart market imposes a per-packet charge, which is dependent on
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the network congestion. The price-per-packet changes dynamically over time, which
makes the smart market a dynamic pricing scheme. Price changes are justified
according to the congestion level.

The smart market assumes that each packet will have a bid value in its header.
The owner (sender) of each packet is supposed to assign the bid values of his/her
packets. Basically, the smart market introduces a new packet header to give the
users opportunity to express their willingness to pay.

In the network, each router keeps a threshold value and forwards only the
packets with bid values greater than or equal to the threshold value. The packets
that have bid value of less than the threshold are simply dropped. These threshold
values at the routers are updated dynamically over time according to the congestion
being experienced at the particular router. So, the threshold values are expected to
be different at different routers and to be changing by time.

Each packet sent by the user tries to make it to the destination. If it can make
to the destination, the price that the owner of the packet pays is called market-
clearing price, which is the maximum of the threshold values that the packet passed
through.

The smart market also defines the order of service according to the bids. It
proposes that the routers first serve the packets which have higher bids. The idea
behind this is to make auction among the users. However, this is very hard to
implement since it requires sorting of the packets according to their bids and can
potentially lead to starvation of packets with lower bid values. Also, this effects
TCP’s RTT estimation techniques and congestion control algorithm negatively since
packet drops are crucial for TCP’s congestion control techniques.

Smart Market proposes to solve total user utility maximization problem. It
assumes that user ¢ has a utility function u(z;) — D(Y = X/K), where z; is the
number of packets sent by the user, X is the accumulation of all users demand (i.e.
X =Y¥,;z;), K is the total network capacity, Y = X/K is the utilization of network,

and D is the total delay experienced by the user as a function of utilization Y.
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Based on this utility assumption, Smart Market solves the problem:
n
mwe}Xin —nD(X/K)
K3

where n is the total number of users. Solution to this above maximization problem

is achieved with the following price p:
p=u(;) = =D'(X/K)
' K

which is the price value that is supposed to be charged at each local router. In other
words, the above price formula is the way of calculating threshold values at routers.

One can apply the smart market pricing scheme over a differentiated-services
([27]) network as follows: The sender sets the bid value, b, in the packet and sends
it to the network through the ingress node. The packet passes through a series of
interior routers, each of which has a threshold value, 7. The interior routers simply
drop the packet, if it does not satisfy the condition of b > 7. If the packet satisfy the
condition, then it is placed into the sorted queue according to its bid value. If the
packet could make through the network, the accounting is done for the owner of the
packet. To calculate the market-clearing price of each packet an extra packet header
is needed. This new header field can be updated at each interior router depending
on what is available in it and the T value of that particular router. Each customer
sends a probe-packet to find out the current market-clearing price. The egress node
that receives the probe packet sends feedback to the customer including the probed
market-clearing price. Then, the customer adjusts his/her network usage according
to that market-clearing price and the value of the application. A more detailed
study of implementing the smart market over differentiated-services architecture of
the Internet is available in [82] and in Chapter 3.

The smart market has several problems for implementation over the Internet.
It requires the interior routers to be able to sort packets according to their bids,
which requires new routers to be deployed. Also, there is need for extra packet header
fields, e.g. bid value, market-clearing price. Additionally, it has bad interaction with

TCP, which constitutes 90% of the current Internet traffic.
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Although it has several implementation issues, the smart market was proven
to be ideal in terms of Pareto efficiency in [50]. Also in [51], MacKie-Mason and
Varian prove that the smart market can also be useful to figure out the optimal
amount of extra provisioning needed to improve performance of a running network,

i.e. optimal capacity expansion of a network.

2.2.2 Priority Pricing

Gupta et al. proposed a priority pricing scheme with congestion-based prices
[33, 32]. For each service type (e.g. ftp, email, WWW) within a priority class,
the service provider maintains a congestion-based price, e.g. r,,; for priority class
of 7 and service type of m. The service provider keeps updating these prices at
some time interval, 7', according to the load and the congestion level of the node
that provides the service m. In order to determine the congestion level, priority
pricing calculates experienced delay by sampling the delay over some time intervals.
Since the scheme uses delay as congestion measure of the network, it is not only a
priority-based pricing scheme but also a congestion-based pricing scheme.

In priority pricing, the network is viewed as customers, network core, and the
servers that serve requests from the customers. The provider basically prices the
services that these servers are providing. For a specific type of service, customer
sends request to the service provider which in turn causes the service provider to
calculate and advertise its current price for the particular service type in every
priority class. Then, the customer decides about which service to buy and informs
the service provider about his/her decision.

Priority Pricing solves benefit maximization problem for the provider, which

is formulated as:
B(p,w) = X / / SN NGV — 637G, ky m)psjemd F (Vig, 63)
i 7k

subjected to

Wk = wk(Xm; Um)

where X is demand scaling parameter, );; is fraction of X associated with customer
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i for service j, Vj; is the revenue obtained from customer 7 for service j, d;; is delay
cost of customer ¢ for service j, 7(j, k, m) is expected throughput time for service
J at server m in priority class k, pjjim is probability that customer ¢ will request
service j at server m in priority class k, X,, is the matrix of service request arrival
rate by job size and priority at server m, v, is the capacity at server m, w,, is
expected waiting time at server mfor priority class k, and wy, is the waiting time for
priority class k£ as a function of service request arrival rate and capacity. Based on
this optimization problem, Priority Pricing calculates price of a job sized ¢ at server

m for priority class k as:
Tmk(q) = Z Z[dwl/dekq] Z Z 0§ Tijim
I q i g

where X,,i, is the arrival rate of jobs sized ¢ at server m in priority class k, and
Tijim 1s the flow rate of service j for consumer ¢ with priority £ at server m.

Among the problems with priority pricing, there is no defined implementation
strategy. Also, one another problem is that there are several parameters to be
tuned, e.g. price update intervals, price smoothing parameters. Moreover, there is
a big question of what should the number of priority classes be in order to get good
classification of the customers. The answer to this question is critical to evaluate
the scheme in terms of Pareto efficiency.

In the network core, priority pricing does not propose any specific way about
how to treat the traffic belonging to different priority classes. It just focuses on
treating the traffic differently at the servers where the requests being implied by
these traffic are served. In terms of reaching to the server, traffic of all the priority
classes are equal. This becomes an issue since RTTs are very large for some cases.
So, the customers with larger RTTs to the servers will get less of the resources than
the customers with smaller RTTs within the same priority class, which violates
fairness objectives.

Also, most of the user requests need multiple servers to participate in serving
the request. For instance, an email passes through multiple email servers, an HTTP

request is served by multiple HT'TP servers. Priority pricing does not investigate
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problems regarding the cases when requests are served by multiple servers. Notice
that priority pricing views the servers as bottlenecks. Different topology of servers
(i.e. serial, parallel) must be investigated in terms of performance and fairness of
the scheme.

Following the trend on priority-based pricing, Marbach [52, 53] studied priority-
based pricing in diff-serv environment and fairness of priorit-based pricing. In [52],
he showed that priority-based pricing always leads to equilibrium by modeling the
system as a non-cooperative game. In [53], as an extension to [52], he also showed

that equilibrium rate allocation of such non-cooperative game is max-min fair.

2.2.3 Packet Marking (Proportional Fair Pricing)

In [42], Kelly et al. proposed a pricing-based congestion control scheme which
is dependent on marking the packets when there happens congestion at the interior
routers. Then either the interior router itself or the destination end-node of the
packet feeds a congestion price (i.e. shadow price) back to the owner of the packet.
The owner, then, adjusts his/her sending rate according to the shadow price and
the value of his/her traffic.

In [42], the authors prove that such a packet marking scheme will lead to
stability and proportional fair rate sharing of the network. The intuition behind
the scheme is that the shadow price will increase at the time of congestion and
hence the users will lower their sending rates, which will keep the congestion under
control. Similarly, the shadow price will reduce at the non-congested time periods
and hence the users will increase their sending rates, which will keep the network
being utilized. Also, for those whose packets are passing through more number
of congested areas of the network, more feedback (each of which is a congestion
charge) will be sent. Thus, the number of bottlenecks that user’s traffic traverses
is also taken into account when charging the user. So, the users whose traffic is
contributing more to the congestion are charged more and will get less share of the
network capacity.

In [42], the authors show stability and fairness properties of PFP based on total

user utility maximization problem. First, they split the system problem (i.e. total
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user utility maximization) into two smaller and separable sub-problems as user’s
problem and network’s problem. The system problem is sub-divided by introducing
“price” as Lagrange multipliers. Assuming that user utilities are concave and feasible
region is convex, they show that optimal rate allocation vector is proportionally fair,

i.e. the following condition is satisfied:

Z T, — X, <0

rer  Tr
where z, is the rate of user flow on route r and R is the set of all possible routes in
the network. The authors also provide solution to dual of the system problem, and
algorithms for price calculation in both primal and dual cases.

In terms of congestion control, proportional fair pricing is different than TCP’s
congestion control mechanism in two ways. In TCP, the packets are simply dropped
in the case of congestion whereas, in proportional fair pricing, the routers mark the
packets sends a measure of congestion (i.e. shadow price) to the packet’s owner as
a feedback. Secondly, in TCP, when a user gets a congestion indication (either as a
time-out or a re-transmission request), it employs multiplicative decrease followed
by an additive increase to its sending rate. In proportional fair pricing, however,
users are free to adjust their own sending rates according to their wishes. In [31],
the authors prove that such a pricing scheme leads to network and Pareto efficiency
of the networks.

Proportional fair pricing can be implemented over a differentiated-service net-
work as follows: The customers send their packets through ingress nodes and the
packets passing through congested areas are marked. This marking can be done
by using the ECN bit in TCP header. The egress nodes make accounting of the
marked packets and charges the packet owner’s according to the number of marked
packets received from them. This charge can be conveyed to the packet owner’s at
small enough time intervals. Then, the customers (packet owners) can adjust their
sending rates accordingly. However, this way of accounting will not reflect the exact
idea behind the proportional fair pricing. The reason is that some of the packets

will pass through multiple congested areas but the egress node will not be able to
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realize that since it will count that packet as only one marked packet. If the interior
routers do send the feedback for each marked packet as the proportional fair pricing
proposes, then the customer will receive feedback for each marked packet. This
would let the customer to know the exact number of congested areas (i.e. bottle-
necks) that his/her packets are passing through, and he/she would react differently.
However, the latter way of accounting requires all routers to be updated, which is
not practical. So, proportional fair pricing can only be implemented in part if it
is restricted to update only ECN bit at interior routers and to generate feedback
packets at the edges.

As a follow-up to PFP, Low et al. [47] proposed a congestion pricing frame-
work where the concepts of PFP can be generalized to non-logarithmic user utility
functions. Additionally, Low et al. introduced ways of using congestion pricing for
flow control. Also generalizing the concept, Low used PFP’s optimization techniques

to model behavior of congestion control algorithms in the Internet [48, 46].

2.2.4 Resource Negotiation and Pricing (RNAP)

Wang and Schulzrinne, [76, 77], have recently proposed a resource negotiation
and pricing framework, RNAP, through which dynamic pricing of network services
could be done. The authors propose both centralized and distributed ways of imple-
menting RNAP. RNAP allows customers to negotiate and contract with the service
provider about several QoS parameters, e.g. peak rate, loss rate, maximum delay.

RNAP maintains two crucial time intervals to manage the contracting and
pricing. First one is negotiation interval which is the time between subsequent
contracts between the customer and the service provider. Second one is price update
interval which is the time interval to update the prices of the system: Usage price,
holding price, and congestion price. The total charge to a customer is composed of

three parts:

e Usage Charge: V (t) x p, where V (¢) is the amount (volume) of the traffic that
the customer sends during the time period ¢ and p,, is the price per unit traffic

volume (i.e. usage price) for that time period.

e Holding Charge: The charge made per traffic volume not used by the customer,
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although the customer contracted for it. This happens when the customer does
not use all of the rate he/she contracted for. RNAP defines a holding price for
each service class which is supposed to be higher for the service classes with

better QoS parameters.

e Congestion Charge: This charge is made to the customer when he/she uses
congested area(s) of the network. The customer pays an extra congestion price
for each of his/her packet traversing a congested area. The congestion price
varies dynamically over time according to the congestion level of the particular

area of the network.

Since RNAP employs congestion-based pricing, it can utilize the network re-
sources and hence achieves network efficiency. It can also achieve Pareto efficiency
provided that the negotiation and price update intervals are small enough, which
has not been analyzed so far. One drawback of RNAP in terms of pricing is that it
has too much overhead, since it integrates several network management techniques:
Resource management, admission control, and pricing. Also, another major prob-
lem with RNAP is that it requires all network nodes (including interior nodes) to
participate in price calculation. At every negotiation interval, RNAP control agents
probe the network by sending a special control packet, Path packet, for each traf-
fic flow. Path packets are updated at each node they are passing through. Each
node, basically, sums its current local price to a header field of Path packets. So,
these Path packets simply find out about the total price for each traffic flow in the
network. Notice that this is a procedure with very high overhead. This requires all
interior routers to be updated, which is not practical in the Internet.

Additional to the RNAP, Wang and Schulzrinne introduces a very elegant

utility function in [76] that captures behavior of most adaptive user applications:

Ulx)=Uy+w logi

Tm

where z is the bandwidth available to the user application, Uy is the utility for the
lowest QoS level (i.e. perceived utility for best effort service), w is the sensitivity

of user application to bandwidth (i.e. elasticity), and z,, is the minimum amount
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of bandwidth required by the application for proper execution. Given a price p per
unit traffic volume, the user can maximize surplus (i.e. U(x) — zp) by requesting a
bandwidth of z = w/p. So, w basically represents the value of that application to
the user, which is equivalent to user’s budget for that particular application. Finally,
assuming that user’s budget for the application is b, the user will maximize his/her
perceived surplus out of the application by contracting a bandwidth of z = b/p for
the application.

2.3 Arguments against Dynamic Pricing

While people do not want complex pricing plans, it is possible to provide better
QoS by employing more complex pricing strategies. This trade-off has attracted
significant attention in the area of Internet pricing [60, 61, 4, 25]. In [61], Odlyzko
provides historical evidence that people want simplicity in pricing of their Internet
services. He proposes that any possible pricing scheme for the Internet must be
simple to the users, otherwise it will not be accepted by people. On the other
hand, several studies [25, 78] showed that flat-rate pricing performs worse than
more complex pricing schemes in terms of both network and Pareto efficiency. The
studies in [25] and [78] do not focus on recovery of sunk and variable costs, but they
prove that the provider makes more revenue by employing complex pricing plans.

Generally, people are risk averse and do not want to face with varying prices
for Internet service. Employing usage-based pricing (not even congestion pricing)
irritates Internet users ° significantly [61], and ISPs do not want their customers to
be irritated since their main concern is market share. The reason why the providers
strive for market share is that most of their costs are sunk costs (i.e. deployment
of physical fibers) and marginal costs (i.e. maintenance costs, congestion costs) are
very small relative to deployment costs. [2, 57] On the other side, in the project of
Internet Demand Experiment (INDEX), Edell and Varaiya showed that it is really
possible to differentiate among the users by employing usage-based pricing [25]. In

the experiments Edell and Varaiya made, although the differentiation of the users

50nly home users who generally have dial-up access. For other users (i.e. enterprise users,
other ISPs), there is no practical evidence that they are irritated by usage-based pricing.
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is achieved by usage-based pricing, the total Internet usage decreased as Odlyzko
states later in [61]. So, the question still remains to what extent complexity is
desired in pricing of the Internet services.

Paschalidis and Tsitsiklis made a very interesting study on modeling and an-
alyzing static and dynamic pricing strategies in [65]. Assuming that the customer’s
demand model is known, they have shown that static pricing can perform almost
as good as dynamic pricing for many small users (i.e. users that make connec-
tions of small length) case. By using continuous-time Markov Decision Processes,
they model the case of multiple traffic classes where the customers can change their
class over time (which is in fact a complex and dynamic decision required from
the customers). Within this context, they formulate revenue and welfare (utility)
maximization problems, and prove that static pricing techniques can be as good as
dynamic pricing techniques if the customer demand model is known. Later, in [64],
they showed that demand substitution effects do not change the result obtained in
[65]. The caveat in Paschalidis and Tsitsiklis’s work is that they used “connection
time” in their analytical models as a basis for how long a user will stay in the sys-
tem. However, the current Internet is moving from connection-based dial-ups to
“always-on” services such as cable, DSL. So, it is questionable whether their models
will hold for the future’s always-on Internet or not.

As a follow-up to the work of Paschalidis and Tsitsiklis, Patek and Campos-
Nanez [66] have made a study of the case where users with long connection times
are also in the scenario. Again assuming that customer’s demand model is known,
Patek and Campos-Nanez also showed that static pricing can be as good as dynamic
pricing even if there are users making long connections.

Again, following the same trend, Lin and Shroff [45] showed that control of
very large (i.e. many users many nodes) networks can be achieved by static pricing.
Particularly, they showed that static pricing performs asymptotically as good as
dynamic pricing in terms of control of very large networks.

Shenker et al., [70], also argue that dynamic pricing does not seem to be
attractive because of its high implementation costs and structural requirements. To

support their argument, Shenker et al. posed three major questions:
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o Are marginal congestion costs relevant? For several cases marginal congestion
costs are so small that they can be ignored and are irrelevant to the overall
efficiency of the network. Also, usage-based prices and flat prices can constrain
the usage and they can be enough to improve efficiency if they are set properly.
Moreover, many users (generally the ones that use small capacity connections,
e.g. dial-up) will reduce their connection times and usage significantly if either

usage-based or flat prices are increased.

o Are marginal congestion costs accessible? For large networks, like the Inter-
net, it is usually very hard to measure the exact contribution of a particular
flow to the congestion. In order to measure the exact contribution, support
from the network core is required, which is very hard to implement on wide
area networks. Wide area networks require these type of activities to be done
at the edges. However at the edges, current mechanisms can only approxi-
mate the contribution to congestion for a particular flow. In our work, DCC,
we use edge-to-edge congestion detection techniques to approximate marginal

congestion cost of the flows.

o Is optimality the only goal? A plausible pricing architecture must also address
structural and implementation issues for practical purposes. It must provide
a flexible and efficient accounting infrastructure. Optimal pricing will cause
non-practical and extensive amount of overhead. A pricing architecture must
balance the trade-off between optimality and practicality. In our work, DCC,

we balance this trade-off.

We believe that pricing based on marginal congestion costs is viable as long as
implementation issues (which are posed in the last two of the above questions) are
solved. In our work, we address implementation and structural issues by sacrificing
some optimality in pricing. Although congestion pricing is complex and difficult
to implement, it is still a viable method of providing better fairness and service
especially during congestion epochs. Regarding the first question above, we believe
that flat-rate charges can be employed along with congestion-based charges, i.e.

both the flat-rate price and the congestion-based price are charged to users. By
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doing this way, the flat-rate prices will guarantee recovery of sunk costs, while the

congestion-based prices will improve QoS and fairness of the service.

2.4 Static or Usage-Based Pricing Schemes
2.4.1 Time-of-Day Pricing

Actually, time-of-day pricing is an anonymous pricing scheme just like flat-
rate pricing. Intuitively, increasing the network service price at peak hours of day
or week should lead to better results in terms of supply-demand balance. In the
contract, the service provider advertises different prices for different time periods
of a day and a week. This assumes that the peak hours (i.e. user demand model)
are known beforehand. Since prices do not change within the contract term, Time-
of-Day pricing is not a dynamic pricing scheme. It is already deployed in several
network services, e.g. long-distance phone service, wireless phone service.

In [65], the authors show that time-of-day pricing performs almost as good
as dynamic pricing when the user demand model is known beforehand. However,
they also agree that dynamic pricing performs much better than time-of-day pricing
when the demand model is imprecise, since dynamic pricing can adapt the prices
to actual traffic pattern whereas time-of-day pricing cannot. Odlyzko, [61], claims
that the current Internet demand model is generally precise, and because of time-of-
day will perform good enough for the most time. However this may be true only at
large time-scales. For example, generally, Internet traffic is heavy at noon hours and
light at morning hours. This does not guarantee that no large burst will take place
during the morning hours. So, time-of-day will not be able preserve supply-demand

balance during unexpected demand bursts, even though they might be temporary.

2.4.2 Paris Metro Pricing (PMP)

Odlyzko [59] proposed an Internet pricing scheme that is inspired by the old
city metro system of Paris, France. In the old metro system in Paris, there were two
classes of cars with exactly the same quality in terms of both seats and arrival time.
So, the cars were just logically divided into classes and the only difference between

the classes was the price. First class passengers were paying more than second class
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passengers. Although the quality is the same, some people were interested in using
first class cars at high price since they knew that the first class cars would be less
crowded. PMP claims the analogy between this old city metro system of Paris and
the Internet. In the Internet, all the packets receive the same quality of service in a
best effort manner.

PMP proposes to divide the Internet into fixed capacity logical sub-networks
each of which has a long-term flat price. Each sub-networks has a different price,
which will cause users to classify themselves. The only difference between PMP
and old metro system of Paris is that packets of different sub-networks are treated
differently at the routers whereas in old metro system of Paris passengers of dif-
ferent classes were being treated equally. The traffic belonging to higher priced
sub-networks are served first at the routers, which is essentially a priority-based
service system. Notice that PMP differs from many other pricing proposals by not
having a closed-loop system. In other words, PMP does not introduce any feedback
mechanisms to make the pricing. Also realize that it is priority-based and imposes
no bandwidth controls.

Odlyzko proposes that PMP will make users to adjust themselves and QoS
will almost be guaranteed to the users using the highly priced sub-networks. In
[40], authors developed an analytical model for PMP for a single provider case and
showed that PMP can be profitable to the provider under appropriate price settings
based on demand behavior.

In order to implement PMP, the routers need to maintain a priority queue.
Each priority corresponds to a sub-network. The packets need to include a priority
value which was set by the service provider to the customer. Basically, the customer
signs up a contract and the service provider sets the priority values of the customer’s
packets according to that contract. The priority value can be inserted into the
available TCP/IP headers.

Although it is reasonably easy to implement PMP, it has low network efficiency
since the sub-networks with higher prices will be under-utilized. Also, the number
of sub-networks will be an issue since it represents the number of service classes

and choices available to customers. That number will be restricted by the current
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header fields.

Similar to PMP, Dube et al. [24] proposed Tirupati pricing scheme where
users pay different prices for joining to different queues that are being served by the
same server in a round-robin fashion. Dube et al. develops stochastic model of such
a queueing system, and shows that service quality perceived by users of each queue
will be proportional to prices of the queues. Actually, the essence of Tirupati scheme
is the same as PMP. PMP’s “classes” correspond to Tirupati’s “queues”. The only
difference is that Tirupati scheme allows possiblity of allocating more resources to

one queue thant the others.

2.4.3 Expected Capacity Scheme

Clark, [19, 18], proposed a scheme that combines both capacity allocation and
pricing for the Internet, named as ezpected capacity. Clark argues that the Internet
users are generally not willing to have a guaranteed permanent capacity, since most
of their traffic is very bursty. The reason for this is that users generally want to
finish their transactions in a small amount of time, e.g. browse the Web quickly,
transfer a large file quickly. For example, a user browsing the Web generally wants
to open a web page in seconds, but reads it for minutes. Sometimes, the user wants
to transfer a large file in seconds, but he/she does not do that permanently, probably
once in 10 minutes. This user behavior causes very bursty traffic to the Internet.
So, the users generally do not require a fixed guaranteed rate, rather they want to
have their expectations satisfied. Clark uses these facts to support his argument for
expected capacity scheme.

Expected capacity scheme proposes to have long-term contracts between users
and service provider. The service related (other than price and contract term)
parameters of the contracts are supposed to be (but not necessarily) maximum
burst size and maximum burst frequency (e.g. 10MB of burst at every 10 minutes).
Notice that these parameters also define the delay requirements of the user. The
provider has to make sure that it can serve the expected rates (which can be derived
from the service related parameters of the contract) of the users. Clark does not

propose a way doing that for the provider, which is a lacking point in the scheme.
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The prices of the long-term contracts can be defined either as flat-rate or usage-
based or both. Accounting overhead needed for expected capacity scheme is very
less. Although it might be possible to pose dynamic prices, it would not be useful
since the contracts are supposed to be long, which does not allow frequent price
changes. So, the scheme does not work for controlling instantaneous congestion
epochs. Since Clark’s does not define a way of implementing dynamic prices on

expected capacity scheme, we classify it as a static pricing scheme.

2.4.4 Edge Pricing

Shenker et al., [70], proposed a general pricing architecture, named as edge
pricing. Edge pricing defines a very general framework by proposing that the
providers calculate their prices locally and advertise those locally computed prices.
It is possible that provider A is buying service from another provider B. Provider
A’s customers can send packets that traverses through provider B, however those
customers do not know about this, since provider A advertises the local price. So, in
edge pricing a packet might be valued differently at different parts of the network.
Assume that provider A is charging p4 per packet to its customers. Also assume
that provider A bought service from provider B at a charge of pp per packet. Ini-
tially, when the customer sends out the packet, its value is p4. However, when that
packet gets into provider B’s domain, its value becomes pg. This property of edge
pricing makes it non-optimal since the packet owner does not pay the exact cost
of the packet to the overall network. Shenker et al. did not provide any study on
the amount of lost optimality, which is crucial in terms of economic equilibrium and
stability of the scheme.

The providers can adapt dynamic prices into edge pricing by approximating
congestion costs by monitoring the traffic at the edges. However, edge pricing scheme
lacks a good way of approximating the dynamic (congestion-based) prices only by
performing operations at the edges. Shenker et al. do not focus on dynamic pricing
since they believe it is not plausible way of pricing the Internet service. This is why
we classify edge pricing as a static pricing scheme.

Edge pricing provides scalability and allows each provider to implement its
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‘ Pricing Scheme ‘ Dynamic ‘ Granularity ‘ Charging Time

Smart Market yes packets aposteriori
Priority Pricing yes packets apriori

Packet Marking yes packets aposteriori
RNAP yes contracts apriori
Flat-Rate no N/A apriori
Time-of-Day no N/A apriori
PMP no N/A apriori
Expected Capacity | not defined | long-term contracts apriori
Edge Pricing not defined packets apriori

Table 2.1: Evaluation of pricing schemes according to various character-
istics.

own pricing strategy. Also, accounting overhead is minimal too. As far as structural
and implementation issues are concerned, edge pricing is a very reasonable pricing
architecture, although it is sub-optimal from Pareto efficiency point of view. So,
edge pricing proposes to sacrifice some (amount of which needs to be investigated)

optimality in order to address implementation issues.

2.5 Taxonomy of Pricing Schemes

In the previous sections we surveyed major dynamic or static pricing proposals.
There have been several other pricing proposals in the area. Some of them are as
follows: Market Pricing [68, 67], CHiPS [30], Ex-Post Pricing [8], MARKETNET
[81], Network Path Pricing [71].

In this section we provide a taxonomy of the pricing schemes evaluated in this
paper. Table 2.1 shows the comparison of the surveyed pricing schemes according

to three criteria.

e First criterion is if the pricing scheme is dynamic or static. Only the dynamic

pricing schemes can achieve optimality in pricing.

e Second criterion is the pricing granularity (i.e. unit that the scheme makes
charging) of the scheme. For implementation purposes finer pricing granularity

levels are not desired.
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e The last criterion is related to charging time relative to service. If the charging
time is prior to service (i.e. apriori), the user knows how much he/she is
supposed to pay for the service. This is generally the case for contracting
frameworks. If the charging time is posterior to service (i.e. aposteriori), the
user finds out about the total charge at the end of the service. Naturally,
users want prior pricing, which is one of the reasons for the trend to flat-rate

pricing.

2.6 Bandwidth Market

In this section we investigate economic models being used in bandwidth mar-
ket. In bandwidth market, companies sell different types of capacity (e.g. point-
to-point fiber or coaxial lines, satellite frequency band) with various parameters:
assured rate, burstable rate, contract term. Several wholesaler companies have been
in this billion-dollar market: Qwest, Nortel, AT&T, Verizon, Sprint, etc. These
companies are mainly wholesalers, which lay down the physical links and sell their
bandwidth capacity.

Just like the Internet, economic model of the bandwidth market has been
wholesale-retail model. However, some companies have started to employ new eco-
nomic models recently, e.g. Enron, RateXChange, TelcoExhange. These companies
implement the concept of bandwidth intermediary, where several different function-
ality can be provided to both buyers and sellers. A bandwidth intermediary can
function in different ways: exchange, broker. In a bandwidth exchange, buyers and
sellers meet with each other and perform trading. The bandwidth exchange itself
earns revenue by charging fees to subscribers (i.e. the buyers and sellers) or by
charging commissions for each trade. So, a bandwidth exchange is basically a mar-
ketplace similar to stock market. A bandwidth broker actually buys bandwidth from
wholesalers and sells it to retailers or customers. So, bandwidth broker actually pro-
vides the bandwidth to its customers, whereas bandwidth exchange just provides
mediation between bandwidth buyers and bandwidth sellers. Enron functions both
as a broker and an exchange along with being a wholesaler itself. RateXChange

functions just as an exchange, since it does not sell or own bandwidth by itself. At
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the other side, TelcoExchange functions just as a broker.

Enron, for example, owns physical links and also plays a role of bandwidth
intermediary. So, along with selling its own bandwidth, Enron also buys bandwidth
from other wholesalers and sells it. Bandwidth intermediary provides flexibility to
perform several optimizations automatically. For example, given several wholesalers
(bandwidth sellers), Enron can find the cheapest way of constructing a leased-line
between two given points in the World. This is basically simplification of buyer’s
job. Enron also provides risk management tools for buyers and sellers to handle price
uncertainty. Similar to stock market, buyers can buy a capacity at a predetermined
price before a preset deadline in exchange for a premium, i.e. call option. Similarly,
sellers can sell a capacity at a predetermined price before a preset deadline again in
exchange for a premium, i.e. put option.

Our work in this thesis focuses on developing building blocks to implement
these type of above-mentioned economic models in the Internet or other wide area

networks.

2.7 Deployability: An example

Deployability of congestion-sensitive techniques and complex pricing plans on
wide area networks requires flexibility in accounting and dynamism in provision-
ing. Recently, GigaBit Ethernet technology has attracted significant attention of
industry. Given the advances in fiber technology which reduce propagation delay
significantly, GigaBit Ethernet has been considered for metropolitan area networks
(MANS) additional to traditional usage of it in local areas networks (LANs). Major
companies, such as AT&T, started to invest in this trend, [63]. GigaBit Ethernet
vendors are able to provide Ethernet-based MAN service, however they use IP-based
transmission to implement inter-MAN transport.

GigaBit Ethernet provides nice flexibility of dynamism in provisioning. Within
seconds, the vendor can change bandwidth provided to user. GigaBit Ethernet
vendors (e.g. Yipes Communications, Cogent Communications, Telseon) offer their
customers this flexibility along with real-time price quoting. Within 5 seconds,

[7, b4], the customer can quote the current price and increase/decrease his/her
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contracted bandwidth in units of 1Mb/s.
So, GigaBit Ethernet provides environment for implementation of adaptive

pricing on public networks.

2.8 Summary

We surveyed major pricing proposals for the Internet. The debate on whether
to implement dynamic pricing schemes or static pricing schemes is still going on. It
is evident that Internet users are seeking simplicity in pricing, as a result they desire
flat prices. This shows that any plausible dynamic pricing scheme must address this
issue by making sure that the scheme will be able to provide simple pricing plans
to the users.

We believe that the only way of implementing dynamic pricing schemes is to
provide an intermediary agent that can handle fluctuations of dynamic prices and
advertise less fluctuated prices to the users. Otherwise, no dynamic pricing scheme
will be desired by both users and providers. The users naturally want flat prices.
The providers also choose to advertise flat (or close to flat) prices since they do not
want to irritate the users and loose market share.

Another important problem for dynamic pricing schemes is to address imple-
mentation and structural issues. Most of the dynamic pricing proposals in the area
are not practical and will have to stay in theoretical domain in future. For the ones
that are practical, it is still most likely that they will not be deployed on individual
users (e.g. dial-up or DSL users) because of their extensive overhead relative to
current Internet speed. Deployment for the dynamic pricing schemes may be possi-
ble if the relative overhead is small enough. This can happen in future when most
Internet users have high speed access and total demand is large.

By using underlying edge-to-edge congestion detection and control mecha-
nisms, our work specifically addresses implementation and structural issues to im-
plement dynamic pricing on large networks. Within consideration of implementation
issues, we also determine ways of using adaptive pricing to help congestion control

and to improve fairness in large networks.



CHAPTER 3
ADAPTATION OF SMART MARKET

TO DIFF-SERV ARCHITECTURE

3.1 Introduction

One of the earliest pricing proposals is MacKie-Mason and Varian’s [50] Smart
Market, which is specifically designed to address both resource allocation and con-
gestion management issues and therefore is referred to as a congestion-sensitive
pricing scheme. This scheme charges the users on a packet-by-packet basis depend-
ing upon the current level of congestion in the network, and the users in turn lower
their demands according to their utility. In other words, it theoretically achieves
both economic efficiency (optimal distribution of capacity among users [75]) and
network efficiency (e.g. high utilization, low queue length) goals. However, the way
it is defined, Smart Market is not possible to implement because it requires several
upgrades to the current wide area networks.

In this chapter, we study the Smart Market and focus on developing a base-
line implementation strategy and simulation of it on the diff-serv [27] architecture.
We specifically investigate necessity of packet sorting (to be explained in Section
3.2) at routers. We also investigate Smart Market’s abilities in terms of service
differentiation and fairness.

The chapter is organized as follows: First, we describe details of the Smart
Market briefly in Section 3.2. Next in Section 3.3, we outline our implementation
strategy for the Smart Market and determine deployment limitations for it. Sec-
tion 3.4 develops a set of simulation experiments and presents results along with
discussions. Finally, Section 3.5 states implications and conclusions of the work and

proposes possible future work.
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3.2 The Smart Market Scheme

This section presents important and overall characteristics of the Smart Market
scheme. The Smart Market imposes a per-packet-charge, which reflects incremental
congestion costs (which could be zero). The price-per-packet varies dynamically
depending on the level of congestion in the network. Users assign a “bid” value for
each packet sent into the network. The network routers maintain a current threshold
(cutoff) value and only pass those packets with bids greater than the cutoff value.
This threshold value depends on the level of congestion at the particular router, and
is adjusted by that router. Finally, user pays the highest threshold value among
all routers that it passed through, called the “market-clearing price”. Moreover,
the successfully sent packets are sorted according to their bid values at each router.
This behavior simulates an auction where the capacity is divided among the bidding
packets on a packet-by-packet basis.

Though the Smart Market scheme is theoretically attractive, we can observe
some implementation and deployment difficulties. For example, the smart market
scheme does not provide a guaranteed service to users and can lead to packet re-
ordering. Moreover, the “bidding” procedure requires support at end-systems (or
proxy agents) and the “clearing” procedure is required at all potential bottlenecks
in the network [50]. Within these limitations, we now design an implementation

strategy for the Smart Market scheme.

3.3 Implementation Strategy

There are two key implementation issues of the Smart Market scheme:

e How to communicate the necessary information (customer’s bids, network’s

charges) between customers and the network?
e How to calculate threshold value at a local router?

We now address these issues within diff-serv framework.
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Figure 3.1: Representation of Differentiated-Services Architecture.

3.3.1 Communication Between Customers and The Network

The diff-serv architecture classifies network routers (or nodes) into two types:
edge router (ER) and interior (core) router (IR). It constrains complex data and
control plane functionality to be implemented at network edges to simplify the core.
For a traffic low passing through a diff-serv domain, the ER at the entry point is
called as ingress-ER and the one at the exit point is called as egress-ER.

To implement Smart Market on diff-serv, we propose that the sender (or proxy)
sets the bid value, b, in the packet and sends it to the network. The packet passes
through an ingress-ER and series of IRs, each of which has a threshold value 7.
IRs simply drop the packet if it does not satisfy the condition b > T'. If the packet
satisfies the condition, it is placed into a priority queue and sorted according to
its bid value. The priority queue may potentially reorder packets, which leads to
negative effects on TCP congestion control [3, 10]. We will investigate importance
of the sorting of packets later by experiments in Section 3.4.

For the communication of the bid and clearing price, there is a need for two
fields in packet headers. The bid field is written only by the customer and is read
by IRs. The clearing price field (initialized to 0 by the customer) is updated at each
IR to the maximum of the prior value of the field and the current threshold value,
T, at that particular IR bottleneck. In other words, if the value of the threshold,
T, is greater than the value of the clearing price field of the packet, the value of T’
is copied into that field. Else, the field is left unchanged. When the packet reaches

the egress edge router, it contains the maximum of the threshold at all the IRs it
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passed through.

The egress-ER acts a measurement proxy and accounts for the clearing price
of the packet. In other words, the source pays the clearing price determined by the
egress-ER. Egress-ERs accumulate each packet’s clearing price and send periodic
indications to each corresponding source. So far, everything in the Smart Market
can be adapted to the diff-serv architecture, albeit with two new fields in the packet
header. However, the information required by the customers in order to adjust their
sending rates and bids require new feedback mechanisms. Theoretically, the Smart
Market assumes that the customers are fed back such information immediately with-
out any delay, which is not possible to implement on a wide-area network. So, an
approximation is needed.

We propose to use a simple probing procedure which happens at fixed-time
probing intervals set to be larger than round-trip time (RTT) as a way to handle
this feedback problem. The customer (or the ingress-ER on behalf of the customer)
sends a probe packet (in addition to data packets) to investigate the current status
of the network at these fixed time intervals. This probe packet goes through IRs
and finds the current clearing price. The egress-ER receives this probe packet and
sends the customer a feedback packet containing the current clearing price of the
network. The feedback packet also includes the total of clearing prices (bill) for
that customer in the latest interval. The customer uses the feedback information to
adjust her packet’s bid values, capacity demand (number of packets to send) and
available budget.

Note that if we want the IRs to treat the probe packets and the feedback
packets just like data packets, they must have bid values as high as possible to ensure
that they will not be lost and will encounter minimum delay. That means there has
to be a maximum value for the bids of the data packets, which is a deviation from
the Smart Market because it does not impose any limiting value for the bids. The
fixed length bid field also implicitly constrains the size of bids. Alternatively, the
IRs of the network have to behave differently for these probe and feedback packets.
However, this will increase the processing time of a packet at the IRs, i.e. each

packet will be checked whether it is a data, probe or feedback packet. We choose
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to normalize the bid values into a range (e.g. 0 to 1) and hence define a maximum
value for the bids, i.e. 1. Once normalization (mapping to [0,1]) is done, there must
also be a way of reversing this mapping back. What is going to be the actual money
in dollars to charge for a clearing price of, for example 0.757 We currently leave this
question, which is important for the service providers, unanswered. We simulated
the Smart Market in ns [1] according to the ideas presented above. In the next

section, we present the details of the simulation and our assumptions.

3.3.2 The Threshold Value T

MacKie Mason and Varian [50] determine the congestion price of a packet as
n !
T:p:ED (X/K) (3.1)

where n is the total number of customers in the network, K is the capacity of the
network, X is customer’s capacity demand, and D(X/K) is the delay experienced
by customer. So, we propose that the IRs maintain fixed time wupdate intervals
at the end of which they calculate the rate of change in the delay, D'(X/K), and
update the threshold value, T'. Specifically, threshold value for update interval ¢ is

calculated as follows:

T[i — 1] yX[i—1]—-X[i—2]=0
%7)2[%_1]_)([%_21 , otherwise

(3.2)

where D[i] is the delay experienced by the customer in interval ;. Notice that the
term % corresponds to the term D'(X/K) in (3.1).

3.4 Simulation Experiments
3.4.1 User Model

We model the user’s utility function with the well-known logarithmic utility
function u(z) = wlog(z) [42, 47, 44], where z is the capacity given to the user, and
w is user’s willingness-to-pay. User will maximize his/her surplus by making sure

that her capacity demand is x = w/p where p is the current clearing price. Notice
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(a) Single-bottleneck network (b) Multi-bottleneck network

Figure 3.2: Topologies for Smart Market experiments.

that the parameter w is equivalent to user’s budget for expenditures to network
service. So, in our simulations, user 7 is initially assigned a budget value W;, and at
the end of every probing interval the user ¢ adjusts her bids such that her capacity

demand is w;/p for the next interval.

3.4.2 Experimental Configuration

We perform our experiments on single-bottleneck and multi-bottleneck topol-
ogy. The single-bottleneck topology has a bottleneck link, which is connected to
n edge nodes at each side where n is the number of users. The multi-bottleneck
topology has n — 1 bottleneck links, that are connected to each other serially. There
are again n ingress and n egress edge nodes. Each ingress edge node is mutually
connected to the beginning of a bottleneck link, and each egress node is mutually
connected to the end of a bottleneck link. All bottleneck links have a capacity of
10Mb/s and all other links have 15Mb/s. Propagation delay is 0.1ms on bottleneck
link(s) and 10ms on all other links. Figure 3.2-a shows a single-bottleneck topology
with n = 3. Figure 3.2-b shows multi-bottleneck topology with n = 4. The white
nodes are edge nodes and the gray nodes are interior nodes. These figures also show
the traffic flow of users on the topology. To ease understanding the experiments,
each user sends its traffic to a separate egress. For the multi-bottleneck topology,
one user sends through all the bottlenecks (i.e. long flow) while the others cross
that user’s long flow.

In order to investigate importance of packet sorting (please refer to Section

3.3.1) on performance, we simulate two versions of Smart Market: Smart Market
with Sorted Queues (SM-SORTED), Smart Market with FIFO Queues (SM-FIFO).
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We run experiments both on UDP and TCP traffic. The UDP traffic will have an
average packet size of 1000B.
The initial value of 7" at all IRs is set to 0.1. The probing interval at ERs and

the update interval at IRs are set to lsec, unless otherwise said so.

3.4.3 Experiments
3.4.3.1 System Dynamics and Stability

To see Smart Market’s dynamics, we first run an experiment of SM-SORTED
on the single-bottleneck topology with three flows as represented in Figure 3.2-a.
The flows generate UDP traffic. Budgets of flows 0, 1, 2 are wy = 100, w; = 75,
wy = 25 respectively. Total simulation time is 3000 seconds. Initially, only flow 0
is active, and the other flows get active with 1000 seconds intervals. Figure 3.3-a
shows the instantaneous queue at the bottleneck, and Figure 3.3-c shows bottleneck
utilization. Controlled queue and high utilization show that Smart Market provides
stable operation. Figure 3.3-b shows instantaneous rates of the flows. We can
observe that flows share the bottleneck capacity in proportion to their budgets.
Figure 3.3-d shows the instantaneous threshold value at the bottleneck. As new
flows join in, Smart Market adapts its threshold value accordingly.

In order to compare SM-SORTED and SM-FIFO in terms of system dynamics,
we run a series of experiments on the single-bottleneck topology for various values
of the update and probing intervals from 1 to 30 seconds. Moreover, to see traf-
fic effects we run the experiments for both UDP and TCP traffic. Figures 3.3-e,
3.3-f, and 3.3-g show average bottleneck queue length, maximum bottleneck queue
length, and average bottleneck utilization respectively for various values of update
and probing intervals. We observe that SM-SORTED performs significantly worse
(approximately 30%) in utilizing the bottleneck, which causes almost zero average
and maximum queue length. This is because packet sorting causes extra timeouts
and hence causes TCP to back off unnecessarily. Also, it causes Duplicate-ACKs to
be generated, which then causes the TCP source to trigger fast re-transmit phase
by halving its window size.

In general, we observe that packet sorting affects system performance nega-
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Figure 3.3: Simulation results of SM-SORTED with UDP traffic on
single-bottleneck topology.

tively. We can see this by comparing results for SM-SORTED and SM-FIFO on
TCP traffic, and also by comparing results for SM-SORTED and SM-FIFO on UDP
traffic. For example, SM-SORTED on TCP traffic utilizes bottleneck a lot less than
SM-FIFO on TCP traffic. Also, from Figure 3.3-g, SM-SORTED on UDP traffic
utilizes less than SM-FIFO on UDP traffic when update interval exceeds 15 seconds.

Overall, both versions of Smart Market (i.e. SM-SORTED and SM-FIFO)
perform better on UDP traffic than TCP traffic. This is mainly due to burstiness
of TCP traffic.

Also, we can observe that as the update and probing intervals get larger per-
formance metrics get worse for all the cases. This is because Smart Market’s fidelity

of control lowers as update/probing intervals get larger.
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Figure 3.4: Comparison of SM-SORTED and SM-FIFO on UDP and TCP
traffic.

3.4.3.2 Service Differentiation

We run a series of experiments for SM-SORTED and SM-FIFO on the single-
bottleneck topology with UDP and TCP traffic. There are two flows in the exper-
iments and for each experiment we vary the ratio of their budgets from 1 to 200,
ie. wo/w; = 1..200. Given the budget ratio wy/w;, we then observe ratio of the
two flows’s rates during the simulation. Figure 3.3-h shows results of these exper-
iments. The horizontal axis shows the ratio of the flows’s budgets, which is set at
the beginning of simulation, and the vertical axis shows the ratio of the two flows’s
average rates observed during the simulation. Observe that only SM-SORTED on
TCP traffic cannot differentiate the two flows, while Smart Market is able to differ-
entiate between them pretty well in all other cases. The reason why SM-SORTED
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on TCP does not perform well in service differentiation is again due to the negative

effects of packet sorting on TCP performance.

3.4.3.3 Fairness

Our last series of experiments are on the multi-bottleneck topology with n = 14
bottlenecks (the case of n = 3 is shown in Figure 3.2-b). All the flows have equal
budget of 10 $/Mb, and they generate UDP traffic. We simulate SM-SORTED.
Our aim is to observe behavior of the long flow (i.e. flow 0)’s rate as number of
bottlenecks on its way increase.

At time 0, only the long flow is active. The other flows (i.e. cross flows) join in
one after another with an interval of 1000 seconds. Total simulation time is 15,000
seconds. So, as new flows join in the number of bottlenecks in the system increases.
Figure 3.5 shows the long flow’s rate as the number of bottlenecks increases on
its way. The figure also plots theoretical rates of the long flow for max-min and
proportional fair cases. In the max-min fair case, the long flow and the cross flows
share the bottleneck capacity equally, i.e. 10/2 Mbps in our experimental topology.
In the proportional fair case, the long flow gets less than the cross flows in proportion
to the number of bottlenecks on its way, i.e. the long flow gets 10/(r + 1) Mbps
and the cross flows get 107/(r + 1) Mbps in our experimental topology. We observe
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from Figure 3.5 that Smart Market allocates the bottleneck capacity in such a way
that it is between max-min and proportional fair rate allocations.

In the definition of Smart Market, each flow pays the clearing-price for its
route, which is the maximum of the bottleneck thresholds in the route. For our
experimental topology, the long flow should be paying approximately the same price
as the cross flows since the bottleneck capacities are equivalent. So, one may expect
that the capacity allocation in our experiments should be max-min fair. The result
shows that it is not. The reason behind this is that the long flow is experiencing
more delay (both propagation delay and queuing delay) than the cross flows. This
makes effective capacity for the long flow less than it is supposed to be, which in

turn causes the long flow to get less of the capacity than the cross flows.

3.5 Summary

We investigated the difficulties in implementing Smart Market, a well-known
congestion-sensitive pricing scheme for the Internet, on a network with diff-serv
architecture. We found that Smart Market cannot be implemented to a real network
without important changes (e.g. modeling, packet format, architectural issues).
Also, it has limitations on deployment (e.g. requires upgrades in both hosts and
routers), and is very sensitive to offered workload (e.g. effect on TCP flows). We
proposed the following major changes to implement the Smart Market on diff-serv

architecture:

e delay in feeding back the congestion information of the network to the cus-

tomers
e mapping the threshold value of the interior routers to an interval such as [0,1]

e concentrating more functionality at the ERs versus less functionality at the

IRs to suit a diff-serv implementation

By applying the above changes, we developed a packet-based simulation for
Smart Market and presented simulation results along with their analysis. We ob-

served that Smart Market is able to control congestion with low bottleneck queue
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length and high bottleneck utilization. Also, we observed that packet sorting at
IRs affects system performance negatively when traffic type is TCP. To see the
real importance of packet sorting in Smart Market’s performance we simulated the
Smart Market with and without packet sorting, i.e. SM-SORTED and SM-FIFO.
Simulation results showed that packet sorting does not really improve system per-
formance. In fact, it degrades system performance especially on TCP traffic, which
is currently the dominant traffic type in the Internet. Also, SM-FIFO is a lot easier
to implement than SM-SORTED. Because of these reasons, it makes more sense to
implement SM-FIFO.

Also, we have shown by simulation that Smart Market provides fairness in
between max-min and proportional. Future work should consider multiple diff-serv
domains case, and Smart Market’s behavior on bursty traffic patterns.

In general, open question is whether one desires congestion pricing or not on
the long run. This chapter shows that congestion pricing is implementable using

flexibilities offered by diff-serv architecture.



CHAPTER 4
DYNAMIC CAPACITY CONTRACTING (DCCQC)

4.1 Introduction

Most of the proposed pricing schemes have remained in theoretical domain
due to lack of models for implementing them using IP. In this chapter, we focus on
developing a pricing framework, Dynamic Capacity Contracting (DCC), that uti-
lizes the advanced traffic management features offered by the differentiated-services
architecture. The main focus of this chapter is to address pragmatic new ideas in
Internet pricing and related technical and deployment issues. However, we do not
focus on complete refinement of the schemes or thorough performance analysis. This
is the topic of later chapters.

The rest of the chapter is organized as follows. We first position our new
scheme, DCC, within the literature in Section 4.2. Then in Section 4.3, we describe
DCC framework: a flexible and dynamic framework to implement a range of pricing
schemes within the diff-serv architecture. In Section 4.3.1, we describe two con-
gestion based pricing schemes developed using this framework. Further in Section
4.4, we present performance results to demonstrate the potential of this framework.
Finally in Section 4.6, we summarize the work and give ideas for possible future

work.

4.2 Related Pricing Proposals

Among the proposed pricing proposals, flat-rate pricing [26], is the most com-
mon mode of payment today for bandwidth services, and is popular for several
reasons. It has minimal accounting overhead, and encourages usage. However, flat
rate pricing has problems. During congestion, the marginal cost of forwarding a
packet is not zero, and flat pricing does not offer any (dis)-incentive for users to
adjust their demand, leading to potential “tragedy of commons” [33]. Our view is
that there is no congestion issue if capacity and provisioning speed exceeds demand.

But, there exist several niches (e.g. international links, tail circuits to remote mar-

26
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kets, peering points or complex meshed networks) where bandwidth, even though
technically available, cannot be added fast enough. This is because the company
probably does not own the links (or jointly-owns it with a partner, or no company
owns them), or the part of the network is so large that carrier-class upgrades take
time (upgrade-cycles of one year are quite common).

Two prominent pricing proposals are:

e to regulate usage by imposing a fee based upon the amount of usage (data or

connection time) actually sent (called usage-based pricing)

e use a fee based upon the current state of congestion in the network (called

congestion-sensitive pricing).

On the commercial side, usage-based pricing has been deployed. ISPs are
starting to sell OC-3 (155 Mbps) access rapidly, but with usage-based pricing on
port-usage (not on an end-to-end basis). Usage is typically measured over 5 min
intervals and a monthly charge is assessed based upon the average of these mea-
surements after removing the extra-ordinary values. The rates vary around $600-
800/Mbyte/month. The problem with usage-based pricing is that usage costs are
imposed regardless of whether the network is congested or not. Further, it does not
address the congestion problem directly, though it does indirectly make users more
responsible for their demands. Also, some users may not like a posterior pricing
unless it is a very small part of their overall expenditures.

Researchers, on the other side, have been studying congestion-sensitive pricing
recently. Some of the schemes that have been proposed are: MacKie-Mason and
Varian’s Smart Market scheme [51, 50], Gupta’s Priority Pricing scheme [33] and
Kelly’s Proportional Fair pricing and rate-allocation scheme [42].

Clark, [19], proposed an Expected Capacity scheme where users pay a price for
high expectation of delivery of a given volume of traffic. Note that this scheme is not
congestion-sensitive. This “contracting framework” requires simple negotiation be-
tween a customer and a provider and does not require end-system support. Though
it does require some network upgrades, it was appealing to both ISPs and users,

and as a result inspired the development of the differentiated-services architecture
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itself.

As a purely congestion-sensitive scheme, Smart Market is ideal in terms of
performance. Theoretically, it achieves economic and network performance goals.
However, as we studied in Chapter 3, it is very hard to implement.

In summary, while the congestion-sensitive proposals do not have a clear de-
ployment or service-assurance models, Clark’s model is not congestion-sensitive and
is not able to address all performance goals. Our work is an effort to provide a

middle ground between these approaches.

4.3 DCC Framework

In this section, we describe the proposed “Dynamic Capacity Contracting”
(DCC) framework. This framework extends Clark’s model to incorporate short-term
contracting and adds mechanisms to make it congestion-sensitive. DCC framework
provides opportunity for making congestion-sensitive pricing of short-term contracts.
The most important features of DCC framework are its granularity level and its easy
implementation on diff-serv architecture.

Similar to Expected Capacity scheme, DCC framework introduces granularity
level of “contracts” rather than “packets”. The reason we need short-term contracts
for congestion-sensitive pricing is because long-term contracts do not give the flexi-
bility to change the current price of a contract based upon congestion. Short-term
contracts naturally expire and force re-negotiation, at which point provider can re-
vise the price based upon congestion measures of the network. One key issue is the
maximum length of these short-term contracts. We will look into details of this
issue in later chapters.

We can model a short-term contract (service) for a given traffic class as a
function of price per unit traffic volume, maximum volume (maximum number of
bytes that can be sent during the contract) and the term of the contract (length of
the contract):

Contract = f(Py, Vinaz, T) (4.1)

Throughout the thesis, we will assume that the user can send up to the max-

imum volume negotiated within the term of the contract. We do not investigate
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Figure 4.1: DCC framework on diff-serv architecture.

possible strategies when the user sends more than contracted volume, since this is
an issue for admission control and hence out-of-scope for this thesis. As in Clark’s
Expected Capacity model the provider will assure that the contracted traffic will
be carried with a high expectation of delivery. In general, the user may send this
traffic to any destination of its choice (i.e. a point-to-anywhere service); however
again throughout the thesis, we focus on the case of point-to-point service since the
measurement of congestion information in the former case is non-trivial, and is a
very broad research area. We make one simplification to Equation 4.1 by assuming
that the term parameter, T is fixed i.e. different users cannot choose different term
values. In short, the provider offers the user service with the following characteris-

tics:

e the flexibility to contract a desired volume, V, up to a predefined maximum

volume V,,,4z
e a predefined price per unit volume, P,, for the contract.

e a fixed contract length, T’

The other important property of DCC framework is its possible implementa-

tion on diff-serv architecture. Figure 4.1 shows big picture of implementing DCC
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framework on diff-serv architecture. Customers can only access network core by
making contracts with the provider stations placed at the edge routers. Accessing
to contracts can be done in different ways, what we call edge strategy. Two basic
edge strategies are “bidding” or “contracting”, which will be described in detail
later in Section 4.3.2. We leave performance analysis of different edge strategies for
further research and use contracting.

The provider may advertise different or the same prices at the stations. The
provider stations apply a pricing strategy to identify prices of the short-term con-
tracts. Currently we assume that the same price is being advertised at all sta-
tions. We call the framework in which different prices are advertised at stations as
Distributed-DCC, which will be developed in later chapters.

Stations can perfectly advertise congestion-based prices if they have updated
information about the congestion level in the network core. This congestion infor-
mation can come from the interior routers or from the egress edge routers depending
on the congestion-monitoring mechanism being used. In our studies, we use an edge-
to-edge congestion detection scheme developed by another group in our team [35].
Our framework assumes that the congestion detection mechanism is able to give
congestion information in small time-scale (i.e. what we call observation interval)
by saying whether the network was congested during the last observation interval
or not.

In summary, DCC framework has been designed to use pricing and dynamic
capacity contracting as a new dimension in managing congestion, as well as to

achieve simple economic goals. The key benefits of our framework are:
e a congestion-sensitive pricing framework employable on diff-serv architecture
e does not require per-packet accounting (works at granularity of contracts)

e does not require upgrades or software support anywhere in the network except

at the edges

In this sense, DCC is well positioned as a pragmatic intermediate approach
between Clark’s Expected Capacity approach and a purely congestion-sensitive

scheme, e.g. Smart Market.
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4.3.1 Pricing Schemes

The basic idea behind our pricing schemes is that the contract is sub-divided
into smaller observation intervals and each observation interval is identified as “con-
gested” or “not-congested” according to the feedback from the congestion detection
mechanism. We now develop two pricing schemes for the provider stations, i.e.

ingress edge routers. Development of better pricing schemes is an open issue.

4.3.1.1 Edge-to-Edge Pricing (EEP)

In this pricing scheme we assume that egress edge routers feed back the egress
output rate, u, at congested observation intervals and nothing is fed back during
not-congested observation intervals. The EEP scheme basically uses that fed back
1 to estimate the available network capacity and uses that estimation to adjust the
price.

The provider stations advertise price per unit volume, P,, based upon the

following formula®:

2 Bi

average rate_limit * contract_length

Py = (4.2)
where ), B; is the estimated total budget of customers for network service and
average_rate_limit is the parameter represents the current estimated network ca-
pacity. When the network is not congested the average _rate_limit should increase
such that the price becomes less, and vice versa. So, the average rate_limit is
calculated during each contract, and is what captures the “congestion-sensitivity” of
the pricing scheme. Also notice that the denominator in Equation 4.2 calculates the
total volume to be contracted and numerator calculates the total budget available
for that volume. Hence, P, becomes price per unit volume.

The parameter average rate_limit is calculated in the following manner:
The station keeps updating a parameter, rate_limit, at the end of every obser-
vation interval. During not-congested observation intervals, the station increases
rate_limit using an additive increase policy. Specifically, the rate limit is incre-

mented by delta.rate_ limit = 1 packet/round-trip-time. In every congested ob-

60ptimality of this pricing formula will be discussed later in Chapter 8.
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servation interval, the station equates the rate_limit to (8 * u, where [ is a fixed
fraction in (0.5,1), and p is the output rate fed back by the egress node. The ba-
sic reason behind this setting is to prevent overpricing by guaranteeing that the
rate_limit is not set to a value much lower than the network capacity. Since 3 is
close to 1 and p will be very close to the network capacity during congestion, this will
make sure that rate_limit is not set to a very low value which would disturb capac-
ity estimation. The average rate_limit is simply the mean of rate_1limit values
of the observation intervals that passed during the contract. The rate_limit for the
first observation interval in a contract is initialized to the average_rate_limit that
was calculated at the end of the previous contract. Unlike traditional rate-based
congestion control, we assume in this scheme that the rate_limit is not directly
enforced, but is used indirectly to calculate prices and let the user reduce its demand
based upon price.

The level of control is a function of how accurately the price can be set such
that it neither overloads nor under-utilizes the network. The accuracy of the price

value depends on two parameters in Equation 4.2:
e ), B;, i.e. budget estimation capability

e contract_length, i.e. how large the contract can be in order to be truly

“congestion-sensitive” while balancing the transaction costs of the user

4.3.1.2 Congestion Index

In this pricing scheme, we assume that the provider station receives an indi-
cation during the congested observation intervals and receives nothing during the
not-congested ones. Since the observations happen at a smaller time-scale, the ratio
of the number of congested observation intervals to the total number of observa-
tion intervals is a measure of congestion. We call this measurement as congestion
indezr. Let n be the number of observations during a contract, and r be the num-
ber of observations at which congestion was observed, then the congestion index
for that contract is z = r/n. This congestion index and the congestion indexes of

the previous contracts can be used to determine the price for the next contract, i.e.
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pi = f(zi-1, Zi—2, ...) where subscripts represent contracts in time. Several possible
mappings (the f function) of congestion indexes to price can be done.

Notice that the accuracy of congestion index, z, depends directly on the num-
ber of observations per contract, n. On the other hand, having more frequent
observation intervals causes more overhead of congestion indication traffic. So, one

key performance trade-off of this scheme is the number of observation intervals.

4.3.2 Edge Strategies

We now introduce two possible edge strategies that can be implemented as
decision-making mechanism to identify which customer gets an available contract

at the provider station. Edge strategy is important, because it:

o effects the rate allocation and fairness especially in cases where there is high

competition for the contracts.

e has to have less transaction overhead because it will be used frequently at the

beginning of short-term contracts.

e must handle the trade-off between having less complexity (i.e. less transaction

costs) and fairer rate allocation.

Defining better edge strategies and their performance analysis are open issues

for further research.

4.3.2.1 Bidding

In bidding, the decision is made by the provider station. First, the customers
show their interests in network service by joining to the station. The provider station
sends contract description to the interested customers, and then the customers send
their bids to the provider station until a time, bidding deadline, previously specified
and advertised to the customers. The provider station, then, decides which customer
will get the contract by selecting the highest bid. Finally, the provider station sends
a confirmation to the selected customer. Figure 4.2-a visualizes the bidding edge

strategy.
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Figure 4.2: Two sample edge strategies.

4.3.2.2 Contracting

In contracting, customers make selection of the contract among a variety of
contracts offered by the provider station. Basically, customers that are interested in
making a contract send a request to the corresponding provider station. Then, the
provider station sends a response that includes the table of available contracts to the
interested customers. Next, the customer selects one of the contracts and informs

the provider station about his/her selection by sending a commitment. Finally, if
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the contract was not given to another customer, then provider station assigns the
contract to the customer and sends a confirmation to the customer. Figure 4.2-b

visualizes the contracting edge strategy.

4.4 Performance

In this section we first present configuration of the simulation experiments
of DCC, and then we present our assumptions for customer and provider model.

Finally we present simulation results along with their discussions.

4.4.1 Configuration of Experiments

In our experiments, we use a simple network configuration represented in Fig-
ure 4.3 and the network simulator, ns [1]. The configuration has multiple customers
trying to send traffic to the same destination through a bottleneck. Each customer
agent has a corresponding provider agent with which they negotiate for short-term
contracts throughout the simulation. Although there are multiple instances of the
provider they advertise the same price value to their customers. We use contracting
as the edge strategy and EEP as the pricing scheme of the provider stations.

Length of the short-term contracts is assumed to be fixed and is set to 400ms.
Length of the observation intervals is set to 80ms, which leads to 5 observations per

contract. The round-trip-time (RTT) for a customer is 40ms. Bottleneck rate is
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Experiment ID | Mean Budgets of Customers | Total Mean
#1 [ #2 | #3 | #4| #5 Budgets

1 20 | 20 | 20 | 20 20 100
2 40 | 40 | 40 | 40 40 200
3 60 | 60 | 60 | 60 60 300
4 10 | 20 | 30 | 40 20 150

Table 4.1: Parameters of the experiments for DCC simulations.

1Mbps, and customers send UDP traffic shaped by a leaky bucket with fixed packet
sizes (1000 bytes). All the queues are strictly FIFO. We constructed the queues
such that they do not drop any packet throughout the simulation, since we want to
see DCC’s performance on providing assured service.

For all the experiments, total simulation time is 40sec and the number of
customers is 5. We run four experiments with mean customer budgets defined in
Table 4.1. The first three experiments have customers with equal budgets and the
last experiment has customers with increasing budgets from 10 to 50 units. We
do the first three experiments to see if the pricing scheme can find the optimum
price per unit volume when the total budget of the customers is increased. The last
experiment aims to find out whether the framework can allocate the bottleneck rate

proportionally to the customers’ budgets or not.

4.4.2 Customer and Provider Models

We assume simple models for our initial proof-of-concept. Provider calculates
the expenditure that the customer made for the contract and uses that information
in estimating the customer’s budget for the next contract. The estimated budget for
the next contract is the average of the customer’s expenditures in previous contracts.
For the simulations in this chapter we assume that providers advertise the maximum
volume, V.., as the bottleneck capacity. In other words, the providers offer a
variety of contracts with a possible volume in the interval [0, V},q.]. Better budget
estimation methods and estimation of maximum volume in a multiple-route network
are in the scope of future research.

Customers choose a desired volume of premium data traffic to be sent during
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the contract based upon the price per unit volume, P,, a demand curve, and their
available budget. The demand curve is assumed to be a simple hyperbolic curve be-
tween price and corresponding demand (volume), i.e. the volume that is contracted
by a customer is calculated as V = B;/P, where B; is the budget of the customer.
After this volume selection process, customers have to bound the volume by V,,.z,
which was advertised by the provider. In such a case, any leftover budget is carried
over to the next term. This choice of a volume is then conveyed to the provider.
Observe that this contracting now defaults to the Expected Capacity framework
proposed by Clark. Specifically, this scheme provides “service assurances” and is
not just a “best-effort” service or a service whose quality is more probabilistic and
dynamic like the Smart Market model. For the budget model, we assumed that
customers have some budget for each contract. This budget value is randomized by

truncated-Normal [74] distribution with a given mean as defined in Table 4.1.

4.4.3 Results

We measure performance of the framework from two perspectives: network
efficiency and economic efficiency. Network efficiency is measured by bottleneck
utilization and bottleneck queue length. A network efficient framework must stabi-
lize the system by utilizing the resources highly while keeping the queuing delays
low. Economic efficiency is measured by looking at fairness of rate allocation and
accuracy of the pricing. Specifically, rate allocation must be done proportional to
the customers’ budgets. Also, value of the price per unit volume must be such that
it sells the bandwidth neither cheap nor expensive. In other words, pricing scheme
must be such that it balances the customers’ demands with the available bandwidth
capacity by finding the optimum price value. We make Experiment 4 to see DCC’
s performance on fair rate allocation and Experiments from 1 to 3 to see DCC’ s
performance on finding the accurate price.

Figures 4.4-a, 4.4-b, and 4.4-d, 4.4-c show that DCC is able to utilize the
bottleneck capacity while keeping the bottleneck queue within a reasonable bound.
Figures 4.4-e and 4.4-f show that rate allocation is being done proportional to cus-

tomers’ budgets. In Figure 4.4-e, observe that five customers with equal budgets are
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being allocated the same rate in Experiment 1, and also in Figure 4.4-f, customers
with increasing budgets are being allocated increasing rates proportional to their
budgets in Experiment 4.

An interesting result from Figure 4.5 is that DCC framework makes the provider
stations to advertise the optimum price value according to total budgets of cus-
tomers. Notice that in Experiments 1, 2, and 3, customers have total budgets of
100, 200, and 300 respectively. The figure show that the steady-state price value is
adjusted proportional to the total budgets of customers, which prevents the bottle-

neck to be neither overloaded nor under-utilized.

4.5 Comparison of DCC and Smart Market

We conduct simulation experiments to compare the performance of the two
pricing proposals: DCC and Smart Market. Our objective is to evaluate their perfor-
mance in terms of both network efficiency and economic efficiency. The performance
measures we use for both proposals are utilization, queue length, relative volume
allocations.

We perform our experiments on a simple single-bottleneck network configura-
tion. The bottleneck rate is 1Mb/s, and can be accessed by the customers through
an edge router (corresponds to the provider). The customers send constant bit rate

UDP traffic with fixed packet sizes (1000 bytes). The contract term in DCC and
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the length of the update interval at interior routers in Smart Market are set to be
0.4sec. Also, the length of the observation interval in DCC is set to 80ms. In the
experiment, there are three customers with unequal budgets (15, 25 and 35 units
respectively for customers 1, 2 and 3).

Smart Market gives average volumes of 0.1Mb/s, 0.175Mb/s and 0.275Mb/s
to customers 1, 2 and 3 respectively, while DCC gives 0.225Mb/s, 0.30Mb/s and
0.375Mb/s. Figure 4.6 plots the normalized values of volumes allocated to the
customers. The solid line plots the normalized values of the customer budgets,
i.e. the ideal volume allocation. The figure indicates that Smart Market allocates
the volume to the customer almost proportionally to their budgets, whereas DCC
allocation is a little less proportional to the budgets. This implies that in comparison
to Smart Market, DCC has a lower economic efficiency. However, total volume
allocated to customers is significantly higher in the case of DCC, i.e. 0.55Mb/s in
the Smart Market versus 0.95Mb/s in DCC. This indicates that DCC better utilizes
the bottleneck, which implies better network efficiency.

In summary, the experiments suggest that DCC is better from a congestion
management perspective because it achieves a higher utilization. Interestingly, this
is achieved without seriously distorting volume allocations, which are in fact, close

to those attained by Smart Market. Nevertheless, from a pure economic efficiency
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perspective, Smart Market appears to fare better.

4.6 Summary

We have proposed a “Dynamic Capacity Contracting” (DCC) framework pri-
marily inspired by the work of Clark [19] and MacKie-Mason and Varian [50], and
the diff-serv architecture which provides a platform for implementation. The distin-
guishing features of our work include the idea of “short-term” contracts, mechanisms
to support congestion-sensitive pricing of such contracts, use of pricing as a tool for
congestion management, and a pragmatic focus on implementation issues. We have
also proposed two sample schemes in this framework and showed experimental re-
sults of one of them to illustrate the potential of the framework.

DCC, however, has one important implementation problem on wide area net-
works: DCC assumes that the same price is being advertised at provider stations,
which are indeed very far away from each other in a real wide area network. This
assumption is unrealistic and needs to be relaxed by letting the stations to be able
to calculate prices locally while maintaining stability and fairness of the overall
network. We will explore this particular issue later in Chapter 6.

In later chapters of this thesis, we will investigate the following points in DCC:

Studying optimality of EEP pricing scheme

e Exploring ways to implement DCC on a wide area network, especially by

relaxing the assumption of advertisement of same price at provider stations

e Finding a maximum bound on the length of the short-term contracts such that
congestion-sensitivity of prices is still maintained and control over congestion

is not totally lost

e Addressing congestion control issues, especially regarding co-existence of DCC

with underlying edge-to-edge congestion control schemes

e Addressing fairness issues, especially regarding price discrimination among

different traffic flows

Further research may include the following open points:
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Using soft admission control techniques to set V., parameter of the contracts
Expansion of the concept of contracting to point-to-anywhere contracts
Designing and analyzing better edge strategies

Exploring inter-domain pricing issues in diff-serv environment:

— Exploring the concept of bandwidth intermediary to facilitate the medi-
ation between customer and multiple providers by leveraging the DCC
framework. The design of such agents for scalability and integration of

policy and budget constraints is also an open topic.

— Finding good pricing strategies for the provider in different market envi-

ronments, e.g. monopoly, competitive



CHAPTER 5
ANALYSIS OF PRICING INTERVALS

5.1 Introduction

One proposed method for controlling congestion in wide area networks is to
apply congestion-sensitive pricing 20, 51|, which is a form of dynamic pricing. Many
proposals have been made to implement dynamic pricing over wide area networks
and the Internet [19, 33, 42, 50, 49, 79, 76, 68, 67, 62, 82]. Most of these schemes
aimed to employ congestion pricing. The main idea of congestion-sensitive pricing is
to update price of the network service dynamically over time such that it increases
during congestion epochs and causes users to reduce their demand. So, implementa-
tion of congestion-sensitive pricing protocols (or any other dynamic pricing protocol)
makes it necessary to change the price after some time interval, what we call pricing
interval. Pricing time-scale has not been investigated significantly in the area other
than [5]. In [5], authors propose a pricing architecture based on pricing time-scale
issues. However, in this chapter, we look at a more specific problem, which is effect
of pricing time-scale on congestion control by pricing.

Clark’s Expected Capacity [19] scheme proposes long-term contracts as the
pricing intervals. Kelly’s packet marking scheme [42] proposes shadow prices to
be fed back from network routers which has to happen over some time interval.
MacKie-Mason and Varian’s Smart Market scheme [50] proposes price updates at
interior routers which cannot happen continuously and have to happen over some
time interval. Wang and Schulzrinne’s RNAP [79] framework proposes to update the
price at each service level agreement which has to happen over some time interval.
Hence, congestion-sensitive pricing can only be implemented by updating prices over
some time interval, i.e. pricing interval.

It has been realized that there are numerous implementation problems for
dynamic or congestion-sensitive pricing schemes, which can be traced into pricing

intervals. We can list some of the important ones as follows:

e Users do not like price fluctuations: Currently, most ISPs employ flat-rate

73
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pricing which makes individual users happy. Naturally, most users do not
want to have a network service with a price changing dynamically. In [25],
Edell and Varaiya proved that there is a certain level of desire for quality-of-
service. However, in [60] and [61], Odlyzko provides evidence that most users
want simple pricing plans and they easily get irritated by complex pricing
plans with frequent price changes. So, it is important that price updates
should happen as less as possible. In other words, users like a service with

larger pricing intervals.

e (Control of congestion degrades with larger pricing intervals: Congestion level
of the network changes dynamically over time. So, the more frequent the price
is updated, the better the congestion control. From the provider’s side, it is

easier to achieve better congestion control with smaller pricing intervals.

e Users want prior pricing: It is also desired by the users that price of the service
must be communicated to them before it is charged. This makes it necessary
to inform the users of the network service before applying any price update.
So, the provider has to handle the overhead of that price communication. The
important thing is to keep this overhead as less as possible, which can be done

with larger pricing intervals.

Hence, length of pricing intervals is a key issue for the implementation of
congestion-sensitive and adaptive pricing protocols. In this chapter, we focus on
modeling and analysis of pricing intervals to come up with a maximum value for it
such that the level of congestion control remains in an acceptable range. Beyond
this range, pricing could be used to regulate demand, but it becomes less useful as
a tool for congestion management. The rest of the chapter is organized as follows:
In Section 5.2, we first explore steady-state dynamics of congestion-sensitive pricing
with a detailed look at the behavior of prices and congestion relative to each other.
We then develop and discuss an approximate analytical model for the correlation
of prices and congestion measures in Section 5.3. In Section 5.4, we validate the
model by simulation experiments and present the results. Finally, in Section 5.5 we

discuss the implications of the work and possible future work.
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Figure 5.1: A sample customer-provider network.

5.2 Dynamics of Congestion-Sensitive Pricing

This section explains the behavior of congestion-sensitive prices and congestion
measures relative to each other in a steady-state system. A sample scenario is
described in Figure 5.1. The provider employs a pricing interval of 7" to implement
congestion-sensitive pricing for its service. The customer uses that service to send
traffic to the destination through the provider’s network. The provider observes the
congestion level, ¢, in the network core and adjusts its advertised price, p, according
to it. Note that ¢ and p are in fact functions of time (i.e. ¢(t) and p(t) where ¢ is
time), but we use ¢ and p throughout the chapter for simplicity of notation. It is a
realistic assumption to say that the provider can observe the network core over small
time intervals, i.e. a few round-trip-times (RTTs). To understand effect of pricing
interval to the dynamics of congestion-sensitive pricing, we look at the relationship
between ¢ and p over time.

Assuming that we have continuous knowledge of congestion level, ¢, we can
represent the dynamics of congestion-sensitive pricing as in Figure 5.2. Figure 5.2
represents the relationship between ¢ and p for two different pricing interval lengths,
Ty > T5. For both lengths, the steady-state behavior of congestion-sensitive pricing
is represented. The advertised price, p, varies around an optimum price, p*.

When the provider sees that the congestion level has been decreasing, it de-
creases the advertised price such that the network resources are not under-utilized.

Then the customer starts sending more traffic in response to the decrease in price,
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Figure 5.2: Congestion measure relative to congestion-sensitive prices in
a steady-state network being priced.

and congestion level in the core starts increasing accordingly. The congestion level
continues to increase until the price is increased by the provider at the beginning
of the next pricing interval. When the provider increases price because of the in-
creased congestion in the last pricing interval, the customer starts sending less traffic
than before. Then congestion level starts decreasing. This behavior continues on
in steady-state. This explains how congestion-sensitive prices can control the con-
gestion in a network. The important difference is that with a larger pricing interval
the congestion level oscillates larger as represented in Figure 5.2.

Another important characteristic of congestion-sensitive pricing is that the
price must be oscillating around an optimum price, p*, to guarantee both conges-
tion control and high utilization of network resources. In other words, the average
of advertised prices must be equal to the optimum price value. Notice that the cus-
tomer will send less traffic which will under-utilize network resources when p > p*,
and the customer will send excessive traffic than the network can handle which will
cause uncontrolled congestion when p < p*. So the provider needs to satisfy the
condition that the average of advertised prices equals to the optimum price.

The important issue to realize is that congestion control becomes better if
the similarity between the advertised price and congestion level is higher. Because
of the above explained implementation constraints, the advertised price cannot be
updated continuously. This results in dissimilarity between the price and congestion

level. Intuitively, if the correlation between the advertised prices and the congestion
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Figure 5.3: Prices and congestion measures for subsequent observation
intervals.

measures is higher, fidelity of control over congestion becomes higher. Again by
intuition, the correlation becomes smaller if the pricing interval is larger.

Another important issue is the price oscillation caused by the discontinuous
price updates. As the pricing intervals get larger, the oscillation in price also gets
larger. This in effect leads to oscillation in user demand (i.e. traffic) correspondingly.
So, larger oscillations in price are expected to cause larger oscillation and higher
variance in incoming traffic. Then, more oscillated traffic causes more oscillated
congestion level. This behavior is represented in Figure 5.2 with the case that
Acy > Acy and Apy > Aps.

In the next section, we will develop an approximate model of correlation be-
tween the advertised prices and congestion measures analytically and find the largest
value for the pricing interval such that the system functions in a desired range of

service.

5.3 Analytical Model for Correlation of Prices and Conges-

tion Measures
5.3.1 Assumptions and Model Development
Assume the length of pricing interval stays fixed at T over n intervals. Also
assume the provider can observe the congestion level at a smaller time scale with
fixed observation intervals, . Assume that 7" = rt holds, where r is the number of
observations the provider makes in a single pricing interval. Assume that the queue
backlog in the network core is an exact measure of congestion. [47]

We assume that the customer has a fixed budget for network service and
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he/she sends traffic according to a counting process, which is a continuous time
stationary stochastic process A(7), 7 > 0 with first and second moments of )\
and A\, respectively. In reality, \; is not fixed, because the customer responds to
price changes by changing its A;. However, since we assume steady-state and fixed
budget for the customer, it is reasonable to say that the customer will send at a
constant rate over a large number of pricing intervals. Let m;; be the number of
packet arrivals from the customer during the 7 th observation interval of 7th pricing
interval, where 7 = 1..n and j = 1..r. So the total number of packet arrivals during

the sth pricing interval is .
m; = Zl Mis (5.1)

—

Also assume that the packets leave after the network service according to
a counting process, which is a continuous time stationary stochastic process B(1),
7 > 0 with first and second moments of ;11 and p, respectively. Let k;; be the number
of packet departures during the jth observation interval of sth pricing interval, where
1t =1..nand j = 1..r. So the total number of packet departures during the 7th pricing

interval is

ki = kis (5.2)
s=1

Assuming that no drop happens in the network core, the first moments of the two
processes are equal in steady-state, i.e. A\; = uy, but the second moments are not.
As represented in Figure 5.3, let p; be the advertised price and ¢;; is the
congestion measure (queue backlog) at the end of the jth observation in the ith
pricing interval. In our model we need a generic way of representing the relationship
between prices and congestion. We assumed that the congestion-sensitive pricing
algorithm calculates the price for the ¢th pricing interval according to the following

formula’

pi=a(t,r) ci-1y (5.3)

where a(t,7), pricing factor, is a function of pricing interval and observation interval

defined by the congestion pricing algorithm. We assume that a(t,7) is only effected

"Note that this is a simplifying formula for tractability, and cannot capture all aspects of
congestion pricing.
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by the interval lengths, not by the congestion measures. Notice that this assumption
does not rule out the effect of congestion measures on price, but it splits the effect
of congestion measures and interval lengths to price. We will use a instead of a(t, r)
for notation simplicity.

Within this context, the following equations hold:

i—1 J
Cij = Cor + Z(mu — ]fu) -+ Z(m,s — kzs) (54)
u=1 s=1
Cir = Cor + Z(m] - k]) (55)
j=1

where ¢ > 1. Reasoning behind Equations 5.4 and 5.5 is that the queue backlog
(which is the congestion measure) at the end of an interval is equal to the number
of packet arrivals minus the number of packet departures during that interval.

Let the average price be p and the average queue backlog be €. By assuming
that the system is in steady-state we can conclude that the following equation is
satisfied

P =ac (5.6)

Since the system is assumed to be in steady-state, we can assume the initial (right
before the first pricing interval) congestion measure equals to the average queue
backlog, i.e.

Cor =C (5.7)

We want to approximate the model of correlation between p and ¢ according
to the above assumptions. We can write the formula for correlation between p and

c over n pricing intervals as

Enl(c —2)(p —DP)[m, k]
Ey[(c —©)?|lm, k| E,[(p — P)*|m, K]

(5.8)

Corr, =

assuming that total of m packet arrivals and k packet departures happen during the

n rounds.
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We can calculate the numerator term in Equation 5.8 as follows:

Enl(c—2)(p—D)Im, k] = —ZZ )(cij —©) (5.9)

11]1

By applying Equations 5.3, 5.6 and 5.7 into Equation 5.9 we can get
E,[(c—¢)(p—Dp)Im, k] = ZZ aci 1) — acor)(Cij — Cor) (5.10)
=1j=1
Then by applying Equations 5.4 and 5.5 into Equation 5.10, we get the following

En[(c—2)(p —P)Im, k] =

_ZZ<COT+Zm9 ka—%)(i uw — k) +me— )511)

i=1j=1 u=1

After going through the derivation, we can put Equation 5.11 into the following

form

E,[(c—7¢)(p—Dp)|m, k] = —ZZ (H1 +Z my — z: mis — kis ) (5.12)

=1 j=1
where Hy = 3, (my—ku)?+ X0 Xpzu 2(mu—ky) (my—ky), u =1.i—land v = 1..i—1.

We can calculate the variance of congestion measures similarly as follows:

E,[(c —¢)?*|m, k] = —Zz Cij — (5.13)

z 1j5=1
By applying Equations 5.4 and 5.7 into Equation 5.13 we can get
1 J ’
E,[(c—2)*m, k] = — Z Z (Z My — ky) + Y (ms — kzs)) (5.14)
1=1j5=1 \u=1 s=1

After going through the derivation, we can put Equation 5.14 into the following

form

Edllc—o2m b =~ % (H1 e Hy 23 (i — k) S (s — k)) (5.15)

™= u=1 s—1
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where Hy = 3 (Mis — kis)® + 25 Xops 2(mis — ki) (M — kiz), s = 1.4, 2 = 1..j.

We finally can calculate the variance of price as follows:

Elp—pm K =~ 3 3 (5.16)

i=1j=1
By using Equations 5.3, 5.5 and 5.6 into Equation 5.16 we can get the following

2

Eq[(p —p)?Im, k] = 2 i (i )) (5.17)

n 2 \j=1

Similarly after going through derivation, we can put Equation 5.17 into the following

form

Eu[(p —p)*Im, k] = ZH1 (5.18)

Now we can relax the condition on m and k£ by summing out conditional

probabilities on Equations 5.12, 5.15, and 5.18. Specifically, we need to apply the

operation
En[x] = Z Z E, [x‘m k] mj ki (5'19)
mi;=0k;;=0

foralli = 1..n and j = 1..r, where Py .. is P{A(t) = mj;; B(t) = ki;}. This opera-
tion is non-trivial because of the dependency between the processes A(7) and B(7),
and it is not possible to reach a closed-form solution without simplifying assump-
tions. After this point, we develop two approzrimate models by making simplifying

assumptions.

5.3.1.1 Model-I

Although the arrival and departure processes are correlated, there might also
be cases where the correlation is negligible. For example, if the distance between
arrival and departure points is more, then the lag between the arrival and departure
processes also becomes more which lowers the correlation between them. So, for
simplicity, we assume independence between the arrival and departure processes and
derive an approximate model. The independence assumption makes it very easy to

relax the condition on m and £, since the joint probability of having A(t) = m,; and
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B(t) = ki; becomes product of probability of the two events. After the relaxation,

we then substitute g1 = A; because of the steady-state condition, and get the

followings:
Eal(c=0)p =7 = 5 (n =) + o = 21X} (5.20)
Eal(c—7)?] = %(AQ b)) =X (14— %) (5.21)
E.[(p—p)?% = azi(n — 1) (Ao + pg — 2trA}) (5.22)

2
Let 0% be the variance of the arrival process and 0% be the variance of the depar-
ture process. By substituting Equations 5.20, 5.22, and 5.21 into 5.8 we get the

correlation model for the first n rounds as follows:

1
at(ZATT8 4 N2)(rn + 1) — a(tAy)2(1 + 7 — 12 + r2n)

Corr, = (5.23)

5.3.1.2 Model-I1

To make a more realistic model, we try to develop a model where the arrival
and departure processes are not considered independent. We consider the system
as an M/M/1 queueing system with a service rate of p. Notice that u is different

from the parameters p; and pe which are first and second moments of B(7). We

now try to derive the joint probability as follows:
Pmij§kij = Pml.j * Pkij|mij (524)

where Pmij = P{A(t) = mij} and Pk = P{B(t) = kZJ|A(t) = mm} Notice

that Pp,; is probability of having m;; events for the Poisson distribution with mean

ij M

Ait. However, it is not that easy to calculate Py, |m,;, since probability of having
k;; departures depends not only on the number of arrivals m;; but also the number
already available in the system which is ¢;; 1). Let NV be the random variable that

represents the number available in the system, then we can rewrite Py, |,,,,; as follows:

o0

Pkij|mij = Z Pkij\mij;ci(jq) * Pci(j—l) (5.25)

Ci(j—1)=ksj —mij
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where P,

Ci(j-1)

ki; —mij, because the condition ki; < my; + ¢;j—1) must be satisfied for all time

= P{N = ¢jj_1)}. Observe that the minimum value of c;;;_1) can be

intervals. In Equation 5.25, P, ,
p = A/p, then P,

Ci(j-1)

, is known for a steady-state M/M/1 system. Let

-1
= (1 — p)p%iu-v. [43] However, calculation of Py, jmjic;; 1)
is not simple, because the m;; arrivals may arrive such that there is none waiting
for the service. Fortunately, this is a very rare case for a loaded system. So, we can

formulate P, for the usual case as if all the m;; arrivals happened at the

Imijicii—1)

beginning of the interval . Within this context, we now derive Proijimigici_1)-

Let E(u) be an Exponential random variable with mean 1/u, and E,(k, p)

be an Erlangian random variable with mean k/u. Then, we can formulate the

probability of having £ > 0 departures in time ¢ as follows:
¢
Pisoint= [ P{E(k,p) <a}[1—P{E() <t—a}ldz  (526)

Now, we can formulate the CDF of Pkij|mij§ci(j—1) as follows:

kij
P{B(t) < kijlmij;cii-1)} = Point + Y Pesoint (5.27)
k=1

Notice that Py, = 1 — P[E(u) < t]. We used Maple to derive the CDF formula
in (5.27), and got the following result:

] S K
P{B(t) S kw|mm, Ci(j—l)} =e ut + ﬁ (k'z] — € Mtz Z T) (528)

i=1j=0

By using the CDF formula in Equation 5.28 in Maple, we then find pmf as:

= P{B(t) < kij|mij; cig—ry} — P{B(t) < kij — 1myj; ci-1)}

_ 1 (1 e kzjo %) (5.29)

1

Phijlmijici-y
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Afterwards, we apply the operation in Equation 5.25, i.e.:

Peiitmi; = i 1 (1 — e—“tizi(”i—?i> * (1 - ﬁ) <ﬁ>% (5.30)

Ci(j—1)=k;; —mij H H H

Again by using Maple, we finally derive Py, |m,; as:
(kij—mij) kij '
1 )\ J J J t 7
Priiimy; = = (—1> 1—e ™y @ (5.31)
p\ p par i

Even though we have found a nice solution to Py, jm; in Equation 5.31, it
does not allow us to get a closed-form model for the correlation after the relaxation
operation in Equation 5.19. In order to get a closed-form correlation model, we
approximated the term with summation in Equation 5.31. Notice that the term

with summation is equivalent to ratio of two Gamma [15] functions, i.e.:

o ki (Mf)i _ Dk +1, )
= i I'(ki; +1)
In Appendix B, we approximated the ratio I'(z, y)/I'(xz) and used that method
to approximate the term with summation in (5.31). After the approximation, we did
get a closed-form correlation model. But, it is not possible to provide it in hardcopy
format® because it is a very large expression. However, we will provide numerical

results of the model later in Section 5.4.

5.3.2 Model Discussion
Since Model-II is a very large expression, we only discuss Model-I. Assuming
that the other factors stay fixed, the correlation model in Equation 5.23 implies

three important results:

1. The correlation degrades at most inversely proportional to an increase in pric-
ing intervals (T'): For the smallest n value (i.e. 1), denominator of Equation

5.23 will have r + 1 as a factor which implies linear decrease in the correlation

8Tt is available upon request.
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value while the pricing interval, T' = rt, increases linearly. Notice that its

effect will be less when n is larger.

2. Increase in traffic variances (0% and 0% ) degrades the correlation: From Equa-
tion 5.23, we can observe that the correlation decreases when the variance of

the incoming or outgoing traffic increases.

3. Increase in traffic mean (A1) degrades the correlation: Again from Equation
5.23, we can see that the correlation decreases while the mean of the incoming

traffic increases.

These above results imply that lower pricing intervals must be employed when
variance and/or mean of the traffic starts increasing. We validate these three results
in Section 5.4 by experiments. Note that the model reveals non-intuitive effect of
traffic mean on the correlation. Also, observe that the model incorporates not only
the effect of pricing intervals on the correlation, but also the effects of statistical
parameters (e.g. traffic mean and variance).

As previously mentioned, the correlation between prices and congestion mea-
sures is a representation of the achieved control over congestion. Congestion-sensitive
pricing protocols can use such a model to maintain the control at a predefined level
by solving the inequality Corr, > Corr,;, for r, which defines the length of the
pricing interval. If feedback from the other end (i.e. egress node in DiffServ [27]
terminology) is provided, then such a model can be implemented in real-time. o%
can be calculated by using the feedbacks from the other end, and 0% and \; can be

calculated by observing the incoming traffic.

5.4 Experimental Results and Model Validation

5.4.1 Experimental Configuration

We use Dynamic Capacity Contracting (DCC) [72] as the congestion pricing
protocol in our simulations. The short-term contracts corresponds to the pricing
intervals in our modeling.

Figure 5.4 represents the topology of network in our experiments. There are

5 customers trying to send traffic to the same destination over the same bottleneck
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Figure 5.4: Topology of the experimental network.

with a capacity of IMbps. Customers have equal budgets and their total budget is
150 units. We observe the bottleneck queue length and use it as congestion measure.
The observation interval is fixed at t = 80ms and RTT for a customer is 20ms. We
increase the pricing interval by incrementing the number of observations (i.e. r)
per contract. We run several simulations and calculate correlation between the
advertised prices and the observed bottleneck queue lengths during the simulations.

Customers send their traffic with a fixed variance but changing mean according
to the advertised prices for the contracts. We assume that the customers have
fixed budgets per contract with additional leftover from the previous contract. The
customers adjust their sending rate according to the ratio B/p where B is the
customer’s budget and p is the advertised price for the contract. So, customers
increase or decrease their sending rate right before the contract starts accordingly.
Notice that since the customers’ budget is fixed, the sending rate of the customers
is actually fixed on long run, which fits to the fixed average incoming traffic rate
(A1) assumption in the model.

Customers send their traffic with mean changing according to the advertised
prices for the contracts. We assume that the customers have fixed budgets per
contract with additional leftover from the previous contract. The customers adjust
their sending rate according to the ratio B/p where B is the customer’s budget and
p is the advertised price for the contract ®. Notice that since the customers’ budget

is fixed, the average sending rate of the customers is actually fixed on long run,

9Note that z = B/p maximizes surplus for a customer with utility u(z) = B log(z).
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Figure 5.5: Statistics of bottleneck queue length.

which fits to the fixed average incoming traffic rate assumption in the model.

5.4.2 Results

In this section, we present several simulation results for validation of the model
and the three results it implies.

Figures 5.5-a and 5.5-b show mean and variance of the bottleneck queue length
respectively. We observe steady increase in mean and variance of bottleneck queue
as the pricing interval increases. Furthermore, Figure 5.5-c shows the change in
the coefficient of variation for the bottleneck queue length as the pricing interval
increases. Note that an increase in the coefficient of variation means a decrease
in the level of control. We observe that coefficient of variation increases as the

pricing interval increases until 107, and stays fixed there after. This is because the
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congestion pricing protocol looses control over congestion after a certain length of
pricing interval, which is 107 in this particular experiment. These results in Figures
5.5-a to 5.5-c validate our claim about the degradation of control when pricing
interval increases. Furthermore, they also show that dynamic pricing does not help
congestion control when the pricing interval is longer than a certain length.

To validate the model, we present the fit between our correlation models and
experimental results obtained from simulations. Figures 5.6-a and 5.6-b represent
the correlations obtained by inserting appropriate parameter values to the model
and corresponding experimental correlations, respectively for n = 15 and n = 25.
We observe that Model-II fits better than Model-I, since Model-II considers the
dependency between arrival and departure processes. Notice that the model is
dependent on the experimental results because of the parameters for incoming and
outgoing traffic variances (i.e. 0% and ¢%), pricing factor (i.e. a), and mean of
the incoming traffic (i.e. A;). We first calculate the parameters 0%, 0%, a (ratio
of average price by average bottleneck queue length) and \; from the experimental
results, and then use them in the model.

We now validate the three results implied in Section 5.3.2. Figures 5.6-a and
5.6-b show that the correlation decreases slower than 1/ when r increases linearly.
This validates the first result. Figure 5.7-b represents the effect of change in the
variance of incoming and outgoing traffic (i.e. ¢ and 0%) on the correlation. The
horizontal axis shows the increase in variances of both the incoming and outgoing
traffic. The results in Figure 5.7-b obviously show that an increase in traffic variances
causes decrease in the correlation. This validates the second result. Finally for
validation of the third result, Figure 5.7-a represents the effect of change in the
mean of the incoming traffic (i.e. A;) on the correlation. We can see that increase
in \; causes decrease in the correlation. Another important realization is that the
correlation is more sensitive to variance changes than mean changes as it can be
seen by comparing Figures 5.7-a and 5.7-b.

Before concluding this section, we would like to stress on the relationship be-
tween the correlation and the level of congestion control. As we previously stated,

Figures 5.6-a and 5.6-b show the effect of increasing pricing intervals on the correla-
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Figure 5.7: Effect of traffic patterns to the correlation (for 7 = 800ms and
r = 10).

tion for different values of n. We can see that the correlation value stays almost fixed
after the pricing interval reaches to 10r. Also, Figure 5.5-c shows the coefficient of
variation for the bottleneck queue length. Remember that coefficient of variation
for the queue length represents the level of congestion control being achieved. We
observe in Figure 5.5-c that it reaches to its maximum value (approximately 1) when
the pricing interval reaches to 107, which is the same point where the correlation
starts staying fixed in Figures 5.6-a and 5.6-b. So, by comparing Figure 5.5-c with
Figures 5.6-a and 5.6-b, we can observe that the correlation decreases when the level

of congestion control decreases, and also it stays fixed when the level of congestion
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control stays fixed. This shows that the correlation can be used as a metric to

represent the level of congestion control.

5.5 Summary

We investigated steady-state dynamics of congestion-sensitive pricing in a
customer-provider network. With the idea that correlation between prices and
congestion measures is a measurement for level of congestion control, we modeled
the correlation. We found that the correlation decreases at most inversely pro-
portional to an increase in pricing interval. We also found that the correlation is
inversely effected by the mean and variance of the incoming traffic. This implies
that congestion-sensitive pricing schemes need to employ very small pricing inter-
vals to maintain high level of congestion control for current Internet traffic with high
variance [21].

From the model and also from the simulation experiments we observed that
the correlation between prices and congestion measures drops to very small values
when pricing interval reaches to 40 RTTs even for a low variance incoming traffic.
Currently, we usually have very small RTTs (measured by milliseconds) in the In-
ternet. This shows that pricing intervals should be 2-3 seconds for most cases in the
Internet, which is not possible to deploy over low speed modems. This result itself
means that deployment of congestion-sensitive pricing over the Internet is highly
challenging. As the link speeds are getting higher and RTTs are getting smaller, it
becomes harder to deploy congestion-sensitive prices.

The results obviously show that there will be need for intermediate middle-
ware components (i.e. intermediaries) between individual users and ISPs, when ISPs
deploy congestion-sensitive pricing for their service. These middle-ware components
will be expected to lower price fluctuations such that price changes will be possible to
implement over low speed modems. This scenario suggests that congestion-sensitive
prices can be implemented among ISPs to control congestion, but there has to be
middle-ware components which can handle the transition of the congestion-sensitive
prices to the individual customers in a smooth way. Alternatively, instead of using

congestion-sensitive pricing directly for the purpose of congestion control, it can be
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used to improve fairness of an underlying congestion control mechanism. This way it
will be possible to control congestion at small time-scale, while maintaining human
involvement to pricing at large time-scale. We believe that the second approach is
more realistic way of implementing congestion-sensitive pricing over the Internet.
The analysis of pricing intervals that we made in this chapter lead us to investigate
the second approach, which will be presented later in Chapter 7.

Another key implementation problem for congestion pricing is that current
Internet access is point-to-anywhere. It is not possible to obtain information about
the exit points of the traffic. However, it is not possible to determine congestion
information and prices without coordinating entry and exit points of the traffic. So,
this particular aspect implies that it is highly challenging to implement congestion
pricing at individual user to ISP level. But, if an ISP has enough control over
the entry and exit points, then it is possible. Alternatively, if ISPs of the current
Internet collaborate on providing information about the entry and exit points to
each other, then again it will be possible.

Future work should include complex modeling of the dynamics of congestion-
sensitive pricing by relaxing some of the assumptions. For example, a model without
fixed arrival rate assumption would represent the behavior of the system more ap-
propriately. Also, better budget models are needed in the model.

Another important issue to explore is how much congestion control can be
achieved with exactly what level of correlation between prices and congestion mea-
sures. In this particular modeling work we assumed that the correlation value is a
direct representation of the level of congestion control that was achieved. Although
we supported this idea by providing the match between the correlation and the

coefficient of variation in Section 5.4.2, this issue needs more investigation.



CHAPTER 6
DISTRIBUTED-DCC:

Pricing for Congestion Control (PFCC)

6.1 Introduction

In chapter 4, we presented a framework, dynamic capacity contracting (DCC),
for congestion-sensitive pricing in a single diff-serv domain. This version of DCC
assumed the provider stations (that are placed at the edge routers) to be advertising
the same price for the contracts, which is not possible to implement over a wide
area network. This is simply because the price value cannot be communicated to all
stations at the beginning of each contract. In this chapter, we relax this assumption
by letting the stations to calculate prices locally and be able to advertise different
prices than the other stations. We call this version of DCC as Distributed-DCC.

In Section 1.3, we described two pricing architectures in terms of managing
congestion control through pricing: pricing for congestion control (PFCC), pricing
over congestion control (POCC). In PFCC, pricing framework employs an under-
lying edge-to-edge congestion detection mechanism. However, in POCC, it uses an
underlying edge-to-edge congestion control mechanism. Note that, in the case of
POCC, system performance is dependent not only on the pricing framework, but
also on properties of the underlying congestion control mechanism. In this chapter,
we present, the Distributed-DCC framework based on the PFCC architecture, and
in the next chapter we will investigate issues regarding Distributed-DCC framework
based on the POCC architecture.

Two main purposes of the Distributed-DCC framework are to provide, within
implementation constrains, fairer bandwidth sharing and better congestion control by
controlling user demand. In this chapter, we mainly focus on fairness issues related
to bandwidth sharing and show that Distributed-DCC can achieve max-min fairness
and proportional fairness under proper conditions. In the next chapter, we will show
that POCC architecture performs better than PFCC in terms of congestion control.

The chapter is organized as follows: In the next section, we first describe
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the overall properties of Distributed-DCC framework. We look at several issues
(such as stability, scalability, fairness, capacity estimation) regarding Distributed-
DCC. In Section 6.3, we re-describe the EEP pricing scheme within the context of
Distributed-DCC. In Section 6.5, we evaluate performance of Distributed-DCC by

simulating EEP pricing scheme. We finally summarize the chapter in Section 6.6.

6.2 Distributed-DCC

Distributed-DCC is specifically designed for diff-serv architecture, because the
edge routers can perform complex operations which is essential to several require-
ments for implementation of congestion pricing. Each edge router is treated as a
station of the provider. Each station advertises locally computed prices with infor-
mation received from other stations. The main framework basically describes how
to preserve coordination among the stations such that stability and fairness of the

overall network is preserved. Essence of Distributed-DCC is two-fold:

e Since upgrade to all routers is not possible to implement, pricing should hap-

pen on an edge-to-edge basis which only requires upgrades to edge routers.

e Provider should employ short-term contracts in order to have ability to change

prices frequently enough such that congestion-pricing can be enabled.

As a fundamental difference between Distributed-DCC and the well-known
dynamic pricing proposals (e.g. Kelly et al.’s proposal[42], Low et al.’s proposal
[47]) in the area lies in the manner of price calculation.

In Distributed-DCC, the prices are calculated on an edge-to-edge basis, while
traditionally it has been proposed that prices are calculated at each local link and
fed back to users. To make it more concrete, Figures 6.1-a and 6.1-b show the case
of Distributed-DCC and the case of Low et al.’s framework. Gray nodes are the
ones that participates in price calculation for a user. In Distributed-DCC, basically,
the links on a flow’s route are abstracted out by edge-to-edge capacity estimation
(which is supposed to be congestion-based) and the ingress node communicates with
the corresponding egress node to observe congestion on the route of user’s traffic.

Then, the ingress node uses the estimated capacity and the observed congestion
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Figure 6.1: Comparison of Distributed-DCC with Low et al.’s pricing
framework in terms of price calculation.

information in order to calculate price. However, in Low et al.’s framework, each
link calculates its own price and sends it to the user, and the user pays the aggregate
price. So, Distributed-DCC is better in terms of implementation requirements, while
Low et al.’s framework is better in terms of optimality. Distributed-DCC trades off
some optimality in order to enable implementation of dynamic pricing. Amount of
lost optimality depends on the closed-loop edge-to-edge capacity estimation.
Distributed-DCC framework has three major components as shown in Fig-
ure 6.2: Logical Pricing Server (LPS), Ingress Stations, and Egress Stations. Solid

lined arrows in the figure represent control information being transmitted among
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“Distributed-DCC Framework B

Ingress

Figure 6.2: Components of Distributed-DCC framework: Solid lined ar-
rows represent flow of control information necessary for price
calculation. In PFCC architecture, communication with LPS
must be at very short time-scales (i.e. each short-term con-
tract). However, in POCC, LPS is accessed at longer time-
scales (i.e. parameter remapping instants).

the components. Basically, Ingress stations negotiate with customers, observe cus-
tomer’s traffic, and make estimations about customer’s demand. Ingress stations
inform corresponding Egress stations about the observations and estimations about
each edge-to-edge flow.

Egress stations detect congestion by monitoring edge-to-edge traffic flows.
Based on congestion detections, Egress stations estimate available capacity for each
edge-to-edge flow, and inform LPS about these estimations.

LPS receives capacity estimations from Egress stations, and allocates the avail-
able network capacity to edge-to-edge flows according to different criteria (such as
fairness, price optimality).

Below, we describe functions and sub-components of these three components
in detail. To ease understanding of the framework, we show important parameters,
their symbols and their descriptions in Table 6.1. Also, we provide pseudo-code for

major components of Distributed-DCC in Appendix F.
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6.2.1 Ingress Station

Figure 6.3 illustrates sub-components of Ingress station 7 in the framework.
Ingress 4 includes two sub-components: Pricing Scheme and Budget Estimator.

Ingress station ¢ keeps a "current” price vector p;, where p;; is the price for
the flow from ingress ¢ to egress j. So, the traffic using flow ¢ to j is charged the
price p;;. Pricing Scheme is the sub-component that calculates price p;; for each
edge-to-edge flow starting at Ingress 7. It uses allowed flow capacities ¢;; and other
local information (such as Bij), in order to calculate price p;;. The station, then, uses
pi; in negotiations with customers. We will describe a pricing scheme Edge-to-Edge
Pricing (EEP) later in Section 6.3. However, it is possible to implement several
other pricing schemes by using the information available at Ingress 7. Other than
EEP, we implemented another pricing scheme, Price Discovery, which is available
in [6].

Also, the ingress 7 uses the total estimated network capacity C' in calculating
the Ve contract parameter defined in (4.1). Admission control techniques can be
used to identify the best value for V,,,,. We use a simple method which does not
put any restriction on Vj,4z, i.6. Viee = C T where T is the contract length.

Budget Estimator is the sub-component that observes demand for each edge-
to-edge flow. We implicitly assume that user’s “budget” represents user’s demand

(i.e. willingness-to-pay). So, Budget Estimator estimates budget IA)Z-]- of each edge-
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Figure 6.4: Major functions of Egress j.

to-edge traffic flow!®. We will describe a simple algorithm that calculates IA)Z-J- later

in Section 6.2.4.1.

6.2.2 Egress Station j

Figure 6.4 illustrates sub-components of Egress Station j in the framework:
Congestion Detector, Congestion-Based Capacity FEstimator, Flow Cost Analyzer,
and Fairness Tuner.

Congestion Detector implements an algorithm to detect congestion in network
core by observing traffic arriving at Egress j. Congestion detection can be done in
several ways. We assume that interior routers mark (i.e. sets the ECN bit) the data
packets if their local queue exceeds a threshold. Congestion Detector generates a
“congestion indication” if it observes a marked packet in the arriving traffic.

Congestion-Based Capacity Estimator estimates available capacity ¢;; for each
edge-to-edge flow exiting at Egress j. In order to calculate ¢;;, it uses congestion

indications from Congestion Detector and actual output rates p;; of the flows. The

10Note that edge-to-edge flow does not mean an individual user’s flow. Rather it is the traffic
flow that is composed of aggregation of all traffic going from one edge node to another edge node.
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crucial property of Congestion-Based Capacity Estimator is that, it estimates ca-
pacity in a congestion-based manner, i.e. it decreases the capacity estimation when
there is congestion indication and increases when there is no congestion indication.
This makes the prices congestion-sensitive, since Pricing Scheme at Ingress calculates
prices based on the estimated capacity. An example algorithm for Congestion-Based
Capacity Estimator will be described later in Section 6.2.4.2.

Flow Cost Analyzer determines cost of each traffic flow (e.g. number of links
traversed by the flow, number of bottlenecks traversed by the flow, amount of queu-
ing delay caused by the flow) exiting at Egress j. Cost incurred by each flow can be
several things: number of traversed links, number of traversed bottlenecks, amount
of queuing delay caused. We assume that number of bottlenecks is a good repre-
sentation of the cost incurred by a flow. In Appendix D, we define an algorithm
ARBE, which estimates number of bottleneck traversed by a flow. ARBE outputs
estimated number of bottlenecks 7;; traversed by the flow from ingress i to egress j.

LPS, as will be described in the next section, allocates capacity to edge-to-edge
flows based on their budgets. The flows with higher budgets are given more capacity
than the others. So, Egress j can penalize/favor a flow by increasing/decreasing its
budget lA)zJ Fairness Tuner is the component that updates l;,J So, Fairness Tuner
penalizes or favors the flow from ingress ¢ by updating its estimated budget value,

~

ie. by = f(bij,7ij, < parameters >) where < parameters > are other optional
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Table 6.1: List of parameters in Distributed-DCC framework.

| Parameter | Symbol | Description
Contract Length (sec) T Length of contracts
Observation Interval(sec) (0] Time-scale of observations
at Egress about congestion
LPS Interval (sec) L Time-scale of communication
between LPS and provider stations
Edge-to-Edge Price ($/Mb) Dij Unit price for traffic flow from ¢ to j
Budget Estimation ($) bij Estimation for budget of
flow from 7 to j
Updated Budget bij Budget Estimation for flow
Estimation ($) from 7 to j adjusted by Fairness Tuner
Estimated Network C Estimation for total network capacity
Capacity (Mb/s)
Estimated Capacity (Mb/s) Cij Estimation of available
capacity for flow ¢ to j
Allowed Capacity (Mb/s) Cij Capacity given by Capacity
Allocator to flow 7 to j
Flow Input Rate Tij Arrival rate of flow 7 to j
at Ingress (Mb/s) at Ingress i
Flow Output Rate i Departing rate of flow 7 to j
at Egress (Mb/s) at Egress j
Estimated Flow Cost Tij Estimation for amount of cost
incurred by flow ¢ to j
- k Holding time of “congested”
state in ETICA algorithm
Fairness Coefficient Q Tuner for fairness type of Fairness Tuner

parameters that may be used for deciding how much to penalize or favor the flow.
For example, if the flow ingress 7 is passing through more congested areas than the
other flows, Fairness Tuner can penalize this flow by reducing its budget estimation
l;ij. We will describe an algorithm for Fairness Tuner later in Section 6.2.4.4.
Egress j sends ¢;s (calculated by Congestion-Based Capacity Estimator) and

bi;s (calculated by Fairness Tuner) to LPS.
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6.2.3 Logical Pricing Server (LPS)

Figure 6.5 illustrates basic functions of LPS in the framework. LPS receives
information from egresses and calculates allowed capacity c;; for each edge-to-edge
flow. The communication between LPS and the stations take place at every LPS
interval L. There is only one major sub-component in LPS: Capacity Allocator.

Capacity Allocator receives ¢;;s, bijs and congestion indications from Egress
Stations. It calculates allowed capacity c;; for each flow. Calculation of ¢;; values is
a complicated task which depends on internal topology. In general, the flows should
share capacity of the same bottleneck in proportion to their budgets. We will later
define a generic algorithm ETICA for Capacity Allocator in Section 6.2.4.3.

Other than functions of Capacity Allocator, LPS also calculates total available
network capacity C, which is necessary for determining the contract parameter V,,,;
at Ingresses. LPS simply sums ¢;; to calculate C.

LPS can be implemented in a centralized or distributed manner (see Section

6.4.1).

6.2.4 Sub-Components
6.2.4.1 Budget Estimator

At Ingress ¢, Budget Estimator performs a very trivial operation to estimate
budgets lA),-j of each flow starting at Ingress 7. The ingress ¢ basically knows its
current price for each flow, p;;. When it receives a packet it just needs to determine
which egress station the packet is going to. Given that Ingress ¢ has the addresses
of all the egress stations of the same diff-serv domain, it can find out which egress
the packet is going to. So, by monitoring the packets transmitted for each flow, the
ingress can estimate the budget of each flow. Let z;; be the total number of packets
transmitted for flow ¢ to j in unit time, then the budget estimate for the flow ¢
to j is Eij = x;;pi;- Notice that this operation must be done at the ingress rather
than egress, because some of the packets might be dropped before arriving at the
egress. This causes x;; to be measured less, and hence causes l;ij to be less than it

is supposed to be.
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6.2.4.2 Congestion-Based Capacity Estimator

The essence of Congestion-Based Capacity Estimator is to decrease the ca-
pacity estimation when there is congestion indication(s) and to increase it when
there is no congestion indication. In this sense, several capacity estimation algo-
rithms can be used, e.g. Additive Increase Additive Decrease (AIAD), Additive
Increase Multiplicative Decrease (AIMD). We now provide a full description of such
an algorithm.

At Egress j, given congestion indications from Congestion Detector and output
rate f1;; of flows, Congestion-Based Capacity Estimator implements the following al-
gorithm for each flow from Ingress i: Let O be observation intervals at which the
estimator makes an observation about congestion status of the network. The estima-
tor identifies each observation interval as congested or non-congested. Basically, an
observation interval is congested if a congestion indication was received from Con-
gestion Detector during that observation interval. At the end of each observation

interval ¢, the estimator updates the estimated capacity ¢;; as follows:

B * pij(t), congested
¢ij(t — 1)+ A¢, non-congested

where [ isin (0,1), u;;(¢) is the measured output rate of flow ¢ to j during observation
interval £, and A¢ is a pre-defined increase parameter. This algorithm is a variant

of well-known AIMD.

6.2.4.3 ETICA: Edge-to-edge, Topology-Independent Capacity Alloca-
tion
Firstly, note that LPS is going to implement ETICA algorithm as a Capacity
Allocator (see Figure 6.5). So, we will refer to LPS throughout the description of
ETICA below.
At LPS, we introduce a new information about each edge-to-edge flow fi;. A
flow fi; is congested, if egress j has been receiving congestion indications from that
flow recently (we will later define what “recent” is).

Again at LPS, let K;; determine the state of f;;. If K;; > 0, LPS determines
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Figure 6.6: States of an edge-to-edge flow in ETICA algorithm: The
states ¢ > 0 are “congested” states and the state : = 0 is
the “non-congested” state, represented with gray and white
colors respectively.

fij as congested. If not, it determines f;; as non-congested. At every LPS interval

t, LPS calculates Kj;; as follows:

K (t) = ];'7 congestion in ¢ — 1
ij max (0, K;j(t — 1) — 1), no congestion in ¢t — 1

(6.1)

where k is a positive integer. Notice that k parameter defines how long a flow will
stay in “congested” state after the last congestion indication. So, in other words,
k defines the time-line to determine if a congestion indication is “recent” or not.
According to these considerations in ETICA algorithm, Figure 6.6 illustrates states
of an edge-to-edge flow given that probability of receiving a congestion indication in
the last LPS interval is p. Gray states are the states in which the flow is “congested”,
and the single white state is the “non-congested” state. Observe that number of
congested states (i.e. gray states) is equal to k which defines to what extent a
congestion indication is “recent”. !

Given the above method to determine whether a flow is congested or not, we
now describe the algorithm to allocate capacity to the flows. Let F' be the set of all
edge-to-edge flows in the diff-serv domain, and F, be the set of congested edge-to-
edge flows. Let C. be the accumulation of ¢;;s where f;; € F,. Further, let B, be

the accumulation of b;;s where f;; € F,.. Then, LPS calculates the allowed capacity

" Note that instead of setting K;; to k at every congestion indication, several different methods
can be used for this purpose, but we proceed with the method in (6.1).
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for f;; as follows:
o W, Kij>0
Cij, otherwise

The intuition is that if a flow is congested, then it must be competing with other
congested flows. So, a congested flow is allowed a capacity in proportion to its
budget relative to budgets of all congested flows. Since we assume no knowledge
about the interior topology, we can approrimate the situation by considering these
congested flows as if they are passing through a single bottleneck. If knowledge
about the interior topology is provided, one can easily develop better algorithms by
sub-grouping the congested flows that are passing through the same bottleneck.

In short, the ETICA algorithm basically says that a flow in one of its “con-
gested” states gets a share'? of the total capacity of the congested flows (i.e. C.).
If the flow is in its in “non-congested” state, then it uses its own capacity.

If a flow is not congested, then it is allowed to use its own estimated capacity,
which will give enough freedom to utilize capacity available to that particular flow.
Dynamics of the algorithm will be understood more clearly after the simulation

experiments in Section 6.5.

6.2.4.4 Fairness Tuner

We examine the issues regarding fairness in two main cases. We first determine

these two cases and then provide solutions within Distributed-DCC framework.

e Single-bottleneck case: The pricing protocol should charge the same price to
the users of the same bottleneck. In this way, among the customers using the
same bottleneck, the ones who have more budget will be given more rate than
the others. The intuition behind this reasoning is that the cost of providing

capacity to each customer is the same.

12Note that in this definition of ETICA, we defined this “share” as the ratio of b;;/B. which is
based on f;;’s monetary value with respect to monetary value of all congested flows Fi. This is
because our main goal is to “price” effectively. However, one can define this share according to
other criteria (such as equal to all congested flows), which makes it possible to use ETICA as a
rate allocation algorithm.
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o Multi-bottleneck case: The pricing protocol should charge more to the cus-
tomers whose traffic passes through more bottlenecks and cause more costs to
the provider. So, other than proportionality to customer budgets, we also
want to allocate less rate to the customers whose flows are passing through

more bottlenecks than the other customers.

For multi-bottleneck networks, two main types of fairness have been defined:
max-min fairness [44], proportional fairness [42]. In max-min fair rate allo-
cation, all flows get equal share of the bottlenecks, while in proportional fair
rate allocation flows get penalized according to the number of traversed bot-
tlenecks. Depending on the cost structure and user’s utilities, for some cases
the provider may want to choose max-min or proportional rate allocation. So,
we would like to have ability of tuning the pricing protocol such that fairness

of its rate allocation is in the way the provider wants.

For a better understanding of proportional fairness and max-min fairness, we
study them in terms of social welfare maximization with a canonical example in
Appendix E.

To achieve the fairness objectives defined in the above itemized list, we intro-
duce new parameters for tuning rate allocation to flows. In order to penalize flow %
to j, the egress j can reduce IA)U while updating the flow’s estimated budget. It uses

the following formula to do so:

S

A

bij = f(bmv T(t)7 «, Tmin) =

j
Trmin + ('rij (t) - Tmin) * o

where 7;;(t) is the congestion cost caused by the flow ¢ to j, 7., is the minimum
possible congestion cost for the flow, and « is fairness coefficient. Instead of l;ij, the
egress j now sends b;; to LPS. When « is 0, Fairness Tuner is employing max-min
fairness. As it gets larger, the flow gets penalized more and rate allocation gets
closer to proportional fairness. However, if it is too large, then the rate allocation
will move away from proportional fairness. Let a* be the a value where the rate
allocation is proportionally fair. If the estimation r;;(¢) is absolutely correct, then

a* = 1. Otherwise, it depends on how accurate r;;(t) is.
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Assuming that each bottleneck has the same amount of congestion and capac-
ity. Then, in order to calculate r;;(t) and 7y, we can directly use the number of
bottlenecks the flow ¢ to j is passing through. In such a case, rp,;, will be 1 and r;;(t)
should be number of bottlenecks the flow is passing through. ARBE, in Appendix

A, calculates an estimation for r;.

6.3 Edge-to-Edge Pricing Scheme (EEP)

For flow f;;, Distributed-DCC framework provides an allowed capacity c¢;; and
an estimation of total user budget Eij at ingress 7. So, the provider station at ingress
1 can use these two information to calculate price. We propose a simple price formula

to balance supply and demand:

Dij = % (6.2)
Here, Bij represents user demand and c;; is the available supply.

In Chapter 8, we will provide a detailed optimization analysis of this EEP
pricing scheme in Distributed-DCC framework. We will show that the price calcu-
lation formula in (6.2) is optimal for the well-known total user utility maximization
problem. We will also consider effect of different utility functions and elasticities of

users on optimal prices.

6.4 Adaptation of Distributed-DCC to PFCC Architecture
In order to adapt Distributed-DCC to PFCC architecture, LPS must operate

on very low time-scales. In other words, LPS interval must be small enough to
maintain control over congestion, since PFCC assumes no underlying congestion

control mechanism. This raises two issues to be addressed:

e In order to maintain human involvement into the system,intermediate agents

between customers and Ingress stations must be implemented.

e Since LPS must operate at very small time-scales, scalability issues regarding

LPS must be solved.
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As we previously said earlier in Section 1.3, we do not focus on the first problem since
it cannot be addressed within this thesis because of its large size and complexity.
So, we assume that customers are willing to undertake high price variations, and
leave development of necessary intermediate agents for future research. We address

the second problem in the following sub-section.

6.4.1 Scalability

Distributed-DCC operates on per edge-to-edge flow basis. There are mainly
two issues regarding scalability: LPS, the number of flows. First of all, the flows are
not per-connection basis, i.e. all the traffic going from edge router 7 to j is counted
as only one flow. This actually relieves the scalability problem for operations that
happen on per-flow basis. The number of flows in the system will be n(n — 1) where
n is the number of edge routers in the diff-serv domain. So, indeed, scalability of
the flows is not a problem for the current Internet since number of edge routers
for a single diff-serv domain is very small. If it becomes so large in future, then
aggregation techniques can be used to overcome this scalability issue, of course, by
sacrificing some optimality.

Scalability of LPS can be done in two ways. First idea is to implement LPS
in a fully distributed manner. The edge stations exchange information with each
other (similar to link-state routing). Basically, each station will send total of n — 1
messages, each of which headed to other stations. So, this will increase the overhead
on the network because of the extra messages, i.e. the complexity will increase from
O(n) to O(n?) in terms of number of messages.

Alternatively, LPS can be divided into multiple local LPSs which synchronize
among themselves to maintain consistency. This way the complexity of number of
messages will reduce. However, this will be at a cost of some optimality again.

Since these above-defined scaling techniques are very well-known, we do not

focus on detailed description of them.
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Figure 6.7: Results of single-bottleneck experiment for EEP.

6.5 Simulation Experiments and Results

We now present ns [1] simulation experiments of EEP on single-bottleneck
and multi-bottleneck topology. Our goals are to illustrate fairness and stability
properties of the scheme.

The single-bottleneck topology has a bottleneck link, which is connected to
n edge nodes at each side where n is the number of users. The multi-bottleneck
topology has n — 1 bottleneck links, that are connected to each other serially. There
are again n ingress and n egress edge nodes. Each ingress edge node is mutually
connected to the beginning of a bottleneck link, and each egress node is mutually
connected to the end of a bottleneck link. All bottleneck links have a capacity
of 10Mb/s and all other links have 15Mb/s. Propagation delay on each link is

5ms, and users send UDP traffic with an average packet size of 1000B. To ease
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Figure 6.8: Results of EEP experiments on multi-bottleneck topology.

understanding the experiments, each user sends its traffic to a separate egress. For
the multi-bottleneck topology, one user sends through all the bottlenecks (i.e. long
flow) while the others cross that user’s long flow. The queues at the interior nodes
(i.e. nodes that stand at the tips of bottleneck links) mark the packets when their
local queue size exceeds 30 packets. Buffer size is assumed to be infinite. In the
multi-bottleneck topology they increment a header field instead of just marking.
Figure 3.2-a shows a single-bottleneck topology with n = 3. Figure 3.2-b shows
multi-bottleneck topology with n = 4. The white nodes are edge nodes and the
gray nodes are interior nodes. These figures also show the traffic flow of users on
the topology.

The user flow tries to maximize its surplus by contracting for b/p amount of

capacity, where b is its budget and p is price. The flows’s budgets are randomized
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according to truncated-Normal distribution with a given mean value. This mean
value is what we will refer to as flows’s budget in our simulation experiments.

Ingresses send budget estimations to corresponding egresses at every observa-
tion interval. LPS sends information to ingresses at every LPS interval. Contracting
takes place at every 4s, observation interval is 0.8s, and LPS interval is 0.16s. The
parameter k is set to 200, which means a flow is determined to be non-congested at
least after (please see Section 6.2.4.3) 200 LPS intervals equivalent to 8 contracting
intervals.

The parameter A¢ is set to 1 packet (i.e. 1000B), the initial value of ¢;; for
each flow f;; is set to 0.1Mb/s, and £ is set to 0.95.

6.5.1 Experiment on Single-bottleneck Topology

We run simulation an experiment for EEP on the single-bottleneck topology,
which is represented in Figure 3.2-a. In this experiment, there are 3 users with
budgets of 30, 20, 10 respectively for users 1, 2, 3. Total simulation time is 15000s,
and at the beginning only the user 1 is active in the system. After 5000s, the user
2 gets active. Again after 5000s at simulation time 10000, the user 3 gets active.

In terms of results, each flow’s rate is very important. Figure 6.7-a shows the
flow rates. We see the flows are sharing the bottleneck capacity in proportion to
their budgets. Also, Figure 6.7-d shows the estimated capacity ¢;; of flows at LPS.
Observe the correspondence between flow rates in Figure 6.7-a and the estimated
capacities in Figure 6.7-d.

Figure 6.7-b shows the price being advertised to flows. As the new users join
in, EEP increases the price in order to balance supply and demand. Also, we can
see the same dynamic as in the volume allocation graphs.

Figure 6.7-c shows the bottleneck queue size. Notice that queue sizes make
peaks transiently at the times when new users gets active. Otherwise, the queue size
is controlled reasonably and the system is stable. The reason behind the transient
peaks is that the parameter V,,,, is not restricted which allows the newly joining
flow to contract up to all the available capacity. Since multiple flows have this

ability to contract up to the whole capacity, they can potentially contract for the
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whole capacity simultaneously which causes large queues. As we will also mention
in discussions of future work, this is basically an admission control problem, which
is out-of-scope for this particular work.

During the simulation, average utilization of the bottleneck link was more than

90%, and no packet drops were allowed.

6.5.2 Experiments on Multi-bottleneck Topology

On a multi-bottleneck network, we would like illustrate two properties for

EEP:

e Property 1: provision of various fairness in rate allocation by changing the

fairness coefficient o of Distributed-DCC framework

e Property 2: performance of the capacity allocation algorithm in terms of adap-

tiveness (see Section 6.2.4.3)

In order to illustrate Property 1, we run a series of experiments for EEP with
different « values. We use a larger version of the topology represented in Figure
3.2-b. In the multi-bottleneck topology there are 10 users and 9 bottleneck links.
Total simulation time is 10,000s. At the beginning, the user with the long flow is
active. After each 1000s, one of these other users gets active. So, as the time passes
the number of bottlenecks in the system increases since new users with crossing
flows join in. We are interested in the rate of the long flow, since it is the one that
cause more congestion costs than the other user flows.

Figure 6.8-a shows the average rate of the long flow versus the number of
bottlenecks in the system. As expected the long flow gets less and less capacity
as « increases. When o = 0, the scheme achieves max-min fairness. Observe that
when « = 1, rate allocation goes along with proportionally fair rate allocation. This
variation in fairness is basically achieved by advertisement of different prices to the
user flows. Figure 6.8-b shows the average price that is advertised to the long flow
as the number of bottlenecks in the system increases. We can see that the price
advertised to the long flow increases as the number of bottlenecks increases. As «
increases, the scheme becomes more responsive to the long flow by increasing its

price more sharply.
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Finally, to illustrate Property 2, we ran an experiment on the topology in
Figure 3.2-b with small changes. We increased capacity of the bottleneck at node D
from 10 Mb/s to 15Mb/s. There are four flows and three bottlenecks in the network
as represented in Figure 3.2-b. Initially, all the flows have an equal budget of 10.
Total simulation time is 30000s. Between times 10000 and 20000, budget of flow 1 is
temporarily increased to 20. The fairness coefficient « is set to 0, and the parameter
k is set to 25 which is equal to one contracting period. All the other parameters are
exactly the same as in the single-bottleneck experiments of the previous section.

Figure 6.8-¢c shows the given volumes averaged over 200 contracting periods.
Similarly, Figure 6.8-d shows the advertised prices averaged over 200 contracting
periods. Until time 10000s, flows 0, 1, and 2 share the bottleneck capacities equally
presenting a max-min fair allocation because o was set to 0. However, flow 3 is
getting more than the others because of the extra capacity at bottleneck node D.
This flexibility is achieved by the freedom given to individual flows by the ETICA
capacity allocation algorithm (see Section 6.2.4.3). Note that the parameter k plays
a crucial role in terms of functioning of the ETICA algorithm. In general, k should
be small for multi-bottleneck topologies and large for single-bottleneck topologies.
We will later show importance of k by extensive simulations in Chapter 9.

Between times 10000 and 20000, flow 2 gets a step increase in its allocated
volume because of the step increase in its budget. In result of this, flow 0 gets a step
decrease in its volume. Also, flows 2 and 3 adapt themselves to the new situation
by attempting to utilize the extra capacity leftover from the reduction in flow 0’s
volume. So, flow 2 and 3 gets a step decrease in their volumes. After time 20000,
flows restore to their original volume allocations, illustrating the adaptiveness of the

scheme.

6.6 Summary

In this chapter, we presented Distributed-DCC framework, which is an ex-
tension of DCC in Chapter 4, for congestion pricing in a single diff-serv domain.
Particularly, we considered the PFCC architecture within Distributed-DCC frame-
work. We will study the POCC architecture in the next chapter.
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Distributed-DCC can provide a contracting framework based on short-term
contracts between user application and the service provider. By simulation, we
showed stability of Distributed-DCC framework. We investigated fairness issues
within Distributed-DCC and illustrated ways of achieving a range of fairness types
(i.e. from max-min to proportional) through congestion pricing under certain con-
ditions. The fact that it is possible to achieve various fairness types within a sin-
gle framework is very encouraging. By using the EEP pricing scheme within the
Distributed-DCC framework, we presented several simulation experiments showing
the framework’s performance.

To prevent confusions, we would like to stress that Distributed-DCC frame-
work does not aim to replace end-based congestion control or traffic engineering
techniques. These end-based traffic engineering techniques operate on the order of
RTTs, i.e. milliseconds. However, Distributed-DCC operates on the order of short-
term contracts, i.e. minutes. Also, Distributed-DCC operates at network “edge”’s
rather than network “end”s. Notice that this does not conflict with already deployed
end-based congestion control algorithms such as TCP.

Future work should include investigation of issues related to extending Distributed-
DCC on multiple diff-serv domains. Another future work item is to introduce soft
admission control techniques in the framework by properly tuning the contract pa-
rameter V... Currently, V.. is set to total network capacity, which allows indi-
vidual flows to contract for significantly larger than the network can handle. Several
other improvements are possible to the framework such as better congestion-based
capacity estimation techniques (see Section 6.2.4.2), better budget estimation tech-

niques (see Section 6.2.4.1).



CHAPTER 7
DISTRIBUTED-DCC:

Pricing over Congestion Control (POCCQC)

7.1 Introduction

In the previous chapter we presented basics of Distributed-DCC along with
experimental proof for its fairness and stability. There, in the previous chapter,
we described Distributed-DCC framework based on the PFCC architecture. In
this chapter we focus on overlaying Distributed-DCC over edge-to-edge congestion
control schemes, i.e. the POCC architecture.

Among many others, one major implementation obstacle can be defined as
the need for frequent price updates. This is relatively very hard to achieve in a wide
area network such as the Internet, since users need to be informed about every price
update. In [11], the authors showed that users do need feedback about charging of
the network service (such as current price and prediction of service quality in near
future). However, in Chapter 5, we illustrated that congestion control by pricing
cannot be achieved if price changes are performed at a time-scale larger than roughly
40 round-trip-times (RTTs). This means that in order to achieve congestion control
by pricing, service prices must be updated very frequently (i.e. 2-3 seconds since
RTT is expressed in terms of milliseconds for most cases in the Internet).

We propose a new pricing architecture as a novel solution: Pricing over Con-
gestion Control (POCC). POCC overlays pricing on top of an underlying congestion
control mechanism to make sure congestion is controlled at low time-scales. This
way the pricing mechanism on top can operate at larger time-scales, which makes
human involvement possible.

Since Distributed-DCC is a pricing framework specifically designed for edge-
to-edge structure, we particularly focus on diff-serv [27] architecture. So, we use an
available “edge-to-edge” congestion control mechanism (Riviera [36, 37]) in order to
present the idea of pricing overlay over congestion control. We present simulation

results for Distributed-DCC over Riviera, and illustrate benefits of overlay pricing
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on top of congestion control.

This chapter is organized as follows: In Section 7.2, we briefly describe an edge-
to-edge congestion control mechanism (Riviera), which we will use later in simulation
experiments. Next in Section 7.3, we present POCC ideas in detail and describe
solutions to potential problems. In Section 7.4, we present simulation experiments
of Distributed-DCC over Riviera and evaluate POCC ideas by comparison to PFCC.

We finalize with summary and discussions.

7.2 Edge-to-Edge Congestion Control: Riviera

We now describe overall properties of an edge-to-edge congestion control scheme,
Riviera [36, 37|, which we will also use in our experiments later in the chapter.

Riviera takes advantage of two-way communication between ingress and egress
edge routers in a diff-serv network. Ingress sends a forward feedback to egress in
response to feedback from egress, and egress sends backward feedback to ingress
in response to feedback from ingress. So, ingress and egress of a traffic flow keep
bouncing feedback to each other. Ignoring loss of data packets, the egress of a
traffic flow measures the accumulation, a, caused by the flow by using the bounced
feedbacks and RT'T estimations.

The egress node keeps two threshold parameters to detect congestion: max_thresh
and min_thresh. For each flow, the egress keeps a variable that says whether the
flow is congested or not. When a for a particular flow exceeds maz_thresh, the
egress updates the variable to congested. Similarly, when a is less than min_thresh,
it updates the variable to not-congested. It does not update the variable if a is in
between max_thresh and min_thresh. The ingress node gets informed about the
congestion detection by backward feedbacks and employs AIMD-ER, (i.e. a variant
of regular AIMD) to adjust the sending rate.

In a single-bottleneck network, Riviera can be tuned such that each flow gets
weighted share of the bottleneck capacity. The ingress nodes maintain an additive
increase parameter, «, and a multiplicative decrease parameter, (3, for each edge-to-
edge flow. These parameters are used in AIMD-ER. Among the edge-to-edge flows,

by setting the increase parameters («) at the ingresses and the threshold parameters
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(a) without congestion control (b) with congestion control

Figure 7.1: Different pricing architectures with/without edge-to-edge
congestion control.

(max_thresh and min_thresh) at the egresses in ratio of desired rate allocation, it
is possible to make sure that the flows get the desired rate allocation. For example,
assume there are two flows 1 and 2 competing for a bottleneck (similar to Figure
3.2-a). If we want flow 1 to get a capacity of w times more than flow 2, then the

following conditions must be hold:
1. Qo = W (1
2. max_threshy, = w max_thresh;

3. min_threshs = w min_threshy

7.3 Pricing over Congestion Control (POCC)

The essence of POCC is to overlay pricing on top of congestion control, which
is a novel approach. Assuming that there is an underlying edge-to-edge congestion
control scheme, we can set the parameters of that underlying scheme such that
it leads to fairness and better control of congestion. The pricing scheme on top
can determine users’s willingness-to-pay and set the parameters of the underlying
edge-to-edge congestion control scheme accordingly. This way, it will be possible
to favor some traffic flows with higher willingness-to-pay (i.e. budget) than the

others. Furthermore, the pricing scheme will also bring benefits such as an indirect
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control on user demand by price, which will in turn help the underlying edge-to-
edge congestion control scheme to operate more smoothly. However the overall
system performance (e.g. fairness, utilization, throughput) will be dependent on
the flexibility of the underlying congestion control mechanism.

Figure 7.1 illustrates the difference between a POCC architecture and a regular
pricing architecture without underlying congestion control. We now first describe
the problems raised by POCC architecture in diff-serv environment, then describe
Distributed-DCC (i.e. an edge-to-edge pricing mechanism) and Riviera (i.e. an edge-
to-edge congestion control mechanism), and then provide solutions to the problems

for overlaying Distributed-DCC over Riviera.

7.3.1 POCC: Problems

In diff-serv environment, overlaying pricing on top of congestion control raises

two major problems:

1. Parameter mapping: Since the pricing scheme wants to allocate network ca-
pacity according to the users’s willingness-to-pay (i.e. the users with greater
budget should get more capacity) that changes dynamically over time, it is a
required ability to set corresponding parameters of the underlying edge-to-edge
congestion control mechanism such that it allocates the capacity to the user
flows according to their willingness-to-pay. So, this raises need for a method of
mapping parameters of the pricing scheme to the parameters of the underlying
congestion control mechanism. Notice that this type of mapping requires the
congestion control mechanism to be able to provide parameters that tunes the

rate being given to the edge-to-edge flows.

2. Edge queues: The underlying congestion control scheme will not always allow
all the traffic admitted by the pricing scheme, which will cause queues to build
up at the network edges. So, management of these edge queues is necessary
in POCC architecture. Figures 7.1-a and 7.1-b compare the situation of the
edge queues in the two cases when there is an underlying congestion control
scheme and when there is not. Notice that this problem is very similar to

inventory management problem. The packets in the edge queue correspond
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‘ DISTRIBUTED-DCC: PFCC

‘ DISTRIBUTED-DCC: POCC

LPS must operate at small time-scales

LPS may operate at large time-scales

LPS must be scaled because of its
operational time-scale

It is not necessary to scale LPS

Framework can achieve a range of
fairness in rate allocation

Fairness of rate allocation is limited
and depends on the underlying
congestion control mechanism

Bottleneck queues at network
core are large

Bottleneck queues at network
core are small

Does not need to manage
queues at network edges

Need to manage queues
at network edges

to items in the inventory. Customer(s) is the variable capacity pipe, provided
by the underlying congestion control scheme, that consumes the packets by
transmitting them. Ordering of new items corresponds to reducing the price

of the network service.

Other than the above two major problems, another problem is that the over-
all performance of the system will be dependent on not only the pricing scheme’s
performance, but also the performance of the underlying congestion control scheme.
For instance, if the underlying congestion control scheme does not allow the network
to be utilized more than 80%, then the utilization provided by the overall system
will be limited by 80%. Also, if the underlying congestion control scheme is unable
to provide some fairness types (e.g. max-min fairness) in the rate allocation, then

the overall system will not be able to provide those fairness types.

7.3.2 POCC: Solutions for Distributed-DCC over Riviera

Adaptation of Distributed-DCC to POCC architecture has differences from
adapting it to PFCC architecture. Table 7.1 lists the major differences of two. Sim-
ilarly, Figure 7.2 shows the time-scales for PFCC and POCC versions of Distributed-

DCC. Observe that LPS interval is supposed to be less than contracting interval in
the case of PFCC, while it can be larger in the case of POCC.
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PFCC Time-Scale

POCC Time-Scale

v

v

Figure 7.2: Time-scales of various parameters in Distributed-DCC for
PFCC and POCC architectures.

For the case of Distributed-DCC over Riviera, we now provide solutions to
the two major problems raised by overlaying pricing over edge-to-edge congestion

control:

1. Parameter mapping: For each edge-to-edge flow, Distributed-DCC can calcu-
late the capacity share of that flow out of the total network capacity. Let
vi; = ¢i;/C be the fraction of network capacity that must be given to the
flow 7 to j. Distributed-DCC can convey v;;s to the ingress stations, and they
can multiply the increase parameter a;; with 7;;. Also, Distributed-DCC can
communicate ;;s to the egresses, and they can multiply max_thresh;; and
min_thresh;; with ;;. This solves the parameter mapping problem defined in

Section 7.3.1.

2. Edge queues: We now propose solutions to the second problem, i.e. man-
agement of edge queues. In Distributed-DCC, ingress stations maintain an
estimation of available capacity for each edge-to-edge flow. So, one intuitive
way of making sure that the user will not contract for more than the amount
that the network can handle is to subtract necessary capacity to drain the al-

ready built edge queue from the estimated edge-to-edge capacity c;;, and then
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make contracts accordingly. In other words, the ingress station updates the
estimated capacity for flow 7 to j by the following formula ci; = c;j — Qy; /T,
and uses ¢;; for price calculation. Note that @) is the actual edge queue length,

and 7T is the length of the contract.

Within Distributed-DCC framework, one can also employ another technique to
manage the edge queues. Remember that the egress nodes are making capacity
estimation depending on if marked packets have arrived or not. Specifically,
they reduce the estimated capacity of a flow to a fraction of its current output
rate, when a marked packet was received in the last observation interval. So,
the provider station at the ingress can mark the packets if size of the edge
queue exceeds a threshold. This will indirectly reduce the capacity estimation,
and hence drain the edge queue. Notice that it is also possible to employ this
method simultaneously with the method described in the previous paragraph.
In the simulation experiments of the next section we employ both of them

simultaneously.

7.4 Simulation Experiments and Results

We now present ns [1] simulation experiments of Distributed-DCC over Riviera
on single-bottleneck topology, in order to illustrate POCC ideas. We also make
comparative evaluation of PFCC and POCC by using the PFCC results in Section
6.5.

We run simulation experiments for POCC on the single-bottleneck topology,
which is represented in Figure 3.2-a. The experiment configuration is exactly the
same as the experiment configuration for the single bottleneck topology in Section
6.5. However, there is an additional component in the simulation: edge queues. The
edge queues mark the packets when queue size exceeds 200 packets. So, in order to
manage the edge queues in this simulation experiment, we simultaneously employ
the two techniques defined in the previous section.

There are 3 users with budgets of 30, 20, 10 respectively for users 1, 2, 3.
Total simulation time is 15000s, and at the beginning only the user 1 is active in the

system. After 5000s, the user 2 gets active. Again after 5000s at simulation time
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10000, the user 3 gets active.

In terms of results, the volume given to each flow is very important. Figures
6.7-a and 7.3-a show the flow rates in PFCC and POCC respectively. We see the
flows are sharing the bottleneck capacity almost in proportion to their budgets. In
comparison to POCC, PFCC allocates the rate more smoothly to the flows but
with the same proportionality. The noisy volume allocation in POCC is caused by
coordination issues (i.e. parameter mapping, edge queues) investigated in Section
7.3.1.

Figure 7.3-b shows the price being advertised to flows in POCC. As the new
users join in, the pricing scheme increases the price in order to balance supply and
demand.

Figures 6.7-c and 7.3-c shows the bottleneck queue size in PFCC and POCC
respectively. Notice that queue sizes make peaks transiently at the times when new
users gets active. Otherwise, the queue size is controlled reasonably and the system is
stable. In comparison to PFCC, POCC manages the bottleneck queue much better
because of the tight control enforced by the underlying edge-to-edge congestion
control algorithm Riviera. The results follows with the big picture presented in
Figure 7.1.

Figures 6.7-d and 7.3-d show the instantaneous estimated capacity ¢;; param-
eter for the flows respectively in PFCC and POCC. We observe more variance in the
case of POCC, which is again caused by the interaction between the pricing scheme
and the underlying congestion control mechanism.

Figures from 7.4-a to 7.4-c show the sizes of edge queues in Distributed-DCC
over Riviera. We can observe that users get active at 5000s of intervals. We observe
stable behavior but with oscillations larger than the bottleneck queue illustrated in
Figure 7.3-c. This is because of the tight edge-to-edge congestion control, which
pushes backlog to the edges.

Also, observe that the edge queues are generally much lower than the threshold
of 200 packets. This means that the packets were marked at the edge queues very
rarely. So, the technique of marking the packets at the edges and reducing the

estimated capacity indirectly was not dominant in this simulation. Rather, the
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Figure 7.3: Results of single-bottleneck experiment for POCC.

technique of reducing the estimated capacity directly at the ingress was dominant
in terms of handling of edge queues (please refer to the previous section for full
understanding of these two techniques). This raises the issue of what exactly should

the edge queue threshold be? This is a topic for further research.

7.5 Summary

In this chapter, we presented a new architecture to implement congestion pric-
ing in large networks. We proposed Pricing over Congestion Control (POCC) as a
novel approach in order to solve the time-scale problem of pricing. By comparative
evaluation, we showed that POCC performs better in terms of managing conges-
tion in network core because of the tight (low time-scale) control enforced by the

underlying congestion control mechanism.
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Figure 7.4: Edge queues in the single-bottleneck experiment for POCC.

Given that edge-to-edge congestion control mechanisms are available and can
manage congestion in finer time-scales than pricing, we have studied issues related
to overlaying pricing over edge-to-edge congestion control schemes. We defined
two major problems: First one is parameter mapping between the overlaid pricing
scheme and the underlying edge-to-edge congestion control scheme. The second one
is management of edge queues raised by excessive traffic that is not allowed into the
network because of tight control of the underlying congestion control scheme.

We provided solutions to the outlined problems within Distributed-DCC frame-
work. In order to overlay Distributed-DCC on top of an edge-to-edge congestion
control scheme, it is necessary that the edge-to-edge congestion control scheme pro-
vides parameter(s) that can be set dynamically for tuning the rate allocation to

edge-to-edge flows. We finally presented simulations of Distributed-DCC over Riv-
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iera [36, 37], which is an edge-to-edge congestion control scheme developed by Har-
rison et al.

Future research should focus on finding better algorithms for management of
edge queues, and investigating issues related to extending POCC ideas on multiple
diff-serv domains. Also, POCC ideas should be tested with edge-to-edge pricing and

congestion control schemes other than Distributed-DCC and Riviera.



CHAPTER 8
OPTIMIZATION ANALYSIS OF

EDGE-TO-EDGE PRICING (EEP)

8.1 Introduction

In Chapters 4 and 6, we described and used a pricing scheme, EEP, within
DCC and Distributed-DCC frameworks respectively. The main idea of the EEP is
to balance supply and demand by equating price to the ratio of users’ budget (i.e.
demand) B by available capacity C. We developed methods of estimating users’

budget and available capacity. Based on that, we used the pricing formula:

p:

ol &

(8.1)

where B is the users’ estimated budget and C is the estimated available network
capacity. The capacity estimation is performed based on congestion level in the
network, and this makes the EEP scheme a congestion-sensitive pricing scheme (see
Section 6.2.4.2).

In this chapter, we will provide theoretical proof that (8.1) is optimal in the
case of logarithmic user utilities. Further we will also show how to calculate optimal
prices in the case of non-logarithmic® concave utilities.

We will also investigate users’ elasticity to price and bandwidth. Specifically,
we will first define different types of user elasticities, and then look at effect of these
elasticities on optimal prices.

The chapter is organized as follows: First in Section 8.2, we define the op-
timization problem of total user utility maximization and split it into two sub-
problems by following Kelly et al.’s [42] work. Next in Section 8.3, we solve the
sub-problems for the case of logarithmic utility functions for user flows. Then we

define utility-bandwidth elasticity and its relationship to demand-price elasticity in

I3Note that non-logarithmic does not mean convex utility functions. Our proofs are valid only
for concave utility functions.
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Section 8.4. In Section 8.5, based on the elasticity definitions in Section 8.4, we de-
fine a general non-logarithmic utility function and re-solve the optimization problem
for this utility function of flows. Finally, we summarize the work in this chapter in

Section 8.6.

8.2 Problem Formulation

We now formulate the problem of total user utility mazimization for a multi-
user multi-bottleneck network. Another problem formulation for such a network is
the social welfare maximization. These two formulations aim to optimize different
things, but we show that both result in the same optimal price formulas under
certain conditions. In this chapter we formulate and solve the former problem. Since
formulation and solution to the latter problem is very similar, they are provided in
Appendix B.

Also, note that optimization problem being solved is based on the assumption
that each link in the network has an associated local price, just like in Low et al.’s
[47] pricing framework. Notice that this violates the fundamental design principles
of Distributed-DCC framework. This means our optimization study of EEP here is
theoretically correct while Distributed-DCC framework trades off some optimality
for implementation purposes. We now return back to formulation of the optimization
problem in order to address the price calculation in EEP, which is a pricing scheme
that was proposed in Chapter 6 for Distributed-DCC framework.

Let F' = {1, ..., F'} be the set of flows and L = {1, ..., L} be the set of links in
the network. Also, let L(f) be the set of links the flow f passes through and F(()
be the set of flows passing through the link /. Let ¢; be the capacity of link /. Let A
be the vector of flow rates and A; be the rate of low f. We can formulate the total
user utility maximization problem as follows:

SYSTEM :

mf}xzf:Uf()‘f)

subject to
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oA <@, 1=1,..,L (8.2)
fEF()

This problem can be divided into two separate problems by employing monetary ex-
change between user flows and the network provider. Following Kelly’s [41] method-
ology we split the system problem into two:

The first problem is solved at the user side. Given accumulation of link prices
on the flow f’s route, p/, what is the optimal sending rate in order to mazimize

surplus.

FLOW,(p/) :

II}\E;X{UJ: )\f Z pl/\f}

leL(f

over
Ar>0 (8.3)

The second problem is solved at the provider’s side. Given sending rate of
user flows (which are dependent on the link prices), what is the optimal price to

advertise in order to mazximize revenue.
NETWORK()\(pf)) :

maxz Z pl)\f

I IeL(f)

subject to

o <, 1=1,..,L
fEF()

over
p=>0 (8.4)

Let the total price paid by flow f be p/f = Yier(p P~ Then, solution to
FLOW;(p’) will be:

Up(Af) =

M) = U (0) (8.5)
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When it comes to the NETWORK (A(p/)) problem, the solution will be de-
pendent on user flows utility functions since their sending rate is based on their
utility functions as shown in the solution of FLOW;(p’). So, in the next sections
we will solve the NETWORK (A(p/)) problem for the cases of logarithmic and

non-logarithmic utility functions.

8.3 Optimal Prices: Logarithmic Utility Functions

We model customer 4’s utility with the well-known function * [42, 44, 58, 47]
ui(z) = wilog(z) (8.6)

where z is the allocated bandwidth to the customer and w; is customer ¢’s budget
(or bandwidth sensitivity).

Now, we set up a vectorized notation, then solve the revenue maximization
problem NETWORK (\(p’)) described in the previous section. Assume the net-
work includes n flows and m links. Let A be row vector of the flow rates (A for
f € F), P be column vector of the price at each link (p, for [ € L). Define the n x n
matrix P* in which the diagonal element P;; is the aggregate price being advertised
to flow j (i.e. p! = Yier) m) and all the other elements are 0. Also, let A be the
n X m routing matrix in which the element A;; is 1 if ith flow is passing though jth
link and the element A;; is 0, if not, C' be the column vector of link capacities (¢
for [ € L). Finally, define the n X n matrix ) in which the diagonal element S\jj is
the rate of flow j (i.e. A;; = A;) and all the other elements are 0.

Given the above notation, relationship between the link price vector P and

the flow aggregate price matrix P* can be written as:
AP = P’e (8.7)

A= (Ae)T =€l A

where e is the column unit vector.

14Wang and Schulzrinne introduced a more complex version in [79].
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We use the utility function of (8.6) in our analysis. By plugging (8.6) in (8.5)

we obtain flow’s demand function in vectorized notation:
AP*)=wpt (8.8)

where W is row vector of the weights w; in flow’s utility function (8.6). Similarly,

we can write derivative of (8.8) as:
N(P*) = -W(P**)~! (8.9)

Also, we can write the utility function (8.6) and its derivative in vectorized

notation as follows:

U\ = Wlog()) (8.10)
U'(\)=WA!

The revenue maximization of (8.4) can be re-written as follows:
mlng = MAP

subject to

2 < CT. (8.12)

So, we write the Lagrangian as follows:
L=XAP+ (CT — \A)y (8.13)

where v is column vector of the Lagrange multipliers for the link capacity constrain.
By plugging (8.8) and (8.9) in appropriate places, the optimality conditions

for (8.13) can be written as:
L,:C" —WP'A=0 (8.14)

Lp. : =W(P*)'P*e+ WP* e = W(P**)'Ay =0 (8.15)



By solving 8.15 for P*, we obtain:

—P*'Pe4+Te— P Ay =0
—P* Ay =0
P*=0

Now, solve (8.14) for P*:

Ct—wPtA=0
CTA'P*=W
P* = A(CT)"'W
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(8.16)
(8.17)
(8.18)

(8.19)
(8.20)
(8.21)

Apparently, the optimization problem has two solutions as shown in (8.18) and

(8.21). Since (8.18) violates the condition P > 0, we accept the solution in (8.21).

We finally derive P by using (8.7):

AP = P*e = A(C")"'We
P=(C""'We

Since P* = (P*)!, we can derive another solution:

AP = Pe=WTC1ATe
P=A""WTCc1AT¢

Notice that the result in (8.23) holds for a single-bottleneck (i.e. single-link)

network. In non-vectorized notation, this results translates to:

2 fer Wy
p=7fec

The result in (8.25) holds for a multi-bottleneck network. This result means

that each link’s optimal price is dependent on the routes of each flow passing through

that link. More specifically, the optimal price for link [/ is accumulation of budgets
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of flows passing through link [ (i.e. W7 AT in the formula) divided by total capacity
of the links that are traversed by the flows traversing the link [ (i.e. A~'C~! in the

formula). In non-vectorized notation, price of link [ can be written as:

o= Lfer() Wy
2 rer () ZkeL(s) Ck

8.4 Elasticity

The term elastic was first introduced to the networking research community by
Shenker [69]. Shenker called applications that adjust their sending rates according
to the available bandwidth as “elastic applications”, and the traffic generated by
such applications as “elastic traffic”. An example of such traffic is the well-known
TCP traffic, which is adjusted according to the congestion indications representing
decrease in the available bandwidth. Shenker, further, called applications that do
not change their sending rates according to the available bandwidth as “inelastic”.
So, this interpretation of elasticity is the same as adaptiveness, i.e. an application
is elastic if it adapts its rate according to the network conditions, it is inelastic if it
does not.

The concept of elasticity originates from the theory of economics. In eco-
nomics, demand elasticity according to price'® is defined as percent change in de-
mand in response to a percent change in price [75]. In other words, demand elasticity
is the responsiveness of the demand to price changes. A formal definition of demand

elasticity can be written as [75]:

_ AX(p)/X(p)

Ny (8.26)

where p is price, Ap is the change in the price, X (p) is user’s demand function, and

AX (p) is the change in user’s demand. (8.26) can be re-written as:

__p dX(p)
X(p) dp
15Demand elasticity can be defined according to several things other than price (e.g. time of

service, delay of service). In the rest of the text, we will refer to demand elasticity to price when
we say demand elasticity.

(8.27)
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Given ¢, the characteristic L. of user demand is made according to the follow-

ing functional definition [75]:

elastic, |e| >1
Le =4 unit elastic, |e| =1

inelastic, |e| <1

So, Shenker’s interpretation of elasticity for user utility is actually different
from the real meaning of elasticity in economics. Note that Shenker defined elasticity
of user utility (or application utility) according to bandwidth, let’s call it €. Let u(z)
be user’s utility if he is given  amount of bandwidth. Then, following the argument
in (8.27), we can write € as:

x du(z)

€ = m . (8.28)

According to Shenker’s interpretation, the functional definition for L. (i.e.

characteristic of user’s utility according to bandwidth) will be as follows:

wnelastic, € =0
L= elastic, € # 0 & user utility is concave

not defined, € # 0 & user utility is convex

Obviously, L, is a lot different than L.. Basically, L, interprets elasticity as respon-
siveness while L, does it as adaptiveness.
We can construct the relationship between e and ¢, given that the user solves

the well-known maximization problem:
max {u(z) — zp}

The solution to the above problem is u'(z) = p. So, given a price p, the user selects
his demand such that his marginal utility equals to p. Based on that relationship
between the utility function u(z) and the demand function X (p), we can construct
the relationship between the demand-price elasticity £ and the utility-bandwidth €
elasticity. In the next sub-sections we will formulate the relationship between these

elasticities.
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Demand-Price Elasticity

Utility-Bandwidth Elasticity
N o

£, \ ) \
. ) \
. ) |

-4 -2 0 2 4 -4 -2 0 2 4
Demand-Price Elasticity Utility-Bandwidth Elasticity
(a) Utility-bandwidth elasticity e. (b) Demand-price elasticity .

Figure 8.1: Utility-bandwidth elasticity ¢ and demand-price elasticity ¢
with respect to each other.

8.4.1 Utility-Bandwidth Elasticity e
Let X (p) = Ap® where € # 0 and € # —1. Then,

p=u'(z) = A Vegtle

1
u(z) = A/° (— + 1) /et
£

So,

1
e=g—|—1, e£0&e# -1

Figure 8.1-a plots € with respect to ¢.

8.4.2 Demand-Price Elasticity ¢
Let u(x) = Bxz® where € # 1. Then,

u'(z) = p = Aext!

So,
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Figure 8.1-b plots € with respect to e.

8.5 Optimal Prices: Non-Logarithmic Utility Functions

In Section 8.3, we derived optimal prices for the revenue maximization problem
NETWORK (\(p?)). In that derivation users demand-price elasticity ¢ was -1
(see (8.8)), which means users had unit elastic demands. Now, we re-perform the
derivation by assuming that users have a utility-bandwidth elasticity of €, where
users’ demand-price elasticity is € = 1/(e — 1) based on the study in the previous
section. Also, note that 0 < € < 1 must be satisfied in order to make sure concavity
of the utility function.

First, let B be row vector of the weights that are different for each flow’s utility
function, and B be an (n x n) matrix in which the element Bj; is the weight of flow
7 and all the other elements are zero.

We use a generic utility function. The function and its derivative is as follows:

U(\) = BX (8.29)
U'(A) = BeA* (8.30)

According to the relationship between € and ¢ described in Section 8.4.1, we

can write the demand function and its derivative as follows:
AP*) = e B~ P (8.31)
Similarly, we can write derivative of (8.31) as:
N(P*) = e e’ B P (8.32)

For the revenue maximization problem, we again solve the Lagrangian in (8.13)
but for the new demand function of (8.31). By plugging (8.31) and (8.32) in appro-

priate places, the optimality conditions for (8.13) can be written as:

L,:CT —c%e’B*P*A=0 (8.33)

Y



Lp- : € ce’ B*P* 7 (P*e — Ay) + ¢ e’ B*P*e =0 (8.34)

By solving (8.34) for P*, we obtain:

g’ B P* 7 (P*e — Ay) + e’ B *P**¢ = 0 (8.35)
eP* ' (P*e — Ay) + P*e =0 (8.36)
eP* Y (P'e— Ay) + Te =0 (8.37)
ele—eP* Ay +Ie=0 (8.38)
(e+1)Ie=eP* Ay (8.39)
£
Pre = A A4
‘ e+1 7 (8.40)
1
P* = —Aye™! (8.41)
€
Now, apply (8.41) into (8.33) and solve for ~:
T —e,TnR—¢ 1 -1 :
C"=¢€¢“e'B (—A’ye ) A (8.42)
€
A 1 €
eB(el)teTA™ = (—A'ye_1> (8.43)
€
1 -1 —1/e(T\1/e(,T\—1/e 13
ZA’ye =eAT/5(CT) /5 (") /B (8.44)
Substitute (8.44) into (8.41) and we obtain P*:
P* = eA7YE(CT) e () VB (8.45)
From (8.45) we obtain P:
AP = P*e = eA"Y*(CT)V¢(eT) Y Be (8.46)
P=eA™tA7Ve(CT )1/5(eT) /2 Be (8.47)
P=cA AV ((C )‘1/8) (e7)1V/5 Be (8.48)
P = eA7 AV (7YY T () rel (BE) (8.49)

The result in (8.48) implies the same thing as in the case of logarithmic utility
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functions except that the link capacities must be taken more conservatively depend-
ing on the elasticity (e or ¢ by choice) of flows. Observe that as flows demand-
price elasticity € gets higher, the capacity must be taken more conservatively based
on the formula (CT)IY/¢l. Also observe that as flows utility-bandwidth elasticity e
gets higher, the capacity must be taken more conservatively based on the formula
(CT)V/el = (CT)le-1l,

Based on (8.49) we can write the optimal price formulas for single-bottleneck

and multi-bottleneck cases respectively as follows in non-vectorized form:

[1/€]
Y fer Wi
p—e( .

le| 1/e]
_ 2 er() Wy
b =€
2o fer(l) 2-keL(f) Ck

8.6 Summary

In this chapter, we analyzed the optimality of EEP pricing scheme which we
developed within Distributed-DCC framework. We proved that EEP is optimal
in the case of logarithmic user utility functions by solving the total user utility
maximization problem for the system.

Then, we revised the term elasticity in the area of networking, and defined
utility-bandwidth elasticity. We also determined relationship between utility-bandwidth
elasticity and the well-known demand-price elasticity. Based on the investigation of
elasticity, we then defined a non-logarithmic form of utility functions which include
elasticity as a parameter. Considering the newly defined non-logarithmic utility
functions, we re-solved the optimization problem of total user utility maximization,
and showed that EEP is still optimal with minor changes to its price calculation.

We also showed the major differences between Distributed-DCC framework
and well-known optimal pricing frameworks (e.g. Low’s [47], Kelly et al.’s [42]) in

terms of trade-off between optimality and deployability.



CHAPTER 9
OPTIMIZATION ANALYSIS OF DISTRIBUTED-DCC

9.1 Introduction

Previously in Chapter 6, we presented the Distributed-DCC framework. In
this chapter, we focus on analyzing Distributed-DCC in terms of various aspects.

In Chapter 6, we experimentally showed that Distributed-DCC has ability to
achieve multiple fairness types in rate allocation under certain conditions. Here in
this chapter, we will provide the theoretical reasoning behind this ability. Also,
we will look at how much effect each key parameter has on Distributed-DCC’s
performance.

The chapter is organized as follows: In Section 9.2, we study theoretical reason-
ing behind Distributed-DCC’s fairness capabilities. In Section 9.3, by several sim-
ulations, we investigate Distributed-DCC’s sensitivity to several parameters, such
as contract length, LPS interval, budget ratio of flows. Finally, we summarize the

chapter in Section 9.4.

9.2 Fairness

In Chapter 6, we provided experimental proof that a provider in Distributed-
DCC framework can achieve various types of fairness by tuning the parameter . In
this section, we will explain the theory behind this fairness ability in Distributed-
DCC. Note that the theoretical analysis in this section will be based on the as-
sumption of logarithmic utility functions and the provider employs the EEP pricing
scheme. The analysis can be extended to all concave utility functions given that the
provider employs an appropriate pricing scheme.

Let u;(A;) = wilog()\;) be flow ¢’s utility when it is given a bandwidth of A;. Let
a; be the actual effective capacity for flow ¢ on its route. Let r; be the real number
of bottlenecks flow i passes through. Also, let p;(t) be the actual probability of flow

i being congested!'®. According to the notation of Distributed-DCC, we can write

16 According to the Distributed-DCC algorithms, notice that p;(t) — 1 when 8 — 1 or k — oo.
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the followings for flow ¢:

0 = w 0.
é(t) — Pa; (9.2)
fi(t) — 7 (9.3)
ut) = 1—1—04?;52)—1) (9-4)
60 = A O + (1= pl0]a(0 95
c) = L) 99
Bl = ¥l 07

According to algorithms in Distributed-DCC, the network will calculate flow

1’s actual price as follows:
bi(t)
¢i(t)

Notice that this above price formulation is not optimal because it may not be an

pi(t+1) = (9.8)

exact solution to problem (8.4). However, it is the formulation based on edge-to-
edge capabilities of Distributed-DCC. For further understanding of this formulation
reader should refer to the Distributed-DCC paper.

Given the price formulated in (9.8), flow 7 solves the problem (8.3). This leads

to:

i)z’ (t) Cc(t)
1+ a(ri(t) — 1) B.(t)

On steady-state, (9.1)-(9.7) hold. So, we can re-write (9.9) accordingly:

Ai(t+1) = pi(t) +[1 = pi(t)]é:(?) (9.9)

1+ a(r; — 1) B(t)

At +1) = pi(t) + [1 = pi(t)]Ba; (9.10)

Notice that Distributed-DCC will operate in a state very close to the case
where p;(t) — 1. This is because [ is normally selected very close to 1. An alter-
native way to achieve p;(t) — 1 is to increase the parameter k, ie. pi(t) — 1 as

k — oo. So, we continue by analyzing the case when p;(t) — 1.
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As p;(t) — 1, the followings hold:

Cc(t) — Z ﬂai

w;

R e o)

In other words, the former one is effective total capacity and the latter one is effective

total budget.

Then,
Aoy — 2 ﬁwa]” (9.11)
1. When o = 0:

(a) fw, =1, \; — E}‘VB % where N is the number of edge-to-edge flows. This

means all flows get equal share, i.e. maz-min fairness.

(b) If w; # 1, \; — Z“'”w, > Ba;. This means each flow gets a share in

proportion to its budget w;, i.e. weighted maz-min fairness.

2. When o« = 1: Each flows gets a non-negative bandwidth based on how many

bottlenecks (i.e. r;) it passes through. Rate allocation to flow i will be:

- 1 20
(@) Hwi=1, A\ — & 5wl

ing to the number of bottlenecks it passes through r;, i.e. proportional

. This means each flow gets penalized accord-

fairness.

(b) Ifw; #1, \; = %;fwﬁ% This means each flow gets a share in propor-
g it XA
tion to its budget w; and also gets penalized according to the number of

bottlenecks it passes through r;, i.e. weighted proportional fairness.

Also, by following the well-known arguments'”, it is easy to show that the
bandwidth allocation vector A will be weighted proportional fair as long as it

solves the problem (8.2).

3. When 0 < a < 1: Following the discussion in the previous item, the rate

allocation will be between max-min fair and proportional fair.

17 Convexity of the feasible region for A\ and concavity of utility functions.
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(a) Low’s pricing framework. (b) Distributed-DCC framework.

Figure 9.1: Big-picture comparison of Distributed-DCC with Low’s pric-
ing framework: Distriubted-DCC is able to provide a range
of fairness types by taking advantage of edge-placed provider
stations, while Low’s framework is only able to provide pro-
portional fairness.

4. When o > 1: Again, following the arguments in the previous item, this time
each flow will be penalized more than the number of bottlenecks it passes

through. For this case, there is no defined fairness term in the literature.

Notice that all the above abilities of Distributed-DCC are achieved because of
the fact that provider has a lot of administrative privileges. The fairness abilities
of Distributed-DCC must not be compared with abilities of Kelly et al.’s or Low’s
schemes. In their frameworks [42, 47, 48, 46], it is assumed that the provider does
not intervene the rate allocation and the rate allocation is totally left to end-user
behavior (which is based on user utilities) and Active Queue Management (AQM)
schemes being used in the network queues (which basically communicates congestion
measures to the end-user in some form such as ECN, packet drop). Figures 9.1-a and
9.1-b show the big-pictures of our Distributed-DCC framework and Low’s framework
respectively. Observe that provider is involved in defining the rate allocation in
Distributed-DCC while rate allocation is totally left to user’s behavior and the
queue behavior.

Also, note that « parameter in Distributed-DCC is different than the o pa-
rameter in Mo and Walrand’s definition of (p, «) fairness [58]. Mo and Walrand
defined, similar to Low’s work without consideration of the service provider in the

scenario, a user utility function such that rate allocation is (p, «) fair. They showed
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that fairness of the rate allocation is proportional when a = 1, and is max-min fair
when a — oco. Notice that « in Mo and Walrand’s work is a parameter for user

utility function, whereas it is a parameter for provider in Distributed-DCC.

9.3 Sensitivity

In Distributed-DCC, there are several parameters that effect system perfor-
mance. For example, in Chapter 6 we showed that the fairness coefficient « affects
the rate allocation significantly. In this section, we will investigate four parameters:
contract length 7', observation interval O, LPS interval L, and the parameter k.
In fact, the last one kisa parameter of the ETICA capacity allocation algorithm,
but we will investigate it since it has crucial role in performance of the whole sys-
tem. Also, we only investigate the PFCC architecture, since performance of POCC
architecture depend on the underlying edge-to-edge congestion control scheme.

To see sensitivity of system performance to the four parameters, we run sev-
eral simulation experiments on the same single-bottleneck topology that we experi-
mented in Chapter 6, except that there are only two flows in the network. Experi-
ment parameters are again the same as the ones that we used in the single-bottleneck
experiments of Chapter 6. The only difference is that we vary each parameter 7T,
O, L, k one at a time. So, the initial experimental set-up is that 7" = 100RT'T,
O =20RTT, and L = 4RTT where RTT = 0.04sec.

We look at three metrics in system performance: average bottleneck queue
length, average utilization, and service differentiation. To measure the service dif-
ferentiation ability of the system, we set ratio of budgets of the two flows and observe
if the system really allocates capacity in proportion to flows’ budgets. Let R be the
ratio of the two flows’ budgets set before the simulation. We vary R from 1 to 100.
Also, to see the effect of IAf, we vary k from 5 to 175.

So, for each (/%,R) pair, we vary each of the three parameters (i.e. T, O
and L) one at a time starting from the initial set-up 7" = 100RTT, O = 20RTT,
and L = 4RTT. The following sub-sections present the results of these simulation

experiments and observations made from them.
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9.3.1 Effect of Contract Length

For each (k,R), we vary the contract length T from 25RTT to 500RTT.
Figures 9.2-a to 9.2-h show behavior of average queue length for different values
of k. Figure 9.2-a, for instance, plots average queue length as 7" and R vary when
k=5.

In all the graphs from Figure 9.2-a to Figure 9.2-h, we observe that average
queue length increases steadily as 7' increases. This is simply because the pricing
framework looses control as pricing interval increases, remembering the discussion
in Chapter 5. Also, observe that R effects average queue length negatively. This
is because of the unpredictability caused by ETICA’s frequent state changes (see
Section 6.2.4.3 for details). Note that state changes happen when k is small, i.e. the
flow goes back to “non-congested” state after staying at “congested” state for short
amount of time. But, when £ is large, the flow stays in the “congested” state longer.
We can observe this by following the graphs from Figure 9.2-a to Figure 9.2-h as
k increases. Observe that effect of R gets smaller as k increases and vanishes at
k=125

Figures 9.3-a to 9.3-d plot the utilization of bottleneck link during the simu-
lations for different values of k. We observe that neither changes in 7" nor changes
in R effect the bottleneck utilization.

Finally, Figures 9.4-a to 9.4-f show service differentiation ability of the system
for different values of the budget ratio R. Figure 9.4-b, for example, plots observed
ratios of the two flows’ rates for different values of k as the contract length T
increases. It also plots the initially set ratio of flow budgets, shown as “optimal”.

We can observe that as k gets larger the observed ratio gets closer to the
optimal ratio. This is mainly because of the topology and dynamics of the ETICA
algorithm. As we discussed earlier, for single-bottleneck topology larger k values are
better, which will allow less freedom to individual flows in sharing the bottleneck
capacity. A “free” (which corresponds to “non-congested” state in ETICA) flow
tends to get an equal share of the bottleneck capacity. In “congested” state, however,
Distributed-DCC allocates capacity proportional to flows’ budgets. So, a flow’s rate

goes back an forth between the equal share and the proportional share.
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Figure 9.2: Effect of contract length on bottleneck queue length: In-
creasing 7' or increasing budget ratio R of flows causes larger

queues.
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Figure 9.3: Effect of contract length on bottleneck utilization: Neither 7’
nor R has effect on bottleneck utilization.

As R gets larger we see importance of k on the service differentiation abil-
ity. Actually, when R =1 all k values perform equally, since the equal share and
the proportional share are equivalent. However, when R gets larger the difference
between k curves gets larger too.

Another observation from the Figures 9.4-a to 9.4-f is that service differentia-
tion gets slightly better when 7" increases. This is because of the averaging effects
of larger contracting periods. However, this costs larger queues as we observed in

Figure 9.2.

9.3.2 Effect of LPS Interval

For each (l;:, R), we vary the LPS interval L from 5RTT to 100RTT. Note that
we vary L only up to a contracting period T'= 100RTT. Apparently, increasing L
to values larger than a contracting period is going to reduce system performance.

So, we do not investigate the case L > T.
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Figures 9.5-a to 9.5-h show behavior of average queue length for different
values of k. Figure 9.2-a, for instance, plots average queue length as L and R vary
when & = 5. For small values of l::, we observe that average queue length increases
as R increases, which is again because of the frequent state changes of flows in
ETICA algorithm. However, as k increases, the effect of changes in R becomes less
important and do not effect the average queue length.

Another interesting observation is that average queue length is high for larger
R values regardless of /;‘, when L is less than the observation interval, i.e. L < O =
20RTT. This is because of two things: First, LPS cannot get observations from all
stations. This causes temporary inaccuracies in its calculations, such as calculation
of estimated capacity. Second, smaller L means that flows’s state transitions will
occur more frequently since the parameter k is defined in terms of Ls, i.e. if k= 10,
then the flow will go back to “non-congested” state after 10 LPS intervals. So, this
reveals a non-intuitive fact about dynamics of Distributed-DCC, i.e. LPS interval
L should be set to a value in between the observation interval and the contracting
period. In other words, the LPS interval should satisfy the condition O < L < T to
obtain better performance in Distributed-DCC.

Overall, we observe that changes in L does not affect average queue length as
long as number of state transitions of flows in ETICA is small.

Figures 9.6-a to 9.6-d plot the utilization of bottleneck link during the simu-
lations for different values of k. We observe that neither changes in L nor changes
in R effect the bottleneck utilization.

Finally, Figures 9.7-a to 9.7-f show service differentiation ability of the system
for different values of the budget ratio R. Figure 9.7-b, for example, plots observed
ratios of the two flows’ rates for different values of k as the contract length L varies.
It also plots the initially set ratio of flow budgets, shown as “optimal”.

We observe a similar behavior in service differentiation graphs as we did in
the average queue length graphs in Figure 9.5. Service differentiation up to the
observation interval O = 20RT'T significantly worse than the service differentiation
in between the observation interval 20R7TT and the contract length 100RTT. So

again, we observe that L should be larger than the observation interval, and less
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Figure 9.6: Effect of LPS interval on bottleneck utilization: Neither L
nor the budget ratio R of flows has effect on utilization.

than the contract length.
Also, as we did in Section 9.3.1, we again see that effect of k on service differ-

entiation becomes more important as the ratio R increases.

9.3.3 Effect of Observation Interval

For each (k, R), we vary the observation interval O from 4RTT to 100RTT.
Note that we vary O only up to a contracting period 7' = 100RTT. Apparently,
increasing O to values larger than a contracting period is going to reduce system
performance. So, we do not investigate the case O > T.

Figures 9.8-a to 9.8-h show behavior of average queue length for different
values of k. Figure 9.8-a, for instance, plots average queue length as O and R vary
when k& = 5. Observe that for small & values, average queue length increases as R

increases. Again, this is because of the large number of state transitions in ETICA
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larger than the observation interval O = 20RTT performs sig-
nificantly better in service differentiation.
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Figure 9.9: Effect of observation interval on bottleneck utilization: Nei-
ther O nor the budget ration R of flows has effect on utiliza-
tion.

algorithm. However, for large values of k we do not see any effect of R at all. This
is because ETICA causes small number of state transitions for large k values in
single-bottleneck topologies.

Also, for large k values, we observe that average queue length increases sharply
as observation interval gets closer to the contract length 100R7"T". This is simply
because accuracy of capacity estimation (which is dependent on number of observa-
tions made during a contract) deteriorates. We do not see this effect in the graphs
for small k& values, because the effect of state changes is dominant for those cases.

Figures 9.9-a to 9.9-d plot the utilization of bottleneck link during the simu-
lations for different values of k. We observe that neither changes in O nor changes
in R effect the bottleneck utilization.

Figures 9.10-a to 9.10-f show service differentiation ability of Distributed-DCC

for varying values of the observation interval O. Figure 9.10-f, for example, plots
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Figure 9.10: Effect of observation interval on service differentiation:
Changes in O value do not seem to effect service differen-
tiation significantly.
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Finally, Figures 9.10-a to 9.10-f show service differentiation ability of the sys-
tem for different values of the budget ratio R. Figure 9.10-b, for example, plots
observed ratios of the two flows’ rates for different values of k as the contract length
O varies when R = 10. It also plots the initially set ratio of low budgets, shown as
“optimal”.

Other than small deterioration when O gets closer to the contract length
100RT'T, we do not really see any significant effect of the observation interval O on
service differentiation. This is mainly because service differentiation of Distributed-
DCC is heavily dependent on accuracy of capacity estimation, for which one obser-
vation per contract is enough for our simulated system. In our simulated system,
capacity estimation uses only the latest observation (see Section 6.2.4.2). If we had
used all the observations (e.g. average them), then effect of the observation interval
on service differentiation would be more significant.

Also, as we did in Sections 9.3.1 and 9.3.2, we again see that effect of k on

service differentiation becomes more important as the ratio R increases.

9.4 Summary

Regarding Distributed-DCC in PFCC architecture, we investigated fairness,
stability and parameter sensitivity issues. We showed the reasons why Distributed-
DCC is able to provide multiple fairness types in rate allocation. By comparison to
Low et al.’s [47] framework, we demonstrated that Distributed-DCC takes advantage
of provider’s administrative privileges in order to achieve various fairness types in
rate allocation.

By extensive simulations, we also investigated effects of different parameters
on Distributed-DCC’s performance. We demonstrated that ETICA’s dynamics has
dominant effects of Distributed-DCC’s performance especially when ratio of flows’
budgets R is large. This is because of the fact that ETICA’s capacity allocation
to a individual flow in “congested” state is based on the ratio of that flow’s budget
to the total budget of all congested flows. So, when the difference between flows’
budgets is large (i.e. R is large), an individual flow’s allocated capacity varies a lot

between the “congested” and “non-congested” states. This characteristic of ETICA
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dominates in the system performance when flows make frequent state transitions.

Also, we illustrated that the parameter k in ETICA algorithm is very impor-
tant in terms of system performance, since it mainly defines how frequent the flows
will make transitions among the congested and non-congested states. We showed
for a single-bottleneck topology that small k values effect system performance neg-
atively.

We also investigated the time-scale parameters contract length 7', observa-
tion interval O, and LPS interval L. We demonstrated effect of these time-scale
parameters on three performance metrics: average queue, utilization, and service
differentiation ability. We found that the best setting for the three time-scale pa-

rameters is: O < L < T.



CHAPTER 10
SUMMARY AND FUTURE WORK

10.1 Thesis Summary

One of the main problems of the current Internet is lack of better economic
models and tools. Currently, only the traditional hierarchical (i.e. 1-tier, 2-tier,
...) model is employed in the Internet. This thesis is an effort to enable better
economic models (e.g. brokers, exchanges) by developing some of the necessary
building blocks. Particularly, dynamic pricing tools are fundamental to development
of new economic models to the Internet.

The thesis focused on several issues ranging from deployability of dynamic
pricing (and particularly congestion pricing) to fairness of rate allocation. First in
Chapter 3, we investigated a well-known congestion pricing proposal, Smart Market
[50], in terms of deployability. Even though Smart Market is ideal theoretically, we
found that it is hard to deploy because of its per-packet granularity, i.e. charging
per-packet.

Motivated by granularity level, we proposed a new dynamic pricing framework,
Dynamic Capacity Contracting (DCC) in Chapter 4, and developed a congestion
pricing scheme, Edge-to-Edge Pricing (EEP), within the framework. Later in Chap-
ter 8, we analyzed optimality of EEP by considering parameters (such as elasticity)
related to user behavior. For proof-of-concept, we assumed that all provider stations
(placed at network edges) advertise the same price, and showed by simulations that
DCC can perform as close as Smart Market. Later in Chapter 6, we relaxed the
assumption of same price advertisement at provider stations, and called the new
version of DCC as Distributed-DCC.

Distributed-DCC’s granularity level is short-term contracts, which is a larger
granularity than per-packet pricing as in Smart Market and a smaller granularity
than long-term contracts as in Expected Capacity [18]. However, this raised the
issue of human involvement in contract negotiations since short-term contracts will

require negotiation between user and the provider frequently. So, in Chapter 5,
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we wanted to answer the question how short these contract should be in order to
maintain control over network congestion. We found that the contracts must be very
short in order to maintain the control over congestion whereas human involvement
is possible only at larger contracts.

So, we developed two pricing architectures based on this time-scale prob-
lem: Pricing for Congestion Control (PFCC) and Pricing over Congestion Control
(POCC). PFCC uses small time-scale pricing directly for controlling congestion and
employs end-placed software/hardware agents which take inputs from human user
at large time-scale while negotiating with the provider at small time-scale on behalf
of the user. POCC uses an underlying edge-to-edge congestion control mechanism
by overlaying pricing on top of it. This way, POCC controls congestion at small
time-scales while allowing pricing at time-scales large enough for human involve-
ment. In Chapters 6 and 7, we illustrated how to adapt Distributed-DCC to the
PFCC and POCC architectures respectively.

Also in Chapter 6, we showed that Distributed-DCC can achieve a range of
weighted fairness types from max-min to proportional. We showed how the provider
can set Distributed-DCC’s parameter “fairness coefficient” in order to employ dif-
ferent fairness in rate allocation. For example, if the provider wants to penalize
users whose traffic traversing more congested areas, then he/she can set fairness
coefficient to higher values. If he/she wants to treat all users equally regardless of
traffic routes, then he/she can set fairness coefficient to zero. We provided theory
behind this capability of Distributed-DCC later in Chapter 9, along with sensitivity
analysis of Distributed-DCC.

The Distributed-DCC framework we proposed in this thesis has potential to
enable more complex economic models in the Internet. Within the framework, it is
possible to implement dynamic pricing, particularly congestion pricing. It can be
used as a building-block for a variety of network services which may have value to

different sets of users.

10.2 Contributions

e A detailed survey of major pricing proposals for the Internet. (Chapter 2)
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A detailed study of the well-known pricing scheme Smart Market. ([82], Chap-
ter 3)

An implementation strategy for the Smart Market on diff-serv architecture

and a packet-based simulation of it. ([86], Chapter 3)

A new pricing framework, Dynamic Capacity Contracting (DCC), to imple-

ment congestion-sensitive pricing. ([72, 6], Chapter 4)

Investigation of steady-state dynamics of congestion-sensitive pricing in a

customer-provider network. ([87, 84], Chapter 5)

An approximate model for the correlation between congestion-sensitive prices

and actual network congestion level. ([87, 85], Chapter 5)

Extension of DCC to Distributed-DCC in order to implement it on wide area

networks. ([83, 84], Chapter 6)

A new macro edge-to-edge, topology-independent capacity allocation algo-

rithm: ETICA. ([84], Chapter 6)

An algorithm for routing-sensitive bottleneck-count estimation: ARBE. ([84],

Appendix D)
A new edge-to-edge pricing scheme: EEP. ([83, 84|, Chapters 4, 6 and 8)

A new pricing architecture: Pricing over Congestion Control (POCC). ([84],
Chapter 7)

Investigation of elasticity in the area of networking and definition for “utility-

bandwidth” elasticity. ([84], Chapter 8)

Methods of achieving multiple fairness types within a single framework. ([83,

84], Chapters 6 and 9)

A method for estimating ratio of continuous Gamma functions. ([85], Ap-

pendix C)
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10.3 Future Research

This thesis mainly focused on problems associated with adaptive pricing of
network services within a single diff-serv domain. Future research should develop
schemes and techniques to solve inter-domain problems with a special focus on
constructing new economic models for the Internet.

Distributed-DCC, which is an adaptive pricing framework for single diff-serv
domain, has several possible future research agenda itself. We can list possible future

research items for Distributed-DCC as follows:

e Using soft admission control techniques to set V,,,, parameter of the contracts
in order to make the scheme more robust and conservative, i.e. do not tem-
porarily allow users to contract more than available capacity which causes

large transient queues
e In POCC architecture, finding better algorithms to manage the edge queues.
e Expansion of the concept of contracting to point-to-anywhere contracts.
e Exploring inter-domain pricing issues in diff-serv environment:

— Exploring the concept of bandwidth intermediary to facilitate the medi-
ation between customer and multiple providers by leveraging the DCC

framework.

— Finding good pricing strategies for the provider in different market envi-

ronments, e.g. monopoly, competitive.

Since Distributed-DCC charges each edge-to-edge flow separately, an interest-
ing future research is to investigate user strategies to select which edge-to-edge route
to send his/her traffic. Within the Distributed-DCC framework, if the provider can
route traffic according to user’s selection, then users will have multiple edge-to-edge
routes to send their traffic through. This way user can select among multiple edge-
to-edge routes made available by the provider, can maximize his/her utility. Also, at
the provider side, the provider can perform route-based pricing and can distribute
user traffic to the non-utilized parts of its network by increasing price of heavily use

routes.
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APPENDIX A
Maximization of Total User Utility in a Multi-User

Single-Bottleneck Network

Suppose n users are using a network with a capacity of c. u;(x) = b;logx represents
the utility function of user 7, where x is the amount of capacity given to the user
1 and b; is the user i’s sensitivity to network capacity, i.e. willingness-to-pay for
the service. Let z1,x,,...,x, be the capacities given to the users correspondingly
from 1 to n. In order to maximize total user utility, what is the optimum capacity
allocation to the users with the constraint that >, z; < ¢?

The total user utility will be:
i=1

Since user utilities are non-decreasing functions of capacity, we need to allocate
all the available capacity to the users in order to maximize U. So for the optimum

capacity allocation, the following equation holds:
n
Z r; =¢C
i=1

By applying Lagrange-Multiplier Method [14], we first convert U to the fol-

lowing: . .
U=7= Z .TZ + )\ Z l‘z
i=1 i=1

We can get the following system of equations by equating partial derivative of

Z to zero for each unknown variable:

Z,\ :C—ZIZ':O

=1
z =% _\—0, i=1n (A.1)

X
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After solving system equations A.1, we get the solution as follows:

A = ?:lb’i
c
b; .

Ti = G 1=1.n (A.2)
j=19

This result shows that maximization of user utilities can be done only by
allocating the limited capacity to the users proportional to their sensitivity to band-

width, i.e. willingness-to-pay.



APPENDIX B

Optimal Prices for Social Welfare Maximization

In Chapter 8, we formulated and solved the problem of total user utility maxi-
mization for a network. In this appendix, we formulate and solve the problem of
social welfare maximization, which has subtle differences. We will show that the

two optimization problems in fact result in the same optimal prices.

B.1 Problem Formulation

Additional to the notation used in Chapter 8, let K;(z) = ki be the cost of
providing the capacity x at any link [ where k; is a non-negative constant!8. We can

formulate the social welfare maximization problem as follows:
SYSTEM :

mf‘X; Ur(Ar) = >0 K(y)

leL(f)
subject to
oA €@, 1=1,..,L (B.1)

feF(l)
We again split this problem two separate problems:
The first problem is solved at the user side. Given accumulation of link prices
on the flow f’s route, p/, what is the optimal sending rate in order to mazimize

surplus.

FLOW;(p') :

leL(f

I%&X{Uf )\f Z pl)\f}

over

18Note that results of the analysis will be effected by this assumption linear cost function. A
more realistic model would be to use a concave cost function.
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Ar>0 (B.2)

The second problem is solved at the provider’s side. Given sending rate of user
flows (which are dependent on the link prices), what is the optimal price to advertise
in order to maximize profit. Notice that in the social welfare paximization problem
the provider solves profit maximization problem rather than revenue maximization
problem which was the case in the total user utility maximization problem in Chap-
ter 8. This is because, in social welfare maximization, cost function is introduced
into the system model.

NETWORK (\(p')) :

mﬁxz Z DIAf — Z K(Ay)

I LeL(s) leL(f)
subject to

oA < 1=1,..,L
FEF()

over
p>0 (B.3)

Let the total price paid by flow f be p/ = Yier(pyPi- Then, solution to
FLOW;(p’) will be:

Uy(A\p) =’
Ar(0h) = U () (B.4)

When it comes to the NETWORK (\(p/)) problem, the solution will be de-
pendent on user flows utility functions since their sending rate is based on their
utility functions as shown in the solution of FLOW;(p/). So, in the next sections
we will solve the NETWORK (\(p’)) problem for the cases of logarithmic and

non-logarithmic utility functions.
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B.2 Optimal Prices: Logarithmic Utility Functions

We again model customer ¢’s utility with the well-known function
ui(z) = wilog(x) (B.5)

where z is the allocated bandwidth to the customer and w; is customer 7’s budget
(or bandwidth sensitivity).

Additional to the vectorized notation in Chapter 8, let K be the column vector
of the cost of providing unit link capacities. Given this notation, we can write the

following relationships:

AP = P*e (B.6)

where e is the column unit vector.
We use the utility function of (B.5) in our analysis. By plugging (B.5) in (B.4)

we obtain flow’s demand function in vectorized notation:
AP =wpt (B.7)

where W is row vector of the weights w; in flow’s utility function (B.5). Similarly,

we can write derivative of (B.7) as:
N(P*) = —W(P*?)7! (B.8)

Also, we can write the utility function (B.5) and its derivative in vectorized

notation as follows:

~

U(\) = Wiog()) (B.9)
U'(\) = WA (B.10)

The profit maximization of (B.3) can be re-written as follows:

mfz}xR = ) MP - MK
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subject to
MM o< CT. (B.11)

So, we write the Lagrangian as follows:
L= )MAP — MK + (CT — M\A)y (B.12)

where v is column vector of the Lagrange multipliers for the link capacity constrain.
By plugging (B.7) and (B.8) in appropriate places, the optimality conditions

for (B.12) can be written as:
L,:CT—WP* 'A=0 (B.13)

Lp- : =W(P**)Y(P*e — AK) + WP* e = W(P**) 1Ay =0 (B.14)

By solving B.14 for P*, we obtain:

—P* ' (Pre— AK)+Te— P Ay =0 (B.15)
P YAK — Pl Ay =0 (B.16)
P HAK — Ay) =0 (B.17)
P =0 (B.18)
Now, solve (B.13) for P*:
CT —WP'A=0 (B.19)
CTA'P =W (B.20)
P = A(C"Y'W (B.21)

Apparently, the optimization problem has two solutions as shown in (B.18)
and (B.21). Since (B.18) violates the condition P > 0, we accept the solution in
(B.21).
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We finally derive P by using (B.6):

AP = P*e= A(CT)"'We (B.22)
P=(C")"'We (B.23)

Since P* = (P*)", we can derive another solution:

AP = P'e=W'CA"e (B.24)
P=A""WTCA%e (B.25)

Notice that the result in (B.25) is the same as in the case of total user utility

maximization in (8.25).

B.3 Optimal Prices: Non-Logarithmic Utility Functions

As in Chapter 8, we use the same generic utility function. The function and

its derivative are as follows:

U(\) = BX (B.26)
U'(A) = BeA“™ (B.27)

According to the relationship between € and ¢ described in Section 8.4.1, we

can write the demand function and its derivative as follows:
AP*) = e e’ B~ P** (B.28)
Similarly, we can write derivative of (B.28) as:
N(P*) = e e’ B Pt (B.29)

For the revenue maximization problem, we again solve the Lagrangian in

(B.12) but for the new demand function of (B.28). By plugging (B.28) and (B.29)
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in appropriate places, the optimality conditions for (B.12) can be written as:

L,:CT =" B P*A=0 (B.30)

Lp+: € e’ B P (P*e — AK — Ay) + ¢ e’ B~°P*¢ = () (B.31)

By solving (B.31) for P*, we obtain:

g’ B*P* 1 (P*e — AK — Ay) + e’ B*P*¢ = 0 (B.32)
eP* '(P*e — AK — Ay) + P*e =0 (B.33)
eP* '(P'e — AK — Ay) +1e=0 (B.34)
ele —eP* (AK + Ay) + Te = 0 (B.35)
(e 4 1)le = eP* '(AK + Ay) (B.36)
€
Pe=——(AK + A B.37
e= S (AK + A1) (B.37)
1
P* = E(AK + Ay)e? (B.38)
Now, apply (B.38) into (B.30) and solve for ~:
. 1 €
CT=e<e"B* (—(AK + A’y)e_l) A (B.39)
€
~ 1 3
eBs(e)tetAT! = (—(AK + A7)6_1> (B.40)
€
LAK + Ay)et = A=V (CTY Ve ()12 B (B.41)
€
Substitute (B.41) into (B.38) and we obtain P*:
P* = eA7VE(CT) () VER (B.42)
From (B.42) we obtain P:
AP = P*e = eA Y (CT)Y5 () /e Be (B.43)

P =eA ATV (CTYVE(eT) "V Be (B.44)
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P = A A (7)) (eT) e Be (B.45)

P — cA-1All/el ((CT)|1/5\)*1 (eT) /el (B|g|)|1/6\ . (B.46)

The result in (B.46) is again the same as in the case of total user utility

maximization in (8.49).



APPENDIX C

Approximating Ratios of Complete or Incomplete

Continuous Gamma Functions

C.1 The Gamma Function and Problem Definition

Gamma function has two versions: complete, incomplete [22]. Complete and

incomplete continuous Gamma functions are respectively as follows:

[(z) = /oo e ‘"t (C.1)
t=0
['(z,y) = /Oo e " tdt (C.2)
t=y

Discrete version of the complete Gamma function is a simple factorial:
[(z) = (z—1)! (C.3)

Let f be the function being integrated in the continuous Gamma functions,
ie.

flt,x) =e 't (C.4)

Figure C.1 shows plot of the function f(¢,z) for various values of z. Notice that
the Gamma function is nothing but the area under the curve of f(t,z). Figures
C.2 illustrates the difference between complete and incomplete Gamma functions in
terms of area under the curve of f(¢,z). The area A + B corresponds to the com-
plete Gamma function I'(z), and A corresponds to the incomplete Gamma function
[(z,y).

Given the above information, we want to approximate ratio:

Plx,y) A
I'(zx) A+B
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Figure C.1: The function f(¢,z) for various values of z.

f(t,x) 4

Figure C.2: Visualization of complete and incomplete Gamma functions:
The area B is I'(z,y), and the area A+ B is I'(z).

C.2 Approximation Methodology

The intuition behind our approximations is the similarity of shape of f(¢,x) to
triangle. Observe from Figure C.1 that as the parameter x gets larger the shape of
f(t, z) more triangular. We use this similarity in approximating the ratio in (C.5).

Figure C.3-a shows an example triangle being matched to the f(¢,z) function. In
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that example we approximate the ratio of (C.5) as:

L(z,y) A _ A
[(z) A+B A+HB

2

R=

Notice that the function f(¢,z)’s maxima is the point at t =z — 1, i.e. f(x —
1,z). Just to ease notation, let t,, = 2 — 1 and g(t) = f(t,z). Also, let’s call the
smaller piece of the triangle between t = 0 and ¢t = x — 1 as left-piece triangle,
and the other piece of it as right-piece triangle. So, the left-piece triangle will
have coordinates: (0,0), (0,%,), (tm,9g(tm)). For the right-piece triangle, we can
consider various coordinates depending how well we want to approximate. Actually,
the problem is to identify where should the hypotenus of the right-piece triangle
intersect with f(¢,z). Since the shape of f(¢, ) gets similar to an equi-sided triangle
as = gets larger, we choose to select this intersection point at t = 2¢,, = 2(z — 1),
which will resemble it more to an equi-sided triangle. With this consideration, we
can calculate the coordinates of the right-piece triangle by simple geometry rules:
(0,tm), (tm; 9(tm)), (tm(9(tm) — 9(2tm))/(9(tm) — 9(2tm)), 0).

Since we know the function f(t,z), we now can calculate areas A’ and B'.
However, this is dependent on whether y resides on the left of the right of t,, = x—1.

So, we need to consider three cases:

C21 Casel:y=2x-1

This case is shown in Figure C.3-a. Calculations of the triangular areas in the

figure will be as follows:

tmg(tm)
2

A=

tmg(2tm)
t + g gty 9(tm)

2

BI — (
So, the ratio R for this case will be:

g(tm) - Q(th)
3g(tm) - 29(2tm)

R, =
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f(l,X)“ f(t,X)“

)

N

_

(t, )4

Figure C.3: Three possible cases for approximation of ratio I'(z,y)/I'(x).

C22 Casell:y<z-—1

This case is shown in Figure C.3-b. Calculations of the triangular areas in the

figure will be as follows:

Yz1
A=
9
tmg(2tm)
B (2tm + getSii) 9(tm) _ya
o 2 2

where z1 = yg(tm)/tm. So, the ratio R for this case will be:

_ y_2 9(tm) — 9(2t)
t?n 29(tm) - Q(th)

2

C.23 Caselll:y>z—1
This case is shown in Figure C.3-c. Calculations of the triangular areas in the

figure will be as follows:

tm 9(2tm
AI = (2tm + g(tm)gfg@t)m)) g(tm) Y29
2 2
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where zo = ¢g(2t,,). So, the ratio R for this case will be:

o = 2tmg(tn)” = (tm = 9)g(tm)g(2tm) + y9(2tm)?
’ timg(tm)(29(tm) — 9(2tm))

C.2.4 Integration of All Cases

In order to calculate the ratio R = I'(z,y)/T'(z), we need to know if y is equal
to, less than, or greater than x—1 as presented in the previous sections corresponding
to each case.

We can put together an integrated formula for R by considering probability
of each case happening. Let p; be the probability of being y equal to x-1 (i.e. Case
I), po be the probability of being y less than x-1 (i.e. Case II). Then, an integrated

formula for R will be:

R=piRi +psRy + (1 —p1 — p2) R (C.6)

Since p; and p, will depend on distribution of y, the integrated approxima-
tion of R will change significantly based on that distribution. In modeling of the
correlation between prices and congestion measures, in Section 5.3.1.2, we used the
integrated formula by calculating the probabilities p; and p; based on the Possion
distribution of the traffic.

Also note that in this particular appendix we only provided methodology
for approximating the ratio I'(z,y)/T'(z). It is possible to use the ideas in this

appendix for approximating other possible ratios of Gamma functions, such as

F(xa yl)/F(x’ y2)’ F(y)/F(l’)



APPENDIX D
Algorithm for Routing-Sensitive

Bottleneck-Count Estimation (ARBE)

Given a diff-serv network, we would like to estimate number of bottlenecks each edge-
to-edge flow is passing through. The algorithm ARBE presented in this appendix
provides a solution to this problem.

Assuming that interior routers increment bottleneck-count header field of pack-
ets when congested, ARBE calculates the number of bottlenecks an edge-to-edge flow
is passing through. ARBE operates at the egress edge router.

Assuming that each bottleneck has the same amount of congestion and also
assume that they have the same capacity. Let r;;(¢) be the number of bottlenecks
the flow from ingress ¢ to egress j, fi;, is passing through at time t. ARBE operates

on deterministic time intervals, and calculates r;;(t) as follows:

Fig(t), mi(t —1) < 7y(2)

rii(t) =
? rij(t —1) — Ar, otherwise

(D.1)

where 7;;(¢) is the highest number of bottlenecks that flow passed through in time
interval ¢, Ar is a pre-defined value. #;;(¢) is updated at each packet arrival by
simply equating it to the maximum of its actual value and the bottleneck-count
header field of the newly arrived packet. Algorithm 1 shows the pseudo-code for the
algorithm.

Realize that the bottleneck-count header field of the packets are being in-
cremented only if they are passing through a congested bottleneck. It is possible
that some of the bottlenecks are not congested when a particular packet is passing
through them. For example, the bottleneck-count header field of the packet may be
incremented only three times, although it actually passed through six bottlenecks.
So, it is necessary to bias the estimation to the largest number of bottlenecks the

packets of that flow have passed recently.
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Algorithm 1 Algorithm for Routing-Sensitive Bottleneck-Count Estimation
ARBE(BC(t), Ar)
{Ar is decaying step-size.}
{BC(t) is the maximum bottleneck-count received in the last interval ¢.}
{BC is the actual estimation for bottleneck-count.}
if BC(t) > BC then
BC « BC(t)
else
BC « BC — Ar
end if
return BC

Also as another issue, IP routing causes route of the flows to change dynami-
cally. To consider the dynamic behavior of the routes, it is also necessary to decrease
rij when r;;(t —1) > 7;;(t). So, if the route of the flow has changed, then after some
time (depending on how large the Ar is) the value of r;; will decrease to the actual

number of bottlenecks the flow is passing through.



APPENDIX E

Max-Min Fairness, Proportional Fairness,

and Social Welfare Maximization

Consider a multi-bottleneck network in which there is a long flow that is crossed by
n parallel flows. An example of such a network is shown in Figure 3.2-b. Suppose
all the bottlenecks are equivalent in capacity, C. Intuitively, whatever the long flow
gets, all the parallel flows will get the rest of the capacity. Let xy be the capacity
given to the long flow and z; be the capacity given to one of the parallel flows.
Suppose that the utility of the long flow is ug(x¢) = wolog(xo) and the utility of one
of the parallel flows is u;(z1) = wilog(x1). Notice that wy and w; are the sensitivity
of the flows to capacity (also interpreted as flow’s budget). Since the long flow
is passing through n bottlenecks, cost of providing capacity to the long flow is n
times more than cost of providing capacity to one of the parallel flows. So, let cost
of providing x; to one of the parallel flows be K;(z1) = kxz1, and let the cost of
providing z, to the long flow be Ky(zy) = nkz,. Within this context, the social

welfare, W, and its Lagrangian will be:
W = wplog(zo) + nwilog(z1) — nkxy — nkx,

W = Z = woylog(xy) + nwilog(z,) — nkzy — nkxy + ANzo + 21 — O)

After solving the above Lagrangian, we get the following solutions for zy and x; to

maximize W:

’lU()C
Tg= ———
wWo + nw;
nu,C
r = ——"
wWo + nwi

From the above result, we make two observations:

e First, if both the long flow and a parallel flow have equal bandwidth sensitivity,

i.e. wy = w, then the optimal allocation will be o = C/(n + 1) and z; =

181



182

Cn/(n + 1). This is the proportional fair case. So, proportional fairness is
optimal only when all the flows have equal bandwidth sensitivity. As another

interpretation, it is optimal only if all the flows have equal budget.

Second, if the long flow is sensitive to bandwidth n times more than a parallel
flow, i.e. wy = nwy, then the optimal allocation will be zy = x; = C/2. This
is the maz-min fair case. So, max-min fairness is optimal only when the long
flow’s utility is sensitive to bandwidth in proportion to the cost of providing
capacity to it. In other words, by interpreting bandwidth sensitivity as the
flow’s budget, max-min fairness is optimal only when the long flow has budget

in proportion to the cost of providing capacity to it.

Observations similar to above have been made in the area, e.g. [42, 16].



APPENDIX F
Pseudo-Code for Distributed-DCC

Algorithm 2 Algorithm for Ingress .
DDCC_INGRESS i(T)
{ This procedure is executed at contracting time-scale.}
{C is the total estimated network capacity.}
{¢; is the vector of allowed capacities for flows starting at this Ingress.}
{13, is the vector of estimated budgets of flows starting at this Ingress.}
{x; is the vector of sending rates of flows starting at this Ingress.}
{T is the contracting time-scale.}

{Run Budget Estimator and update vector of budget estimations.}

b; = TiP;

Send b;;s to corresponding Egresses.

{Run Pricing Scheme and update contract parameters p; and Vpe.. Below is
according to EEP pricing scheme.}

pi = bi/ &

Vinazs = i x T
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Algorithm 3 Algorithm for Egress j.
DDCC_EGRESS j(a, Tmin, Ar, AE, B)
{This procedure is executed at every LPS Interval L.}
{« is the fairness coefficient.}
{Tmin is the minimum number of bottlenecks a flow may traverse.}
{Ar is the decaying step-size for ARBE.}
{A¢ is the additive increase parameter for AIMD-ER.}
{B is the multiplicative decrease parameter for AIMD-ER.}
{BC;;j is the highest number of bottlenecks traversed by a single packet of flow fi;
in the last L.}

{Run Flow Cost Analyzer and estimate number of bottlenecks each flow is travers-
ing.}
for Vi # j do
end for
{Run Fairness Tuner to penalize flows passing through more bottlenecks.}
for Vi # j do
bij = bij/ [min + (Pij — Tmin)]
end for
{Run Congestion-Based Capacity Estimator to estimate available capacity for each
flow. Below is the algorithm for AIMD-ER algorithm.}

for Vi # j do
if Received congestion indication from flow f;; in the last L then
Cij = Blij
else
Cij = Cij + Ac
end if
end for

Send row vectors ¢; and b; to LPS.
Inform LPS about congestion indications generated by each flow.
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Algorithm 4 Algorithm for LPS.

~

LPS(k)

{This procedure is executed at every LPS Interval L.}

{B, is total budget of congested flows.}

{C. is total estimated capacity for congested flows.}

{];J is the amount of holding time for flows in congested state of ETICA algorithm.}

{ Estimate total network capacity.}
C=0
for Vi do
for Vj do
C+ = ¢
end for
end for
{Run Capacity Allocator to calculate allowed capacities to flows. Below is the
ETICA algorithm.}
B.=0
C.=0
for Vi do
for Vj do
if Flow f;; generate congestion indication in the last L then
else
end if
if K;; > 0 then
Cet =G5
B+ = b;;
end if
end for
end for
for Vi do
for Vj do
if Kij > 0 then
Cij = bz‘jCc/Bc
else
Cij = éij
end if
end for
end for
Send row vectors C' and ¢;;s to corresponding Ingresses.




