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Abstract— As the Internet infrastructure grows to sup-
port a variety of services (eg: VPNs), its legacy protocols
(eg: OSPF, BGP) are being overloaded with new functions
such as traffic engineering. Today, operators engineer
such capabilities through clever, but manual parameter
tuning. In this paper, we propose a back-end support
tool for large-scale parameter configuration that is based
on efficient parameter state space search techniques and
on-line simulation. The framework is useful when the
network protocol performance is sensitive to its parameter
settings, and its performance can be reasonably modeled in
simulation. In particular, our system imports the network
topology, relevant protocol models and latest monitored
traffic patterns into a simulation that runs on-line in a net-
work operations center (NOC). Each simulation evaluates
the network performance for a particular settingof protocol
parameters. A recursive random search (RRS) technique
is proposed to efficiently explore the large-dimensional
parameter state space, where each sample point results in a
single simulation. An important feature of this framework
is its flexibility: it allows arbitrary choices in terms of the
simulation engines used (eg: ns-2, SSFnet, future scalable
simulators etc), network protocols to be simulated (eg:
OSPF, BGP, RED, MPLS etc), and in the specification of
the optimization objectives. We demonstrate the flexibility
and relevance of this framework in three scenarios: joint
tuning of the RED buffer management parameters at
multiple bottlenecks, traffic engineering using OSPF link
weight tuning, and outbound load-balancing of traffic at
peering/transit points using BGP LOCAL PREF parame-
ter. The on-line simulation framework has been prototyped
in Linux using SNMP as the configuration interface and
this prototype has been used in a Linux testbed for RED
parameter configuration.

Index Terms— network performance management, net-
work protocol configuration, black-box optimization, on-
line simulation
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I. I NTRODUCTION

Today’s network protocols like BGP and OSPF were
designed for one primary service: “best effort reacha-
bility.” Increasingly, network operators want to use the
IP infrastructure for complex functions like deploying
Virtual Private Networks (VPN), managing traffic within
ASes to meet Service Level Agreements(SLA), and
between ASes (at peering points) to optimize on peering
agreements. Such operational optimization is performed
by using “parametric hooks” in protocols that can be
“tweaked” appropriately. However, the parameter setting
process today is manual and widely considered a black
art. Recent studies [1] and common knowledge [2], [3]
is that the configuration of many protocols, such as BGP,
is tough, error prone and is likely to get harder as the
protocol is overloaded to serve more functions. Though
some tools are emerging to aid operators, a lot more
needs to be done.
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Fig. 1. On-line simulation framework for adaptive configuration of
network protocols

In this paper, we propose a novel on-line simulation
framework (OLS) to aid generic large-scale network
protocol configuration. In the on-line simulation frame-
work, we formulate network protocol configuration as
a “black-box” optimization problem over the parameter
state space. A sample point in the state space corresponds
to a network simulation that evaluates the performance
in terms of pre-determined metrics. The simulation also



2

imports the current network topology and a digest of
latest traffic patterns. The “black-box” approach allows
flexibility in terms of objectives of the desired optimiza-
tion, and hence can be applied to a variety of protocols
and configuration problems. As shown in Fig 1, the
on-line simulation framework closely monitors network
conditions and start the optimization process whenever it
detects a significant change in network conditions. Many
techniques have been proposed to obtain the information
on network conditions[4], [5]. Another way to trigger
the optimization process is to monitor the performance
metric and set a threshold on it. Realistically, the tool
may be used as a “recommendation service” to suggest
a variety of “good” parameter settings and illustrate the
resulting impacts of the settings so that operators are
better informed than their current manual procedures.

The key assumption of the framework is that the
underlying network protocol performance is indeed sen-
sitive to the chosen parameter set; and that the network
topology, traffic and protocol can be reasonably mod-
eled in simulation. While these assumptions appear to
be somewhat restrictive today, on the long-term, our
framework can leverage improvements in modeling of
topology [6], [7], [4], traffic [8], [5] and/or improvements
in scalable network simulation [9], [10], [11] technology.
To the best of our knowledge, our flexible approach is
unique and the first of its kind as applied to IP network
management. There have been proposed configuration-
support or adaptive protocol techniques for specific prob-
lems (eg: BGP [12], OSPF [13],RED [14]). We discuss
these related works in later sections.

The crucial component of the framework is an efficient
parameter state space search algorithm. The desired algo-
rithm is required to:a) be scalable to large-dimensional
parameter state spaces;b) find “good” solutions quickly;
c) be robust to noise (e.g.: minor inaccuracies in mod-
eling) in the function evaluations; andd) be able to
automatically reject negligible parameters (i.e. to which
the protocol is insensitive). Traditional search algorithms
(eg: genetic algorithms[15], multi-start hill-climbing,
tabu search[16] and simulated annealing[17]) could not
provide the above desired combination of properties as
we will show in Section II. We propose a new search
algorithm, Recursive Random Search (RRS), which is
completely based on random sampling and very efficient
for network optimization problems.

To demonstrate the effectiveness of this on-line sim-
ulation framework, we have simulated its application
to three scenarios: RED buffer management parameter
turning, traffic engineering using OSPF link weight
tuning, and outbound load-balancing by tuning BGP
LOCAL PREF attributes. We use simulations to demon-

strate these applications, i.e., perform the on-line sim-
ulation framework inside a “simulation”. We also im-
plemented a prototype of the proposed framework in
Linux using SNMP as the configuration interface. This
prototype has been applied to RED parameter configura-
tion, which is illustrated in Section III-D. Note that the
examples in this paper are to illustrate the formulation
process of network optimization problems and demon-
strate the effectiveness and flexibility of this on-line
simulation framework. Its application is not limited to
these examples. For example, other performance metrics
can be used to achieve different purposes. In fact, one
of the most important advantage of this framework is its
flexibility, i.e., it can be potentially used for a wide range
of network protocols to achieve various optimization
purposes.

The rest of this paper is organized as follows: Sec-
tion II describes the features of network parameter
optimization problems and presents a brief overview
of the Recursive Random Search(RRS) algorithm. Then
the following sections demonstrate how to formulate
network parameter optimization problems and apply
the on-line simulation to these problems. Section III
investigates the application in adaptive tuning of RED.
Section IV presents the application in traffic engineering
by tuning OSPF link weights. Section V presents the
application in outbound load balancing by tuning BGP.
Finally, Section VI concludes this paper.

II. N ETWORK PARAMETER OPTIMIZATION PROBLEM

Network parameter configuration problems can be
represented by the following equation:

C = f(N , p) (1)

whereN denotes network scenario,p the desired per-
formance metric andC the parameter configuration of
the concerned network protocol. Equation (1) calculates
the required configurationC based on the desired per-
formance metricp and the network scenarioN . Due to
the complexity of the Internet, the analytical derivation
of Equation (1) is not realistic. However, with network
simulation software, such asns[18], SSFNET[10], it is
possible to empirically examine network performance
for a certain network configuration and scenario, i.e.,
establish the following empirical equation:

p = f−1(N , C) (2)

Based on this, for a certain network scenarioN and a
given parameter space ofC, an optimization algorithm
can be employed to search for a good solutionC0 which
meets a certain performance objectivep0. With this
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black-box optimization approach, the problem defined
in Equation (1) can be empirically solved. This idea is
the basis of the on-line simulation framework. Note that
for network parameter optimization problems, traditional
experiment design methods, such as, factorial design, are
not applicable since they normally assume a relatively
simple mathematical model and try to fit the problem into
this model. Since littlea priori knowledge is available,
to formulate a proper model is very difficult.

Like optimization problems arising in many engineer-
ing areas, network parameter optimization can be for-
mulated as (assume minimization): given a real-valued
objective functionf : Rn → R, find a global minimum
x∗,

x∗ = arg min
x∈D

f(x) (3)

where x is the parameter vector to be optimized,D
is the parameter space, usually a compact set inRn.
In these problems, the objective functionf(x) is often
analytically unknown and the function evaluation can
only be achieved through computer simulation or other
indirect ways. This type of problems are hence called
“black-box” optimization problems and considered very
hard to solve because of lack ofa priori knowledge.
In addition, since the objective functions are often non-
linear and multi-modal, these problems are also called
global optimization in contrast to local optimization
which has only one single extreme inf(x) and is much
easier to solve.

Most of black-box optimization problems are NP-
hard and can only be solved for near-optimal solutions
with heuristic search algorithms. Many heuristic search
algorithms have been proposed and used successfully in
practice, such as, multi-start hill-climbing[19], genetic
algorithm[15] and simulated annealing[17]. However,
there has been no consistent report on their performance.
In fact, No Free Lunch Theorem[20], [21] has theoret-
ically demonstrated that no matter what performance
metric is used, no single optimization algorithm can
consistently outperform the others in every class of prob-
lems. The average performance of any algorithm is the
same over all classes of problems. In other words, there
exists no general all-purpose optimization algorithm and
for one specific class of problems, its inherent properties
have to be carefully investigated to perform efficient
optimization. We will examine the properties of network
optimization problems in the following.

This algorithm on the long run performs like random
search (the explore part of our system), but biases better
results early due to the multi-scale (i.e. recursive) nature
of the exploit phase in the algorithm.

A. Properties of Network Parameter Optimization Prob-
lems

The following features are usually present in network
parameter optimization problems.

High efficiencyis required for the desired search algo-
rithm. More specifically, the emphasis of the search
algorithm should be on finding a better operating
point within the limited time frame instead of seek-
ing the strictly global optimum. Network conditions
vary with time and the search algorithm should
quickly find better network parametersbefore sig-
nificant changes in the network occur. For different
problems, this time restriction is also different and
it should be considered carefully when applying the
on-line simulation framework to a specific problem.
In most cases, we can use a proper combination of
efficient search algorithms and powerful computing
devices to address this restriction.

High dimensionalityis another feature of these prob-
lems. For example, AT&T’s network has thousands
of routers and links[4]. If all OSPF link weights
of this network are to be configured, there will be
thousands of parameters present in the optimization.
High-dimensional optimization problems are usually
much more difficult to solve than low-dimensional
problems because of “curse of dimensionality”[19].

Noiseis often introduced into the evaluation of the ob-
jective function since network simulation is used for
function evaluations. Due to inaccuracies in network
modeling and simulation, the resulting empirical
objective function may be distorted from the real one
by small random noises. Fig 2 shows an example of
2-dimensional empirical objective function obtained
with network simulation. It can be seen that there
exist many irregular small random fluctuations im-
posed on the overall structure.
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Fig. 2. An empirical objective function obtained with network
simulation (RED buffer management)

Negligible parametersmay also be present in the ob-
jective function. These parameters contribute little to
the objective function and should be excluded from
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the optimization process. However, in practice, they
are often very difficult to be identified and eliminated
effectively. If the search algorithm can automati-
cally exclude these parameters from the optimization
process, the efficiency of the optimization will be
significantly improved.

“Globally convex” or “big valley” structure[22], [23]
may be present in the objective functions. That is,
high-quality local optima tend to center around the
global one and be close to each other, whereas
low-quality local optima tend to distribute far away
from the global one. “Globally convex” structure
appears in many practical optimization problems,
especially in the situations when the objective func-
tion is affected by random noises. Boese[24] has
demonstrated the existence of this structure in com-
plex Traveling Salesman Problem(TSP) and graph
bisection problem, and presented anintuitive graph
for this structure(Fig 3). The same structure has

Fig. 3. Big valley structure

been found in circuit/graph partitioning and job-shop
scheduling, etc.[25]. Leary[26] also confirmed that
there exist similar “funnel” structures in molecular
conformation problems where the potential energy
from the forces between atoms is minimized.

The issues described above are common in many
practical optimization problems[27], [28]. For such
class of problems, genetic algorithm[29] and simulated
annealing[30], controlled random search[31], are the
most common algorithms since they require littlea
priori information from the concerned problem and
are generally applicable. However, these algorithms are
mainly designed for full-optimization and often lack in
efficiency. In practice, they are often combined with
local search techniques, such as, deepest descent and
pattern search, to improve their efficiency. Since these
local search techniques use fixed local structures to guide
the search process, they are usually susceptible to the
effect of noise[32]. For example, in pattern search, the
wrong pattern may easily be derived if the samples for
pattern exploration are corrupted by noise. Furthermore,

for the objective function with “globally convex” struc-
tures, local methods also perform inefficiently since there
exist a large number of low-quality local optima. For
example, multistart local search algorithms may waste
much effort on examining these low-quality local optima
and essentially work like an inefficient random sampling.

B. Recursive Random Search Algorithm

Because of the disadvantages of traditional search
algorithms, we have proposed the Recursive Random
Search algorithm (RRS)[33] to meet the requirements
of network parameter optimization. RRS is based on
the high-efficiency feature of random sampling at initial
steps. The idea is to use initial high-efficiency random
samples to identify promising areas and then start re-
cursive random sampling processes in these areas which
shrink and re-align sample spaces to local optima. We
have tested this algorithm on a suite of difficult bench-
mark functions and some network parameter optimiza-
tion problems. The results have shown that in terms of
quickly locating a good solution, RRS outperforms other
search algorithms, such as multi-start pattern search and
controlled random search. The test results have also
demonstrated that RRS is much more robust to noise than
those local-search-based method. Furthermore, the inclu-
sion of negligible parameters in the objective function
has little effect on the efficiency of RRS. In the following
we will first illustrate the initial high-efficiency feature of
random sampling and then present a brief description of
the algorithm. Readers can refer to [33] for more details
and the test results.

1) Initial Efficiency of Random Sampling:Given an
measurable objective functionf(x) on the parameter
spaceD with a range of[ymin, ymax], we can define
the distribution functionof objective function values as:

φD(y) =
m({x ∈ D | f(x) ≤ y })

m(D)
(4)

where y ∈ [ymin, ymax] and m(·) denotesLebesgue
measure, a measure of the size of a set. For example,
Lebesgue measureis area in a 2-dimensional space, vol-
ume in a 3-dimensional space, and so on. Basically, the
above equation represents the portion of the points in the
parameter space whose function values are smaller than
a certain levely. φD(y) is a monotonously increasing
function of y in [ymin, ymax], its maximum value is 1
wheny = ymax and its minimum value ism(x∗)/m(D)
wherex∗ is the set of global optima. Without loss of
generality, we assume thatf(x) is a continuous function
andm({x ∈ D|f(x) = y}) = 0,∀y ∈ [ymin, ymax], then
φ(y) will be a monotonously increasing continuous func-
tion with a range of[0, 1]. Assuming ayr ∈ [ymin, ymax]
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such thatφD(yr) = r, r ∈ [0, 1], a r-percentileset in
the parameter spaceD can be defined:

AD(r) = {x ∈ D | f(x) ≤ yr } (5)

Note thatAD(1) is just the whole parameter spaceD
and limε→0 AD(ε) will converge to the global optima.
Suppose the sample sequence generated byn steps of
random sampling isxi, i = 1 . . . n and xn

(1) is the one
with the minimum function value, then the probability
of xn

(1) in AD(r) is:

P (xn
(1) ∈ AD(r)) = 1− (1− r)n = p (6)

Alternatively, ther value of ther-percentileset thatxn
(1)

will reach with probabilityp can be represented as:

r = 1− (1− p)1/n (7)

For any probabilityp < 1, r will tend to 0 with
increasingn, that means, random sampling will converge
to the global optima with increasing number of samples.
Fig 4 shows ther-percentileset thatn steps of random
sampling can reach with a probability of99%. We can
see thatrandom sampling is highly efficient at initial
steps sincer decreases exponentially with increasing
n, and its inefficiency is from later samples. As shown
in Fig 4, it takes only 44 samples to reach a point
in AD(0.1) area, whereas all future samples can only
improver value ofxn

(1) at most by 0.1.
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Fig. 4. AD(r) of xn
(1) in random sampling with probability 0.99

2) Overview of Recursive Random Search:The basic
idea of RRS is to maintain the initial efficiency of
random sampling by “restarting” it before its efficiency
becomes low. However, unlike the other methods, such
as hillclimbing, random sampling cannot be restarted by
simply selecting a new starting point. Instead we accom-
plish the “restart” of random sampling bychanging its
sample space. Basically, we perform random sampling
for a number of times, then move or resize the sample
space according to the previous samples and start another
random sampling in the new sample space.

A stochastic search algorithm usually comprises two

elements:explorationand exploitation. Exploration ex-
amines the macroscopic features of the objective function
and aims to identify promising areas in the parameter
space, while exploitation focuses on the microscopic
features and attempts to exploit local information to
improve the solution quickly. Many search algorithms,
such as multistart type algorithms, do not differentiate
areas and hence may waste much time in trivial areas.
RRS attempts to identify a certainr-percentilesetAD(r)
and only start exploitation from this set. In this way, most
of trivial areas will be excluded from exploitation and
thus the overall efficiency of the search process can be
improved. This can be illustrated by the example shown
in Fig 5. The upper graph shows a contour plot of a
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Fig. 5. Contour plot of an objective function(left) and its region of
AD(0.05)(right)

2-dimensional multi-modal objective function and the
lower graph shows the set ofAD(0.05). As shown in
the figure, the function has many local optima; however,
only three regions remain inAD(0.05) (shaded areas in
the right plot). Each of these regions encloses a local
optimum and the one with the biggest size happens to
contain the global optimum. It is desirable that the size
of AD(r) region identified by exploration is as small
as possible such that most of trivial areas are filtered
out. On the other hand, its smallest size is limited by
the efficiency of random sampling, i.e., it should be
within the reach of initial high-efficiency steps of random
sampling so that identifying a point in it will not take
too long to lower the overall efficiency.

To identify a AD(r) area, RRS first take a certain
number of samples and use the best one to decide the
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location ofAD(r). It then goes on into recursive random
sampling process by shrinking or re-aligning the sample
space. In recursive random sampling, random sampling
is performed for a number of times, if it fails to find a
better point, the sample space is shrunk by a certain ratio.
Otherwise, the sample space keeps its size unchanged,
but moves its center to the new improved sample. This
shrink-and-re-align procedure is repeated until the size
of the sample space decreases below a threshold. Then
we identify anotherAD(r) and restart the above search
process. Interested readers can refer to [33] for the detail
of the algorithm.

In contrast to most of the search algorithms, the RRS
algorithm is built on random sampling. On the long run
it performs like random search (the explore part of RRS),
but biases better results early due to the multi-scale (i.e.
recursive) nature of the exploit phase in the algorithm.
Since RRS performs the search process based on stochas-
tic information on a certain sample area, therefore, its
performance is less affected by noises. In addition, RRS
is more efficient when dealing with the objective function
with negligible parameters. This is because that random
samples will still maintain its uniform distribution in the
subspace composed of only those important parameters,
and hence effectively removes negligible parameters
from the optimization process. In this way, the efficiency
of the search can be improved significantly. For the
objective function with “globally convex” feature, RRS
is able to detect the overall structure by its initial
extensive sampling and then approach global optima with
recursive sampling very quickly. These features have
been empirically validated by the tests on a suite of
benchmark functions[33].

RRS is designed to be an efficient search algorithm
for network optimization problems. However, as a se-
quential algorithm, it is still not sufficient to handle
large-scale optimization problems where the evaluation
of one sample may take a significant amount of time. We
have designed a parallel optimization platform, Unified
Search Framework(USF)[34], which can take advantage
of parallel computing resources, e.g., a network of
workstations, to perform paralle optimization. Basically,
USF includes many search techniques, e.g., RRS and
pattern search, as building blocks. Based on the fea-
tures of the underlying problem, it can run a selection
of these techniques in parallel and distribute network
simulations across the network of available computers.
One feature of USF is that it always tries to fully
exploit available computing resources by increasing the
extent of parallelity. With this USF platform, it is always
possible to use more powerful computing devices to
speed up the optimization process and meet the efficiency

requirements of the on-line simulation framework.

III. A DAPTIVE TUNING OF RED

The on-line simulation framework can be applied to
a wide range of network protocols. This section will
present one of these applications, i.e., the tuning of
Random Early Detection (RED) algorithm. RED is one
of buffer management mechanisms which are used for
congestion control by cooperating with TCP end-to-end
congestion avoidance mechanism. Traditional DropTail
could not effectively prevent the occurrence of serious
congestion and often suffer from long queueing delays.
Furthermore, the global synchronization may occur dur-
ing the period of congestion, i.e., a large number of
TCP connections experience packet drops and hence
back off their sending rate at the same time, resulting in
underutilization and large oscillation of queueing delay.
Random Early Detection (RED) has been proposed [35]
to address these problems. The basic idea of RED is
to detect the inception of congestion and notify traffic
sources early to avoid serious congestion. It has been
demonstrated to be able to avoid global synchroniza-
tion problem, maintain low average queueing delay and
provide better utilization than DropTail[35]. Therefore,
IETF has recommended RED as the single active buffer
management for wide deployment in the Internet[36].
However, the setting of RED parameters has proved to
be highly sensitive to network scenarios and the perfor-
mance of misconfigured RED may suffer significantly
[14], [37], [38]. Therefore, RED needs constant tuning
to adapt to the prevailing network conditions. In view of
this, it has been debated whether or not RED can achieve
its claimed advantages[38], [39], [40].

Based on simplified models, some general guidelines
for setting RED parameters have been proposed[35],
[37], [41]. Intuitive modifications on RED have also
been proposed to automate the tuning of RED under
varying network conditions by adjusting one of the
parameters[14], [42]. However, the effectiveness of these
methods in complex network scenarios is still under
investigation. Rather than relying on simplified models
or intuition, here we employ the on-line simulation
framework for the dynamical tuning of RED.

A. Problem Formulation

RED uses the average queue sizeq̄ as an indicator
of the congestion extent and determines the packet drop
rate accordingly. As shown in Fig 6, the instantaneous
queue sizeq is sampled at every packet arrival and
then passed through a low-pass filter to remove transient
noises. Based on the smoothed average queue sizeq̄, the
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drop probabilityP is calculated with a control function
P = f(q̄). The arriving packets are randomly dropped
(or marked) according to this probabilityP . Traffic
sources react to these drops and adjust offered loadr
accordingly. Therefore, RED is mainly designed to work
with TCP traffic sources which are responsive to packet
drops and it will not work well in the cases like UDP
traffic or short-life HTTP traffic.

A queue will build up and keep increasing if the
offered load is larger than the bottleneck capacity; there-
fore, the objective of a buffer management algorithm
is to stabilize the offered load around the bottleneck
capacity. Basically, TCP sources increase their sending
rate every round trip time; on the other hand, the packet
drops cause TCP sources to lower their sending rates.
In the equilibrium status, the increase rate of TCP
traffic should be approximately equal to its decrease
rate caused by packet drops and thus the offered load
will stabilize around a certain level. If this equilibrium
status is achieved while maintaining a certain queue size,
the link utilization will be close to 1, i.e., the offered
load will stabilize around the bottleneck capacity. The
rationale of RED is to search for an appropriate packet
drop rate by varying the average queue size to counteract
the increase of offered load.

There are four parameters in RED. Among them,
the moving average weightwq determines the cut-off
frequency of the low-pass filter, and the other three
parameters, i.e., minimum thresholdminth, maximum
thresholdmaxth and maximum drop probabilitymaxp,
determine the control functionP = f(q̄). In the standard
version of RED, the control function is determined by
the parameters as illustrated in Fig 7. With this function,
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Fig. 7. RED control functionP = f(q̄)

the drop probability can be calculated according to the

average queue size. The equilibrium drop probability
depends on two factors, the offered load increase rate
and the granularity of congestion notification, i.e., the
load decrement caused by one packet drop. With TCP
fast recovery and fast retransmission mechanism, each
drop will cause a TCP source to decrease its sending
rate by half. Therefore, the granularity of the congestion
notification is determined by the average TCP sending
rate. When the average sending rate is large, for example,
a small number of TCPs share a bottleneck, each packet
drop will cause a large decrease in offered load, andvice
versa. In different scenarios, the increase rate of offered
load is also different. For example, the increase rate will
be large when there are many TCP flows or the round
trip time is short. As a result, the drop probability should
be adjusted according to network scenarios to maintain a
stable equilibrium point. If the control function remains
unchanged, the average queue size has to be varied to
obtain the new equilibrium drop probability. Therefore,
to keep the average queue size stable around a certain
level in varying conditions, the control function has to
be adjusted accordingly, i.e., the three parameter which
determinesf(q̄) should be dynamically tuned.

wq controls the cut-off frequency of the low-pass
filter. The cut-off frequency should be high enough to
detect manageable traffic variations, while low enough
to filter out transient traffic oscillations which can not
be effectively controlled by RED. For example, the
oscillation within one round trip timertt should be
removed. Therefore, the optimalwq is usually related to
rtt. In addition, since the average queue size is calculated
at every packet arrival instead of a constant interval,
different link speeds will result in different packet arrival
intervals and hence affect the cut-off frequency of the
low-pass filter. Consequently, the optimalwq is also
dependent on the link speed.

B. Optimization Objective

For a buffer management algorithm, there are two
main performance metrics, i.e., link utilization and aver-
age queue size. The main objective of RED is tomaintain
a high utilization while keeping a low average queue
size[35]. However, optimizing one of the performance
metrics may compromise the other. For example, a high
link utilization can always be obtained by increasing
minth or decreasingmaxp, hence virtually increasing
the average queue size. On the other hand, a low average
queue size can be obtained by decreasingmaxth or
increasingmaxp. However, this obviously will cause
underutilization of the link. Therefore, an appropriate
tradeoff has to be made to reflect the requirement of net-
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work operators. This is essentially a multi-objective op-
timization problem and corresponding techniques should
be employed to convert it into a tractable single objective
problem.

One classic multi-objective optimization technique is
to optimize the weighted average of the performance
metrics. The weights for different metrics reflect the
quantitative tradeoff among them and are critical to
the effectiveness of optimization results. However, the
weights are normally difficult to determine. Another
common technique is to define the lower limits for less
significant metrics, and only optimize the most important
one with the restriction that the other metrics are not
below their limits. In this paper, instead of using tradi-
tional multi-objective optimization techniques to directly
work on link utilization and queueing delay, we have
proposed a performance metric whose optimization will
cause RED to settle in a equilibrium status and hence
achieve high utilization and low queueing delay.

As mentioned above, in the equilibrium status, the
average queue size of RED stabilizes around a certain
level. When traffic pattern changes, the equilibrium point
may also shift which makes the average queue size move
around. When the average queue size drifts beyond the
control of RED, RED will become unstable, i.e., the
queue status oscillates between full and empty[14], [37].
This not only causes end users to experience significant
delay jitters, but also results in link underutilization.
Therefore, it is important to keep the average queue
size of RED stable at a target level, such as the mid-
dle betweenminth and maxth as proposed in[42]. In
consideration of this, we define the performance metric
to be optimized as:

m =
∑N

i=1(q̄i − q0)2

N
(8)

whereq0 is the expected average queue size predefined
by network operators,̄qi is the periodic sample of the
average queue size andN is the number of samples.
This metric essentially calculates the variance of the
average queue size relative toq0 over a certain period of
time. When the equilibrium level of RED is far from
the expected level,m will be large. Or when RED
is misconfigured and hence the equilibrium cannot be
reached, the queue size will oscillate substantially, also
resulting in a largem. Therefore, minimizingm will
cause RED to avoid both situations and always maintain
an equilibrium aroundq0. Thus, high link utilization and
stable queueing delay can both be achieved.

C. Simulation Results

The simulations of on-line RED tuning are performed
for varying traffic load and round trip time, two major
factors affecting RED performance. The network topol-
ogy used in the simulations is shown in Fig 8. We

r1
10Mbps, 10ms

TCP sources TCP sinks

45Mbps,2ms
RED

...
...

...
...

45Mbps,2ms

r2

Fig. 8. Network topology for RED tuning simulation

usedns[18] as the simulation tool. Infinite FTP traffic
between TCP sources and sinks is generated to build up a
queue at routerr1. RED is configured onr1 to manage a
100-packet buffer. Each simulation runs for 40 seconds
and network conditions are changed twice during the
simulation. We will compare the performance of standard
RED and RED controlled with the on-line simulation
framework under changing network conditions.

We define an expected average queue size of 30 pack-
ets and the objective is to maintain the equilibrium status
of RED around this level. According to the common
guideline of RED parameter setting, we useminth =
15,maxth = 45,maxp = 0.1, wq = 0.002 for standard
RED. We also assume that the on-line simulation system
can promptly detect the change in network conditions
and trigger the optimization process of RED parameters.
In reality, this can be achieved by monitoring the change
in performance metrics or analyzing traffic statistics
directly.

First we test the tuning of RED to varying traffic
load. The number of TCP flows in the simulation starts
with 16, then increases to 64 after around 13 seconds,
and finally decreases to 4 after another 13 seconds. The
instantaneous queue sizes of standard RED and RED
with on-line simulation control are shown in Fig 9.
The upper graph shows that for the standard RED,
when the traffic load increases beyond the control of
current RED parameter setting, the equilibrium status
may not be broken and the queue remains in a very
unstable status where large oscillations between full and
empty queue persist. On the other hand, when the traffic
load decreases to a certain level, the queue frequently
becomes empty and this causes the underutilization of
the link capacity. The lower graph shows that when dy-
namically tuned, RED always maintains an equilibrium
status where the queue size remains very stable and the
utilization is close to 100%.
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Fig. 9. Comparison of standard RED (upper graph) and RED
controlled by on-line simulation (lower graph) under varying traffic
load

Then we test the tuning of RED to varying round
trip time. The simulation starts with 16 TCP flows and
each with a round trip time of 18ms (not including
queueing delay). After 13 seconds, thertt of these flows
is increased to 170ms. And after another 13 seconds, the
rtt is reduced to around 2ms. The instantaneous queue
sizes of standard RED and RED with on-line simulation
control are shown in Fig 10. The upper graph shows
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Fig. 10. Comparison of standard RED (upper graph) and RED
controlled by on-line simulation (lower graph) under varying round
trip time

that whenrtt is increased to 170ms, the equilibrium of
standard RED queue is again broken and the queue keep
oscillating between full and empty status. And whenrtt
is reduced to 2ms, although the queue does reach an
equilibrium status, there still exist big variations in queue
size. As shown in the lower graph, the dynamically tuned
RED eliminated these problems.

D. Real Network Experiment for Optimization of Multi-
ple RED Queues

As mentioned before, we have impletemented a pro-
totype of the on-line simulation system in Linux. This

section presents a real network experiment which applies
this prototype to RED parameter configuraiton in a Linux
testbed. The testbed topoloty is shown in Fig 11 andns is
adopted for network simulation in the on-line simulation
system. There are 4 Linux routers in the network and
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.
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Fig. 11. Linux-based testbed topology with multiple RED queues

each of them is configured with a RED queue which
is monitored and controlled by the on-line simulation
system through SNMP. Again, infinite FTP sources are
used to generate network traffic. Note that in this test
we will try to tune the parameters for all four RED
concurrently. Since optimizing each RED individually
may compromise the performance of the others, we have
taken all RED queues as a single black-box system with
a total of 16 parameters. Consequently, a global perfor-
mance metric has to be defined based on the objective of
network operators. If using ISP-based metrics, such as
utilization and queueing delay, a certain multi-objective
technique has to be employed to combine the metrics
from every RED router. Instead, we have selected an end
user performance metric, i.e., the Coefficient of Variation
(σ
µ ) of goodputs for TCP connections, which measures

the variation of TCP goodputs. This choice is somewhat
arbitrary, only to demonstrate the effectiveness of our
approach. An alternate metric can always be incorporated
into our system. In addition, choosing such a metric
is also to demonstrate the flexibility of the approach,
i.e., rather than being restricted to a few metrics like
utilization and delay, RED can be tuned according to any
performance metric defined by network operators though
the mechanism of how RED affects this performance
metric may be completely unknown.

During the experiment, a number of TCP flows are
generated from one side to the other. The goodputs of
these TCP flows are collected periodically from TCP
sinks. The Coefficient of Variation(COV) of the goodputs
is calculated and plotted as a function of time as shown
in Fig 12. In the beginning, the parameters of these
RED queues are set torandom values to represent a
misconfigured system, which results in a large unfairness
between TCP flows, i.e., a high average COV value and
large oscillations. At 325 second, the on-line simulator
starts and detects the misconfiguration of REDs. The



10

good configuration with a performance better than a
predefined threshold is quickly found within seconds and
the network is reconfigured. This results in an immediate
performance improvement as shown in the plot: the
average of COV drops to a very low value and the
instantaneous COV curve becomes stable over time.

On−line simulator start
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Fig. 12. Tuning multiple RED queues for optimizing coefficient of
variation of goodputs

IV. T RAFFIC ENGINEERING BY TUNING OSPF LINK

WEIGHTS

In this section, we will present another one application
of the OLS system, i.e., tuning OSPF routing protocol
for traffic engineering. Note that there are many ways
to formulate the OSPF optimization problem depending
on the specific application context and optimization
purpose. This section only present one of these possible
problem formulations as an example. The term “traffic
engineering” refers to a broad set of capabilities where
traffic flows are mapped onto a network topology to meet
a variety of performance objectives specified by opera-
tors. In current Internet, IP traffic is mapped onto the
network by standard routing protocols, such as, OSPF.
OSPF is mainly used for intra-domain traffic routing. It
routes traffic on the shortest path based on the advertised
link weights. As a result, the link along the shortest
path between two nodes may become congested while
the links on longer paths may remain idle. Many traffic
measurements[43], [44] have observed large variations
in link utilization across the network. OSPF allows for
Equal Cost Multi Path(ECMP) where traffic is distributed
equally among various next hops of the equal cost paths
between a source and a destination [45]. This is useful in
distributing the load to several shortest paths. However,
the problem of uneven mapping still remains.

Two main approaches have been taken to solve the
intra-domain traffic engineering problem. One approach
is to deploy the emerging MPLS technology which is
not constrained by the shortest path nature of routing.
Constraint-based routing can be used to compute routes
in an MPLS network subject to QoS and policy con-
straints. Another approach is to adjust the link weights of
the existing network (running OSPF) such that the OSPF

routing with these link weights leads to desired routes.
For example, One earlier approach was to adapt link
weights to reflect the local traffic conditions on a link
or to avoid congestion ([46], [47], [48]). This is called
adaptive routing or traffic-sensitive routing. However,
adapting link weights to local traffic conditions leads
to frequent route changes and is unstable (see [49], [50]
for stability analysis). Additionally, adaptive routing is
based on the local information and therefore cannot
optimize traffic allocation from the viewpoint of the
overall network. These drawbacks are alleviated in [13]
where the configuration of OSPF link weights is modeled
as a black-box optimization problem. The authors have
chosen a heuristic cost function which is piecewise linear
with offered load and applied a multi-start hillclimbing
algorithm to find good solutions.

In this section, we will use the on-line simulation
framework for the adaptive configuration of OSPF link
weights. As we have mentioned, one advantage of this
approach is its flexibility and it can be easily used
with various network protocols, simulation engines and
performance metrics. Instead of the heuristic metric used
in [13], we have chosen the total packet drop rate in the
network as the performance metric since it is a more
accurate to indicate the congestion in the network and it
also has significant impacts on the performance of some
underlying protocols, such as TCP. The packet drop rate
for one set of link weights could be estimated using
packet-level or flow level simulation. Instead of a full-
fledged simulation, we use a GI/M/1/K queuing mode
to calculate the packet drop rate, which is considerably
faster. When calculating the drop rate, the mean and vari-
ance of the offered load should both be considered. This
is a more complete representation of traffic conditions
than the average offered load used in [13].

A. The Objective Function

Our goal for OSPF configuration is to minimize the
packet drop rate in the network for a given mean
and variance of the aggregate demands between each
source and destination routers. Let us consider a network
represented by a directed graphG=(N ,L), whereN and
L represent respectively the set of routers and links in
the network. Each linkl ∈ L has bandwidth denoted
by Bl and a buffer space ofKl packets. We assume
that packets arriving when the buffer space at a link
is full are dropped and there is no other active queue
management algorithm running at the routers. In addition
to the knowledge of bandwidth and buffers at all the
links, we assume that an estimate of the mean and
variance of the aggregate demand from each sources



11

to destinationt is known. LetD, V denote the mean and
variance matrix of the estimated aggregate demand. In
practice, all such information can be obtained using the
tools described in [5], [51].

In the following, we will first show how to derive
the drop probability for one link based on the offered
load. Then we will formulate the optimal general routing
problem which aims to optimize the overall packet drop
rate for the network. Note that the OSPF optimization
problem is just the optimal general routing subject to the
shortest path constraint.

1) Link Drop Probability: Let P denote the packet
drop probability on a link,λ, σ2 denote the mean,
variance of the offered load to this link in packets
per second, andB, K denote its bandwidth and buffer
space respectively. In order to find a closed-form expres-
sion for the packet drop probabilityP , let us assume
an exponentially distributed packet size with meanX̄.
However, we consider a general arrival process. We
compute the packet drop probability at the link using
a GI/M/1/K queuing model. The drop probability of a
finite GI/M/1/K has been approximated by an infinite
buffer GI/M/1 queue [52] using the following equation.

P (NK = K) =
P (N∞ = K)
P (N∞ ≤ K)

(9)

NK denotes the number of packets in the finite buffered
queue, whereas,N∞ denotes number of packets in the
infinite buffer GI/M/1 queue. The queue length distribu-
tion of GI/M/1 queue is given by [53]:

P (N∞ = j) = Aωj−1 (j ≥ 0) (10)

whereA is the normalization constant andω is a constant
depending on the arrival process and service rate.ω can
be obtained by solving the following equation:

ω = γ ((1− ω)µ) (11)

whereγ(s) is the Laplace transform of the arrival process
andµ is the service rate which is given byB

X̄
. In order to

solve (11) forω, we need to assume a inter-arrival time
distribution for the arrival process. Let us consider the
Generalized Exponential (GE) distribution for modeling
the arrival process to first two moments. We discuss
below the reason for choice of GE distribution.

The pdf of GE distribution is given by

g(x) = (1− p)δ(x) + pae−ax (12)

whereδ(x) is the delta function,p and a two constant
parameters. As can be seen from (12), a GE process
is characterized by two parameters,p and a. GE dis-
tribution is a special case ofH2 distribution and can
be used to model general inter-arrival processes that

are more bursty than Poisson process. For a Poisson
process the variance is equal to the square of mean.
Hence, GE distribution may be used to model the first
two moments of processes with variance greater than the
square of mean. If the arrival process is represented by a
GE distribution, then, with probabilityp the inter-arrival
time is exponentially distributed with meana and with
probability 1 − p, the inter-arrival time is zero. Hence,
this distribution represents a batch arrival process with
geometrically distributed batch size and exponentially
distributed inter-batch arrival times. For a link withλ,
σ as its mean and variance of the offered load, we can
have the parameters of the GE distribution representing
the arrival process:

p =
2λ2

σ2 + λ2
anda = pλ (13)

The merging ofN independent GE(pi,ai) processes is
a bulk-arrival Poisson process with mean arrival rate
a equal to

∑N
i=1 ai and p equal toa/

∑ ai

pi
. Similarly,

splitting of a GE(p,a) process intoN streams according
to a Bernoulli filter r1, r2, ...rN , the parameters of the
ith process are

pi =
p

p(1− ri) + ri
andai = ria. (14)

Reader may refer to [54], Section 1.4 for more details.
The packet arrival process of a single TCP flow is

bursty in nature with a “bulk” of packets arriving every
round-trip time. The model that we have considered
implies that we have “bulk” arrivals (in form of bursts of
packets from competing TCP sources) of varying sizes
arriving into a queue. Our model does not capture the
feedback effect of packet drops on TCP flows because
we have considered the aggregate traffic arriving at an
OSPF router as our demand estimate.

Taking the Laplace transform of (12), we get,

G(s) = 1− p +
pa

s + a
(15)

Then substitute it into (11) and solve it forω for the GE
arrival process gives

ω = ρ + (1− p) (16)

where,

ρ =
a

µ
=

aX̄

B
. (17)

Finally, using (9), (10), (11) and (15), we get the
packet drop probability

P =
(p− ρ)(ρ + 1− p)K

1− (ρ + 1− p)K+1
(18)

In summary, Equation (18) represents the closed form
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expression of packet drop probability,P , on a single
link as a function of mean, varianceλ, σ2 of the arrival
process, mean packet sizēX, link bandwidth B and
buffer spaceK. Figure 13 shows the drop probability
as a function of the offered load for difference values of
variance of the inter-arrival time for a buffer size of 20
packets. As expected, higher drop probability is observed
when the arrival process has a high variance, i.e., when
the incoming traffic is more bursty.

2) The Optimal General Routing:The optimal gen-
eral routing represents routing where there is no limita-
tion on the way a flow is split among multiple paths
available between a source and destination[13]. It is
the best that can be achieved by carefully setting up
multiple Label Switched Paths (LSPs) in MPLS. Using
link packet drop probabilities obtained from (18), we can
formulate the optimal general routing problem as:

Φ =
∑

l∈L
λlPl (19)

whereλl is the arrival rate for linkl andPl is its drop
rate calculated by (18). This is a constrained optimization
problem with the flow constraints at each routerj for
each demandD(s, t) between sources and destination
t. If f

(s,t)
l denotes the fraction of the demandD(s, t) on

link l, then the flow balance constraints are given by

∑

i:(i,j)∈L
f

(s,t)
(i,j) −

∑

i:(j,i)∈L
f

(s,t)
(j,i) =




−D(s, t) if j = s
D(s, t) if j = t
0 Otherwise

(20)
The mean packet arrival rate to a linkl, λl, is given by

λl =
∑

(s,t)∈N×N
f

(s,t)
l (21)

The parameterp(s,t) for the GE process used to fit the
demandD(s, t) is given according to (13):

p(s,t) =
2D(s, t)2

D(s, t)2 + V(s, t)
(22)

Let r
(s,t)
l denote the probability with which the demand

D(s, t) is sent on linkl. Thenr
(s,t)
l is given by

r
(s,t)
l =

f
(s,t)
l

D(s, t)
(23)

Let p
(s,t)
l denote the parameterp of the GE process

after splitting the demandD(s, t) with probability r
(s,t)
l .

Then p
(s,t)
l denotes the parameterp of the GE process

representing the flowf (s,t)
l . The parameterp(s,t)

l is given
according to (14):

p
(s,t)
l =

p(s,t)

p(s,t)(1− r
(s,t)
l ) + r

(s,t)
l

(24)

The total offered load on linkl is given byλl (21), the
parameterp of the associated GE distribution may be
obtained by merging the flowsf (s,t)

l going throughl. If
pl denotes the parameterp of the GE process associated
with the aggregate traffic on linkl, thenpl is given by

pl = λl(
∑

(s,t)∈N×N
f

(s,t)
l p

(s,t)
l )−1 (25)

If ρl is equal toλlplX̄
Bl

, then, using (18), the probability
of packet dropped at linkl is given by

Pl =
(pl − ρl)(ρl + 1− pl)Kl

1− (ρl + 1− pl)Kl+1
(26)

The optimal general routing problem is given by (19),
subject to the constraints given by (21), (22), (23), (24),
(25), (26). It may be noted that we are casting the traffic
according to the routing in order to obtain the mean
and variance of the total offered traffic to eachl ∈ L.
However, we are not iterating to obtain the equilibrium
traffic parameters. Essentially, we are using the upper
bound on the packet drop probability in (19).

B. Optimization of OSPF Weights Using On-line Simu-
lation

The general optimal routing problem, where the ob-
jective function is completely defined by (19)-(26), may
possibly be solved forf (s,t)

l ∀l ∈ L by using some non-
linear programming techniques. However, under con-
straints of OSPF routing, the relation between the link
weights and optimization metric can no longer be an-
alytically defined. In [55], authors have proved that it
is NP-hard to find OSPF link weight settings for an
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optimization metric piecewise linear in offered load. It is
straightforward to show, by proceeding along the same
lines, that our problem, i.e., minimize the packet drop
rate given by (19), is also NP-hard. For such NP-hard
problems, heuristic optimization algorithms are usually
used to search for approximate solutions. Instead of
choosing a different heuristic for each NP-hard problem,
we can apply the RRS technique to perform efficient
search in most of such problems.

The optimal routing in OSPF can be formulated as the
following “black box” optimization problem:

minΦ(w) (27)

wherew is the vector of network link weights andΦ(·)
the objective function, which is unknown. Basically, in
order to obtain the value ofΦ for a given OSPF weight
setting, we run modified Floyd Warshall’s algorithm
(modified to obtain equal cost paths also) to obtain the
routing. Then the traffic is cast to obtain parameters of
the aggregate packet arrival process and drop probability
for every link l ∈ L using (21), (22), (23), (24), (25) and
(26). Finally the value ofΦ may be calculated by (19).

C. Simulation Results

We have considered three network topologies to
demonstrate our results. In these topologies, each link
is assumed to consist of two simplex link whose
weights may be set independently. Two are well-known
ARPANET topology and MCI topology. The ARPANET
topology consists of 48 routers and 140 simplex links,
and the MCI topology 19 routers and 62 simplex links.
We also performed the simulation on a real large-scale
ISP network topology, i.e., EXODUS network, obtained
from Rocketfuel project[56]. This topology includes 244
core routers from EXODUS network and 1040 sim-
plex links. Fig 14 shows these topologies generated in
NAM[57].

In the simulations, random amount of traffic was sent
from every node to every other node in the network. This
random traffic was generated using the method outlined
in [13]. For each nodeu, two random numbers are
generatedOu, Du ∈ [0, 1]. For each pair of nodes (u, v)
another random numberC(u,v) ∈ [0, 1] was generated.
If ∆ denotes the largest Eucledian distance between any
pair of nodes and ifα denotes a constant, the average
demand betweenu andv is given by

D(u, v) = αOuDvC(u,v)e
−δ(u,v)

2∆

where,δ(u, v) denotes the Eucledian distance between
the nodesu and v. This method of generating random
traffic (the terme

−δ(u,v)
2∆ ) ensures more traffic for source

destination pairs that are closer to each other. Since a
product of three random variables is taken to generate the
demands, there is actually a large variation in the traffic
demands. The ratio of square of mean to the variance was
assumed to be a uniformly distributed random variable in
[0, 1]. The mean and variance of the traffic demands are
generated using the above procedure. All the links in the
network have 1Mbps bandwidth with a buffer size of 50
packets. The packet size was chosen to be exponentially
distributed with mean packet size of 200 bytes.

We usedns[18] to simulate the real network running
OSPF. The traffic in the network was generated with the
method described above. Every 200 seconds the traffic
pattern (the mean and variance of demand matrix) was
changed to introduce a dynamic scenario. The traffic
generator is implemented over UDP to generate bursty
traffic with the GE inter-arrival distribution described in
(12). In the simulation, we assume OLS has a complete
knowledge of necessary network information, such as,
traffic demands, network topology, etc.. Whenever a
change of traffic pattern happens, OLS performs the
optimization procedure for a certain time to obtain a
good OSPF link weight setting. If the optimized setting
is better than the original, it will be deployed at 100
seconds after the traffic change. The 100-seconds time
difference is used because we want to observe the perfor-
mance difference between before optimization and after
optimization. Note that here we assume the running time
of the optimization process is less than the traffic change
period, i.e., the optimization has been finished at 100
seconds after the traffic change. In our simulation, the
optimization procedure typically finds a better solution
with a few hundred to a few thousands of function evalu-
ations (depending on the size of the network), which can
be interpreted to a computation time of minutes to hours
when using a single Pentium III class PC. This time
can be further reduced by performing the optimization
on a more powerful computer or multiple computers.
Furthermore, by using the USF paralllel optimization
platform we described before, we can always keep the
optimization process within the time constraints imposed
by the change frequenecy of network conditions, which
is typically in hours for the BGP problem considered in
this seciton.

The actual packet drop rates are collected during
the simulation for all the traffic sinks in the network
and then summed together to get the total packet drop
rate. Figure 15 shows total packet drop rate in the
network as a function of time. Table I summarizes the
maximum improvement in packet drop rates for different
topologies. Note that more or less improvements may
result depending on the topology and traffic conditions.
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Fig. 14. Network topologies for simulations of OSPF link weight configuration
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Fig. 15. OSPF Link weights adaptive configuration simulations: Traffic pattern was changed at times 0, 200, 400..., the optimized OSPF
weights were deployed at times 100, 300,...

We observe that OLS can demonstrate improvements of
the order of 30-60% in the total drop rate.

ARPANET MCI EXODUS
Improvement 31.8% 60.2% 35.7%

TABLE I

TABLE SUMMARIZING THE MAXIMUM PERCENTAGE

IMPROVEMENT IN THE PACKET DROP RATES OBTAINED FOR

DIFFERENT TOPOLOGIES FOR THE RESULTS SHOWN INFIGURE 15

V. OUTBOUND LOAD BALANCING IN BGP
ENVIRONMENT

This section describes another application of the
OLS system i.e., tuning of BGP routing protocol, to
show the breadth of our approach’s applicability. Again,
the application described here is only one of possible
problem formulations. Alternate performance metric or
parameter space can surely be used to achieve other
objectives. For inter-domain Traffic Engineering, the
traffic demand statistics are usually kept private and
the control over routers outside the local domain is
normally not available. The global TE approach like

those for intra-domain TE is not practical. Therefore,
inter-domain TE has mainly focused on multi-homed
Autonomous Systems (AS), in-bound/out-bound load-
balancing between adjacent ASes using BGP attributes
(e.g. MED, LOCAL PREF, ASPATH, etc.) [58].

The ASes are increasingly becoming multi-homed
[58]. The outbound traffic of an AS may be routed on
one of several outbound links, depending on the decision
made by the inter-AS routing algorithm, usually BGP.
BGP routing decisions are made by a series of policy
filters. Usually an AS may use the shortest AS path but
this may lead to unbalanced load distribution among the
multiple outbound interfaces. In this section, we consider
the problem of load-balancing outbound traffic in BGP
from the perspective of a single AS. We show that this
is an NP-hard problem and use the OLS framework to
solve this problem.

BGP provides only some simple capabilities for TE
between AS neighbors. The MED attribute can be used
by an AS to inform its neighbor of a preferred connec-
tion (among multiple physical connections) for inbound
traffic to a particular address prefix. Usually it is used by
the service providers on the request of their multi-homed
customers. Lately, it is also being used between the
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service providers. The ASPATH attribute has also been
used to achieve TE objectives. ASPATH is “stuffed”
or “padded” with additional instances of the same AS
number to increase its length and expect lower amount
of inbound traffic from the neighbor AS to whom it is
announced. However, this may lead to a large overhead if
done too often. Another way used to achieve some TE is
to subvert the BGP-CIDR address aggregation process.
In particular an AS may extract more-specifics, or de-
aggregate it and re-advertise the more-specifics to other
ASes. The longest-prefix match rule in IP forwarding
will lead to a different route for the more specific ad-
dress. However, this is achieved at the expense of larger
number of entries in forwarding tables. This is an indirect
and undesirable way to achieve inbound load-balancing.
One way to avoid subverting CIDR aggregation (shown
in our recent work [59]), in the case of multi-homedstub
AS, is by mapping the inbound load-balancing problem
to an address management problem. Alternatively, AS
neighbors may agree on BGP community attributes [60]
(that are not re-advertised) to specify traffic engineering.
We notice that inbound load-balancing is considerably
complex and requires re-advertisements or support from
neighboring ASes. However, outbound load-balancing is
simpler, and can be achieved by impacting local policy
changes.

The LOCAL PREF attribute is used locally within the
AS to prefer an outbound direction for a chosen destina-
tion prefix, AS or exit router. LOCALPREF holds the
highest priority in the policy filter hierarchy, i.e. the BGP
will choose the path with highest LOCALPREF over
other policy attributes. Therefore, if we know the desired
routing to meet the traffic engineering objective, we can
use the LOCALPREF to over-ride the default routing.
Recent work [3] observes that it is possible to adjust
traffic distribution over outbound links by changing
LOCAL PREF of some “hot-prefixes” and shifting them
away from congested links. However, the problem of
unbalanced traffic distribution still remains. In fact, how
to “shift” these hot-prefixes to achieve load balancing is
a NP-hard problem as we will show later. Here we use
the on-line simulation framework to tackle this problem
and perform automatic outbound load balancing.

A. Granularity of Traffic Demands

Given a certain outbound traffic demand, load bal-
ancing aims to split this traffic demand and distribute
them evenly among outbound links. Usually, the traffic
demand can be divided into a number of traffic flows.
In the finest granularity, a traffic flow is determined by
the source and destination IP addresses and the port

number. In a coarse granularity, a traffic flow can be
identified by the source and destination AS-pair. Internet
measurements have shown that traffic aggregates based
on destination prefixes in the routing table are more
suitable for load balancing [43] since they are relatively
stable through the day and on per-hour time scales. We
have used this granularity for defining a flow in our load
balancing scheme. In other words, the traffic demand is
split into flows at the level of per destination-prefix.

A typical BGP routing table consists of thousands of
destination prefix entries. It will be very complex to work
with such a large number of traffic flows. However, many
traffic measurements [43], [44] have demonstrated the
existence of so-called elephant and mice phenomenon.
That is, a small number of traffic streams, known as
elephants, generate a large portion of total traffic whereas
a large number of streams,mice, generate a small portion
of total traffic. For example, it has been found that
the top 9% of flows between ASes account for 86.7%
of the packets or 90.7% of the bytes transmitted [44].
Furthermore, these elephant traffic flows are usually very
stable over time and hence are suitable to be re-routed for
load-balancing purpose. Based on these observations, our
load balancing scheme only attempt to adjust the routing
of the top 10% destination prefixes in the routing table
based on their traffic demands.1.

B. Optimal Routing Calculation for Load Balancing

Given the knowledge of traffic demand and outbound
link information, the optimal routing for load balancing
can be calculated. Letm be the number of outbound
links in the concerned AS. Letli and ci, i = 1 . . .m,
denote theith outbound link and its capacity (or band-
width), respectively. All the outbound traffic of this AS
will be routed on these links. Ifsi, i = 1 . . .m, denotes
the total outbound traffic carried by theith link, then
the utilization of link li is given bysi/ci. The objective
of load balancing is to minimize the maximum link
utilization among all the outbound links, i.e.,

minimize max
i=1...m

si

ci
(28)

Let n denote the number of selected destination pre-
fixes anddj , j = 1 . . . n, denote the average offered
load for these destinations. Our load balancing scheme
attempts to adjust the routing of thesen prefixes in order
to minimize the objective function in Equation (28). Let
Di denote the subset of then prefixes that are routed

1The fraction of optimized destination prefixes can be kept fixed
or increased in the event of increase in routing tables. In future, a
smaller fraction of destination prefixes may be used if 10% gives a
very large number.
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on link li by adjusted routing. Iffi denotes the load on
link li generated by the other 90% traffic flows, which
are routed to this link by the default BGP routing, then
Equation (28) becomes

minimizeΦ = max
i=1...m

(
∑

j∈Di

dj

ci
) +

fi

ci
(29)

where, the first term represents the percentage load due
to the selected 10% flows and the second term represents
the percentage load generated by the other 90% flows on
link li. This problem can also be written as the following
integer programming problem.

minimize t (30)

subject to
n∑

j=1

xij
dj

ci
+

fi

ci
≤ t, i = 1 . . . m

m∑

i=1

xij = 1, j = 1 . . . n

xij ∈ {0, 1}, i = 1 . . .m, j = 1 . . . n

where xij is a binary number andxij = 1 means
flow dj is output on link li, otherwisexij = 0. Note
that traffic flow dj may not have all outbound links
as its alternative paths. One can assume an arbitrarily
large dj/ci for those links. The problem represented
by Equation (30) is actually a classical task scheduling
problem with unrelated parallel machines [61], where a
number of tasks with different sizes are assigned to a
set of parallel machines. The processing time of each
task is different on different machines and the objective
there is to minimize the completion time of all tasks
by carefully distributing these tasks onto the parallel
machines. This problem is NP-hard and approximation
algorithms can be used to obtain near-optimal solutions.
For example, in [62] a linear programming technique is
first used to obtain a basic solution where there are at
mostm−1 non-integralxij . Then for these non-integral
xij , an exhaustive enumeration is performed to find the
optimal scheduling. Combining the solutions of these
two steps can produce an approximate solution with a
upper bound of2t∗, where t∗ denotes the value oft
produced by the optimal solution. The time complexity
of this method is exponential in the value ofm.

Instead of the integer programming approach, we
have applied the OLS framework to this load balancing
problem. With the flexibility of OLS, it is possible to
optimize for various performance objectives besides load
balancing. For example, in addition to load-balancing,
the network operator also prefers to use the shortest
paths. It is possible to formulate a multi-objective opti-
mization problem and obtain a solution, using OLS, that

meets both load-balancing and shortest path criteria.
The complete optimization procedure performed by

the OLS framework can be summarized as follows:

Step 1 Extract top 10% destination prefixes, with traffic
demandsdj , j = 1 . . . n, from the routing table;

Step 2 Calculatedj/ci andfi/ci, i = 1 . . .m, j = 1 . . . n
according to the traffic demand for each prefix and
the capacity of each outbound link.

Step 3 Each destination prefix may be reachable by all or
some of the outbound links. This information can
be obtained from Adj-RIBs-In at a BGP router.
Assign a very large value ofdj/ci for the infeasible
routes, so the solution (minimization) will not
result in an infeasible solution.

Step 4 Measure or compute the value ofΦ for default
routing using Equation (29) denoted byΦ0.

Step 5 Run RRS till a stopping criteria is reached. A
stopping criteria can be a limit on time, number
of iterations etc.. LetΦ∗, r∗ denote the value of
objective function and corresponding routing at the
end of optimization.

Step 6 If |Φ0−Φ∗

Φ0 | ≥ ∆, where ∆ is the prede-
fined threshold, deployr∗ by setting a high LO-
CAL PREF of desired links for appropriate desti-
nation prefixes.

C. Simulation Results

The simulations presented in this section demonstrate
the load balancing for an AS with 8 outbound links
whose normalized capacities are 100, 100, 100, 100,
45, 45, 45, 12, respectively. We assume the number of
top 10% destination prefixes generating most traffic is
148. Note this number is chosen somewhat arbitrarily
only for the illustration purpose. In the simulation, we
generate only 148 traffic flows instead of all the traffic
flows since the actual effect of the other 90% flows on
the simulation is only to reduce the capacity of the links
by a certain amount. Therefore, ignoring these flows will
not compromise the validity of the simulation results
in any way. We assign each destination prefix a certain
load such that the total offered load is the 30% of the
total capacity of all the links. In the beginning of the
simulation, the offered load is randomly distributed over
the outbound links. Then we apply the proposed load
balancing scheme to the network. The link utilization
of outbound links are compared in Table II. As shown
in the table, before optimization, the load distribution
across the outbound links is rather uneven, for example,
one link is greatly under-utilized with a utilization of
7% while another link is heavily used with a utilization
of 0.91%. After applying the load balancing scheme,
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Outbound Link Capacity 100 100 100 100 45 45 45 12
Before Optimization 0.07 0.25 0.20 0.33 0.60 0.45 0.48 0.91
After Optimization 0.25 0.33 0.27 0.30 0.35 0.33 0.34 0.23

TABLE II

L INK UTILIZATION OF OUTBOUND LINKS BEFORE AND AFTER OPTIMIZATION

the load distribution become much more even and the
utilization of each link is very close to the ideal value,
i.e., the average utilization 30%. The maximum link
utilization drops from 91% to 35%.

VI. CONCLUSION

In this paper, we presented an on-line simulation
framework for adaptive large-scale network parameter
configuration. The on-line simulation framework tack-
les the parameter configuration problem with a black-
box optimization approach. As a result, it allows great
flexibility in the choice of performance objectives to
be achieved and is generally applicable to a variety
of network protocols. The essence of the OLS frame-
work is to formulate network parameter configuration
as a back-box optimization problem. The major features
of these optimization problems are examined and an
efficient search algorithm, Recursive Random Search
algorithm, is designed to address these problems. RRS
emphasizes on finding a “good” solution within the
limited time frame instead of full optimization, which
is very important since the optimization is performed
under “quasi-stationary” network conditions. The RRS
algorithm performs very efficiently in the concerned
context and is especially advantageous when handling
objective functions affected by noises and those with
negligible parameters because of its basis on random
sampling. For large-scale problems, we can also use the
Unified Search Framework to take advantage of parallel
computing devices to meet the time constraints.

The application of the OLS framework to three net-
work protocols, RED, OSPF and BGP, has been inves-
tigated. Simulations and experiments have demonstrated
that OLS is very successful to adapt the protocol config-
uration to the prevailing network conditions and achieve
various network performance objectives. These applica-
tions are given as examples of thebreadthandflexibility
of our approach’s applicability. With the flexibility of the
black-box approach, our system can always incorporate
the alternate problem formulations, for example, an
alternate performance metric or simulation engine, and
give good results fast. In this paper, we have shown
the use of OLS in an implementation context (RED),
an analytic black-box evaluation context (OSPF) and a

simulation context (BGP). These contexts also symbolize
the variety of optimization formulations that can fit into
our framework.

The applicability of this on-line simulation approach
is limited by the extent we can model, measure and
simulate networks. As network simulation techniques
continue improving rapidly, its applicability will also
increase. Another limitation of this approach is that it is
less applicable in the problems where the performance
metric is hard to be represented by a range of real
number, such as, binary decision problems like SAT
(where the final answer is 0 or 1). Its applicability
increases if the potential solution space ( discrete or
continuous) is of a larger ”size”, for example, high
dimensionality or each parameters with a very large
range. For such large-scale problems, traditional heuristic
configuraiton methods become hardly applicable.
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