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Abstract— As the Internet infrastructure grows to sup- . INTRODUCTION

port a variety of services (eg: VPN), its legacy protocols - 144ay's network protocols like BGP and OSPF were
(eg: OSPF, BGP) are being overloaded with new functions designed for one primary service: “best effort reacha-

such as traffic engineering. Today, operators engineer ..~ .
such capabilities through clever, but manual parameter bility.” Increasingly, network operators want to use the

tuning. In this paper, we propose a back-end support IE infrast_ructure for complex function§ like dgplqyir\g
tool for large-scale parameter configuration that is based Virtual Private Networks (VPN), managing traffic within
on efficient parameter state space search techniques andASes to meet Service Level Agreements(SLA), and
on-line simulation. The framework is useful when the between ASes (at peering points) to optimize on peering
network protocol performance is sensitive to its parameter agreements. Such operational optimization is performed
settings, and its performance can be reasonably modeled in by using “parametric hooks” in protocols that can be
simulation. In particular, our system imports the network “tweaked” appropriately. However, the parameter setting
topology, relevant protocol models and latest monitored ) . .

process today is manual and widely considered a black

traffic patterns into a simulation that runs on-line in a net- di d K led
work operations center (NOC). Each simulation evaluates fart. Recent studies [1] and common knowledge [2], [3]

the network performance for a particular settingof protocol S that the configuration of many protocols, such as BGP,
parameters. A recursive random search (RRS) technique is tough, error prone and is likely to get harder as the
is proposed to efficiently explore the large-dimensional protocol is overloaded to serve more functions. Though
parameter state space, where each sample point results in asome tools are emerging to aid operators, a lot more
single simulation. An important feature of this framework needs to be done.
is its flexibility: it allows arbitrary choices in terms of the

simulation engines used (eg: ns-2, SSFnet, future scalable

simulators etc), network protocols to be simulated (eg:

OSPF, BGP, RED, MPLS etc), and in the specification of

Human
Operator

D

the optimization objectives. We demonstrate the flexibility Network Optional Direct ~ Recorhended
and relevance of this framework in three scenarios: joint Information Parameter Setting _ Paratheters
tuning of the RED buffer management parameters at Network Exgerimewmox
multiple bottlenecks, traffic engineering using OSPF link ‘ Network | Model |- Network e Optimization
weight tuning, and outbound load-balancing of traffic at perfomne Algorithm
peering/transit points using BGP LOCAL_PREF parame- On-line Simulation System

ter. The on-line simulation framework has been prototyped

in Linux using SNMP as the configuration interface and Fig. 1. On-line simulation framework for adaptive configuration of
this prototype has been used in a Linux testbed for RED network protocols

parameter configuration.

Index Terms— network performance management, net-  IN this paper, we propose a npvel on-line simulation
work protocol configuration, black-box optimization, on- framework (OLS) to aid generic large-scale network
line simulation protocol configuration. In the on-line simulation frame-

work, we formulate network protocol configuration as
a “black-box” optimization problem over the parameter
T This work was supported by DARPA Network Modeling andgtate space. A .Sampl.e pointin the state space corresponds
Simulation Program under contract F30602-00-2-0537. A short @ network S'mUIat'o_n that eVé_lluateS th? perfqrmance
version of this work appeared in ACM SIGMETRICS 2003. in terms of pre-determined metrics. The simulation also



imports the current network topology and a digest atrate these applications, i.e., perform the on-line sim-
latest traffic patterns. The “black-box” approach allowslation framework inside a “simulation”. We also im-
flexibility in terms of objectives of the desired optimizaplemented a prototype of the proposed framework in
tion, and hence can be applied to a variety of protocdlinux using SNMP as the configuration interface. This
and configuration problems. As shown in Fig 1, thprototype has been applied to RED parameter configura-
on-line simulation framework closely monitors networkion, which is illustrated in Section 1lI-D. Note that the
conditions and start the optimization process wheneveeiamples in this paper are to illustrate the formulation
detects a significant change in network conditions. Mapyocess of network optimization problems and demon-
techniques have been proposed to obtain the informatigtnate the effectiveness and flexibility of this on-line
on network conditions[4], [5]. Another way to triggersimulation framework. Its application is not limited to
the optimization process is to monitor the performantkese examples. For example, other performance metrics
metric and set a threshold on it. Realistically, the togln be used to achieve different purposes. In fact, one
may be used as a “recommendation service” to suggebthe most important advantage of this framework is its
a variety of “good” parameter settings and illustrate théexibility, i.e., it can be potentially used for a wide range
resulting impacts of the settings so that operators ak network protocols to achieve various optimization
better informed than their current manual procedures purposes.

The key assumption of the framework is that the The rest of this paper is organized as follows: Sec-
underlying network protocol performance is indeed setien Il describes the features of network parameter
sitive to the chosen parameter set; and that the netwayitimization problems and presents a brief overview
topology, traffic and protocol can be reasonably modf the Recursive Random Search(RRS) algorithm. Then
eled in simulation. While these assumptions appear ttte following sections demonstrate how to formulate
be somewnhat restrictive today, on the long-term, onetwork parameter optimization problems and apply
framework can leverage improvements in modeling d¢iie on-line simulation to these problems. Section Il
topology [6], [7], [4], traffic [8], [5] and/or improvementsinvestigates the application in adaptive tuning of RED.
in scalable network simulation [9], [10], [11] technologySection IV presents the application in traffic engineering
To the best of our knowledge, our flexible approach tsy tuning OSPF link weights. Section V presents the
unique and the first of its kind as applied to IP networ&pplication in outbound load balancing by tuning BGP.
management. There have been proposed configuratiBimally, Section VI concludes this paper.
support or adaptive protocol techniques for specific prob-
lems (eg: BGP [12], OSPF [13],RED [14]). We discusg
these related works in later sections.

The crucial component of the framework is an efficient Network parameter configuration problems can be
parameter state space search algorithm. The desired al§eresented by the following equation:
rithm is required toa) be scalable to large-dimensional C=fN,p) 1)
parameter state spacdg;find “good” solutions quickly;

c) be robust to noise (e.g.: minor inaccuracies in mowhere V' denotes network scenarip, the desired per-
eling) in the function evaluations; and) be able to formance metric and’ the parameter configuration of
automatically reject negligible parameters (i.e. to whidhe concerned network protocol. Equation (1) calculates
the protocol is insensitive). Traditional search algorithnibe required configuratiod based on the desired per-
(eg: genetic algorithms[15], multi-start hill-climbing,formance metrigpp and the network scenariy’. Due to
tabu search[16] and simulated annealing[17]) could nidie complexity of the Internet, the analytical derivation
provide the above desired combination of properties @k Equation (1) is not realistic. However, with network
we will show in Section Il. We propose a new searctimulation software, such as{18], SSFNETL0], it is
algorithm, Recursive Random Search (RRS), which possible to empirically examine network performance
completely based on random sampling and very efficiior a certain network configuration and scenario, i.e.,
for network optimization problems. establish the following empirical equation:

To demonstrate the effectiveness of this on-line sim- Rt
ulation framework, we have simulated its applicati p=frW.C) @

, pplication
to three scenarios: RED buffer management parameBarsed on this, for a certain network scenakioand a
turning, traffic engineering using OSPF link weighgiven parameter space 6f an optimization algorithm
tuning, and outbound load-balancing by tuning BGPan be employed to search for a good solutigrwhich
LOCAL _PREF attributes. We use simulations to demomeets a certain performance objectiyg. With this

NETWORK PARAMETER OPTIMIZATION PROBLEM



black-box optimization approach, the problem definetl. Properties of Network Parameter Optimization Prob-
in Equation (1) can be empirically solved. This idea iems

the basis of the on-line simulation framework. Note that Tne following features are usually present in network
for network parameter optimization problems, traditionglarameter optimization problems.

experiment design methods, such as, factorial design, af—%gh efficiencyis required for the desired search algo-
not applicable since they normally assume a relatively rithm. More specifically, the emphasis of the search
simple mathematical model and try to fit the problem into algorithm should be on finding a better operating
this model. Since littlea priori knowledge is available, point within the limited time frame instead of seek-

to formulate a proper model is very difficult. ing the strictly global optimum. Network conditions
Like optimization problems arising in many engineer- vary with time and the search algorithm should
ing areas, network parameter optimization can be for- quickly find better network parametelzfore sig-
mulated as (assume minimization): given a real-valued nificant changes in the network occur. For different
objective functionf : R™ — R, find a global minimum problems, this time restriction is also different and

x*, it should be considered carefully when applying the
x* = argmin f(x) (3) on-line simulation framework to a specific problem.
xeD In most cases, we can use a proper combination of
where x is the parameter vector to be optimizeD, efficient search algorithms and powerful computing
is the parameter space, usually a compact seR'in devices to address this restriction.

In these problems, the objective functigiix) is often  High dimensionalityis another feature of these prob-
analytically unknown and the function evaluation can |ems. For example, AT&T’s network has thousands
only be achieved through computer simulation or other of routers and links[4]. If all OSPF link weights
indirect ways. This type of problems are hence called of this network are to be configured, there will be
“black-box” optimization problems and considered very thousands of parameters present in the optimization.
hard to solve because of lack af priori knowledge. High-dimensional optimization problems are usually
In addition, since the objective functions are often non- much more difficult to solve than low-dimensional
linear and mUIti-mOdaI, these pl’OblemS are also called pr0b|ems because of “curse of dimensiona”ty”[lg]_
global optimizationin contrast tolocal optimization Noiseis often introduced into the evaluation of the ob-
which has only one single extreme jitx) and is much jective function since network simulation is used for
easier to solve. function evaluations. Due to inaccuracies in network

Most of black-box optimization problems are NP- Mmodeling and simulation, the resulting empirical
hard and can only be solved for near-optimal solutions ©Objective function may be distorted from the real one
with heuristic search algorithms. Many heuristic search by small random noises. Fig 2 shows an example of
algorithms have been proposed and used successfully in 2-dimensional empirical objective function obtained
practice, SUCh as, multi_start h|||_C||mb|ng[19], genetic W|th network Simulation. It can be seen that there
algorithm[15] and simulated annealing[17]. However, €xist many irregular small random fluctuations im-
there has been no consistent report on their performance. Posed on the overall structure.

In fact, No Free Lunch Theor€j20], [21] has theoret-

ically demonstrated that no matter what performance

metric is used, no single optimization algorithm can Drop Rate
consistently outperform the others in every class of prob-
lems. The average performance of any algorithm is the
same over all classes of problems. In other words, there
exists no general all-purpose optimization algorithm and
for one specific class of problems, its inherent properties
have to be carefully investigated to perform efficient
optimization. We will examine the properties of network
optimization problems in the following. A
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g. 2. An empirical objective function obtained with network
simulation (RED buffer management)

This algorithm on the long run performs like random
search (the explore part of our system), but biases bettétegligible parametersnay also be present in the ob-
results early due to the multi-scale (i.e. recursive) nature jective function. These parameters contribute little to
of the exploit phase in the algorithm. the objective function and should be excluded from



the optimization process. However, in practice, thdgr the objective function with “globally convex” struc-
are often very difficult to be identified and eliminatedures, local methods also perform inefficiently since there
effectively. If the search algorithm can automatiexist a large number of low-quality local optima. For
cally exclude these parameters from the optimizati@xample, multistart local search algorithms may waste
process, the efficiency of the optimization will benuch effort on examining these low-quality local optima
significantly improved. and essentially work like an inefficient random sampling.
“Globally convex” or “big valley” structure[22], [23]
may be present in the objective functions. That i&. Recursive Random Search Algorithm

high-quality local optima tend to center around the Because of the disadvantages of traditional search
global one and be close to each other, whereggorithms, we have proposed the Recursive Random
low-quality local optima tend to distribute far awaysearch algorithm (RRS)[33] to meet the requirements
from the global one. “Globally convex” structureof network parameter optimization. RRS is based on
appears in many practical optimization problemgpe high-efficiency feature of random sampling at initial
especially in the situations when the objective funGteps. The idea is to use initial high-efficiency random
tion is affected by random noises. Boese[24] hagmples to identify promising areas and then start re-
demonstrated the existence of this structure in COFarsive random Sampling processes in these areas which
plex Traveling Salesman Problem(TSP) and graplrink and re-align sample spaces to local optima. We
bisection problem, and presented iatuitive graph have tested this algorithm on a suite of difficult bench-
for this structure(Fig 3). The same structure hagark functions and some network parameter optimiza-
tion problems. The results have shown that in terms of
quickly locating a good solution, RRS outperforms other
search algorithms, such as multi-start pattern search and
controlled random search. The test results have also
demonstrated that RRS is much more robust to noise than
those local-search-based method. Furthermore, the inclu-
sion of negligible parameters in the objective function
has little effect on the efficiency of RRS. In the following
we will first illustrate the initial high-efficiency feature of
random sampling and then present a brief description of
the algorithm. Readers can refer to [33] for more details

o e _ and the test results.
been found in circuit/graph partitioning and job-shop 1) Initial Efficiency of Random SamplingSiven an

scheduling, etc.[25]. Leary[26] also confirmed thaheasurable objective functiofi(x) on the parameter
there exist similar “funnel” structures in moleculagpaceD with @ range of [ymin, Ymaz), We can define

conformation problems where the potential energye gistribution functionof objective function values as:
from the forces between atoms is minimized.
_m{xeDI/ <y,

The issues described above are common in many ép(y)

practical optimization problems[27], [28]. For such m(D)
class of problems, genetic algorithm[29] and simulatedhere y € [Ymin, Ymaz] @nd m(-) denotesLebesgue
annealing[30], controlled random search[31], are thmeasure a measure of the size of a set. For example,
most common algorithms since they require lithe Lebesgue measuie area in a 2-dimensional space, vol-
priori information from the concerned problem andime in a 3-dimensional space, and so on. Basically, the
are generally applicable. However, these algorithms akove equation represents the portion of the points in the
mainly designed for full-optimization and often lack irparameter space whose function values are smaller than
efficiency. In practice, they are often combined with certain levely. ¢p(y) is a monotonously increasing
local search techniques, such as, deepest descent fandtion of y in [ymin, Ymaz], ItS Maximum value is 1
pattern search, to improve their efficiency. Since theséeny = y,,., and its minimum value isn(x*)/m(D)

local search techniques use fixed local structures to guidkere x* is the set of global optima. Without loss of
the search process, they are usually susceptible to temerality, we assume th#tx) is a continuous function
effect of noise[32]. For example, in pattern search, tlmdm({x € D|f(x) = y}) = 0,y € [Ymin, Ymaz), then
wrong pattern may easily be derived if the samples faxy) will be a monotonously increasing continuous func-
pattern exploration are corrupted by noise. Furthermotmn with a range of0, 1]. Assuming &y, € [Ymin, Ymaz)

Fig. 3. Big valley structure




such thatpp(y,.) =r, r € [0,1], ar-percentileset in elements:explorationand exploitation Exploration ex-
the parameter spade can be defined: amines the macroscopic features of the objective function
and aims to identify promising areas in the parameter
Ap(r) ={xe D[ f(x) <y} (5) space, while exploitation focuses on the microscopic
Note thatAp(1) is just the whole parameter spaée features and attempts to exploit local information to
and lim. o Ap(¢) will converge to the global optima.improve the solution quickly. Many search algorithms,
Suppose the sample sequence generated bteps of such as multistart type algorithms, do not differentiate
random sampling is;,i = 1...n andx7, is the one areas and hence may waste much time in trivial areas.
with the minimum function value, then the probabilityRRS attempts to identify a certairpercentilesetAp(r)

of X?l) in Ap(r) is: and only start exploitation from this set. In this way, most
. . of trivial areas will be excluded from exploitation and
P(X(l) €Ap(r)) =1-(1-r)"=p (6)  thus the overall efficiency of the search process can be

Alternatively, ther value of ther-percentileset thatx?l) ?mpr_oved. This can be illustrated by the example shown
will reach with probabilityp can be represented as; N Fig 5. The upper graph shows a contour plot of a

r=1-(1-p"" ©
For any probabilityp < 1, r will tend to O with ggg:i )
increasingr, that means, random sampling will converge 100 -1
to the global optima with increasing number of samples. 00771 o

Fig 4 shows the--percentileset thatn steps of random
sampling can reach with a probability 69%. We can T
see thatrandom sampling is highly efficient at initial R
steps sincer decreases exponentially with increasing 4150 -100 <50 0 50 100
n, and its inefficiency is from later sample&s shown

. . . . R 100
in Fig 4, it takes only 44 samples to reach a point 666 - | | |
in Ap(0.1) area, whereas all future samples can only IR SR S S 0
improver value ofx{;, at mostbyo.2. L. L L S - 0
""""""""""""""""""""" -50
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ol ] Fig. 5. Contour plot of an objective function(left) and its region of
oa| e , Ap(0.05)(right)
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Number of Function Evaluations 2-dimensional multi-modal objective function and the

lower graph shows the set ofp(0.05). As shown in
the figure, the function has many local optima; however,
only three regions remain id(0.05) (shaded areas in

2) Overview of Recursive Random Seardltte basic the right plot). Each of these regions encloses a local
idea of RRS is to maintain the initial efficiency ofoptimum and the one with the biggest size happens to
random sampling by “restarting” it before its efficiencyontain the global optimum. It is desirable that the size
becomes low. However, unlike the other methods, suoh Ap(r) region identified by exploration is as small
as hillclimbing, random sampling cannot be restarted lag possible such that most of trivial areas are filtered
simply selecting a new starting point. Instead we accormdt. On the other hand, its smallest size is limited by
plish the “restart” of random sampling shanging its the efficiency of random sampling, i.e., it should be
sample spaceBasically, we perform random samplingwithin the reach of initial high-efficiency steps of random
for a number of times, then move or resize the sammampling so that identifying a point in it will not take
space according to the previous samples and start anotberlong to lower the overall efficiency.
random sampling in the new sample space. To identify a Ap(r) area, RRS first take a certain

A stochastic search algorithm usually comprises twamber of samples and use the best one to decide the

Fig. 4. Ap(r) of zf}, in random sampling with probability 0.99



location of Ap(r). It then goes on into recursive randonmequirements of the on-line simulation framework.
sampling process by shrinking or re-aligning the sample

space. In recursive random sampling, random sampling I1l. ADAPTIVE TUNING OF RED

is performed for a number of times, if it fails to find a
better point, the sample space is shrunk by a certain rago

Otherwise, the sample space keeps its size unchan sent one of these applications, i.e., the tuning of

but moves its center to the new improved sample. T ndom Early Detection (RED) algorithm. RED is one

shrink-and-re-align procedure is repeated until the sisrr: buffer management mechanisms which are used for
of th; s?mple Stﬁagf decreadses lt)elf\t'\r']a tgreshold. TQSngstion control by cooperating with TCP end-to-end
we identify anotherd,(r) and restart the above searcl&o gestion avoidance mechanism. Traditional DropTail
process. Interested readers can refer to [33] for the de@d Id not effectively prevent the occurrence of serious

of the algorithm. congestion and often suffer from long queueing delays.

In pontrgst tq most of the search_ algorithms, the Raﬁjrthermore, the global synchronization may occur dur-
algorithm is built on random sampling. On the long ru g the period of congestion, i.e., a large number of

it performs like random search (the explore part of RR CP connections experience packet drops and hence

but biqses better results early _due to th_e muIti-scaI_e (ibeack off their sending rate at the same time, resulting in
re_curswe) nature of the exploit phase in the algorithmy, 4o jization and large oscillation of queueing delay.

Since RRS performs the search process based on stoc Sidom Early Detection (RED) has been proposed [35]
tic information on a certain sample area, therefore, i{g address these problems. The basic idea of RED is
!oerforman_ce_z s less affectgd by_n0|ses. I_n a(_jdltlon, RI?(? detect the inception of congestion and notify traffic

'S more efflleent when dealing V_V'th the objective funCtIOgources early to avoid serious congestion. It has been
with negligible parameters. This is because that rand%monstrated to be able to avoid global synchroniza-

saanIes will still matljnta]:m |tls urr]uform distribution in thetion problem, maintain low average queueing delay and
subspace composed of only those important paramet@is,, i ye petter utilization than DropTail[35]. Therefore,

and hence 'ef'fect'ively removes n.egligible par?“.”Et BTF has recommended RED as the single active buffer
from the optimization process. In this way, the eﬁ'c'enc%anagement for wide deployment in the Internet[36].

OL_th?_ se]?rcht_ can 3? “'T%rol\ll ed S|gnnj’|cfan'ily. F?{Rtnglowever, the setting of RED parameters has proved to
objective function with “giobally convex™ feature, KRR, highly sensitive to network scenarios and the perfor-
is able to detect the overall structure by its initi

: : _ ance of misconfigured RED may suffer significantly
extensive sampling and then approach global optima w[tﬂ,r]’ [37], [38]. Therefore, RED needs constant tuning

recursive §§1mpllng very quickly. These features_ hay adapt to the prevailing network conditions. In view of
been emplrlcally_ validated by the tests on a suite is, it has been debated whether or not RED can achieve
benchmgrk fur_lctlons[33]. - ... its claimed advantages[38], [39], [40].

RRS is deS|g_ngd to be an efficient search algor'thmBased on simplified models, some general guidelines
for ne_twork optlmlza_lthn pr_oblems. H_O\_/vever, as a sqg, setting RED parameters have been proposed[35],
guential algorithm, it is still not sufficient to handl 37], [41]. Intuitive modifications on RED have also
large-scale optimization problems where the evaluati %e’n proposed to automate the tuning of RED under
of one sample may take a significant amount of time. rying network conditions by adjusting one of the

I;ave ?]eslgned a iaLrJaSHIS | gztlmlﬁgtrl]on pIathrm, dUnIer arameters[14], [42]. However, the effectiveness of these
earch Framework( )[34], which can take advanta thods in complex network scenarios is still under

of paral!el computing resources, €.g. a netwqu vestigation. Rather than relying on simplified models
workstations, to perform paralle optimization. BaS|caII36r intuition, here we employ the on-line simulation

USF includes many search techniques, e.g., RRS - -
ework for the dynamical tuning of RED.
pattern search, as building blocks. Based on the fea- y g

tures of the underlying problem, it can run a selection _

of these techniques in parallel and distribute netwofk Problem Formulation

simulations across the network of available computers.RED uses the average queue si@s an indicator
One feature of USF is that it always tries to fullyof the congestion extent and determines the packet drop
exploit available computing resources by increasing tihate accordingly. As shown in Fig 6, the instantaneous
extent of parallelity. With this USF platform, it is alwaysqueue sizeq is sampled at every packet arrival and
possible to use more powerful computing devices then passed through a low-pass filter to remove transient
speed up the optimization process and meet the efficiemzjises. Based on the smoothed average queug; sike

The on-line simulation framework can be applied to
ide range of network protocols. This section will



Control Function P=f(g)  Low PassFilter

average queue size. The equilibrium drop probability

e q v\ depends on two factors, the offered load increase rate

P q and the granularity of congestion notification, i.e., the
D r u load decrement caused by one packet drop. With TCP
N fast recovery and fast retransmission mechanism, each

TCP sources Bottleneck

drop will cause a TCP source to decrease its sending
Fig. 6. RED working mechanism rate by half. Therefore, the granularity of the congestion

notification is determined by the average TCP sending

rate. When the average sending rate is large, for example,
drop probability P is calculated with a control function 3 small number of TCPs share a bottleneck, each packet
P = f(g). The arriving packets are randomly droppegrop will cause a large decrease in offered load, e
(or marked) according to this probability’. Traffic yersa In different scenarios, the increase rate of offered
sources react to these drops and adjust offered 1oaghad is also different. For example, the increase rate will
accordingly. Therefore, RED is mainly designed to worke |arge when there are many TCP flows or the round
with TCP traffic sources which are responsive to packgfy time is short. As a result, the drop probability should
drops and it will not work well in the cases like UDPye adjusted according to network scenarios to maintain a
traffic or short-life HTTP traffic. stable equilibrium point. If the control function remains

A queue will build up and keep increasing if thinchanged, the average queue size has to be varied to

offered load is larger than the bottleneck capacity; therghtain the new equilibrium drop probability. Therefore,
fore, the objective of a buffer management algorithig keep the average queue size stable around a certain
is to stabilize the offered load around the bottlenegkyel in varying conditions, the control function has to
capacity. Basically, TCP sources increase their sendipg adjusted accordingly, i.e., the three parameter which
rate every round trip time; on the other hand, the paCl@éterminesf(q) should be dynamically tuned.
drops cause TCP sources to lower their sending rateswq controls the cut-off frequency of the low-pass
In the equilibrium status, the increase rate of TCflter. The cut-off frequency should be high enough to
traffic should be approximately equal to its decreaggtect manageable traffic variations, while low enough
rate caused by packet drops and thus the offered lagdfilter out transient traffic oscillations which can not
will stabilize around a certain level. If this equilibriumpe effectively controlled by RED. For example, the
status is achieved while maintaining a certain queue Sigggillation within one round trip time-t¢ should be
the link utilization will be close to 1, i.e., the offeredremoved. Therefore, the optimai, is usually related to
load will stabilize around the bottleneck capacity. Thg; |n addition, since the average queue size is calculated
rationale of RED is to search for an appropriate packgf every packet arrival instead of a constant interval,
drop rate by varying the average queue size to counterggferent link speeds will result in different packet arrival
the increase of offered load. intervals and hence affect the cut-off frequency of the

There are four parameters in RED. Among thenbw-pass filter. Consequently, the optimai, is also
the moving average weight, determines the cut-off gependent on the link speed.

frequency of the low-pass filter, and the other three
parameters, i.e., minimum thresholdin,,, maximum o o
thresholdmaz,;, and maximum drop probabilitynaz,, B- Optimization Objective
determine the control functioR = f((j) In the standard For a buffer management a|gorithm’ there are two
version of RED, the control function is determined byhain performance metrics, i.e., link utilization and aver-
the parameters as illustrated in Flg 7. With this funCtiOIé_ge gueue size. The main objective of RED igiaintain
a high utilization while keeping a low average queue

B sizg35]. However, optimizing one of the performance

| metrics may compromise the other. For example, a high
link utilization can always be obtained by increasing
ming, Or decreasingnax,, hence virtually increasing

Drop Probability P

““zvaageqﬁgzeq amexg, the average queue size. On the other hand, a low average
gueue size can be obtained by decreasingz;, or
Fig. 7. RED control function? = f(g) increasingmax,. However, this obviously will cause

underutilization of the link. Therefore, an appropriate
the drop probability can be calculated according to thiendeoff has to be made to reflect the requirement of net-



work operators. This is essentially a multi-objective opg=. Simulation Results
timization problem and corresponding techniques should
be employed to convert it into a tractable single objecti\fg
problem.

The simulations of on-line RED tuning are performed
r varying traffic load and round trip time, two major
factors affecting RED performance. The network topol-
ogy used in the simulations is shown in Fig 8. We
One classic multi-objective optimization technique is

to optimize the weighted average of the performance T . TCPsinks
metrics. The weights for different metrics reflect the —/\45Mbps2ms WQ
quantitative tradeoff among them and are critical to Q | 2ombps, 20ms

the effectiveness of optimization results. However, the
weights are normally difficult to determine. Another
common technique is to define the lower limits for less
significant metrics, and only optimize the most importamig. 8. Network topology for RED tuning simulation
one with the restriction that the other metrics are not

below their limits. In this paper, instead of using tradigsedy,s[18] as the simulation tool. Infinite FTP traffic
tional multi-objective optimization techniques to directly)atween TCP sources and sinks is generated to build up a
work on link utilization and queueing delay, we havgeue at routerl. RED is configured om1 to manage a
proposed a performance metric whose optimization willho-packet buffer. Each simulation runs for 40 seconds
cause RED to settle in a equilibrium status and henggq network conditions are changed twice during the
achieve high utilization and low queueing delay. simulation. We will compare the performance of standard
RED and RED controlled with the on-line simulation

As mentioned above, in the equilibrium status, tHs2mework under changing network conditions.

average queue size of RED stabilizes around a certainfVe define an expected average queue size of 30 pack-
level. When traffic pattern changes, the equilibrium poiﬁtts and the objectlv_e is to maintain Fhe equilibrium status
may also shift which makes the average queue size m&feRE_D around this level. Accordmg to the common
around. When the average queue size drifts beyond #ftdeline of RED parameter setting, we usény, =
control of RED, RED will become unstable, i.e., thd? mazu = 45, maz, = 0.1,w, = 0.002 for standard
queue status oscillates between full and empty[14], [3ﬁ_ED. We also assume that the on-_Ilne simulation system
This not only causes end users to experience significsf! Promptly detect the change in network conditions
delay jitters, but also results in link underutilizationnd trigger the optimization process of RED parameters.
Therefore, it is important to keep the average quel_ljérea“ty’ this can be a_lchleved by monitoring the change
size of RED stable at a target level, such as the mild- performance metrics or analyzing traffic statistics
dle betweenming, and mazy, as proposed in[42]. In directly.

consideration of this, we define the performance metricFirst we test the tuning of RED to varying traffic

3

to be optimized as: load. The number of TCP flows in the simulation starts
N ) with 16, then increases to 64 after around 13 seconds,
m = >i=1(@% — qo) 8 and finally decreases to 4 after another 13 seconds. The
N instantaneous queue sizes of standard RED and RED

where g is the expected average queue size predefingidh on-line simulation control are shown in Fig 9.
by network operatorsg; is the periodic sample of theThe upper graph shows that for the standard RED,
average queue size amd is the number of samples.when the traffic load increases beyond the control of
This metric essentially calculates the variance of tlweirrent RED parameter setting, the equilibrium status
average queue size relativedggover a certain period of may not be broken and the queue remains in a very
time. When the equilibrium level of RED is far fromunstable status where large oscillations between full and
the expected levelm will be large. Or when RED empty queue persist. On the other hand, when the traffic
is misconfigured and hence the equilibrium cannot bead decreases to a certain level, the queue frequently
reached, the queue size will oscillate substantially, albecomes empty and this causes the underutilization of
resulting in a largem. Therefore, minimizingm will the link capacity. The lower graph shows that when dy-
cause RED to avoid both situations and always maintaiamically tuned, RED always maintains an equilibrium
an equilibrium aroundg. Thus, high link utilization and status where the queue size remains very stable and the
stable queueing delay can both be achieved. utilization is close to 100%.
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Standard RED —— | section presents a real network experiment which applies

j 60 ] this prototype to RED parameter configuraiton in a Linux
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Fig. 9. Comparison of standard RED (upper graph) and RED
controlled by on-line simulation (lower graph) under varying traffic

load Fig. 11. Linux-based testbed topology with multiple RED queues

Then we test the tuning of RED to varying roungaCh of them is configured with a RED queue which

o . . : is monitored and controlled by the on-line simulation
trip time. The simulation starts with 16 TCP flows {.jmgsystem through SNMP. Again, infinite FTP sources are

) Ysed to generate network traffic. Note that in this test
gueueing delay). After 13 seconds, tte of these flows W.% will try to tune the parameters for all four RED

is increased to 170ms. And after another 13 seconds, concurrently. Since optimizing each RED individually

rtt is reduced to around 2ms. The instantaneous queule  omoromise the performance of the others. we have
sizes of standard RED and RED with on-line simulatiop .Y P P ’

control are shown in Fig 10. The upper graph show%ken all RED queues as a single black-box system with
' a total of 16 parameters. Consequently, a global perfor-
o e mance metric has to be defined based on the objective of
60 jlandard RED = 4 network operators. If using ISP-based metrics, such as
“ utilization and queueing delay, a certain multi-objective
2 technique has to be employed to combine the metrics
ol from every RED router. Instead, we have selected an end
Time (in seconds) user performance metric, i.e., the Coefficient of Variation
(%) of goodputs for TCP connections, which measures
the variation of TCP goodputs. This choice is somewhat
arbitrary, only to demonstrate the effectiveness of our
A approach. An alternate metric can always be incorporated
o 5 W fime(ngmdgs 0.3 40 into our system. In addition, choosing such a metric
is also to demonstrate the flexibility of the approach,
Fig. 10. Comparison of standard RED (upper graph) and RECe., rather than being restricted to a few metrics like
cgntr_olled by on-line simulation (lower graph) under varying roungiiilization and delay, RED can be tuned according to any
trip time performance metric defined by network operators though
Fhe mechanism of how RED affects this performance
metric may be completely unknown.
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that whenrtt is increased to 170ms, the equilibrium o

standard RED queue is again broken and the queue keeBuring the experiment, a number of TCP flows are

pscnlatlng between full and empty status. And when enerated from one side to the other. The goodputs of
is reduced to 2ms, although the queue does reach an o
oo : S - . these TCP flows are collected periodically from TCP
equilibrium status, there still exist big variations in queue . o
. ) . sdnks. The Coefficient of Variation(COV) of the goodputs
size. As shown in the lower graph, the dynamically tune ) .
L iS calculated and plotted as a function of time as shown
RED eliminated these problems. S o
in Fig 12. In the beginning, the parameters of these
_ L 'RED queues are set tandom values to represent a
D. Real Network Experiment for Optimization of Multiyyisconfigured system, which results in a large unfairness
ple RED Queues between TCP flows, i.e., a high average COV value and
As mentioned before, we have impletemented a prarge oscillations. At 325 second, the on-line simulator

totype of the on-line simulation system in Linux. Thistarts and detects the misconfiguration of REDs. The
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good configuration with a performance better than rauting with these link weights leads to desired routes.
predefined threshold is quickly found within seconds arkebr example, One earlier approach was to adapt link
the network is reconfigured. This results in an immediateeights to reflect the local traffic conditions on a link
performance improvement as shown in the plot: ther to avoid congestion ([46], [47], [48]). This is called
average of COV drops to a very low value and thadaptive routing or traffic-sensitive routing. However,
instantaneous COV curve becomes stable over time. adapting link weights to local traffic conditions leads
o to frequent route changes and is unstable (see [49], [50]
oo - 1 for stability analysis). Additionally, adaptive routing is
On-line simulator sart | based on the local information and therefore cannot
optimize traffic allocation from the viewpoint of the
| ! N overall network. These drawbacks are alleviated in [13]
ol 1° I where the configuration of OSPF link weights is modeled
0 100 200 300 400 500 600 70C as a black-box optimization problem. The authors have
e chosen a heuristic cost function which is piecewise linear
Fig. 12.  Tuning multiple RED queues for optimizing coefficient ofvith offered load and applied a multi-start hillclimbing
variation of goodputs algorithm to find good solutions.
In this section, we will use the on-line simulation
framework for the adaptive configuration of OSPF link
IV. TRAFFIC ENGINEERING BY TUNING OSPF LINK  \yejghts. As we have mentioned, one advantage of this
WEIGHTS approach is its flexibility and it can be easily used
In this section, we will present another one applicationith various network protocols, simulation engines and
of the OLS system, i.e., tuning OSPF routing protocplerformance metrics. Instead of the heuristic metric used
for traffic engineering. Note that there are many ways [13], we have chosen the total packet drop rate in the
to formulate the OSPF optimization problem dependingetwork as the performance metric since it is a more
on the specific application context and optimizatioaccurate to indicate the congestion in the network and it
purpose. This section only present one of these possillso has significant impacts on the performance of some
problem formulations as an example. The term “traffienderlying protocols, such as TCP. The packet drop rate
engineering” refers to a broad set of capabilities whefer one set of link weights could be estimated using
traffic flows are mapped onto a network topology to meptcket-level or flow level simulation. Instead of a full-
a variety of performance objectives specified by operfiedged simulation, we use a GI/M/1/K queuing mode
tors. In current Internet, IP traffic is mapped onto th® calculate the packet drop rate, which is considerably
network by standard routing protocols, such as, OSR&ster. When calculating the drop rate, the mean and vari-
OSPF is mainly used for intra-domain traffic routing. lance of the offered load should both be considered. This
routes traffic on the shortest path based on the advertis®d more complete representation of traffic conditions
link weights. As a result, the link along the shorteghan the average offered load used in [13].
path between two nodes may become congested while
the links on longer paths may remain idle. Many traffic o _
measurements[43], [44] have observed large variatioﬁs The Objective Function
in link utilization across the network. OSPF allows for Our goal for OSPF configuration is to minimize the
Equal Cost Multi Path(ECMP) where traffic is distributeghacket drop rate in the network for a given mean
equally among various next hops of the equal cost pattisd variance of the aggregate demands between each
between a source and a destination [45]. This is usefulsaurce and destination routers. Let us consider a network
distributing the load to several shortest paths. Howeveepresented by a directed gragh(\V,£), where N and
the problem of uneven mapping still remains. L represent respectively the set of routers and links in
Two main approaches have been taken to solve e network. Each link € £ has bandwidth denoted
intra-domain traffic engineering problem. One approadly B; and a buffer space of(; packets. We assume
is to deploy the emerging MPLS technology which ithat packets arriving when the buffer space at a link
not constrained by the shortest path nature of routing. full are dropped and there is no other active queue
Constraint-based routing can be used to compute routeanagement algorithm running at the routers. In addition
in an MPLS network subject to QoS and policy conto the knowledge of bandwidth and buffers at all the
straints. Another approach is to adjust the link weights bhks, we assume that an estimate of the mean and
the existing network (running OSPF) such that the OSR&riance of the aggregate demand from each sosrce

coefficient of variation
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to destinationt is known. LetD, V denote the mean andare more bursty than Poisson process. For a Poisson
variance matrix of the estimated aggregate demand.drocess the variance is equal to the square of mean.
practice, all such information can be obtained using titence, GE distribution may be used to model the first
tools described in [5], [51]. two moments of processes with variance greater than the

In the following, we will first show how to derive square of mean. If the arrival process is represented by a
the drop probability for one link based on the offereGE distribution, then, with probability the inter-arrival
load. Then we will formulate the optimal general routingime is exponentially distributed with meanand with
problem which aims to optimize the overall packet droprobability 1 — p, the inter-arrival time is zero. Hence,
rate for the network. Note that the OSPF optimizatiothis distribution represents a batch arrival process with
problem is just the optimal general routing subject to ttgeometrically distributed batch size and exponentially
shortest path constraint. distributed inter-batch arrival times. For a link with

1) Link Drop Probability: Let P denote the packets as its mean and variance of the offered load, we can
drop probability on a link,\, o? denote the mean, have the parameters of the GE distribution representing
variance of the offered load to this link in packetghe arrival process:
per second, an®, K denote its bandwidth and buffer 9)2
space respectively. In order to find a closed-form expres- P= 53
sion for the packet drop probability?, let us assume ot + A
an exponentially distributed packet size with mesn The merging ofN independent Gix,a;) processes is
However, we consider a general arrival process. VB@e bulk-arrival Poisson process with mean arrival rate
compute the packet drop probability at the link using €dual to>"", a; andp equal toa/ " %. Similarly,
a GI/M/1/K queuing model. The drop probability of aSPlitting of a GEf,a) process intaV streams according
finite GI/M/1/K has been approximated by an infinitdéo & Bernoulli filterry, 7o, ...ry, the parameters of the
buffer GI/M/1 queue [52] using the following equatlonZ " process are
P(N.,, = K ‘:$n = rq. 14
PEN: < K; ©) P gy crae e (49

Nk denotes the number of packets in the finite buffe:re%Eader may refer. to [54], Section 1'4 for more deta|I§.
The packet arrival process of a single TCP flow is

queue, whereasy,, denotes number of packets in th _ ith a “bulk” of K S
infinite buffer GI/M/1 queue. The queue length distrib ursty n na_ture with a “bulk™ of packets arriving every
round-trip time. The model that we have considered

tion of GI/M/L queue s glv§n by 53] implies that we have “bulk” arrivals (in form of bursts of

P(Ny = j) = Aw/™! (7 > 0) (10) packets from competing TCP sources) of varying sizes
arriving into a queue. Our model does not capture the
feedback effect of packet drops on TCP flows because
we have considered the aggregate traffic arriving at an
OSPF router as our demand estimate.

anda = pA (13)

P(Ng = K) =

whereA is the normalization constant ands a constant
depending on the arrival process and service tatean
be obtained by solving the following equation:

w=75((1—-w)p) (11) Taking the Laplace transform of (12), we get,
wherev(s) is the Laplace transform of the arrival process Gs)=1—-p+ pa (15)
andy is the service rate which is given l% In order to s+a

solve (11) forw, we need to assume a inter-arrival tim@hen substitute it into (11) and solve it forfor the GE
distribution for the arrival process. Let us consider th@iTival process gives
Generalized Exponential (GE) distribution for modeling

= 1-— 16
the arrival process to first two moments. We discuss w=p+1-p) (16)
below the reason for choice of GE distribution. where, %
R o  a
The pdf of GE distribution is given by p= . =% (17)
g9(z) = (1 = p)é(x) + pae”** (12)

Finally, using (9), (10), (11) and (15), we get the
whered(z) is the delta functionp anda two constant packet drop probability
parameters. As can be seen from (12), a GE process K
is characterized by two parametegs,and a. GE dis- pP— (p=p)p+1-p) (18)
tribution is a special case afl, distribution and can 1—(p+1-p~*t
be used to model general inter-arrival processes thatsummary, Equation (18) represents the closed form
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Ooc;jz MIM/L/K Gueus The parametep(s?) for the GE process used to fit the
’ [ Variance = 0 - ]

oo L variance = 4 :;N};,{jg demandD(s, t) is given according to (13):
0.035 1 2/])(37 t)2
0.03

D(s,t)%2 + V(s,t)

0.025
0.02
0.015
0.01

0.005

Pt =

(22)

Let rl(s’t) denote the probability with which the demand
D(s,t) is sent on linki. Thenrl(s’t) is given by

Probability of Packet Drop

0O 01 02 03 04 05 06 07 08 09 1 (s t) fl(s’ )
Offered Load (Normalized to Bandwidth/Packet Size(in bits)) Tl = (23)

D(s,t)

Fig. 13. Packet drop probability as a function of offered load for a (s,t)
GE/M/1/20 queue for different values of variance Let p, denote the parameter of the GE process

after splitting the deman®(s, ¢t) with probabilityrl(s’t).
Then pl(s’t) denotes the parameterof the GE process
representing the flow,*". The parametep|*" is given
according to (14):
expression of packet drop probability}, on a single (s.0) pls:t)
link as a function of mean, variance o2 of the arrival P = (s0)(1 — T(s,t)) 4 () (24)
process, mean packet siZgé, link bandwidth B and P ! !
buffer spaceK. Figure 13 shows the drop probabilityThe total offered load on link is given by, (21), the
as a function of the offered load for difference values ¢@rameterp of the associated GE distribution may be
variance of the inter-arrival time for a buffer size of 2@btained by merging the flows'*" going through. If
packets. As expected, higher drop probability is observeddenotes the parametgrof the GE process associated
when the arrival process has a high variance, i.e., whefih the aggregate traffic on link thenp; is given by

the incoming traffic is more bursty. o= M( Z fl(s,t)pl(s,t))_l (25)

(s,t)EN XN

2) The Optimal General RoutingThe optimal gen- _ ¢ _ o

eral routing represents routing where there is no limitl. 7 1S €qual to2 5, then, using (18), the probability
tion on the way a flow is split among multiple path?f packet dropped at linkis given by

available between a source and destination[13]. It is (o1 — p1)(pr + 1 — py)

the best that can be achieved by carefully setting up B = 1— (o +1—p)EKtt

multiple Label Switched Paths (LSPs) in MPLS. Using

. - . The optimal general routing problem is given by (19),
link packet drop p.robabllltles obtalqed from (18), V\{e Ca@ubject to the constraints given by (21), (22), (23), (24),
formulate the optimal general routing problem as:

(25), (26). It may be noted that we are casting the traffic
P = Z)\sz (19) according to the routing in order to obtain the mean

el and variance of the total offered traffic to eatk L.
where ), is the arrival rate for linkl and P, is its drop However, we are not iterating to obtain the equilibrium

rate calculated by (18). This is a constrained optimizatidfRffic parameters. Essentially, we are using the upper
problem with the flow constraints at each rougefor Pound on the packet drop probability in (19).

each demand(s,t) between source and destination
t.If fl(s’t) denotes the fraction of the demafs, ¢) on
link I, then the flow balance constraints are given by
o The general optimal routing problem, where the ob-

(5.0 (5.0) —D(s,t) ifj — jective function is completely defined by (19)-(26), may

> Fag — > foy =4 Dlsit) it j=t possibly be solved fof*"vi € £ by using some non-

wg)eL  a(ieL 0 OtherW|s(e20) linear programming techniques. However, under con-
straints of OSPF routing, the relation between the link
weights and optimization metric can no longer be an-
AN = Z fl(s’t) (21) alytically defined. In [55], authors have proved that it
(8;)EN XN is NP-hard to find OSPF link weight settings for an

(26)

B. Optimization of OSPF Weights Using On-line Simu-
lation

The mean packet arrival rate to a lihk)\;, is given by
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optimization metric piecewise linear in offered load. It islestination pairs that are closer to each other. Since a
straightforward to show, by proceeding along the sarpeoduct of three random variables is taken to generate the
lines, that our problem, i.e., minimize the packet drogemands, there is actually a large variation in the traffic
rate given by (19), is also NP-hard. For such NP-had&mands. The ratio of square of mean to the variance was
problems, heuristic optimization algorithms are usuallssumed to be a uniformly distributed random variable in
used to search for approximate solutions. Instead [6f 1]. The mean and variance of the traffic demands are
choosing a different heuristic for each NP-hard problermgenerated using the above procedure. All the links in the
we can apply the RRS technique to perform efficiemetwork have 1Mbps bandwidth with a buffer size of 50

search in most of such problems. packets. The packet size was chosen to be exponentially
The optimal routing in OSPF can be formulated as tlistributed with mean packet size of 200 bytes.
following “black box” optimization problem: We usedns[18] to simulate the real network running

s 27 OSPF. The traffic in the network was generated with the
min &(w) (27) " method described above. Every 200 seconds the traffic

wherew is the vector of network link weights andl(-) pattern (the mean and variance of demand matrix) was
the objective function, which is unknown. Basically, ithanged to introduce a dynamic scenario. The traffic
order to obtain the value @b for a given OSPF weight generator is implemented over UDP to generate bursty
setting, we run modified Floyd Warshall's algorithniraffic with the GE inter-arrival distribution described in

(modified to obtain equal cost paths also) to obtain t{&2). In the simulation, we assume OLS has a complete
routing. Then the traffic is cast to obtain parameters khowledge of necessary network information, such as,
the aggregate packet arrival process and drop probabifiigffic demands, network topology, etc.. Whenever a
for every linkl € £ using (21), (22), (23), (24), (25) andchange of traffic pattern happens, OLS performs the

(26). Finally the value ofp may be calculated by (19). optimization procedure for a certain time to obtain a
good OSPF link weight setting. If the optimized setting

is better than the original, it will be deployed at 100
i ~seconds after the traffic change. The 100-seconds time
We have considered three network topologies Hiference is used because we want to observe the perfor-
demonstrate our results. In these topologies, each ligknce difference between before optimization and after
is assumed to consist of two simplex link whosgpiimization. Note that here we assume the running time
weights may be set independently. Two are well-knowg the optimization process is less than the traffic change
ARPANET topology and MCI topology. The ARPANET yarioq, j.e., the optimization has been finished at 100
topology consists of 48 routers and 140 simplex linkgeconds after the traffic change. In our simulation, the
and the MCI topology 19 routers and 62 simplex linkptimization procedure typically finds a better solution
We also performed the simulation on a real large-sca|gh a few hundred to a few thousands of function evalu-
ISP network topology, i.e., EXODUS network, obtainedijons (depending on the size of the network), which can
from Rocketfuel project[56]. This topology includes 244,¢ interpreted to a computation time of minutes to hours
core routers from EXODUS network and 1040 siMyhen using a single Pentium Ill class PC. This time
plex links. Fig 14 shows these topologies generated djn pe further reduced by performing the optimization
NAM[57]. on a more powerful computer or multiple computers.
In the simulations, random amount of traffic was sepf;rthermore, by using the USF paralllel optimization
from every node to every other node in the network. Thfﬂatform we described before, we can always keep the
random traffic was generated using the method outlinggtimization process within the time constraints imposed
in [13]. For each nodeu, two random numbers arepy the change frequenecy of network conditions, which

generated),, D, € [0, 1]. For each pair of nodes(v) s typically in hours for the BGP problem considered in
another random numbe?(, ., € [0,1] was generated. this seciton.

If A denotes the largest Eucledian distance between anyne actual packet drop rates are collected during

pair of nodes and ifv denotes a constant, the averagge simulation for all the traffic sinks in the network
demand between andv is given by and then summed together to get the total packet drop
D(u, v) :aOuDvC(um)eﬂ;?(Z’v) rate. Figure 15 shows total packet drop rate in the

network as a function of time. Table | summarizes the

where, 6(u,v) denotes the Eucledian distance betweenaximum improvement in packet drop rates for different
the nodesu and fzi.é(uTgis method of generating randomopologies. Note that more or less improvements may
traffic (the terme 22 ) ensures more traffic for sourceresult depending on the topology and traffic conditions.

C. Simulation Results
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ARPANET

Fig. 14. Network topologies for simulations of OSPF link weight configuration
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We observe that OLS can demonstrate improvementstiobse for intra-domain TE is not practical. Therefore,
the order of 30-60% in the total drop rate.

ARPANET | MCI | EXODUS
Improvement, 31.8% 60.2% | 35.7%
TABLE |

TABLE SUMMARIZING THE MAXIMUM PERCENTAGE
IMPROVEMENT IN THE PACKET DROP RATES OBTAINED FOR
DIFFERENT TOPOLOGIES FOR THE RESULTS SHOWN INIGURE 15

V. OUTBOUND LOAD BALANCING IN BGP
ENVIRONMENT

This section describes another application of tHfeom the perspective of a single AS. We show that this
OLS system i.e., tuning of BGP routing protocol, téS an NP-hard problem and use the OLS framework to
show the breadth of our approach’s applicability. Agaisolve this problem.
the application described here is only one of possibleBGP provides only some simple capabilities for TE
problem formulations. Alternate performance metric dyetween AS neighbors. The MED attribute can be used
parameter space can surely be used to achieve otbgran AS to inform its neighbor of a preferred connec-
objectives. For inter-domain Traffic Engineering, théon (among multiple physical connections) for inbound
traffic demand statistics are usually kept private andhffic to a particular address prefix. Usually it is used by
the control over routers outside the local domain the service providers on the request of their multi-homed
normally not available. The global TE approach likeustomers. Lately, it is also being used between the

inter-domain TE has mainly focused on multi-homed

Autonomous Systems (AS), in-bound/out-bound load-

balancing between adjacent ASes using BGP attributes
(e.g. MED, LOCALPREF, ASPATH, etc.) [58].

The ASes are increasingly becoming multi-homed
[58]. The outbound traffic of an AS may be routed on
one of several outbound links, depending on the decision
made by the inter-AS routing algorithm, usually BGP.
BGP routing decisions are made by a series of policy
filters. Usually an AS may use the shortest AS path but
this may lead to unbalanced load distribution among the
multiple outbound interfaces. In this section, we consider
the problem of load-balancing outbound traffic in BGP
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service providers. The ABATH attribute has also beennumber. In a coarse granularity, a traffic flow can be
used to achieve TE objectives. AR\TH is “stuffed” identified by the source and destination AS-pair. Internet
or “padded” with additional instances of the same ABieasurements have shown that traffic aggregates based
number to increase its length and expect lower amownt destination prefixes in the routing table are more
of inbound traffic from the neighbor AS to whom it issuitable for load balancing [43] since they are relatively
announced. However, this may lead to a large overheadtéble through the day and on per-hour time scales. We
done too often. Another way used to achieve some TEHave used this granularity for defining a flow in our load
to subvert the BGP-CIDR address aggregation procebalancing scheme. In other words, the traffic demand is
In particular an AS may extract more-specifics, or deplit into flows at the level of per destination-prefix.
aggregate it and re-advertise the more-specifics to otheA typical BGP routing table consists of thousands of
ASes. The longest-prefix match rule in IP forwardingestination prefix entries. It will be very complex to work
will lead to a different route for the more specific adwith such a large number of traffic flows. However, many
dress. However, this is achieved at the expense of largiffic measurements [43], [44] have demonstrated the
number of entries in forwarding tables. This is an indireetxistence of so-called elephant and mice phenomenon.
and undesirable way to achieve inbound load-balancinhat is, a small number of traffic streams, known as
One way to avoid subverting CIDR aggregation (showslephantsgenerate a large portion of total traffic whereas
in our recent work [59]), in the case of multi-homsib a large number of streamsjce generate a small portion
AS is by mapping the inbound load-balancing problemwf total traffic. For example, it has been found that
to an address management problem. Alternatively, ABe top 9% of flows between ASes account for 86.7%
neighbors may agree on BGP community attributes [66] the packets or 90.7% of the bytes transmitted [44].
(that are not re-advertised) to specify traffic engineeringurthermore, these elephant traffic flows are usually very
We notice that inbound load-balancing is considerabsgable over time and hence are suitable to be re-routed for
complex and requires re-advertisements or support frdoad-balancing purpose. Based on these observations, our
neighboring ASes. However, outbound load-balancinglsad balancing scheme only attempt to adjust the routing
simpler, and can be achieved by impacting local polieyf the top 10% destination prefixes in the routing table
changes. based on their traffic demands.

The LOCAL PREF attribute is used locally within the

AS to prefer an outbound direction for a chosen desting: Optimal Routing Calculation for Load Balancing

tion prefix, AS or exit router. LOCALPREF holds the . ,
highest priority in the policy filter hierarchy, i.e. the BGP. Given the knowledge of traffic demand and outbound

will choose the path with highest LOCAPREF over link mform?tlc:n, the optimal rﬁutlng for Ioa<f:l balancing
other policy attributes. Therefore, if we know the desir %an be calculated. Lei be the number of outbound
j ' eImks in the concerned AS. Ldt andc¢;, i = 1...m,

routing to meet the traffic engineering objective, we €Al (ote theit® outbound link and its capacity (or band-

use the LOCALPREF to over-ride the default routing, idth), respectively. All the outbound traffic of this AS

Recent work [3] observes that it is possible to adjuév\{m be routed on these links. §;, i = 1...m, denotes

raffic distribution over outbound links by. ghanginqhe total outbound traffic carried by th& link, then
LOCAL _PREF of some "hot-prefixes” and shifting therr%he utilization of link/; is given bys;/c;. The objective

away from congested links. However, the problem of L L ) .
S . : of load balancing is to minimize the maximum link

unbalanced traffic distribution still remains. In fact, how,.,._ .. . .
R : . . utilization among all the outbound links, i.e.,
to “shift” these hot-prefixes to achieve load balancing Is

a NP-hard problem as we will show later. Here we use minimize max 5 (28)
the on-line simulation framework to tackle this problem i=l.m ¢
and perform automatic outbound load balancing. Let n denote the number of selected destination pre-

fixes andd;, j = 1...n, denote the average offered
load for these destinations. Our load balancing scheme
attempts to adjust the routing of thesgrefixes in order

Given a certain outbound traffic demand, load balle minimize the objective function in Equation (28). Let
ancing aims to split this traffic demand and distribut®; denote the subset of the prefixes that are routed
them evenly among outbound links. Usually, the traffic

demand can be divided into a number of traffic flows The fraction of optimized destination prefixes can be kept fixed
or increased in the event of increase in routing tables. In future, a

In the finest granUIari_ty’ a traffic flow is determined by¥majier fraction of destination prefixes may be used if 10% gives a
the source and destination IP addresses and the pery large number.

A. Granularity of Traffic Demands



16

on link I; by adjusted routing. Iff; denotes the load onmeets both load-balancing and shortest path criteria.
link [; generated by the other 90% traffic flows, which The complete optimization procedure performed by
are routed to this link by the default BGP routing, thethe OLS framework can be summarized as follows:

Equation (28) becomes Step 1 Extract top 10% destination prefixes, with traffic
o fi demandsi;, j = 1...n, from the routing table;
minimize @ = iﬂ?ﬁ(z o )+ P (29) step 2 calculated; /c; andfl/cz, i=1...m, j=1...
JeD: according to the traffic demand for each prefix and
where, the first term represents the percentage load due the capacity of each outbound link.
to the selected 10% flows and the second term repreStats 3 Each destination prefix may be reachable by all or
the percentage load generated by the other 90% flows on some of the outbound links. This information can
link 7;. This problem can also be written as the following be obtained from Adj-RIBs-In at a BGP router.
integer programming problem. Assign a very large value af; /c; for the infeasible
routes, so the solution (minimization) will not
result in an infeasible solution.
fz Step 4 Measure or compute the value &f for default
subject to wa + G =br=1 routing using Equation (29) denoted & .
Step 5Run RRS till a stopping criteria is reached. A

minimize ¢ (30)

7=1

inj =1,j=1...n stopping criteria can be a limit on time, number
of iterations etc.. Le®*, 7* denote the value of
zi;€{0,1}, i=1...m, j=1...n objective fL_m(_:tion and corresponding routing at the
end of opt|m|zat|on.
where z;; is a binary number and;;; = 1 meansstep 6 If |<I> > A, where A is the prede-
flow d; is output on linkl;, otherwisez;; = 0. Note fined threshold, deploy* by setting a high LO-
that traffic flow d; may not have all outbound links CAL_PREF of desired links for appropriate desti-

as its alternative paths. One can assume an arbitrarily npation prefixes.
large d;/c; for those links. The problem represented
by Equation (30) is actually a classical task schedulin ) )
problem with unrelated parallel machines [61], where & Simulation Results
number of tasks with different sizes are assigned to aThe simulations presented in this section demonstrate
set of parallel machines. The processing time of eatlie load balancing for an AS with 8 outbound links
task is different on different machines and the objectiwghose normalized capacities are 100, 100, 100, 100,
there is to minimize the completion time of all taskd5, 45, 45, 12, respectively. We assume the number of
by carefully distributing these tasks onto the parallébp 10% destination prefixes generating most traffic is
machines. This problem is NP-hard and approximatid®8. Note this number is chosen somewhat arbitrarily
algorithms can be used to obtain near-optimal solutioraly for the illustration purpose. In the simulation, we
For example, in [62] a linear programming technique generate only 148 traffic flows instead of all the traffic
first used to obtain a basic solution where there are fadws since the actual effect of the other 90% flows on
mostm — 1 non-integralz;;. Then for these non-integralthe simulation is only to reduce the capacity of the links
xi;j, an exhaustive enumeration is performed to find thy a certain amount. Therefore, ignoring these flows will
optimal scheduling. Combining the solutions of thesgot compromise the validity of the simulation results
two steps can produce an approximate solution withimany way. We assign each destination prefix a certain
upper bound of2t*, wheret* denotes the value of load such that the total offered load is the 30% of the
produced by the optimal solution. The time complexitiotal capacity of all the links. In the beginning of the
of this method is exponential in the value @f simulation, the offered load is randomly distributed over
Instead of the integer programming approach, vike outbound links. Then we apply the proposed load
have applied the OLS framework to this load balancirfsalancing scheme to the network. The link utilization
problem. With the flexibility of OLS, it is possible toof outbound links are compared in Table Il. As shown
optimize for various performance objectives besides load the table, before optimization, the load distribution
balancing. For example, in addition to load-balancingcross the outbound links is rather uneven, for example,
the network operator also prefers to use the shorteste link is greatly under-utilized with a utilization of
paths. It is possible to formulate a multi-objective opti#% while another link is heavily used with a utilization
mization problem and obtain a solution, using OLS, thaf 0.91%. After applying the load balancing scheme,
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Outbound Link Capacity 100 | 100 | 100 | 100 | 45 | 45 | 45 | 12
Before Optimization | 0.07 | 0.25| 0.20| 0.33| 0.60| 0.45| 0.48| 0.91
After Optimization 0.25| 0.33| 0.27| 0.30| 0.35| 0.33| 0.34| 0.23

TABLE 1l
LINK UTILIZATION OF OUTBOUND LINKS BEFORE AND AFTER OPTIMIZATION

the load distribution become much more even and tkenulation context (BGP). These contexts also symbolize
utilization of each link is very close to the ideal valuethe variety of optimization formulations that can fit into
i.e., the average utilization 30%. The maximum linkur framework.

utilization drops from 91% to 35%. The applicability of this on-line simulation approach
is limited by the extent we can model, measure and
VI. CONCLUSION simulate networks. As network simulation techniques

In this paper, we presented an on-line simulatiggPntinue improving rapidly, its applicability will also
framework for adaptive large-scale network parametiicrease. Another limitation of this approach is that it is
configuration. The on-line simulation framework tackless applicable in the problems where the performance
les the parameter configuration problem with a blacko€tric is hard to be represented by a range of real
box optimization approach. As a result, it allows gredumber, such as, binary decision problems like SAT
flexibility in the choice of performance objectives tdwhere the final answer is O or 1). lts applicability
be achieved and is generally applicable to a variefjcreases if the potential solution space ( discrete or
of network protocols. The essence of the OLS framgontinuous) is of a larger "size”, for example, high
work is to formulate network parameter configuratiofimensionality or each parameters with a very large
as a back-box Optimization pr0b|em. The major featuré%ng.e. FO-r such Iarge-scale prOblemS, tradltl.onal heuristic
of these optimization problems are examined and &Rnfiguraiton methods become hardly applicable.
efficient search algorithm, Recursive Random Search
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